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We examine the dynamics of Friedmann-Lemaitre-Robertson-Walker cosmologies in which the vacuum
interacts with a perfect fluid through an energy exchange, focusing on the exploration of nonsingular
configurations, including cyclic and bouncing models. We consider two specific choices for the energy
transfer. In the first case, the energy transfer is proportional to a linear combination of the vacuum and fluid
energy densities which makes the conservation equations exactly integrable. The resulting Friedmann
equation can be interpreted as an energy constraint equation with an effective potential for the scale factor
that may include an infinite barrier forcing a bounce at small values of the scale factor, as well as a potential
well allowing for cycling solutions. In the second case, the energy transfer is a nonlinear combination of the
vacuum and fluid energy densities. Nonetheless even in this case the dynamics can be partially integrated,
leading to a first integral, reducing the number of degrees of freedom. We show that also in this nonlinear
case bouncing and cycling cosmologies may arise. In both cases the structure of the resulting phase space
allows for nonsingular orbits with an early accelerated phase around a single bounce, connected via a
decelerated matter-dominated era to a late-time accelerated phase dominated by an effective cosmological
constant.
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I. INTRODUCTION

Although general relativity is the most successful theory
that currently describes gravitation, it is well understood
that it generally gives rise to singular solutions at high
energies. Indeed, despite the successes of the standard Λ
cold dark matter (CDM) model in describing the evolution
of the Universe and its current state [1–3], the initial
singularity still presents an obstacle to properly under-
standing gravitation at the highest energy scales. During
recent decades different theories of gravitation have been
considered in order to solve the initial singularity problem
by modifying general relativity in the deep ultraviolet
regime. In this context, bouncing models have been
proposed to circumvent the flatness/horizon problems of
the standard hot big bang cosmology and reproduce the
power spectrum of primordial cosmological perturbations
inferred by observations [4–10].
On the other hand, over the past twenty years or more

observational data [11–16] have given support to the idea that
our Universe is currently in a state of accelerated expansion.
In order to explain such behavior, a new field—known as dark

energy—that violates the strong energy condition [2,17–19]
in the deep infrared, i.e., in the late Universe, has been
considered. Although the cosmological constant seems to be
the simplest and most appealing candidate for dark energy,
it poses a severe problem to quantum field theory to
accommodate its observed tiny value with theoretical calcu-
lations of its vacuum energy [20]. Different candidates for
dark energy have also been proposed in the realm ofmodified
theories of gravitation [21].
The appearance of a cosmological singularity in general

relativity is typically due to assuming standard energy
conditions [2,17,18] that can be violated by dark energy
[19]. Thus it is worth reconsidering the high-energy regime
in general relativity, to see if the singularity can be avoided
by some form of dark energy dominating in this high-energy
regime [22,23], possibly producing a bounce [24–26].
Extending the above scenario, the possibility of an

interacting component, with vacuum equation of state,
w ¼ −1, has been a subject of considerable interest
[27–32] some of which has be motivated by quantum field
theory considerations [33–35]. In the context of black hole
formation it has been shown [36] that the collapse of
barotropic perfect fluids, namely dust and radiation, may
give rise to Reissner-Nordström–de Sitter black holes for an
appropriate choice of the energy exchange between the

*marco.bruni@port.ac.uk
†rodrigo.maier@uerj.br
‡david.wands@port.ac.uk

PHYSICAL REVIEW D 105, 063532 (2022)

2470-0010=2022=105(6)=063532(14) 063532-1 © 2022 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.063532&domain=pdf&date_stamp=2022-03-28
https://doi.org/10.1103/PhysRevD.105.063532
https://doi.org/10.1103/PhysRevD.105.063532
https://doi.org/10.1103/PhysRevD.105.063532
https://doi.org/10.1103/PhysRevD.105.063532


nonrelativistic perfect fluid and the vacuum component.
From the cosmological point of view on the other hand, it
has been shown that an interacting dark energy component
may also ease cosmological tensions between different
observational datasets [37–49].
In this paper we address the issue of an interacting

vacuum component in the framework of nonsingular
cosmology. In Sec. II we present our interacting vacuum
equations in which we consider two distinct phenomeno-
logical models—linear and nonlinear—for the energy
transfer between the vacuum component and a barotropic
fluid such as nonrelativistic matter or radiation. In Sec. III
we examine the linear case in which the full dynamics can
be integrated and a modified Friedmann evolution is
obtained including a correction term that leads to non-
singular solutions, some with a single bounce in the early
evolution of the Universe, some perpetually cycling
between a bounce and a turnaround. Section IV is devoted
to the case of a nonlinear interaction. In this case we obtain
a first integral of the dynamics, reducing the number of
degrees of freedom. The eigenvalues of the linearization
matrix about fixed points in the phase space are evaluated in
order to explore the existence of nonsingular configura-
tions. We show that also in this nonlinear case bouncing
and cycling models do exist. We summarize and present our
conclusions in Sec. V. We assume general relativity and
natural units where c ¼ 1.

II. THE INTERACTING VACUUM EQUATIONS

We start by considering the Einstein field equations

Gμν ¼ κ2ðTμν − VgμνÞ; ð1Þ

where Gμν is the Einstein tensor and κ2 ¼ 8πG is the
Einstein constant. Tμν is the energy-momentum tensor for
matter, which we will take to be a perfect fluid,

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð2Þ

where uμ is the 4-velocity of the fluid, ρ ¼ Tμνuμuν its rest-
frame energy density and p its pressure. The energy-
momentum of the vacuum is also that of a perfect fluid
with p ¼ −ρ; denoting its energy density by V, this gives
the −Vgμν term in (1). It follows that any 4-vector is an
eigenvector for the vacuum energy-momentum tensor, with
V its energy density in the frame of any observer. The
matter-vacuum interaction is described by an energy-
momentum transfer 4-vector Qν, so that the conservation
equations for the two components are

∇μðTμ
νÞ ¼ −Qν; ð3Þ

−∇νV ¼ Qν; ð4Þ

where the equal and opposite signs for Qν are required by
the Bianchi identities.
The 4-vector Qν can in general be decomposed in two

parts, parallel and orthogonal to the 4-velocity of the fluid,

Qμ ¼ Quμ þ qμ: ð5Þ

In the above Q denotes an energy flow in the rest frame of
the fluid, while qμ is connected to momentum exchange
between matter and vacuum. In this paper we shall consider
the case in which the interaction reduces to a pure energy
exchange [37,39,45,46,48] so that qμ ¼ 0, simply because
we shall focus on homogeneous-isotropic models where
this restriction follows from symmetries. In this case, Qν

is parallel to the matter 4-velocity,Qν ¼ Quν, and matter is
not accelerated due to its interaction with the vacuum.
In fact, if one assumes a nonrelativistic perfect fluid, it
can be shown that for qμ ¼ 0 the matter distribution re-
mains geodesic [44]. Constraints on the interacting vacuum
in this geodesic CDM scenario were examined in
[37,39,45,46,48].
In this paper we will examine two different covariant

choices for Q,

Q1 ¼ ½ξðVΛ − VÞ þ σρ�Θ; ð6Þ

Q2 ¼ χð1 − V=VΛÞρΘ: ð7Þ

In the above, Θ ¼ ∇μuμ is the expansion scalar, and ξ, σ
and χ are dimensionless coupling parameters. In both cases
VΛ plays the role of an effective cosmological constant,1

i.e., an asymptotic value of V → VΛ.
We will study the dynamics in a Friedmann-Lemaitre-

Robertson-Walker (FLRW) spacetime where Θ ¼ 3H, and
H ≡ _a=a is the Hubble rate. Choosing the equation of state
p ¼ wρ where w is constant, Eqs. (3) and (4) reduce to

_ρþ 3ð1þ wÞHρ ¼ −Q; ð8Þ

_V ¼ Q: ð9Þ

From the Einstein field equations on the other hand, we
obtain

_H ¼ −
k
2a2

−
3H2

2
þ κ2

2
ðV − wρÞ: ð10Þ

Assuming that Q≡Qðρ; V;HÞ, we see that (8)–(10)
constitute a nonautonomous dynamical system whose first
integral is given by the Friedmann equation

1By this we mean that we do not have a Λ term in Einstein
equations, rather a cosmological constant appears as a fixed point
of the vacuum dynamics.
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H2 þ k
a2

¼ κ2

3
ðρþ VÞ: ð11Þ

This dynamical system can be turned into an autonomous
configuration by substituting (11) in (10). In this case, (10)
can be rewritten as

_H ¼ −H2 −
κ2

6
½ρð1þ 3wÞ − 2V�; ð12Þ

which is the standard form of the Raychaudhuri equation in
the case of a FLRW spacetime.
Note that Eq. (12) is even in H (it depends only on H2),

while the energy transferQ in Eqs. (6) and (7) is proportional
toH, so that in both cases, linear and nonlinear, the resulting
coupled energy conservation Eqs. (8) and (9) are also
proportional toH. The net result of this is that the evolution
during contraction (H < 0) is the mirror image that during
expansion (H > 0). Thanks to the proportionality of the
energy conservation equations to H, in both cases the H
dependence can be eliminated from the coupled equations, a
fact that we are going to exploit in the following sections,
and that implies an overall adiabatic evolution. As will be
clear from the phase-space plots, the evolution of the
homogeneous and isotropicmodels is completely reversible,
with no entropy production and no arrow of time.2

III. THE LINEAR CASE Q=Q1

In the case (6) of a linear interaction, Eqs. (8) and (9) can
be rewritten as

_ρ ¼ −3H½ð1þ wþ σÞρþ ξðVΛ − VÞ�; ð13Þ

_V ¼ 3H½σρþ ξðVΛ − VÞ�: ð14Þ

In the limit VΛ → 0, and setting w ¼ k ¼ 0, this reduces to
the two-fluid cosmology studied in Ref. [50], where in that
paper the linear interaction parameters were α≡ 3σ and
β≡ −3ξ. The systemabove can also be seen as a special case
of the most general linear coupling of two cosmological
fluids considered in [51]. The focus of [50,51] was on
studying these interactionmodels as a possible alternative to
a cosmological constant as the simplest form of dark energy
in the late Universe, while our focus here is on the possible
nonsingular behavior of these models at high energies.
To integrate the full dynamics, we note that (13) and (14)

correspond to a coupled system of linear first order ordinary
differential equations for the functions ρ and V. By

decoupling this system it can then be shown that the
general solution is

ρ ¼ E1aα1 þ E2aα2 ; ð15Þ

V ¼ VΛ þ λ1aα1 þ λ2aα2 ; ð16Þ

where

α1 ¼ −
3

2
ð1þ wþ ξþ σ þ ΔÞ; ð17Þ

α2 ¼ −
3

2
ð1þ wþ ξþ σ − ΔÞ ð18Þ

are the roots of the characteristic polynomial for (13) and
(14) and

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ wþ σ − ξÞ2 þ 4σξ

q
: ð19Þ

Furthermore, the constants of integration λ1, λ2, E1 and E2

are subject to the constraints

λ1ξ − E1

�
1þ wþ σ þ α1

3

�
¼ 0; ð20Þ

λ2ξ − E2

�
1þ wþ σ þ α2

3

�
¼ 0; ð21Þ

or, equivalently,

λ1

�
α1
3
þ ξ

�
− σE1 ¼ 0; ð22Þ

λ2

�
α2
3
þ ξ

�
− σE2 ¼ 0: ð23Þ

From (19) we see that the necessary and sufficient con-
dition for the existence of two linearly independent and real
solutions in (15) and (16), i.e., to have α1 ≠ α2 real and
distinct, is given by

½ξ − ð1þ wþ σÞ�2 þ 4σξ > 0: ð24Þ

Note that we are explicitly excluding the case Δ ¼ 0, for in
this case we would not have the two independent solutions
given by α1 ≠ α2. It is also worth pointing out that the
solutions (15) and (16) are obtained directly from integrat-
ing the continuity equations (13) and (14) and do not use
the Friedmann constraint. Hence they are valid for homo-
geneous cosmologies of arbitrary 3-curvature, including
anisotropic cosmologies where a3 ¼ R

Θdt is the genera-
lized volume factor, in any theory of gravity.
In order to illustrate the behavior of α1 and α2 as

functions of ξ and σ, let us consider the simple case in

2This symmetry is typically broken by the evolution of
inhomogeneities, even at first order in perturbations. In a FLRW
background it can only be broken by a bulk viscosity contribution
to the equation of state, phenomenologically represented by pθ ¼
−ξΘ ¼ −3ξH (ξ being a bulk viscosity parameter), or in the case
of a scalar field, because the d’Alembertian operator in FLRW
also contains a friction term proportional to H.
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which w ¼ 0. In order to reproduce in Eq. (15) the
evolution of the matter density found in a standard non-
interacting matter-dominated epoch, ρ ∝ a−3 for some
period, we require that either α1 ¼ −3 or α2 ¼ −3. In
the case α1 ¼ −3, we obtain σ ¼ 0 and Δ ¼ 1 − ξ, and
hence we have α2 ¼ −3ξ. On the other hand, fixing α2 ¼
−3 we obtain σ ¼ 0 and Δ ¼ ξ − 1, and hence α1 ¼ −3ξ.
For completeness we remark that in the case ξ ¼ 0 we

obtain either α1 ¼ −3ð1þ σÞ and α2 ¼ 0, or α1 ¼ 0 and
α2 ¼ −3ð1þ σÞ. In Fig. 1 we display α1 (top) and α2
(bottom) in a neighborhood of ξ ¼ σ ¼ 0. Here we see that
the noninteracting configuration pinch into the point ξ ¼
σ ¼ 0 (the intersections of dashed and solid red curves).
It is easy to see that in the domain α1 < 0 and α2 < 0,

lim
a→∞

ρ ¼ 0; lim
a→∞

V ¼ VΛ: ð25Þ

From the Friedmann equation (11) it is then easy to see
that when a → ∞ we obtain one attractor (stable) de
Sitter configuration and one repeller (unstable) de Sitter
configuration.

Let us now consider the first integral given by the
Friedmann equation (11). Substituting (15) and (16) in
(11) we obtain

H2 þ UðaÞ ¼ κ2
VΛ

3
; ð26Þ

where the potential UðaÞ is given by

UðaÞ ¼ k
a2

−
κ2

3
½ðE1 þ λ1Þaα1 þ ðE2 þ λ2Þaα2 �: ð27Þ

Taking into account that

_a ¼ Ha ð28Þ
together with the time derivative of (26)

_H ¼ −
a
2

dU
da

; ð29Þ

we now have a two-dimensional dynamical system
for a and H. We define Pc ¼ ðac;HcÞ to be stationary
solutions—fixed points—of Eqs. (28) and (29). From a
direct inspection of (28) we see that our dynamical system
might support fixed points with ac ¼ 0. However, Eqs. (28)
and (29) must be subject to the Friedmann constraint (26)
which may be singular for ac ¼ 0. As we are interested in
nonsingular configurations we will not take into account
such fixed points. On the other hand, if ac is defined as
solutions of dU=dajac ≡ 0 with Hc ≡Hjac ¼ 0, we see
that such fixed points Pc ¼ ðac; 0Þ are related to the
extrema of the potential UðaÞ. These points, if they exist,
represent Einstein static models.
Expanding (28) and (29) in a neighborhood of Pc, we

obtain

_Φi ¼ LijjPc
Φj ð30Þ

where Φi is the 2-vector

Φi →

�
a − ac
H −Hc

�
ð31Þ

and Lij ≡ ∂ _Φi=∂Φj is the Jacobian of the dynamical
system. That is,

Lijða;HÞ →
"

H a

− 1
2

�
dU
da þ a d2U

da2

�
0

#
: ð32Þ

It is then easy to see that the eigenvalues of Lij evaluated at
Pc are given by

γ� ¼ �ac

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2

d2U
da2

				
ac

s
: ð33Þ

FIG. 1. α1 (top) and α2 (bottom) in a neighborhood of ξ ¼ 0
(dashed red curve) and σ ¼ 0 (solid red curve) for w ¼ 0. The
solid black curve refers to the case Δ ¼ 0.
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This is a crucial result which dictates the stability of the
dynamics in a neighborhood of fixed points in the phase
space. In fact, if d2U=da2jac > 0 we obtain that γ� are pure
imaginary so that the corresponding fixed point is a center.
In this case the linearization theorem [52] fails to establish
the stability (or otherwise) of the fixed point, but numeri-
cal integration of the equations confirms that this fixed
point is a center, surrounded by cyclic trajectories. For
d2U=da2jac <0 on the other hand, γ� are real and the
corresponding fixed point is a saddle. We remark again that
both fixed points represent Einstein static models; however,
the saddle one is similar to the original Einsteinmodel due to
a cosmological constant term, the first is a center like the one
appearing in loop-quantum cosmology [53] or in some
models with a quadratic equation of state [24–26]. Con-
sidering our solutions (15) and (16), we are interested in the
case where the evolution of the energy density can mimic a
noninteracting cosmology, but includes a correction term
which might also lead to a bounce in the very early Universe
while preserving the weak energy condition ρþ V > 0. It
can be easily shown that σ vanishes if one fixes α1 ¼
−3ð1þ wÞ or α2 ¼ −3ð1þ wÞ. Therefore, to simplify our
analysis, in the next section we will focus on the case ξ ≠ 0
and σ ¼ 0. In the followingwewill also show that analogous
models can be built for the case ξ ¼ 0 and σ ≠ 0 as long as an
additional perfect fluid is included in order to construct a
nonsingular model with a noninteracting matter-domi-
nated era.

A. ξ ≠ 0 and σ = 0

In this case from (19) we choose Δ ¼ 1þ w − ξ, then
from (17) and (18) we have α1 ¼ −3ξ, α2 ¼ −3ð1þ wÞ
and the solutions (15) and (16) reduce to

ρ ¼ E1

a3ð1þwÞ þ
E2

a3ξ
; ð34Þ

V ¼ VΛ þ λ2
a3ξ

: ð35Þ

λ1 ¼ 0 by the virtue of (20) and from (21)

λ2 ¼
E2

ξ
ð1þ w − ξÞ: ð36Þ

In (34) we identify the first term as the conventional
(noninteracting) component of the fluid density for
E1 > 0. The second terms of (34) and (35) on the other
hand, are exotic terms due to vacuum interaction which
combined in the Friedmann equation may give a bounce for
E2 < 0, as discussed below.
We now examine the Friedmann equation (26) in order to

determine an appropriate domain for the parameters w and
ξ. The potential (27) can be written as

UðaÞ ¼ k
a2

−
κ2

3

�
E1

a3ð1þwÞ þ
E2ð1þ wÞ

ξa3ξ

�
: ð37Þ

For 0 ≤ w ≤ 1, from the above we see that a sufficient
condition to obtain a nonsingular bounce for E1 > 0 is
given by

E2ð1þ wÞ
ξ

< 0 and ξ > ð1þ wÞ: ð38Þ

In fact, in this case an infinite potential barrier avoids the
classical singularity found in the noninteracting case. In the
following we shall restrict ourselves to such configurations.
To give a numerical illustration, from now on we will

consider the case of a nonrelativistic perfect fluid so that
w ¼ 0, and we also fix ξ ¼ 4=3. In this case, the potential
(37) of Friedmann equation turns into

UðaÞ ¼ −H2
0

�
Ωk0

a2
þ Ωm0

a3
þΩI0

a4

�
; ð39Þ

where

Ωk0 ¼ −
k
H2

0

; Ωm0 ¼
κ2E1

3H2
0

; ΩI0 ¼
κ2E2

4H2
0

: ð40Þ

Here and in the remainder of this section we use the
normalization for the scale factor such that a0 ¼ 1 at
present.
Restricting ourselves to the case ΩI0 < 0 (or E2 < 0), it

can be easily seen that

lim
a→0þ

UðaÞ ¼ þ∞; ð41Þ

so that an infinite potential barrier avoids the classical
singularity. For Ωk0 ≠ 0 it can be shown that the potential
(39) has at most two extrema, ac� > 0, connected to fixed
points of Eqs. (28) and (29). As mentioned above, such
fixed points are given by Pc ¼ ðac�; 0Þ where in this case

ac� ¼ −3Ωm0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−32ΩI0Ωk0 þ 9Ω2

m0

p
4Ωk0

: ð42Þ

The condition for the two extrema to be real and positive is

Ω̄k0 ≡ 9Ω2
m0

32ΩI0
< Ωk0 < 0: ð43Þ

No extrema exist for Ωk0 < Ω̄k0, while for Ωk0 ≥ 0 (spa-
tially flat or open models) there is only one positive
extremum, acþ > 0, and the potential (39) has one global
minimum in the domain a > 0. For all these models we see
that bouncing models exist due to the exotic interaction
term, ΩI0 < 0, which provides a potential barrier in UðaÞ.
To examine the structure of the phase space for non-

singular models let us consider Eqs. (28) and (29) together
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with the potential (39). For this case the linearization matrix
(31) reads

Lijða;HÞ →
"

H a
H2

0

a3

�
2Ωk0 þ 9Ωm0

2a þ 8ΩI0
a2

�
0

#
; ð44Þ

and its eigenvalues evaluated at Pc ¼ ðac; 0Þ are

γ� ¼ �H0

a2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð4ΩI0 þ a2cΩk0Þ þ 9acΩm0=2

q
: ð45Þ

We illustrate the behavior of the potential (39) in the
top panel of Fig. 2, focusing on the case of closed
models (Ωk0 < 0), fixing the parameters Ωm0 ¼ 0.31 and
ΩI0 ¼ −0.40. In the bottom panel we illustrate several

orbits in the plane (a, H=H0) for Ωk0 ¼ −0.063.3 Orbits in
region II of the bottom panel of Fig. 2 are of physical
interest in the sense that they show a transition from an
early phase at high energy to a decelerated matter era
together with a graceful exit to a late-time accelerated
regime. We see that the eigenvalues of Lijðac−; 0Þ are pure
imaginary: then the numerical integration of the equation
confirms that ac− is a center fixed point representing a
stable Einstein static universe. On the other hand, the
eigenvalues of Lijðacþ; 0Þ are real so that acþ is a saddle
(an unstable Einstein static universe). In Fig. 3 we show the
phase portrait of the full phase space ðρ; V;HÞ.
In order to illustrate a more realistic scenario, we next set

ΩΛ0 ≡ κ2VΛ

3H2
0

≃ 0.68: ð46Þ

As Planck data [16] do leave some room for curvature
we fix Ωk0 ¼ −0.001 for illustration. Assuming again
Ωm0 ¼ 0.31, the remaining task is to determine suitable
values for ΩI0.
Considering the evolution of quantum cosmological

perturbations, it has been shown [56,57] that in order to
obtain primordial perturbations from a bounce compatible
with cosmic microwave background data, one must satisfy
the condition R−1=2 ≳ 103 × lp, where R is the Ricci scalar
and lp is the Planck length. On the other hand, in order to
reproduce features of a conventional hot big bang cosmol-
ogy at high redshift such as the cosmic neutrino back-
ground [58], the bounce must occur at a redshift greater
than z ≃ 1010. Bearing such considerations in mind, we will

FIG. 2. The potential UðaÞ (top) for Ωm0 ¼ 0.31 and ΩI0 ¼
−0.40 for different values of Ωk0 < 0. The top (dashed) curve
corresponds to the upper limit Ωk0 ¼ Ω̄k0 ≃ −0.067. The phase
portrait is displayed on the bottom where for the purposes of
illustration we fix Ωk0 ¼ −0.063 (gray curve in top panel). The
fixed points, ac− ≃ 2.730 (center) and acþ ≃ 4.650 (saddle),
correspond to the extrema of the potential (42). For VΛ <
3UðacþÞ=κ2 we obtain cyclic universes in a finite neighborhood
(region I) of ac−. One-bounce orbits (in region III) can also be
obtained for this domain of VΛ. For VΛ ¼ 3UðacþÞ=κ2, a
separatrix emerges from the saddle fixed point acþ which defines
an escape to the de Sitter attractor at infinity. Finally, for VΛ >
3UðacþÞ=κ2 we obtain one-bounce orbits in region II.

FIG. 3. The phase portrait of the full phase space ðρ; V;HÞ in
units κ2 ¼ H0 ¼ 1. The corresponding fixed points with Hc ¼ 0
are given by (ρc− ≃ 0.0168, Vc− ≃ 0.0092) and (ρcþ ≃ 0.0058,
Vcþ ≃ 0.0029), in units of κ2 ¼ H0 ¼ 1.

3We note that current Planck data allow positive spatial
curvature, Ω0k ¼ −0.001� 0.002 [16], and there are also some
arguments favoring a nonvanishing 3-curvature [54,55].
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assume that the physical domain of the bounce parameter is
bounded by

−10−38 ≲ΩI0 ≲ −10−10: ð47Þ

For every value of ΩI0 in this range, over 28 orders of
magnitude, we obtain a nonsingular model corresponding
to orbits in the phase space analogous to those in region II
of the bottom panel of Fig. 2.
To illustrate a particular case let us fixΩI0 ¼ −10−10. For

this simple configuration we obtain ac− ≃ 1.07 × 10−10,
acþ ≃ 465. However, contrary towhat onemight expect, the
transition from an accelerated early phase to a decelerated
era in which matter dominates does not take place at ac−.
Equivalently, the transition from such a decelerated era to a
de Sitter regime does not take place at acþ. In fact,
the extrema of the potential UðaÞ correspond to stationary
solutions of the equation _H ¼ 0. To get a proper evalua-
tion of transition phases we actually need to solve the
equation for ä. To this end, let us rewrite the first Friedmann
equation as

_a2 þWðaÞ ¼ 0; ð48Þ

where WðaÞ≡ a2½UðaÞ − κ2VΛ=3�. Therefore

ä ¼ −
1

2

dW
da

: ð49Þ

Defining aI as the transition from an accelerated early
universe to a decelerated matter era and aII as the transition
from such a decelerated era to a de Sitter regime, it can be
easily shown that

aI ≃ 1.61 × 10−10; aII ≃ 0.61: ð50Þ

For example, according to observations [11], a transition
fromamatter-dominated era to a deSitter regime should take
place at a redshift zII ≃ 0.426þ0.27

−0.089 (or aII ≃ 0.7þ0.04
−0.11 ). From

(50) we see that the aII given in Eq. (50) lies within this
domain.
In Fig. 4 we show the behavior of Ωm0=a3, Ωk0=a2 and

ΩI0=a4 as a function of the redshift z≡ a−1 − 1. At the
bounce (zb ≃ 1010), the matter and interaction densities are
of the order of 1029. The curvature density on the other
hand is pushed toward 1017 at the bounce. In this figure it is
also shown that the vacuum parameter VΛ plays a signifi-
cant role only at late times near z ≃ 0.
Last but not least, it can be shown that for w ¼ 0 and

ξ ¼ 4=3, the bounce scale ab is typically of the order of
jΩIj. Therefore, for the domain (47)—together with the
chosen parameters Ωm0 ¼ 0.31 and ΩΛ0 ¼ 0.68—it is easy
to show that the weak energy condition ρþ V > 0 is
automatically satisfied.

B. ξ = 0 and σ ≠ 0

In this case, the above solutions (15) and (16) reduce to

ρ ¼ E1

a3ð1þwþσÞ ; ð51Þ

V ¼ VΛ −
σE1

ð1þ wþ σÞa3ð1þwþσÞ ; ð52Þ

where we have used (22) and (23). In order to seek
nonsingular configurations we note that

ρþ V ≡ VΛ þ E1ð1þ wÞ
ð1þ wþ σÞa3ð1þwþσÞ : ð53Þ

Taking a glance at the first Friedmann equation (11), we see
that nonsingular models might be obtained for 1þ wþ
σ > 0 as long as ð1þ wÞE1 < 0. In this sense, nonsingular
models analogous to that of the preceding subsection can
be built. However, if we set w ¼ 0, as we considered in the
previous subsection, then a conventional matter-dominated
era with ρ ∝ a−3 cannot be achieved for σ ≠ 0, unless an
additional noninteracting pressureless fluid is included.

IV. THE NONLINEAR CASE Q=Q2

Substituting the nonlinear interaction (7) into the con-
tinuity equations (8) and (9) gives

_ρ ¼ −3Hρ

�
1þ wþ χ

�
1 −

V
VΛ

��
; ð54Þ

_V ¼ 3χHρ

�
1 −

V
VΛ

�
: ð55Þ

FIG. 4. The logarithm of the dimensionless densities
ρ̃m ≡ Ωm0=a3, ρ̃k ≡ Ωk0=a2 and ρ̃I ≡ ΩI0=a4 as a function of
the redshift 1þ z≡ a−1. The curvature density on the other hand
is pushed toward 1017 at the bounce. For comparison we also
show (in red) the logarithm of ρ̃Λ ≡ ΩΛ0.
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In addition, these equations are coupled with the
Raychaudhuri equation (12)

_H ¼ −H2 −
κ2

6
½ρð1þ 3wÞ − 2V�: ð56Þ

We thus have three coupled equations describing the
dynamics of the three-dimensional system ðρ; V;HÞ.

A. Vacuum submanifold

First we note that there is an invariant submanifold
corresponding to vacuum cosmologies where ρ ¼ 0. In this
case the interaction Q2 in (7) vanishes and we have from
(55) that _V ¼ 0, hence the vacuum energy is given by an
integration constant, V ¼ VdS ¼ constant. The only
remaining dynamical equation is the Raychaudhuri equa-
tion (56) which reduces to

_H ¼ −H2 þ κ2

3
VdS: ð57Þ

This is just the evolution equation of the de Sitter
spacetime in its FLRW representation, which in
general includes curvature. The fixed points on this sub-
manifold correspond to the spatially flat de Sitter model
ðρ; V;HÞ ¼ ð0; VdS; HdSÞ, where

HdS ¼ �κ

ffiffiffiffiffiffiffiffi
VdS

3

r
ð58Þ

are the contracting and expanding versions of the model,
and κ2VdS is a cosmological constant. We remark that the
closed model evolves between the two with a bounce,
according to (57).

B. Noninteracting submanifold

Second, we note that if V ¼ VΛ, then (55) tells us that
V ¼ VΛ at all times, i.e., VΛ is a cosmological constant, and
V ¼ VΛ defines another invariant submanifold in phase
space. In this case there is no interaction and we have a
conventional noninteracting cosmology (ΛCDM when
w ¼ 0) described by the two-dimensional dynamical system

_ρ ¼ −3ð1þ wÞHρ; ð59Þ

_H ¼ −H2 −
κ2

6
½ρð1þ 3wÞ − 2VΛ�: ð60Þ

The ðρ; HÞ phase plane for the noninteracting dynamicswith
V ¼ VΛ is plotted in Fig. 5. From (59) and (60) we see that
this dynamical system has three fixed points, assuming
w > −1=3. The first appears atH ¼ 0 and we may call it an
Einstein saddle, as it represents an Einstein static model
[9,24,25,53] with

ρE ¼ 2VE

1þ 3w
: ð61Þ

The other two fixed points on this noninteracting submani-
fold correspond to ρ ¼ 0, i.e., where this submanifold
intersects the vacuum submanifold. These two fixed points
are therefore given by ðρ; V;HÞ ¼ ð0; VΛ; HΛ�Þ, where
from Eq. (60)

HdS ¼ HΛ� ¼ �κ

ffiffiffiffiffiffi
VΛ

3

r
: ð62Þ

Thus they represent de Sitter models, one contracting and
one expanding, with zero spatially curvature. The line ρ ¼ 0
between the two de Sitter fixed points in Fig. 5 represents a
de Sitter spacetimewith positively curved space, and outside
the points it is de Sitter spacetime with negatively
curved space.

C. Σ submanifolds

More generally, for ρ ≠ 0 and V ≠ VΛ, the integration of
(54) and (55) is a rather more involved task than for the
linear case due to its intrinsic nonlinearity. However, an
alternative method may be employed to reduce the number
of degrees of freedom of the dynamics and identify other
invariant submanifolds. In fact, we can eliminate H from
Eqs. (54) and (55) to obtain,

FIG. 5. The phase plane for the noninteracting submanifold
V ¼ VΛ discussed in Sec. IV B. We define x ¼ ρ=VΛ and
y ¼ H=

ffiffiffiffiffiffi
VΛ

p
. The black dots on the x ¼ 0 line denote the de

Sitter fixed points. The black dot at y ¼ 0 denotes the Einstein
fixed point. Separatrices are shown in black. The black dashed
parabola corresponds to flat models (k ¼ 0). All trajectories
inside the parabola (blue orbits) are positively curved (k > 0). All
trajectories outside the parabola (red orbits) are related to models
of negative curvature (k < 0). The lower blue trajectory con-
necting the two de Sitter fixed points is representative of models
that collapse to a bounce at y ¼ 0 then reexpand.
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_ρþ
�
1þ 1þ w

χð1 − V=VΛÞ
�
_V ¼ 0: ð63Þ

A direct integration of (63) gives

ρ¼ρ�−ðV−V�Þþ
VΛð1þwÞ

2χ
ln

��
1−V=VΛ

1−V�=VΛ

�
2
�
; ð64Þ

where ρ� and V� correspond to the initial values at t ¼ t�.
In general, every pair of initial conditions ρ� and V� (and
set of parameters values) defines a two-dimensional surface
Σ in the three-dimensional phase space ðρ; V;HÞ, charac-
terized by the first integral

KΣ ¼ ρþ V −
VΛð1þ wÞ

2χ
ln

��
1 −

V
VΛ

�
2
�
: ð65Þ

This allows us to depict the phase plane (ρ, V) directly, as
shown in Fig. 6, where each line corresponds to a trajectory
or a union of trajectories. We study the motion on the
surface Σ by substituting (64) into (55) and (56) to
eliminate ρ, obtaining

_V ¼ 3H

�
1 −

V
VΛ

�

χðρ� þ V� − VÞ

þ VΛð1þ wÞ
2

ln

��
1 − V=VΛ

1 − V�=VΛ

�
2
��

; ð66Þ

_H ¼ −H2 þ κ2

6



3Vð1þ wÞ − ðρ� þ V�Þð1þ 3wÞ

−
VΛð1þ wÞð1þ 3wÞ

2χ
ln

��
1 − V=VΛ

1 − V�=VΛ

�
2
��

; ð67Þ

after integrating the differential equations (54)–(56). In
the following we shall examine the fixed points of (66)
and (67).
In addition to the previously identified de Sitter fixed

points where ρ ¼ 0, we see that the dynamical system
(54)–(56) also admits fixed points whereH ¼ 0. Again, we
identify these as Einstein static universes [9,24,25,53].
Indeed, the conditionH ¼ 0 is enough to ensure both ρ and
V are constants; thus we denote this fixed point via
ðρ; V;HÞ ¼ ðρE; VE; 0Þ, where, again assuming w > −1=3,
Eq. (56) gives the relation (61) between the matter and
vacuum energy densities.
Substituting the constraint (61) into the first integral (65)

we have

KΣ ¼ ð1þ wÞ



3VE

1þ 3w
−
VΛ

2χ
ln
��

1 −
VE

VΛ

�
2
��

: ð68Þ

Equation (68) is a transcendental equation which cannot in
general be analytically solved for VE.

Expanding (66) and (67) in a neighborhood of general
fixed points we obtain

_Ψi ¼ LijjPc
Ψj; ð69Þ

where Ψi is the 2-vector

Ψi →

�
V − Vc

H −Hc

�
ð70Þ

and Lij ≡ ∂ _Ψi=∂Ψj. It is then easy to verify that the
eigenvalues of Lij evaluated at the Einstein static fixed
points are given by

γ̃� ¼ �κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ wÞVE½ð1þ 3wþ 3χÞVΛ − 3χVE�

ð1þ 3wÞVΛ

s
: ð71Þ

FIG. 6. The (ρ, V) phase plane for χ ¼ 0.085, where each curve
corresponds to a different value of the first integral (65)
λ≡KΣ=VΛ. Arrows indicate the evolution with time during
an expansion phase for VΛ > 0. Top: only trajectories for
V=VΛ > 1 are shown for clarity. The vertical line at V=VΛ¼1
corresponds to the noninteracting submanifold. Bottom: enlarge-
ment of the phase plane for 0 < V=VΛ < 1.
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Thus we see that the Einstein static fixed points are either
saddle points (real eigenvalues) or centers (imaginary
eigenvalues).

D. Nonsingular solutions

The main configurations of interest which will guide our
analysis from now on are those connected to nonsingular
models in the sense that after a bounce the Universe is
driven toward a decelerated phase together with a grateful
exit to a de Sitter attractor, similar to the behavior seen in
Fig. 2. Such configurations may be obtained as long as two
different fixed points, a saddle point and a center, are
present, given that the presence of a de Sitter attractor is
already guaranteed by (62). In order to show specific
examples we will fix w ¼ 0 in this subsection.
We shall proceed by searching for a proper domain of χ

in which such nonsingular models may be obtained. From
Eq. (68) one may write χ as a function of VE as

χ ¼ VΛ

2ð3VE −KΣÞ
ln

��
1 −

VE

VΛ

�
2
�
: ð72Þ

From (72) it is easy to see that χ → 0 as VE=VΛ → þ∞. On
the other hand, χ has a root at VE ¼ 2VΛ and diverges as
VE → VΛ. Therefore, in order to simplify our analysis we are
going to restrict ourselves to the caseVE > VΛ. In this domain
it is then easy to show that χ as a function of VE has a global
extrema—located at VEmax—which satisfies the relation

VEmax

VΛ
¼ 1þ 3χmax

3χmax
: ð73Þ

In Fig. 7 we show the behavior of χ as a function of VE (for
KΣ ¼ 0) in the domain VE > VΛ. For the purpose of

illustration, in the following we shall restrict to this case. In
Fig. 6 (bottom panel) we display the initial conditions ðρ�; V�Þ
connected to the first integral (65) with KΣ ¼ 0.
In order to examine the local structure of the phase space

in a neighborhood of Einstein fixed points, we note that, for
w ¼ 0, Eq. (71) reduces to

γ̃� ¼ κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VE½ð1þ 3χÞVΛ − 3χVE�

VΛ

s
: ð74Þ

For VΛ > 0, it is easy to show that γ̃� are pure imaginary
for VE > VEmax. That is, the fixed point obtained is a
center. For VΛ < VE < VEmax on the other hand, γ̃� is a
pair of real eigenvalues. In this case, the fixed point
obtained is a saddle. Finally, in the limit VE → VEmax
the two fixed points—the center and saddle—pinch into a
fixed point with null eigenvalues which implies a bifurca-
tion in the stability.
We shall restrict our analysis to the domain 0 < χ < χmax

so that two fixed points (a center and a saddle) are present.
As pointed out above, this is the configuration of interest in
the sense that nonsingular models may be obtained. In fact,
in Fig. 8 (top panel) we show the phase portrait for several
initial conditions in the case of χ ¼ 0.085. From the saddle
fixed point P2 emerges a separatrix (gray curve) dividing
the phase space in three distinct regions: region I, in a
neighborhood of the center fixed point P1, where perpet-
ually cycling orbits describe universe models going from
contraction to expansion through a bounce, then recon-
tracting through a turnaround; regions II and III, both with
one-bounce orbits. The corresponding orbits on the sector
ða;HÞmay be obtained as long as one increases the number
of degrees of freedom

_a ¼ Ha; ð75Þ

_V ¼ −3H
�
1 −

V
VΛ

�

χV −

VΛ

2
ln

��
1 −

V
VΛ

�
2
��

; ð76Þ

_H ¼ −
3H2

2
−

k
2a2

þ κ2V
2

: ð77Þ

In this case the above dynamical system must be subjected
to the Friedmann constraint (11)

H2 þ k
a2

¼ κ2VΛ

6χ
ln

��
1 −

V
VΛ

�
2
�
: ð78Þ

It is also worth noting that the Friedmann equation (11)
evaluated at the Einstein fixed points gives the correspond-
ing values of the scale factor aE,

VE ¼ kð1þ 3wÞ
κ2ð1þ wÞa2E

: ð79Þ

FIG. 7. χ as a function of VE=VΛ according to (72) in the
domain VE > 2VΛ. For the purpose of illustration we fixed
KΣ ¼ 0. The global extrema in the above domain is located at
ðVEmax=VΛ; χmaxÞ and satisfies Eq. (73). Here we see that for a
fixed value of χ in the domain 0 < χ < χmax there are two fixed
points (connected to two distinct values of VE=VΛ).
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It can be easily seen from (79) that the corresponding
Einstein fixed points P1 and P2 can only be obtained as
long as k > 0. On the bottom panel of Fig. 8 we display the
orbits in the ða;HÞ sector assuming the same initial
conditions from the top panel. In Fig. 9 we show orbits
in the full phase space ðρ; V;HÞ corresponding to those
of Fig. 8.
In Fig. 10 (top panel) we show the behavior of ρþ V as a

function of t for a particular orbit in region II of Fig. 8. Here
we see that the total energy density (ρþ V) is always
positive so that the weak energy condition is satisfied. In
addition, given the existence of the vacuum submanifold
(ρ ¼ 0), if ρ is initially positive, then it remains positive. On
the bottom panel of Fig. 10 we show the behavior ofH as a
function of a for the same orbit. Here we see that the model
approaches the de Sitter attractor as a → þ∞, as expected.
That is, H → HΛþ ≃ 0.85 as a → þ∞.

V. FINAL REMARKS

In this paper we have considered FLRW cosmological
models in which the vacuum energy interacts with a perfect
fluid. We have considered both linear and nonlinear
couplings leading to an energy transfer between the two
components. In particular we have investigated the exist-
ence of nonsingular solutions.
In our first example, the energy transfer is given by a

linear combination of the vacuum and fluid energy den-
sities. In this linear case we integrate the coupled con-
servation equations obtaining the general solution for the
energy densities of the matter and vacuum components.
Substituting these into the Friedmann equation leads to a
nonsingular evolution of the Universe for some regions in
parameter space. This can occur even for spatially flat or
hyperbolic cosmologies with pressureless matter, for exam-
ple, which is perhaps unexpected since the noninteracting
vacuum plus matter, with equation of state w ≥ 0, would
not exhibit nonsingular behavior. However, the interaction
can give rise to a term in the vacuum energy which, even if
V → VΛ > 0 at late times, for a sufficiently large coupling
parameter, ξ > 1þ w, can act like a negative energy
density with sufficiently stiff equation of state to produce
an infinite barrier in the potential,UðaÞ in Eq. (27), at small
values of the scale factor and thus generate a bounce. It is
interesting to point out that if the interaction term is
sufficiently stiff, the barrier and the bounce would persist
in the presence of an additional noninteracting component.
For example, including radiation, ρR ∝ a−4, it is clear from

FIG. 8. Top: the phase portrait for ðV;HÞ with nonlinear
coupling parameter χ ¼ 0.085, shown for several different initial
conditions with first integral KΣ ¼ 0. Here we have also fixed
VΛ ¼ κ2 ¼ 1. A separatrix (gray curve) emerges from the saddle
fixed point P2, dividing the phase space in two distinct regions;
perpetually cycling orbits (region I in the neighborhood of the
center fixed point P1) and one-bounce orbits (in regions II and
III). Nonsingular orbits in region II are of physical interest in the
sense that they show a transition from a decelerated phase to late-
time acceleration. Bottom: the corresponding orbits for ða;HÞ
with the same initial conditions for the case k > 0.

FIG. 9. The three-dimensional phase space ðρ; V;HÞ with k >
0 and nonlinear coupling parameter χ ¼ 0.085. The trajectories
shown correspond to those shown in Fig. 8 with first integral
KΣ ¼ 0.
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(37) that the interaction between pressureless matter and
the vacuum can lead to a bounce for ξ > 4=3.
Such a large dimensionless coupling between the matter

and vacuum at early times can violate observational bounds
on the allowed coupling at late times in simple linear
interaction models. In Ref. [45], for example, a linear
interaction with σ ¼ 0 and VΛ ¼ 0 in Eq. (6) is studied
giving bounds on jξj < 0.06 at 95% C.L. One might expect
this bound to be relaxed in the more general cases with
nonzero σ and/or VΛ, but it is important to realize that this
observational bound comes from data at low redshifts and
hence low energies. Studies have shown that in the same
model there is no bound from observational data on the
value of the coupling at high redshifts, z > 2.5 [37,45,46].
This motivates us to look at interactions beyond the
simplest linear case, in which case the effective coupling
may differ between high and low energies.
In our second example, the energy transfer includes the

product of the vacuum and fluid energy densities. In this
nonlinear case, we can obtain a first integral of the

conservation equations, enabling us to investigate the
existence of nonsingular cosmologies. Again, for some
range of parameter values we find nonsingular solutions.
In both cases conditions for the existence of a bounce

give the same topology in the ða;HÞ phase space, leading
to a qualitatively similar behavior as illustrated by
Figs. 2 and 8. The phase space shows the existence of
nonsingular orbits with two accelerated phases, separated
by a smooth transition corresponding to a decelerated
expansion. Although we have focused on the example of
a single pressureless matter fluid interacting with the
vacuum, we expect to see similar nonsingular behavior
for sufficiently strong coupling in the presence of other
components, notably radiation which must dominate the
cosmic expansion at high energies, e.g., during primordial
nucleosynthesis.
Previousworkshave explored the observational constraints

on interacting vacuum cosmologies for particular interaction
models. In general couplings are constrained to be small in the
late-time Universe where the ΛCDMmodel provides a good
fit to data [39,41,42,44–46,49,51]. However, as far as we are
aware there are no current bounds on the specific form of
nonlinear coupling studied here, where the interaction is
naturally suppressed at late times and we recover an asymp-
totic accelerated de Sitter expansion [59].
We note that nonsingular solutions can also be found in

the framework of the so-called running vacuum models
(RVMs) [34,60,61]. In these models the vacuum compo-
nent may be realized as the sum of even powers of the
Hubble expansion rate, following quantum field theory
arguments in curved spacetime [35]. For the particular case
in which the nonsingular term is absent in the vacuum
energy density, the RVM and the models explored in
Sec. III are compared against observational data
in Ref. [62].
In future work we intend to examine the phenomenology

of the bounce including the spectrum of scalar perturba-
tions that could be generated approaching the bounce
in models that remain consistent with cosmological obser-
vations at late times. In this case, modifications to the
equations for cosmological perturbations might furnish
interesting predictions about the growth of structure for-
mation [63].
Finally, an extension of the interacting models consid-

ered here which deserves further examination is the case of
a general anisotropic Bianchi IX cosmology with three
scale factors. In this case Einstein’s equations reduce to a
dynamical system with more degrees of freedom furnishing
a richer dynamics. Taking into account the interacting
terms, an Einstein fixed point (a saddle-center-center in the
six-dimensional phase space) may be obtained in the case
of nonsingular configurations. From such fixed points one
might obtain stable and unstable four-dimensional cylin-
ders in which oscillatory motions about the separatrix take
place toward the bounce so that the homoclinic transversal
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FIG. 10. The behavior of ρþ V as a function of t (top) for a
particular orbit in region II of Fig. 8. Here we see that the total
energy density ρþ V is always positive throughout the bounce.
Bottom: we show the behavior of H as a function of a for the
same orbit but with initial conditions a� ≃ 0.31, V� ¼ 13.4 and
H� ¼ 0. Here we see that H → HΛþ ≃ 0.85 as a → þ∞.
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intersection furnishes an invariant chaos signature for the
models. As shown in [64,65], this behavior defines a
“chaotic saddle” indicating that the intersection points of
the cylinders have the nature of a Cantor set. We also
intend to examine the possibly oscillatory approach to the
bounce and analogous features present in the Belinsky-
Khalatnikov-Lifshitz conjecture in general relativity
[66–68]. In the context of Bianchi IX models, which may
be regarded as providing the general spatially averaged
description of the Universe, the challenge [69] is to suppress
anisotropy enough during the prebounce collapsing phase,
in order to generate a viable postbounce cosmology. Such

suppressing mechanisms have been shown to exist [26]; in
the future we intend to investigate if the type of interactions
considered here can naturally provide, in the context of
anisotropic Bianchi IX models, both the bounce and the
mechanisms to make it sufficiently isotropic.
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