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We propose a novel scenario of dark matter production naturally connected with generation of
gravitational waves. Dark matter is modeled as a real scalar, which interacts with the hot primordial plasma
through a portal coupling to another scalar field. For a particular sign of the coupling, this system exhibits
an inverse second order phase transition. The latter leads to an abundant dark matter production, even if the
portal interaction is so weak that the freeze-in mechanism is inefficient. The model predicts domain wall
formation in the Universe, a long time before the inverse phase transition. These domain walls have a
tension decreasing with time and completely disappear at the inverse phase transition so that the problem
of overclosing the Universe is avoided. The domain wall network emits gravitational waves with
characteristics defined by those of dark matter. In particular, the peak frequency of gravitational waves is
determined by the portal coupling constant and falls in the observable range for currently planned
gravitational wave detectors.
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I. INTRODUCTION AND SUMMARY

Freeze-out and freeze-in mechanisms are the most
common ways of generating dark matter (DM) in the early
Universe [1,2]. The former operates in the situation, when
DM particles are in thermal equilibrium with the primordial
plasma and requires relatively large couplings to (beyond)
the Standard Model (SM) species. For smaller coupling
constants, the equilibrium may not be attained, but the
observed DM abundance can be saturated via the freeze-in
mechanism [3,4], i.e., by the out-of-equilibrium scatterings
and decays of other particles. In the present work, we
consider even weaker interactions than those assumed in
freeze-in scenarios. Remarkably, not only efficient DM
production is possible in that case, but also the feeble
couplings involved can be probed in currently planned
gravitational wave (GW) observations.
We demonstrate this in the scenario of the scalar portal

DM. Namely, it is assumed that the DM comprising a real
scalar χ interacts with another scalar field (or a multiplet of
fields) ϕ, e.g., the Higgs field, through the term g2χ2ϕ†ϕ=2.

The strength of the interaction is quantified by the
dimensionless constant g. Stability of DM is protected
by Z2-symmetry. The field ϕ is assumed to be in equilib-
rium with (beyond) the SM degrees of freedom. For
relatively large and moderate constants, g≳ 10−5 − 10−6,
the dominant contribution to DM is yielded by freeze-out or
freeze-in mechanisms [5–7]. They fail to generate a right
amount of DM for much weaker coupling, g ≪ 10−6.
In this article we show how to overcome this difficulty:
the right abundance of DM can be produced even for
exponentially smaller g through an inverse phase transition.
The latter is a generic phenomenon which has been already
discussed as early as in Ref. [8]. Furthermore, the inverse
phase transition was used in Refs. [9,10] to tackle the
problem of baryon asymmetry of the Universe. In the
present work, we investigate DM applications of the inverse
phase transition continuing the line of research initiated in
Refs. [11,12]. While those works focus on DM interactions
with gravity [11] and primordial magnetic fields [12], here
we discuss how the inverse phase transition occurs in a
more traditional setup of the portal DM interaction.
The mechanism of DM production, we propose in this

article, is the following. Thermal fluctuations of the field ϕ

described by variance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hϕ†ϕiT

p
∼ T give a contribution

∼g2T2 to the DM effective mass squared on top of the bare
mass squared M2. For a particular sign in front of g2-term
this thermal contribution is negative. Hence, for sufficiently
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high temperatures spontaneous breaking of Z2-symmetry
occurs, and the DM field χ takes a nonzero expectation
value at a minimum of the effective potential. Later on, the
thermal contribution to the total mass decreases enough for
the symmetry restoration (hence, inverse phase transition).
Slightly before this moment, χ departures from the mini-
mum and starts oscillating, which introduces the DM
component in the Universe.
An interesting consequence of this DM genesis scenario

is the formation of topological defects in the early Universe.
Indeed, if the Z2-symmetry was still unbroken, χ ¼ 0 at the
very origin of the hot big bang; then domain walls
are inevitably formed as the Universe reheats (and Z2-
symmetry breaks spontaneously). Our model provides a
built-in mechanism for a fast thawing of domain walls: their
tension σwallðTÞ is determined by thermal fluctuations
of particles ϕ, i.e., σwallðTÞ ∝ hϕ†ϕi3=2T , and thus drops
with time as σwallðTÞ ∝ T3, see Refs. [13,14]. As a result,
the energy density of domain walls always degrades faster
than radiation. They completely disappear at the inverse
phase transition (cf., Ref. [15]). This is in contrast to the

standard scenario of domain walls with a constant tension,
which overclose the Universe unless one introduces an
explicit breaking of Z2-symmetry [16–18] or creates a
population bias of one degenerate vacuum over another [19].
The existence of domain walls in our scenario is interest-

ing from the phenomenological point of view. The domain
wall network in the early Universe serves as a source of
stochastic GWs [20,21]. The present day peak frequency of
GWs is estimated as fgw ≃ 100 Hz · ðg=10−8Þ. Remarkably,
the smaller the constant g is, the better the observational
properties of the model are with respect to GWs. In
particular, values g≲ 10−8 being characteristic for DM
production through the inverse phase transition, see
Fig. 1, correspond to the frequencies fgw ≲ 100 Hz. For
these frequencies, the model is testable with the future GW
detectors, see Fig. 2.

II. DARK MATTER VIA INVERSE PHASE
TRANSITION

We consider the Lagrangian describing the DM field χ,
which we assume to be a real scalar singlet:

Lχ ¼
ð∂χÞ2
2

−
M2χ2

2
−
λχ4

4
þ g2χ2ϕ†ϕ

2
: ð1Þ

Here M and λ denote the mass and the self-interaction
coupling constant of the DM field; g2 is the portal coupling
constant; ϕ is a scalar (or a scalar multiplet) being in
thermal equilibrium with the primordial plasma. In the
present work we crucially assume that the coupling con-
stant g2 between the fields χ and ϕ is positive:

FIG. 1. The region of space (M, g) where the observed DM
abundance can be produced via the inverse phase transition is
shown in white and green. We set N ¼ 4 and assume that β
satisfies inequality (3). Parameter space accessible by planned
GW detectors is marked with green. For comparison, freeze-out
and freeze-in DM genesis scenarios are depicted with solid blue
and orange lines, respectively. To plot them, we used expressions
in Refs. [5] and [7] and took massless ϕ. The blue region is
disfavored, because it leads either to over/underproduction of DM
composed of particles χ or runaway solutions in the ðχ;ϕÞ field
space. Our analysis of DM production via the inverse phase
transition relies on the conditionM > H�; it is inapplicable in the
gray region where the phase transition does not occur.

FIG. 2. The root power spectral density
ffiffiffiffiffi
Sh

p
(strain) of GWs

emitted by the network of domain walls is shown with straight
colored lines as a function of the peak frequency fgw for different
values of β and N. Note that each particular set of parameters
ðβ; gÞ corresponds to one point on a colored line, indicating the
peak contribution to GWs given by Eq. (20) for these parameters.
Sensitivities of various GW detectors (black curved lines) have
been plotted using the online tool [22].
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g2 > 0: ð2Þ

Note that the sign of g2 is irrelevant in the freeze-out(in)
mechanisms of DM genesis, but it plays a key role in our
case with the inverse phase transition.1 The above choice of
sign for g2 implies negative energy contribution from the
interaction term. To avoid the runaway solutions in the
space ðχ;ϕÞ, the following constraint must be obeyed:

β≡ λ

g4
≥

1

λϕ
≳ 1; ð3Þ

where λϕ is the quartic self-interaction coupling of ϕ, and a
weak coupling regime is assumed.
Provided that particles ϕ are relativistic at the relevant

times, one has [24]

hϕ†ϕiT ≈
NT2

12
; ð4Þ

where N is the number of degrees of freedom associated
with the field ϕ. We write the resulting effective potential of
the field χ as follows:

Veff ¼
M2χ2

2
þ λ · ðχ2 − η2ðTÞÞ2

4
; ð5Þ

where

η2ðTÞ ≈ Ng2T2

12λ
; ð6Þ

and we ignore the irrelevant difference between Eqs. (1)
and (5) due to the χ-independent term. As it follows from
Eqs. (3) and (6), backreaction of the field χ on the dynamics
of the field ϕ is negligible. Indeed, the thermal mass
squared of the field ϕ is constrained as m2

ϕ ≳ NλϕT2=12. It
always exceeds the contribution g2χ2 ≈ NT2=ð12βÞ follow-
ing from the interaction with the DM field, provided the
stability constraint (3) is obeyed.
When the temperature of the Universe is sufficiently

high, Z2-symmetry of the model is spontaneously broken,
as it is clear from Eq. (5). In the spontaneously broken
phase, the expectation value of χ is given by the minimum
of the effective potential

hχi ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2ðTÞ −M2

λ

r
: ð7Þ

At the time t ¼ tsym, when the thermal mass becomes equal
to the bare mass of the field χ,

M2 ¼ λη2ðTsymÞ ≈
Ng2T2

sym

12
; ð8Þ

the symmetry gets restored. Here we deal with the inverse
second order phase transition,2 because the vacuum expect-
ation value hχi continuously approaches zero, while its
derivative explodes at t ¼ tsym. This fact plays a key role in
what follows. Were the field χ tracking the minimum of
the effective potential, Eq. (7), down to χ ¼ 0, its time
derivative would also explode at t ¼ tsym. In practice,
however, the field χ is kicked out of the minimum at some
time t� slightly before tsym, i.e., t� ≲ tsym (still, t� ≈ tsym).
Provided that H� ≲M, where H� is the Hubble parameter
at t�, the field χ starts oscillating with the initial amplitude
χ� estimated as the vacuum expectation value at the time t�,
i.e., χ� ≃ hχ�i. The expectation value hχ�i is inferred from
the behavior of the effective mass squared of the field χ.
In the broken phase, where χ ≈ hχi, it is given by

M2
eff ¼ 3λχ2 − λη2ðTÞ þM2 ≈ 2λhχi2: ð9Þ

At very early times, the effective mass changes adiabati-
cally with time,

����
_Meff

M2
eff

���� ≪ 1; ð10Þ

and the field χ simply tracks its minimum, χ ≈ hχi.
The tracking regime terminates at the time t�, when the
condition (10) becomes the equality. At this moment the
field χ value is estimated as

χ� ≃
ð2M2Þ1=3ffiffiffiffiffi

2λ
p

���� _ηη
����
1=3

�
¼ ð2M2H�Þ1=3ffiffiffiffiffi

2λ
p : ð11Þ

The amplitude χ� defines the DM energy density as

ρχðtÞ ≃
M2χ2�
2

·

�
a�
aðtÞ

�
3

: ð12Þ

Remarkably, the estimate (11), checked numerically in
Ref. [11], is largely model-independent.
We are interested in the situation, when most of DM

in the Universe is produced through the inverse phase
transition (3). This gives the constraint on the parameter
space:

M ≃ 15 eV ·
β3=5ffiffiffiffi
N

p ·

�
g�ðT�Þ
100

�
2=5

·

�
g

10−8

�
7=5

; ð13Þ

where g�ðTÞ is the number of ultrarelativistic degrees
of freedom in the Universe at the temperature T.

1Flipping the signs of both g2 and M2 leads to a direct second
order phase transition followed by formation of constant tension
domain walls that overclose the Universe, see, e.g., Ref. [23].

2For DM production during the first order phase transition,
see Ref. [25].
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The parameters g and M leading to the right abundance
of DM through the inverse phase transition are shown in
Fig. 1 for different values of β. The lines corresponding to
the freeze-out and freeze-in mechanism are shown there for
comparison. We see that the inverse phase transition largely
extends the range of values of the portal coupling constant
g2, for which the right DM abundance can be obtained.
Furthermore, our mechanism works in a wide range of
values of the self-interaction constant λ varying from λ ∼ g4

to λ ∼ 10−4 (corresponding to the right upper corner of the
white space in Fig. 1).

III. FORMATION OF DOMAIN WALLS

In the situation of our primary interest, when the DM
field is feebly coupled to other matter fields, commonly
discussed direct and indirect methods of catching DM
particles may not work. This may raise doubts, if the case of
very small g is testable at all. However, if the field χ is set to
zero, χ ¼ 0, at the end of inflation our mechanism of DM
production leads to formation of domain walls in the early
Universe. Indeed, there is no preference between positive
and negative vacuum values, so that the field χ picks
random values in different Hubble patches. Regions with
different vacuum values are separated by domain walls.
These domain walls generate GWs potentially observable
with the near future experimental facilities.
The domain walls form only after the thermal DM massffiffiffi
λ

p
η becomes comparable to the Hubble parameter. At

earlier times the field χ is pinned to zero by the Hubble
friction. Assuming that rolling to the minimum is sub-
stantially fast, i.e., occurs within a few Hubble times, we
estimate the temperature at domain walls formation:

Ti ≃
ffiffiffiffi
N

p
gMPlffiffiffiffiffiffiffiffiffiffiffiffiffi

g�ðTiÞ
p : ð14Þ

We use the reduced Planck mass MPl ≈ 2.44 × 1018 GeV.
Note that a finite duration of the roll results into the
reduction of Ti by the factor ln ð2ηh=δχhÞ compared to
Eq. (14), where ηh and δχh are the expectation value and the
perturbation of the field χ at the onset of the roll, time th.
The perturbation δχh is determined by the past history of
the field χ at inflation and preheating. In this work, we
assume that δχh is not dramatically smaller than ηh, so that
the logarithmic suppression can be safely ignored.
The tension of domain walls is given by3

σwall ¼
2

ffiffiffiffiffi
2λ

p
η3ðTÞ
3

: ð15Þ

In the scaling regime [26–28], there is one (or a few)
domain wall(s) per horizon volume, and the domain wall

mass inside the Hubble radius reads Mwall ∼ σwall=H2.
The energy density of domain walls is estimated as
ρwall ∼MwallH3 ∼ σwallH. Using Eqs. (6), (14), and (15),
we obtain the fraction of domain walls in the total energy
budget of the Universe during radiation domination:

ρwall
ρrad

∼
N2

30g�ðTÞβ
·
T
Ti

< 1: ð16Þ

The above inequality is always satisfied for not overly
extensive N. Hence, the domain walls problem is auto-
matically avoided in our setup.

IV. PROPERTIES OF GWs

Let us consider the GWs emitted by the network of
thawing domain walls. We closely follow the discussion of
Ref. [20], which analyses properties of GWs by running
lattice simulations in a scenario with constant tension
domain walls. We assume that this analysis qualitatively
captures features of GW production also in our case of a
time-varying tension. This assumption is strongly supported
by the fact that in both setups most energetic GWs are
emitted in a short time interval: just before the domain wall
collapse in Ref. [20] and right after domain wall formation
in our case (see below). Approximating the tension to be
constant in this short time interval, one validates the
application of the results of Ref. [20] to our case.
According to the Einstein quadrupole formula, the

power of gravitational radiation emission is estimated as

P ∼Q
…2

ij=ð40πM2
PlÞ. In the scaling regime, the created

quadrupole moment is related to the wall massMwall inside
the Hubble radius 1=H by jQijj ∼Mwall=H2. Using
Mwall ∼ σwall=H2, we obtain the estimate of the energy
density of gravitational waves emitted at the time t:

ρgw ∼ P · t ·H3 ∼
σ2wall

40πM2
Pl

; ð17Þ

so that ρgw ∝ T6 in our case. We observe that GWs are most
efficiently produced at high temperatures T ≃ Ti close to
the moment of domain wall formation, provided that the
scaling regime is attained almost instantly. In the latter
approximation, an accurate fit to numerical simulations of
Ref. [20] reads

ΩgwðtiÞ ≈
λϵ̃gwA2η6i
27πH2

i M
4
Pl

; ð18Þ

where ΩgwðtÞ is the fractional energy density of GWs per
logarithmic frequency at peak. The factors ϵ̃gw and A
measure efficiency of GWs emission and the scaling
property, correspondingly. Both turn out to be quite close
to unity: ϵ̃gw ¼ 0.7� 0.4 and A ¼ 0.8� 0.1. We proceed3See, e.g., Ref. [23], Eq. (7.38) on page 215.
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with central values of ϵ̃gw and A. Substituting (6) into (18)
and using (14), we get

ΩgwðtiÞ ≈
3 × 10−9 · N4

β2
·
�

100

g�ðTiÞ
�

2

: ð19Þ

During matter domination it redshifts as Ωgw ∼ 1=a, so that
presently we have

Ωgwh2ðt0Þ ≈
4 × 10−14 · N4

β2
·

�
100

g�ðTiÞ
�

7=3
: ð20Þ

The GW spectrum is peaked at frequency fgwðtiÞ ≃Hi

[20], whereHi is the Hubble rate at domain wall formation.
Given Eq. (14), the present day frequency of GWs reads

fgw ≡ fgwðt0Þ ≃ 60 Hz ·
ffiffiffiffi
N

p
·

g
10−8

·

�
100

g�ðTiÞ
�

1=3
: ð21Þ

It is solely determined by the constant g. Equations (20)
and (21) can be used to measure (bound) g and β=N2

from positive (negative) results of GW searches at future
detectors.

V. PROBING DM COUPLINGS WITH GWs

Hereafter we restrict the discussion to the frequency
range fgw ≲ 100 Hz, with the upper bound corresponding
to the peak sensitivity of Einstein Telescope (ET) [29] and
Cosmic Explorer [30]. Then Eq. (21) implies

g≲ 10−8ffiffiffiffi
N

p ; ð22Þ

where we set g�ðTiÞ ∼ 100. One concludes, see Fig. 1, that
production of detectable GWs is possible in the scenario
of DM genesis via the inverse phase transition. The range
of values 10−9 ≲ g≲ 10−8 corresponding to frequencies
10 Hz≲ fgw ≲ 100 Hz will be covered by Einstein
Telescope and Cosmic Explorer. DECIGO [31] and BBO
[32] will cover the frequencies 0.1 Hz≲ fgw ≲ 10 Hz and
thus probe the range 10−11 ≲ g≲ 10−9. For smaller g,
our model enters the region accessible by LISA [33]
(10−14 ≲ g≲ 10−11) and even pulsar timing arrays SKA
[34] and IPTA [35] (g≲ 10−18). Very small g will be also
probed by GAIA and THEIA [36].
In Fig. 2 we show the strain of present GWs emitted at

the time ti for fixed parameters β andN and compare it with
sensitivities of the GW interferometers and pulsar timing
arrays. The square of the strain, or the power spectral
density Sh, is defined from

Ωgwðt0ÞH2
0 ≡

2π2f3gw
3

· Sh; ð23Þ

where H0 is the Hubble constant. As we can see from
Fig. 2, future interferometers will be able to probe the
model for moderate β=N2 ≲ 0.1–10 corresponding to very
small λ.
Emission of GWs is insensitive to the DMmassM, since

it does not enter the expression for the tension of domain
walls, Eq. (15). Nevertheless, in the scenario with the
inverse phase transition, the parameters g and β defining the
properties of GWs via Eqs. (21) and (20) also fix the DM
mass, see Eq. (13). As it follows from Eq. (13), where we
take β ≃ 1 and N ≃ 10, the potentially observable GWs
correspond to

M ≃ 5 eV ·

�
g

10−8

�
7=5

; ð24Þ

where we put g�ðT�Þ ∼ 100. For example, at LISA peak
sensitivity frequency fgw ≃ 0.01 Hz, the relevant masses
are in the axion range M ≃ 10−5 eV.
As it follows, the region of parameter space accessible by

planned GW detectors involves tiny constants λ. In particu-
lar, for β ≃ 1 and g ≃ 10−8, one has λ ≃ 10−32. Such small
values of λ are not unnatural insofar as g and M are also
small, which is indeed the case according to Eq. (24). In this
case, the model is approximately shift symmetric. Assuming
that the shift symmetry becomes exact in the limit g → 0,
it follows that M → 0 and λ → 0 in the same limit. Here we
draw an analogy with the case of axions also enjoying an
approximate shift symmetry, which guarantees smallness of
the axionic mass and self-interaction coupling constant.

VI. PROSPECTS FOR FUTURE

Multiple different sources may emit GWs in the same
frequency range as domain walls in our model. To discrimi-
nate between these sources, it is crucial to have information
about the spectral shape of GWs produced. This has been
obtained in Ref. [20] by running lattice simulations for the
case of constant tension domain walls. Most possibly, it is
not completely legitimate to extrapolate these results to our
setup with the time-dependent tension, and the separate
analysis is required. It is crucial for understanding the
smoking gun signature of our DM scenario.
Finally, let us stress that our estimates rely on some

assumptions: (i) the field χ quickly relaxes to its minimum
in the broken phase; (ii) domain walls enter the scaling
regime immediately upon their formation; (iii) formation of
domain walls occurs during the radiation-dominated stage.
Going beyond these assumptions, one generically alters our
predictions of GWs properties. We expound upon this issue
in detail in future works.
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