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The primordial universe might be highly inhomogeneous. We perform the ð3þ 1ÞD numerical relativity
simulation for the evolution of scalar field in an initial inhomogeneous expanding universe, and investigate
how it populates the landscape with both de Sitter (dS) and anti–de Sitter (AdS) vacua. The simulation
results show that eventually either the field in different region separates into different vacua, so that the
expanding dS or AdS bubbles (the bubble wall is expanding but the spacetime inside AdS bubbles is
contracting) come into being with clear boundaries, or overall region is dS expanding with a few smaller
AdS bubbles (which collapsed into black holes) or inhomogeneously collapsing.
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I. INTRODUCTION

It has been widely thought that the inflation [1–6], which
may be well approximated by a de Sitter (dS) spacetime,
should happen at the early epoch of our universe. The
current accelerated expansion of our universe also suggests
that it has a dS-like dark energy referred to as the
cosmological constant. However, a stable dS state seems
not favorable in the string landscape [7,8], which, if it
exists, might be extremely rare, see Refs. [9,10] for the
swampland conjecture. In contrast, it is easy to construct
anti-dS (AdS) vacua, [7,11], see, e.g., [12–18] for the
implications of AdS vacua on the early universe.
In such a landscape (AdS and dS vacua coexist), see

Fig. 1, whether it is possible for our universe to evolve to
the corresponding dS vacua and whether it is possible for it
to stay in a dS state consistent with the current observations
is not obvious. Thus how to populate the landscape,
especially how our universe started from a dS-like inflation
when AdS vacua exist, has still been a concerning issue. It
has been showed in Refs. [19,20] that, in an effective
potential with multiple vacua, the nucleation of bubbles
with different vacua can spontaneously occur, see also, e.g.,
[21–26]. Recent Refs. [27–29] have also reported the
possibility that a large velocity fluctuation of the scalar
field pushes a region of field over the potential barrier.
However, it is usually speculated that the primordial

universe is highly inhomogeneous, i.e., the scalar field or
spacetime metric has large inhomogeneities before a region

of space arrived at a certain vacuum. The large inhomo-
geneities might also be present in multistream inflation
[30,31], in which the inflaton field rolled along a multiple-
branch path, so that the homogeneities might hardly be
preserved after bifurcations, see also recent [32]. Recently,
in the studies concerning large inhomogeneities, numerical
relativity (NR), see Refs. [33–35] for recent reviews, has
become a powerful and indispensable tool [36–40], see also
its application to the beginning of inflation [41–45],
cosmological bubble collisions [46–49], cosmological
solitons [50] and primordial black holes [51].
It is interesting and significant to perform the ð3þ 1ÞD

NR simulation in an initial inhomogeneous universe to
investigate how the scalar field populates the landscape.
We will work with a highly inhomogeneous universe that
is initially expanding and a scalar field (its effective
potential has both dS and AdS vacua), and numerically
evolve it with modified NR package GRCHOMBO

1 [52].
This paper is outlined as follows. In Sec. II, we present
the model and initial conditions. In Sec. III, we present
the simulation results and discuss the relevant implica-
tions. We conclude in Sec. IV. We will set c ¼ 8πG ¼ 1.
Throughout the paper, we will set the reduced Planck
mass M̃Pl ¼ 1.

II. THE MODEL AND INITIAL CONDITIONS

In an effective theory, the string landscape might corre-
spond to a complex and rugged potential. However, for
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simplicity, we set the potential ∼ϕ2 around its minima,2

which are separated by a fourth-order polynomial barrier,

VðϕÞ ¼

8
>>><

>>>:

1
2
m2

1ðϕ − ϕ1Þ2 þ V1; ϕ < ϕ1;

λ
�
ϕ2 þ 1

2λ

�
2
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1
2
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ð1Þ

see Fig. 1. The minima of the fourth-order polynomial are at

ϕ1 ¼ 0 and ϕ2 ¼ 3þ ffiffiffiffiffiffiffiffiffi
9−32λ

p
8λ ðλ < 9

32
Þ, respectively, at which

the potential is differentiable. In the simulation, we will fix
m2

1 ¼ m2
2 ¼ 0.2 and λ ¼ 0.2375.

The initial inhomogeneity of the scalar field ϕ is
regarded as

ϕjt¼0 ¼ ϕ0 þ Δϕ
X

x⃗¼x;y;z

cos

�
2πx⃗
L

�

; ð2Þ

similar to that in Refs. [41,42], where x⃗ is the spatial
coordinate, Δϕ is the amplitude of initial inhomogeneity,
while the length of the simulated cubic region is L ¼ 4. The
initial expansion rates for the dSdS and dSAdS scenarios
are Hinit ¼ 0.7, 0.6, respectively, corresponding to Hubble
radii H−1 ¼ 1.43; 1.67 < L; i.e., the initial scale of inho-
mogeneity is superhorizonal.
In light of the potential in (1), we classify the scenarios

simulated as dSdS (both vacua are dS-like) and dSAdS (one
is dS-like and the other is AdS-like). We will consider
simulations of three cases (for dSdS and dSAdS,

respectively),3 with Δϕ ¼ 0.7 but with different average
field values ϕ0 ¼ 0.2, 1.0, 1.7 for dSdS (ϕ0 ¼ 0.3, 1.0, 2.0
for dSAdS), where ϕ0 ¼ 0.2; 1.7ð0.3; 2.0Þ indicates that the
initial distribution of ϕ is biased towards one of the vacua,
see Fig. 1. Here, the inhomogeneity considered clearly
exceeds the perturbative level. However, during the very
early stage of the universe, the initial inhomogeneity might
arise from large quantum fluctuations with Δϕ ≃H, where
H ∼Oð1Þ. In addition, the string landscape conjectures
bounds on the scalar field excursion, e.g., in [9,53]
jΔϕj < Oð1Þ, is also consistent with our model.
Appendix A shows a brief review on NR based on

Baumgarte-Shapiro-Shibata-Nakamura (BSSN) [54,55]
and the symbols and conventions in our paper. We set the
initial values of BSSN parameters as γ̃ij ¼ δij, Ãij ¼ 0, and
the initial spatial expansion uniform (K ¼ const: < 0) and
_ϕ ¼ 0, which naturally satisfy the momentum constraints.
The Hamiltonian constraint is then solved by relaxing χ from
the initial value χ ¼ 1with the parabolic equation ∂tχ ¼ H.
This equation is iterated until it converges (suggesting
∂tχ ¼ H ¼ 0). The resolution of the simulation is 32 × 32 ×
32 along the x, y, z axes on the coarsest level with up to three
levels of adaptive mesh refinement (AMR) regridding.

III. RESULTS AND ANALYSIS

We will perform the NR simulations with modified
GRCHOMBO package to investigate how the field populates
the landscape in Fig. 1 in an inhomogeneous universe that
is initially expanding.
As a contrast, we first consider a landscape consisting

of only dS vacua. We show the evolutions of ϕ at certain
regions for dSdS-1,2,3 in Fig. 2. The field initially under-
went a rapidly oscillating phase. However, eventually, for
dSdS-1 the fields in different spatial regions will separate
into different vacua, and the dS bubbles come into being
with clear boundaries, while for dSdS-2,3, the overall
region will be in a nearly homogeneous dS expansion.
The Hubble rate at a local homogeneous region is

Hlocal ¼ lim
V→0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

V

Z
ρðϕÞ
3

dV

s

¼ −
K
3
; ð3Þ

In Fig. 3, for dSdS-1, the local Hubble rate will be

Hlocal ¼ ðVðϕ1;2Þ
3

Þ1=2, i.e., at different vacua ϕ1 and ϕ2,
respectively, and for dSdS-2,3, Hlocal will be identical
eventually at all region, i.e., a homogeneous dS expansion.
The result is consistent with Fig. 2.
In our simulation results for dSdS-1, eventually the dS

bubbles will emerge in a high-energy dS background. It is
well known that if the radius of the bubble is larger than the
Hubble radius of the background, r⩾H−1, then the bubble

FIG. 1. The upper panel is the dSdS potential (both minima are
dS-like), the lower panel is the dSAdS potential (one minimum is
dS-like, the other is AdS-like). Lengths of the arrow lines
represent the initial amplitude of ϕ. The brown, gray, blue
colored lines and dotted lines correspond to different sets in
our simulations, i.e., the first, second and third set, respectively.

2This helps to ease the computational cost of relaxing the
initial condition.

3The result is labeled by the scenario it belongs to (dSdS or
dSAdS) followed by the different case numbers, e.g., dSdS-1.
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FIG. 2. Results of ϕ at x − y slices at different time steps (proceeding from left to right) for dSdS-1,2,3. The color bar and the elevation
height show the value of ϕ. The yellow line on the color bar marks the converged values of ϕ.

FIG. 3. The evolution of K for dSdS-1,2,3. K1 and K2 correspond to the local Hubble rate at ϕ1 and ϕ2, respectively [noting both
Vðϕ1Þ; Vðϕ2Þ > 0 for dSdS in Fig. 1]. Panel (d) shows the labeling of the positions in (a)–(c). These positions are at the bulk (center) of
the vacua or where these regions intersect the simulation boundary, and best capture the physics of corresponding vacua.
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FIG. 4. Upper row: the value ofϕ along the x axis, showing the different vacua regionswithϕ ¼ 2.2 andϕ ¼ 0 separated by a bubblewall.
The darker lines show the field configurations for later time. Second row: positions of the inner and outer boundaries of the bubble wall. It is
clear that thewidth of the bubblewall in comoving coordinates shrinks with time, which indicates that the position of the bubblewall freezes.

FIG. 5. Results of ϕ at x − y slices at different time steps (proceeding from left to right) for dSAdS-1,2,3. The color bar and the
elevation height show the value of ϕ. The yellow line on the color bar marks the converged values of ϕ.
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wall will expand with the background. In Fig. 4, we see that
the position of the bubble wall is frozen, suggesting that the
dS bubble is in fact expanding with the background.
However, the condition r > 1=H is not strictly satisfied
in our simulation, the Hubble length H−1 of background in
dSdS-1 is 2.45, which is comparable but not less than the
radius r ≃ 1 of bubble.
It ismore interesting to investigate the dSAdS landscape in

Fig. 1. We show the evolutions of ϕ at different regions for
dSAdS-1,2,3 in Fig. 5. Results show that dSAdS behaved
similarly to dSdS only at the initial stage of the evolution.
It is significant to check the local expansion rate. In

Fig. 6,4 for dSAdS-1, some regions eventually converged to
Hlocal ¼ const: > 0 (the dS expansion), while other regions
have Hlocal < 0. In Fig. 7, these contracting AdS regions
will always collapse. Reference [56] investigated a homo-
geneous case with Vmin < 0 and showed the diverging
property of H once it crosses to the negative side, which
indicates the final fate of the AdS bubbles in our simu-
lation. For dSAdS-2, after the initial oscillation, the overall
region will have a nearly homogeneous dS expansion,
except for a few smaller AdS bubbles, see Fig. 7. Thus our

results show that the expanding dS regions may be present
eventually, even if the AdS vacua exist. For dSAdS-3, the
story is different. Due to the rapid collapse of the AdS
spacetime, the numerical code is unable to evolve the system
after the collapsing regions run into “singularities” some-
where. In Fig. 7, we see that some regionswithK < 0 are left
at the end of the simulation. However, these regions cannot
evolve to a stable dS spacetime, because the profile of ϕ has
crossed the potential barrier and fallen in the range of theAdS
minima, see the third row of Fig. 5. The corresponding AdS
vacuawill eventually stop the expansion of these regions and
convert them into collapsing spacetime. We thus conclude
that the overall region will eventually be AdS-like, resulting
in an inhomogeneous collapse.
In our simulation result for dSAdS-1, see Fig. 4,

eventually the position of the bubble wall is frozen,
suggesting that the wall of AdS bubble is expanding with
background, so such AdS bubbles correspond to the
separated universes, but the spacetime inside AdS bubbles
is contracting (confirming the argument of Ref. [57]). The
radius of AdS bubbles is approximately r < 1=H ≃ 5.48.
Again, as in dSdS-1, the condition r > 1=H is not satisfied.
The contracting AdS bubble might be relevant to our
universe [12,14,58,59], if a nonsingular bounce happened,
which might explain the large-scale CMB power deficit

FIG. 6. The evolution of K for dSAdS-1,2,3. K3 corresponds to the local Hubble rate at ϕ1 [noting that Vðϕ1Þ > 0 and Vðϕ2Þ < 0 for
dSAdS in Fig. 1]. The positions are labeled in accordance with Fig. 3(d).

4In our simulation, the calculations will stop whenever a single
point in space diverged.
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[60–62]. While in dSAdS-2, the AdS bubbles have its
radius r ≪ 1=H, which (to observers outside the bubbles)
will then collapse into black holes,5 see also [15,63].

IV. CONCLUSIONS

It is usually speculated that theprimordial universe ishighly
inhomogeneous, i.e., the scalar field or spacetime metric has
large inhomogeneities. How the landscape is populated in an
inhomogeneous universe is still a significant question.
In an inhomogeneous universe that is initially expanding,

we perform the ð3þ 1ÞD numerical relativity simulations
for the evolution of a scalar field in the simplified landscape

in Fig. 1, and investigated how the field populates such a
landscape. The simulation results showed that, eventually,
either the overall region is in a nearly homogeneous dS
expansion (for dSAdS, however, a few smaller regions
corresponding to AdS bubbles collapsed into black holes),
or the whole region is inhomogeneously collapsing, or the
field in different spatial region separates into different
vacua, so that expanding dS and AdS bubbles (the bubble
wall is expanding but the spacetime inside AdS bubbles is
contracting) come into being with clear boundaries.
It is noted that the initial high inhomogeneities seem to

amplify the probability that different regions of the universe
arrive at different vacua. Also, the bubble wall expand with
the background seems to not require that the bubble radius
must be strictly larger than the Hubble radius. Though we
perform the simulation in a simplified landscape, our
results have captured relevant physics.

FIG. 7. The values of K for dSAdS-1,2,3 at final time steps. There are two sets of color bars: the upper color bar shows the value of K
for K > 0 (the contracting region), while the lower color bar shows that for K < 0 (the expanding region), the two regions are separated
by walls where K ¼ 0 is colored in white.

5It has been argued in Ref. [42] that the large inhomogeneities
of the scalar field may create black holes. However, our case is
different, the black holes result from the collapse of AdS bubbles.
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The theory of inflation as a paradigm of the early
universe indicates the existence of a dS or quasi-dS phase
of the universe. Studies on the string landscape had
attempted to answer the questions of whether a dS vacua
is permitted in string theory and, if so, how can dS vacua be
constructed. On the other hand, the initial conditions of the
universe is not necessarily (in fact, unlikely) homogeneous.
Here, we discuss the questions of how in a highly
inhomogeneous universe (where the dS vacua is not yet
populated) a patch of spacetime evolves into the dS vacua,
if they exist. We showed that the “islands” of dS spacetime
can naturally emerge depending on the initial conditions of
the field configuration. Thus we actually suggested the
possibility for the appearance and existence of local dS
spacetime that corresponds to our universe.
An interesting issue that follows is what signals would

we “see” if our universe indeed went through such an
inhomogeneous evolution before or during inflation?
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APPENDIX A: A BRIEF REVIEW ON NR AND
BSSN FORMALISM

In the context of 3þ 1 decomposition of NR, the metric is

g00 ¼ −α2 þ βiβ
i; g0i ¼ βi; gij ¼ γij; ðA1Þ

where α is the lapse parameter, βi the shift vector and γij the
spatial metric. In order to formulate the evolution of
spacetime and the “matter” inside as a well-posed Cauchy
problem, the system of partial differential equations should
be explicitly written in a hyperbolic form. According to
BSSN [54,55], the evolution equations are

∂tχ ¼ 2

3
αχK −

2

3
χ∂kβ

k þ βk∂tχ; ðA2Þ

∂tγ̃ij ¼ −2αÃij þ γ̃ik∂jβ
k þ γ̃jk∂iβ

k −
2

3
γ̃ij∂kβ

k þ βk∂kγ̃ij; ðA3Þ

∂tK ¼ −γ̃ijDiDjαþ α

�

ÃijÃ
ij þ 1

3
K2

�

þ βi∂iK þ 4πGαðρþ SÞ; ðA4Þ

∂tÃij ¼ χ½−DiDjαþ αðRij − 8παSijÞ�TF þ αðKÃij − 2ÃilÃÞ þ Ãik∂jβ
k þ Ãjk∂iβ

k −
2

3
Ãij∂kβ

k þ βk∂kÃij; ðA5Þ

∂tΓ̃i ¼ −2Ãij∂jαþ 2α

�

Γ̃i
jkÃ

jk −
2

3
γ̃ij∂jK −

3

2χ
Ãij∂jχ

�

þ βk∂kΓ̃i þ γ̃jk∂j∂kβ
i

þ 1

3
γ̃ij∂j∂kβ

k þ 2

3
Γ̃i∂kβ

k − Γ̃k∂kβ
i − 16πGαγ̃ijSj; ðA6Þ

where the tilde represents the conformal quantities γ̃ij ¼ χγij, Γ̃i ≡ γ̃jkΓ̃i
jk and K is the extrinsic curvature. The Hamiltonian

and momentum constraints are

H ¼ D̃2χ −
5

4χ
γ̃ijD̃iχD̃jχ þ

χR̃
2

þ K2

3
−
1

2
ÃijÃij − 8πGρ ¼ 0; ðA7Þ

Mi ¼ D̃jÃ
ij −

3

2χ
ÃijD̃jχ −

2

3
γ̃ijD̃jK − 8πGΠγ̃ij∂jϕ ¼ 0: ðA8Þ

The Klein-Gordon equation of canonical scalar field ϕ is□ϕ ¼ −V 0. According to BSSN, it is rewritten as [52] [with the
momentum conjugate Π ¼ 1

α ð∂tϕ − βi∂iϕÞ]

∂tΠ ¼ αðKΠ − Γk∂kϕ − V 0Þ þ α∂i∂iϕþ ∂iϕ∂iαþ βi∂iΠ: ðA9Þ
The gauge conditions in our simulations are the 1+log slicing and the Eulerian gauge,

∂tα ¼ −2αK þ βi∂iα; βi ¼ 0; ðA10Þ
see, e.g., [64–67] for details.
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APPENDIX B: ON HAMILTONIAN CONSTRAINT AND CONVERGENCE TEST

Figure 8 shows the Hamiltonian constraint violation throughout the numerical simulation for all simulated cases and a
convergence test we performed on dSAdS-1.
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