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Cosmic filaments are the largest collapsing structure in the Universe. Recently both observations and
simulations inferred that cosmic filaments have coherent angular momenta (spins). Here we use filament
finders to identify the filamentary structures in cosmological simulations and study their physical origins,
which are well described by the primordial tidal torque of their Lagrangian counterpart regions—
protofilaments. This initial angular momenta statistically preserve their directions to low redshifts. We
further show that a spin reconstruction method can predict the spins of filaments and potentially relate their
spins to the initial conditions of the Universe. This correlation provides a new way of constraining and
obtaining additional information of the initial perturbations of the Universe.
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I. INTRODUCTION

The large scale structure (LSS) of the Universe contains
plenty of cosmological information and enables us to
answer questions about the initial state of the Universe
[1]. The key procedure is looking for linear mappings from
the observables at low redshifts to the properties of the
initial perturbations at high redshifts [2,3]. The nonlinear
clustering of LSS leaves linear Fourier modes only
k≲ 0.2h Mpc−1, and even with reconstruction methods
[4,5] the available linear Fourier modes are still limited. It is
thus valuable to find observables that relate to the initial
perturbations.
Beside using the locations and velocities of galaxies to

study LSS, the rotations of galaxies provide another degree
of freedom to constrain the initial conditions and cosmo-
logical parameters. At low redshifts, the galaxy angular
momenta (spins) are observable via their ellipticity, pro-
jection angles, spiral parities, and Doppler effects [6] and
are physically related to initial perturbations. The tidal
torque theory explains how the angular momentum of a
clustering system is generated in Lagrangian space [1,7,8],
where the mass elements are described in their initial
comoving coordinates. It is also confirmed by many
cosmological simulations that the tidal torque of protohalos
(dark matter halos in Lagrangian space) generated by the
misalignment between the moment of inertia and the tidal

field provides a persistent generation of angular momentum
until virialization of halos [9,10]. Also, hydrodynamical
simulations show that the spins of galaxies tend to align
with their host halos [11]. These facts make galaxy spins
another observable in constraining initial perturbations
[12,13]. Reference [14] found a method to reconstruct
galaxy spins by initial perturbations, and the initial con-
ditions can be estimated by density reconstructions [15].
Reference [16] applied this method and for the first time
confirmed the correlation between galaxy spins and cosmic
initial conditions.
Filaments are one of the largest structures of the

cosmic web [17,18]. By numerical simulations, they have
been demonstrated to be spinning in the LSS environment
[19–21]. Observationally, [22] for the first time detected
possible evidence for filament spins by examining the
velocities of galaxies perpendicular to the filament’s axis.
These studies suggest that we could use the filament spins to
understand the structure formation and potentially constrain
cosmological models and parameters using the framework
similar to galaxies. In Lagrangian space, the protofilaments
could also be defined according to the mass elements of
filaments in their Lagrangian space. Because filaments are
generally much more massive than galaxies and halos, they
occupy larger regions in Lagrangian space, corresponding to
larger, more linear scales. If there is a strong correlation
betweenEulerian andLagrangian filaments, they can be used
to probe larger scales of the primordial perturbations com-
plimentary to that of galaxies and halos. It is thus interesting*haoran@xmu.edu.cn
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to examine the Lagrangian properties of filaments, whether
their initial spins can be described by the tidal torque theory,
and whether their spins are conserved across the cosmic
evolution and then can be reconstructed by the initial
conditions. In this paper, we use cosmological simulations
to explore the Lagrangian properties of cosmic filaments and
their spin conservations.
The structure of the paper is as follows. In Sec. II, we

describe the simulation configurations and filament finder
for filament identifications. In Sec. III, we present the
results for the spin properties, conservations, and recon-
structions. In Sec. IV, we give conclusions and make
discussions and prospects.

II. SIMULATION AND FILAMENT
IDENTIFICATION

We use numerical simulations to study the properties of
filaments, which based on the cosmological N-body simu-
lation code CUBE [23]. We assume a flatΛCDM cosmology
with cosmological parameters Ωm ¼ 0.3, ΩΛ ¼ 0.7,
σ8 ¼ 0.87, h ¼ 0.7, in a cubic box L ¼ 100 Mpc=h per
side with periodic boundary conditions.Np ¼ 5123 particles
are initially uniformly initialized in Lagrangian space, and
the “grid initial condition” is used where Lagrangian
positions of particles are placed at the each center of the
cell, in a Ng ¼ 5123 mesh, so it is straightforward to acquire
their Lagrangian properties. The particles are then assigned
with initial linear displacements and initial velocities by
using the Zel’dovich approximation [24] at initial redshift
zinit ¼ 100, and then are evolved to Eulerian space at redshift
z ¼ 0 using the particle-particle particle-mesh force calcu-
lation. The particle mass is approximately 8.8 × 108 M⊙.
Since filaments not self-bound by gravity and density

dependency alone, there is no standard definition of cosmic
filaments, resulting in many different filament finder real-
izations. According to their discrepancies of definitions,
they can be classified by more mathematical and more
physical ways. Mathematically, skeleton (e.g., the discrete
persistent structure extractor [25–27]), graph theory (e.g.,
state-of-the-art tracer T-Rex [28], MST [29]), and Bayesian
[30–32] methods extract the filament spine. Reference [33]
developed a novel method to find filaments in terms of
machine learning. Many theories (pancake model, hierar-
chical clustering) interpret LSS formation subjected to
the tidal field tensor, defined by the Hessian matrix of the
overdensity field, Hij ¼ ∂i∂jδ, where δ≡ ρ=hρi − 1 is the
overdensity. Accordingly many physical methods to trace
cosmic web, including filaments, are based on Hessian
matrix by single scale [34–36] or multiscales [37–39].
In this paper, we adopt the filament finder based on the

Smoothed Hessian Major Axis Filament Finder (SHMAFF)
[35], which, physically, starts from the tensor field Hij to
define the filament spine. Here we briefly introduce the
primary parameters for completeness, and more details can

be found in [35]. For adapting the spine to the density field,
we allocate all dark matter particles to a mesh with grid
number Ng ¼ 2563 by cloud-in-cell mass assignment, and
smooth it with a Rs ¼ 2 Mpc=h Gaussian kernel. For each
grid, we eigendecompose the matrix Hij into eigenvalues
λ1 < λ2 < λ3 and eigenvectors Ai (i ¼ 1, 2, 3). Intuitively,
filament skeletons satisfy δ > 0 and λ2 < 0, whereas A3

represents the alignment of the skeleton.1 We first remove
all the grids satisfying any of the following criteria:

δ < 0; λ2 ≥ 0: ð1Þ
Then, we start from the grid at the minimum λ1 and
iteratively search for the adjacent grids along both direc-
tions,�A3, until the grid either satisfies the removal criteria
(1), or the jA3j angle between two grid candidates exceeds
a given threshold C, i.e.,

jA3;n ×A3;n−1j > sinðCΔÞ; ð2Þ
where Δ is the cell width. We take the angle value of
C ¼ 30°R−1

s . Note that we remove the grids of cylinder
within width Wi at each step as

Wi ¼ K
ffiffiffiffiffiffiffi−ρi
λ1;i

r
; ð3Þ

where K is set to 2 in this work. The filament particles are
identified by the criterion that their vertical distance to the
skeleton are less than 2 Mpc=h.
By applying the filament finder we get a filament catalog

with 1680 filaments. This catalog contains the detailed
information about the filament skeletons and particles. In
the left panel of Fig. 1, we plot the skeletons of all filaments
in the simulation box.
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FIG. 1. Visualization of filaments. The left panel shows the
skeletons of identified filaments in the simulation volume. The
right panel shows the convex hull of a filament in Lagrangian
(gray) and Eulerian (blue) spaces. The mass of the selected
filament is 1.05 × 1015 M⊙. The black and red arrows represent
the direction of spines of the filament in Lagrangian and Eulerian
spaces and the yellow and green arrows represent the directions of
their angular momenta, respectively.

1We note that Hij is parity even, so in the eigendecomposi-
tions, Ai is “arrowless.”
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III. RESULTS

A. Mass distributions

In this section we start with a comparison between
filament properties in Eulerian and Lagrangian spaces. The
protofilaments are obtained by using particle IDs in the
N-body simulation and tracing back to their Lagrangian
positions. We use moment of inertia tensor Iij ¼

P
i mix0ix

0
j

to characterize the mass distribution of a system up to
quadrupole. Here mi is the particle mass, and x0 is the
particle position relative to the center of mass in Eulerian or
Lagrangian space in consideration. The eigendecomposi-
tion of Iij gives the primary, intermediate, and minor axes
of the mass distribution of the filament and their alignments
in space. The eigenvalues are sorted as i1 > i2 > i3, so the
primary axis i1, associated with the eigenvector V1

(hereafter we denote Vj as the eigenvector of ij, j ¼ 1,
2, 3) is expected to align with the spine of the filament.
The properties of the mass distribution can be characterized
by three parameters, the trace τ ¼ i1 þ i2 þ i3, the
ellipticity e ¼ ði1 − i3Þ=2τ, and the prolateness p ¼ ði1 −
2i2 þ i3Þ=2τ [40]. A perfect sphere has e ¼ p ¼ 0, a thin
disk has e ¼ 1=4 and p ¼ −1=4, while a slim straight
filament has e ¼ 1=2 and p ¼ 1=2.
In the top panels of Fig. 2, we plot the joint probability

distribution functions (PDFs) of ellipticity e and prolate-
ness p for all 1680 filaments in Lagrangian and Eulerian
spaces, respectively, and the one-dimensional PDF mar-
ginalized along each axis. As expected, in Eulerian space,

nearly all filaments show prolate (p > 0) mass distributions
rather than oblate (p < 0). In terms of the expectation value
of the distribution, hpEuli ¼ 0.25. Meanwhile, the filaments
show systematic ellipticity, heEuli ¼ 0.33. In the bottom
panels of Fig. 2, we plot the dependence of e and p of
filaments in Eulerian space with spine length and mass
respectively, where spine length is represented by

ffiffiffiffi
i1

p
.

Filaments with longer spine length tend to have
ðe; pÞ → ð1=2; 1=2Þ, but this trend shows weak depend-
ence on mass. Note that there are still few filaments with
low or negative prolateness, and with low ellipticity. These
filaments are generally shorter and less massive and the
inclusion of particles involve numerical artifacts. However
in later subsections they do not affect the conclusions.
In contrast, the protofilaments in Lagrangian space tend to
be more spherical relatively. In the top left panel of Fig. 2,
the joint PDF does not cluster to the ðe; pÞ ¼ ð1=2; 1=2Þ
corner. Numerically the statistics of these two parameters in
Lagrangian space are hpLagi ¼ 0.12 and heLagi ¼ 0.26.
These results illustrate the filament formation picture in

the structure evolution. The protofilament region is more
spherical rather than filamentary initially. While in contrast
to protohalos, which collapse in all directions, protofila-
ments primarily collapse along two directions, V2 and V3,
due to the external tidal field. Because the initial spin given
by the tidal torque is preferentially aligned with V2 and the
second principal axis of the tidal tensor T2 [13] (hereafter
we denote Ti and ti as the eigenvectors and eigenvalues
of T), we thus expect that in the anisotropic collapse of
filaments, the tidal torque is also preferentially aligned
with V2. In the following section we indeed find that both
Lagrangian and Eulerian filament spins are preferentially
aligned with V2; i.e., the spin vectors are preferentially
perpendicular to the spine of the filaments V1. Besides, a
spherical Lagrangian region is potentially suitable to
directly apply the spin reconstruction methods presented
in [14].

B. Spin directions and conservations

Here we study the angular momentum properties of
filaments. We use j to denote the angular momentum
vector. In Eulerian space, the angular momentum vector
of a filament is defined as jE ¼ P

i miðxi − x̄Þ × vi ¼P
i mix0i × vi, where mi, xi, x̄, and vi are the particle mass,

Eulerian position, Eulerian center of mass, and Eulerian
velocity, respectively. x0i ≡ xi − x̄ is the position relative to
the center of mass x̄. In Lagrangian space, the angular
momentum vector is similarly defined as jL ¼ P

i miq0i×
ui ¼

P
i miðqi − q̄Þ × ui ¼

P
i miq0i × ð−∇ϕjqiÞ, where qi,

q̄, ui are the Lagrangian position, Lagrangian center of
mass, Lagrangian velocity, respectively. q0i ≡ qi − q̄ is the
Lagrangian position relative to Lagrangian center of
mass q̄. The Lagrangian velocity ui is simply expressed
by the gradient of the primordial gravitational potential ϕ,
consistent with our setup in the initial conditions [24].

FIG. 2. Joint PDFs of ellipticity e and prolateness p for
filaments in Lagrangian (top left panel) and Eulerian (top right
panel) spaces, shown by gray scale. The red and blue curves
represent the PDFs of e and p, respectively. The bottom panels
are the same as the top right panel, but points are colored
according to the spine length of the filaments (bottom left panel)
and the mass of the filaments (bottom right panel).
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We use the cosine of the angle between two vectors jL
and jE to quantify the cross-correlation between their
directions, i.e., μðjL; jEÞ≡ jL · jE=jjLjjjEj ∈ ½−1; 1�. The μ
of two randomly distributed vectors in three-dimensional
space is top-hat distributed between −1 and 1, with
expectation 0. In Fig. 3, we plot the PDF of μðjL; jEÞ for
all filaments. The expectation value hμi takes 0.70 and the
PDF of μðjL; jEÞ obviously depart from a top-hat distribu-
tion, suggesting that jL, jE directions are strongly corre-
lated. This property is similar to the spin conservations of
dark matter halos [41]. Next we decompose the spin vector
into parallel and perpendicular components with respect to
the major axis V1 (spine) of the Eulerian filament. From
now on, we denote them with superscripts k and ⊥. In the

first two insets of Fig. 3, we plot the PDFs of jjkLj=jjLj ¼
jμðjL;V1Þj and jjkEj=jjEj ¼ jμðjE;V1Þj, which show that in
both Lagrangian and Eulerian spaces, the spin directions
are preferably perpendicular to the spine of the Eulerian
filaments. This is consistently explained by the tidal torque
theory, which expresses the initial tidal torque spin as
ji ∝ ϵijkIjlTlk, where ϵijk is the Levi-Civita symbol and
Tlk ∝ −∂l∂kϕ is the tidal tensor. In the coordinate system
of principal axes of T, j2 ∝ ðt1 − t3ÞI31 is the dominated
component due to the largeness of t1 − t3 [for more details,
see Eq. (2) and the following discussions of [13] ]. In
comparison, the filament spine V1 is aligned with the least
collapsing direction T1, and T1⊥T2. The third inset of

Fig. 3 confirms it numerically by the PDF of μðT2;V1Þ and
thus explains the dominated spin component j2⊥V1

statistically.
To understand the spin directions more intuitively, we

select a typical filament with mass 1.05 × 1015 M⊙ in our
simulation and visualize its shapes in Lagrangian and
Eulerian spaces, as well as the spin vectors in both spaces
in the right panel of Fig. 1. The shape is visualized by the
convex hull of all particles belonging to the filament, either
in Eulerian (blue) or Lagrangian (gray) space. Consistent
with the statistics of Fig. 2, the Eulerian filament is
elongated vertically, whereas its Lagrangian counterpart
is more spherical. The yellow and green arrows show their
spins, and the black and red arrows represent their
components in the major axis V1. Their magnitudes are
normalized arbitrarily for better visualization. The con-
servation of spin directions is seen by this typical filament.

C. Spin magnitudes

In this subsection we focus on the conservation of spin
magnitudes. The comparison of angular momentum mag-
nitudes through the cosmic evolution is conveniently
analyzed by the dimensionless spin parameter. The spin
magnitude of a system in Eulerian space can be charac-
terized by a dimensionless kinematic spin parameter λKE
[41], which is defined as

λKE ≡
R
Vx
ĵiϵijkx0jv

0
kdMR

Vx
x0v0dM

¼
R
Vx
sin θ1 cos θ2x0v0dMR

Vx
x0v0dM

; ð4Þ

where ĵ ¼ ðjE=jEÞ is the unit jE vector ðjE ¼ jjEjÞ,
x0 ¼ jx0j, v0 ¼ jv0j≡ jv − v̄j is the velocity relative to the
average velocity of the filament v̄, sin θ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2ðx0; v0Þ

p

and cos θ2 ¼ μðx0 × v0; jEÞ, which can be similarly defined
in Lagrangian space and denoted with λKL. They take the
value [0, 1] and describe whether a system is more velocity
dispersion supported or rotation supported. For dark matter
halos and their protohalos in Lagrangian space, [41]
demonstrated that both spin directions and spin magnitudes
tend to be correlated across cosmic evolution.
For two variables X, Y, the correlation coefficient is

defined as

rðX; YÞ ¼ CovðX; YÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½X� · Var½Y�p ; ð5Þ

and the covariance is normalized by the square root
of the multiplication of their autovariances. The cor-
relation r ∈ ½−1; 1�, statistically r ¼ �1, indicates the
strongest correlation/anticorrelation, and r ≃ 0 indicates a
noncorrelation.
In Fig. 4, we plot the correlation between λKL and λKE for

filaments in different length ranges. Table I lists the number
of filament samples and the correlation coefficient
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FIG. 3. Spin conservation of cosmic filaments shown by PDF
of μðjL; jEÞ. The distribution shows a strong deviation from a top-
hat distribution, suggesting that the filament spin directions are
conserved from high redshifts to low redshifts. The three insets
are the PDFs of μðjL;V1Þ, μðjE;V1Þ and μðT2;V1Þ, where T2

denotes the second principal axis of the tidal tensor.
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rðλKL; λKLÞ as a function of filament spine length range.
Figure 4 and Table I suggest that the spin magnitudes of jL
and jE have a strong positive correlation. We find that this
positive correlation is related to the length of the spine.
Filaments with longer spines tend to have a stronger
correlation between λKL and λKE. This trend can be
explained by the fact that longer filaments tend to be more
filamentary in our samples as we have shown in the bottom
left panel of Fig. 2, which is partly a consequence of the
limitation of the filament finder. By eliminating those
filaments with low prolateness and ellipticity could make
the correlation more robust.
By observing the PDFs of single parameters, we find that

the values of λL and λE are much less than unity, suggesting
that the filaments are not rotation supported in both
Eulerian and Lagrangian spaces. This behavior is very
similar to dark matter halos and protohalos by various of
definitions [41].
To compare with the current observation works [22],

which detected observational evidence for jk, it is interest-
ing to extract the spin magnitudes of jk, which is parallel to

the spine (V1), and check whether it is correlated to their
spin magnitudes in Lagrangian space. By projecting Eq. (4)
onto a plane perpendicular to V1, the kinematic spin
parameter becomes

λkE ≡ V̂1 · j
k
EP

x0⊥v0⊥
; ð6Þ

where x0⊥ ¼ jx0⊥j, v0⊥ ¼ jv0⊥j, vectors with ⊥ are the
components perpendicular to the spine. Here V̂1 is an unit
vector aligned with the spine. Because the spine is parity

even, the sign of λkE is defined according to the arbitrarily

chosen V̂1. Similarly, λkL can be obtained from jkL in the
same manner,

λkL ≡ V̂1 · j
k
LP

q0⊥u0⊥
: ð7Þ

With the above definition, jλkLj; jλkEj ∈ ½0; 1�, and larger jλkLj
or jλkEj corresponds to more coherent rotations along the

spine. Meanwhile, same/different signs of λkL and λkE
indicates that jkE is parallel/antiparallel to jkL.
In Fig. 5, we plot the correlation between λkL and λkE for

filaments in different length ranges. The correlation coef-

ficients rðλkL; λkEÞ in different spine length range are also
listed in Table I. We find that the parallel component of the
spin shows similar correlation as j, the spin magnitudes of

jkL and jkE have a strong positive correlation and filaments
with longer spines tend to have a stronger correlation.

Besides, the absolute values of λkL and λkE are also much less
than unity, but fortunately the smallness of the rotation
component of the filaments can still be measured [22].

D. Spin reconstruction

In this subsection we reconstruct the predicted spins for
filaments based on their Lagrangian space properties
analogous to the spin reconstruction of halos. As we have
mentioned in Sec. III, the initial angular momentum vector
of a protohalo that initially occupies Lagrangian volume VL
is approximately by j ∝ ϵijkIjlTlk, where I ¼ ðIjlÞ is the
moment of inertia tensor of VL, T ¼ ðTlkÞ is the tidal
tensor acting on I, and ϵijk is the Levi-Civita symbol
collecting the antisymmetric components generated by the
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FIG. 4. Correlation between λKL and λKE for filaments in
different length ranges. The gray scale in the background
represents their joint distribution and the red and blue curves
represent the PDFs of the parameters indicated by the label of
each axis.

TABLE I. Number of filament samples and the correlation coefficient as a function of filament spine length range.

Spine length L > 0 Mpc=h L > 2 Mpc=h L > 2.5 Mpc=h L > 3 Mpc=h

Sample number 1680 746 326 177
rðλKL; λKEÞ 0.57 0.61 0.712 0.717

rðλkL; λkEÞ 0.67 0.70 0.771 0.774
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misalignment between I and T. The spin reconstruction of
dark matter halos is by defining [14]

jR ¼ ðjiÞ ∝ ϵijkT jlT
þ
lk; ð8Þ

where T ,T þ are tidal fields constructed as Hessians of the
initial gravitational potential smoothed at two different
scales r, R. The initial gravitational potential can be
estimated by the initial density field reconstructed method
ELUCID, for which we refer the readers to [15,42] for more
details. This method can reproduce the density field of the
nearby universe generated from the galaxy distributions in
observation. To obtain T and T þ, we smooth the initial
gravitational potential ϕinitðqÞ, by multiplying it in the
Fourier space by the baryonic acoustic oscillation damping
model DðkÞ1=4 ¼ exp ð−r2k2=2Þ1=4 [4]. By choosing
R → rþ, we find jR a good approximation for an angular
momentum of a protohalo. Similarly, we apply this method
to protofilaments, then we get the spin field jR recon-
structed from known initial conditions. We group all
identified filaments into five mass bins, ranging from
∼1012 M⊙ to ∼1015.5 M⊙, then apply Eq. (8) with a set
of different smoothing scales r, and compute the correla-
tions between reconstructed and Eulerian spins of fila-
ments. In Fig. 6, we plot μðjE; jRÞ as a function of
smoothing scales r and filament mass bins. The gray scale
shows the degree of correlation and the darkest region in
each mass bin represents the optimal smoothing scale ropt,
also indicated by the yellow dashed curve.
We find that the spins of more massive filaments can

generally be predicted at a wide range of smoothing scales.

The correlation is larger than 0.3 for filaments more massive
than 1013.5 M⊙.We also find thatmoremassive filaments are
better reconstructed by a larger smoothing radius, and this
behavior is similar to the spin reconstruction of dark matter
halos [14]. As a reference, we plot with the red dashed curve
the equivalent protofilament radius in the Lagrangian space
defined as rq ≡ ð2MG=ΩmH2

0Þ1=3. We find that ropt is not
closely related to rq, and find ∼5 Mpc=h a universal
smoothing scale for all massive filaments.

IV. CONCLUSION AND DISCUSSIONS

In this paper, by using numerical simulations, we study
the angular momentum properties of cosmic filaments
across the cosmic evolution, as well as their origins,
conservations, and predictability. The conclusion of our
results is summarized as follows:

(i) In terms of moment of inertia tensors and their
eigendecompositions, the cosmic filaments in
Lagrangian space (protofilaments) exhibit much
more spherical shapes, for which Lagrangian spin
reconstruction method with a isotropic smoothing
function is effective to be applied for the angular
momentum prediction.

(ii) The angular momentum directions of filaments and
their protofilaments are very well correlated, with a
statistical correlation of 0.7, and significantly depart
from a random distribution from uncorrelated pairs
of vectors. This shows that the angular momentum
directions of filaments are well conserved through
the cosmic evolution, similar to that of dark mat-
ter halos.

(iii) The angular momentum direction is more per-
pendicular to the spine (major axis) of the filament,
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which can be well predicted by tidal torque theory,
whereas the spin component parallel to the spine
matches the numerical and observational analysis of
filaments in previous studies.

(iv) By constructing a dimensionless spin parameter of
this spin and its parallel component, we find that the
kinematic motion of the filaments relatively less
rotation supported. This statistics is very similar to
that of dark matter halos.

(v) The dimensionless spin magnitudes of protofila-
ments and filaments are statistically significantly
correlated, showing that faster spinning protofila-
ments are more likely to form faster spinning
filaments at low redshifts.

(vi) The filament spins can be predicted by a spin
reconstruction method in Lagrangian space, and
the predictability is similar to the spin reconstruction
of dark matter halos. This opens up the possibility of
using filament spins to constrain the cosmic initial
conditions.

We notice that the above conclusions weakly depend on
the mass and length of the filaments, with longer and more
massive filaments having better spin conservation and
predictability. This can be partly explained by the limitation
of filament finders, meaning that those short and low
massive samples in the catalog might be fake filament
structures and that eliminating them could make the results
more robust. The free parameters in our filament finder and
other available filament finder algorithms add freedom in

the identifications of filaments and their containing par-
ticles. As a convergence test, we also use different
parameters in our filament finder discussed in Sec. II
and they all give consistent results. Discovering other
filament finder methods and comparing the results are
not included in this paper and can be left to future studies.
However, it is more important to study how the filament

spins can be observed by multiple tracers, such as galaxies
and their relative velocities, e.g., [22], or intergalactic
media by kinetic Sunyaev Zel’dovich effect [43]. Galaxy
formation simulations in a cosmological volume are needed
to understand these effects and are helpful to construct the
pipeline of the analysis. Moreover, besides [21,22], it is
also valuable to extract the angular momenta perpendicular
to the spines of the filaments. Multitracer reconstruction of
the initial density field and redshift space distortion should
be included in the analysis. We leave them to future works.
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