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We study the coupled dark energy model constructed from the general conformal transformation in
which the coefficient of the conformal transformation depends on both the scalar field and its kinetic term.
Under this conformal transformation, the action for subclass of degenerate higher-order scalar-tensor
(DHOST) theories is related to the Einstein-Hilbert action. The evolution of the background universe has
the scaling fixed point which corresponds to acceleration of the universe at late time. For the choices of
parameters which make the late-time scaling point stable, the fixed point corresponding to ϕ-matter-
dominated-era (ϕMDE) is a saddle point, and the universe can evolve from radiation dominated epoch
through ϕMDE before reaching the scaling point at late time with the cosmological parameters which
satisfy the observational bound. During the ϕMDE, the effective equation of state parameter is slightly
positive, so that one of possible mechanisms for alleviating theH0 tension can be achieved. In this coupled
dark energy model, the effective gravitational coupling for dark matter perturbations on small scales can be
smaller than that in the ΛCDM model. Therefore a growth rate of the dark matter perturbations is
suppressed compared with the ΛCDM model, which implies that the σ8 tension could be alleviated.
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I. INTRODUCTION

One of the challenges in cosmology is to explain the
cosmic acceleration at late time which could be a con-
sequence of unknown forms of dark energy or deviation
from Einstein gravity on large scales [1–6]. To avoid the
cosmological constant problem due to extremely large
difference of the value of cosmological constant from
theoretical predictions and from observations, dark energy
should be dynamical energy component. However, the
dynamical dark energy encounters the problem why the
energy density of dark energy is comparable with that for
dark matter at late time even though they evolve differently.
This problem of dark energy is the coincidence problem
which could be alleviated if there are attractors correspond-
ing to the cosmic acceleration at late time [7,8]. Such
attractors can exist under the assumption that dark energy is
coupled to cold dark matter (CDM) [9–12].
Possible models of coupled dark energy are inspired

from the frames transformation in theories of gravity. The
interaction between dark energy and CDM can be inspired

from the conformal transformation [13–17] and disformal
transformation [18–26]. When the transformation coeffi-
cient depends on the scalar field only, the coupling due to
conformal transformation leads to a coupling between field
and energy density of CDM which corresponds to a energy
transfer between the dark components [9,27]. For the
coupling from disformal transformation, the velocity per-
turbations and the time derivative of density perturbation in
CDM can be eliminated from the effective coupling term in
the evolution equation on small scales. As a result, the
effective coupling term depends only on the perturbations
in energy density of CDM similar to the coupling from the
conformal transformation [28]. The effects of the disformal
coupling appear at the background level through the
modification of the cosmic expansion and the coefficient
of the perturbed coupling term. The growths of the
matter perturbations on small scales for these two types
of coupled dark energy models are higher than that for
ΛCDM model [28,29].
The interaction between the dark components can also

be arisen from a coupling between the a field derivative
∂μϕ and a CDM four velocity uμ in the action [30–40]. This
form of the coupling can lead to a pure momentum transfer
between the dark components. Interestingly, it can reduce
the effective gravitational coupling relevant to the growth of
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CDM perturbations, and therefore a growth of matter
perturbations on small scales is suppressed [30,31,36,41].
The suppression of the matter growth rate in this class of

coupled dark energy models potentially alleviates σ8
tension, where σ8 is the amplitude of matter perturbation
inside comoving radius 8h−1 Mpc, h ¼ H0=100 and H0 is
the Hubble expansion rate at present. Even though the
ΛCDM model satisfies the observational data well, it
suffers from the tension of the σ8 between the cosmic
microwave background (CMB) and shear lensing analyses
[42,43]. The estimated σ8 from CMB data is larger than that
from shear lensing analyses. Since the σ8 tension arises in
ΛCDMmodel, the σ8 tension could be solved if the growth
of matter perturbations is suppressed compared with that
for ΛCDM.
The other interesting feature of the coupled dark energy

models is the existence of the scaling fixed points [30,44].
These points can describe the accelerated expansion of the
universe at late time as well as the matter dominated epoch.
The scaling point that can represent the matter dominated
epoch is the ϕMDE point in which there is a small density
fraction of dark energy during matter domination. The
coincidence problem could be alleviated if the universe can
evolve from the radiation dominated epoch through the
ϕMDE which should be a saddle point and then reach the
attractor corresponding to cosmic acceleration at late time.
The existence of the ϕMDE potentially resolves the H0

tension as follows. TheH0 tension is the discrepancy of the
estimated H0 from CMB [45] and that from the local
measurements of the expansion rate of the universe. TheH0

from CMB data analysis which is based on ΛCDM is lower
than that from local measurements by more than 3σ [46].
Hence, to solve the H0 tension, the dynamics of the
universe should be different from that for ΛCDM. The
resolutions from modification of the late-time expansion of
the universe [47–49] are tightly constrained by baryon
acoustic oscillations (BAO) [50–52]. Potential resolution of
theH0 tension is based on the modification of the dynamics
of the universe during the last scattering epoch and matter
domination by early dark energy [53–55]. In these models,
the sound horizon at the last scattering is reduced and
therefore the CMB acoustic peaks shift to smaller angular
scales. Then the location of the acoustic peaks can shift to
the larger angular scales and match with the data when H0

increases [55]. Possible other resolutions can be found
in [56,57].
For coupled dark energy models with ϕMDE, a small

fraction of energy density for dark energy during the
ϕMDE rises the effective equation of state parameterweff ¼
Ωϕwϕ ¼ Ωϕ to slightly positive. Here, Ωϕ and wϕ are the
density parameter and equation of state parameter of scalar-
field dark energy. The positive effective equation of state
parameter during matter domination can also shift the CMB
acoustic peaks to smaller angular scales leading to a higher
H0 [30]. However, the cosmic evolution from radiation

domination through ϕMDE toward acceleration epoch
cannot be achieved in the models of coupled dark energy
inspired from the conformal transformation [44]. This
sequence of evolutions can be realized in the coupled dark
energy model in which the coupling term consists of Z ≡
uμ∂μϕ [30].
From the above discussion, we see that the coupled dark

energy model containing Z in the coupling term could
solve both H0 and σ8 tensions. This inspires us to study the
coupled dark energy model from the general conformal
transformation, in which the coefficient of the transforma-
tion depends on both the scalar field and its kinetic term.
We are interested in whether the H0 and σ8 tensions can be
alleviated in this model. Different from the cases of usual
conformal and disformal couplings, the time derivative of
the density perturbations in CDM appears in the effective
coupling term for this model of coupled dark energy.
Hence, this could differently affect the growth of matter
perturbations on small scales.
This paper is organized as follows. In Sec. II we study

the coupling between dark energy and dark matter inspired
by the general conformal transformation in which the
conformal coefficient depends both on scalar field and
its kinetic term. We investigate the evolution of background
universe in Sec. III, and study the growth of matter
perturbations on small scales in Sec. IV. We give the
conclusion in Sec. V.

II. COUPLED DARK ENERGY MODEL FROM
GENERAL CONFORMAL TRANSFORMATION

Let us consider the general conformal transformation
defined by

ḡμν ¼ CðX;ϕÞgμν; ð1Þ

where the coefficient of the conformal transformation C
depends on the scalar field ϕ and its kinetic term
X ≡ −gαβ∂αϕ∂βϕ=2. This form of the conformal trans-
formation transforms the Einstein-Hilbert action to the
action of DHOST theories in the class where the propa-
gation speed of gravitational waves is equal to speed of
light and gravitational waves do not decay to dark energy
perturbations [58,59]. From the above metric transforma-
tion, we have

ḡμν ¼ 1

CðX;ϕÞ g
μν: ð2Þ

In order to construct the coupled dark energy model
inspired from the conformal transformation, we suppose
that the dark energy is in the form of a scalar field ϕ
involving the conformal transformation, and therefore the
interaction between the dark energy and the dark matter
arises when the Lagrangian of the dark matter depends
on the metric ḡμν defined in Eq. (1). Hence, the model of

THIPAKSORN, SAPA, and KARWAN PHYS. REV. D 105, 063527 (2022)

063527-2



coupled dark energy can be described by the action in
which the gravitational part of the action is written in terms
of the metric gμν while the part of the coupled matter is
written in terms of ḡμν as

S ¼
Z

d4x

� ffiffiffiffiffiffi
−g

p �
1

2
Rþ PðX;ϕÞ þ LMðgμνÞ

�

þ ffiffiffiffiffiffi
−ḡ

p
Lcðḡμν;ψ ;ψ ;μÞ

�
; ð3Þ

where we have set 1=
ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 1, R is the Ricci scalar, g is
the determinant of the metric gμν, PðX;ϕÞ≡ X − VðϕÞ,
VðϕÞ is the potential of the scalar field, LM is the
Lagrangian of ordinary matter including baryon and
radiation, Lc is the Lagrangian of dark matter, ψ is the
matter field and ψ ;μ is the partial derivative of the field.
Varying this action with respect to gαβ, we obtain the
Einstein equation in the form

Gαβ ¼ Tαβ
ϕ þ Tαβ

c þ Tαβ
M; ð4Þ

where Gαβ is the Einstein tensor computed from gμν, and
the energy-momentum tensors for scalar field and matter
are defined in an unbarred frame as

Tμν
ϕ ≡ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

Pðϕ; XÞÞ
δgμν

; Tμν
M ≡ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LMÞ
δgμν

;

ð5Þ

Tμν
c ≡ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi

−ḡ
p

LcÞ
δgμν

: ð6Þ

From these definitions of the energy-momentum tensor and
∇αGαβ ¼ 0 as well as the conservation of the energy-
momentum tensor for the ordinary matter, we have
∇αðTαβ

ϕ þ Tαβ
c Þ ¼ 0. Here, ∇α is the covariant derivative

compatible with the metric gαβ. However, we see that the
energy-momentum tensors of dark energy and dark matter
do not separately conserve because the Lagrangian of dark
matter depends on field ϕ. Since the metric tensor does
not depend on ψ , variation of the action (3) with respect
to ψ yields

∇̄αT̄
αβ
c ¼ 0; ð7Þ

where ∇̄α is defined from barred metric. This implies the
conservation of T̄αβ

c in the barred frame. The energy-
momentum tensor in the barred frame is related to that
in the unbarred frame defined in Eq. (6) through the relation

Tαβ
c ¼

ffiffiffiffiffiffi
−ḡ

pffiffiffiffiffiffi−gp δḡρσ
δgαβ

2ffiffiffiffiffiffi
−ḡ

p δð ffiffiffiffiffiffi
−ḡ

p
LcÞ

δḡρσ
¼

ffiffiffiffiffiffi
−ḡ

pffiffiffiffiffiffi−gp δḡρσ
δgαβ

T̄ρσ
c : ð8Þ

Varying the action with respect to the field ϕ, we obtain the
evolution equation for scalar field as

∇α∇αϕ − V;ϕ þQ ¼ 0; ð9Þ

where a subscript ;ϕ denotes derivative with respect
to the field ϕ. The coupling term Q in the above equa-
tion is a result from a variation of the dark matter actionR
d4x

ffiffiffiffiffiffi
−ḡ

p
Lc in Eq. (3) with respect to ϕ. The variation of

this part of the action can be computed as

δ

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
Lc ¼

Z
d4xδϕ

� ffiffiffiffiffiffi
−ḡ

p
2

T̄αβ
c C;ϕgαβ

þ 1

2
∇σð

ffiffiffiffiffiffi
−ḡ

p
T̄αβ
c gαβC;Xϕ

;σÞ
�
; ð10Þ

where the subscript ;X denotes derivative with respect to X
and ϕ;σ ≡ ∂σϕ. Using Eq. (8), we have

ffiffiffiffiffiffi
−g

p
Tαβ
c ¼ C

ffiffiffiffiffiffi
−ḡ

p
T̄αβ
c −

1

2
C;Xϕ

;αϕ;β
ffiffiffiffiffiffi
−ḡ

p
gρσT̄

ρσ
c : ð11Þ

Applying gαβ to both sides of the above equation, and

setting Tc ≡ gαβT
αβ
c , we can write the above equation as

ffiffiffiffiffiffi
−g

p
Tc ¼ ðCþ C;XXÞ

ffiffiffiffiffiffi
−ḡ

p
gρσT̄

ρσ
c ; ð12Þ

which yields

ffiffiffiffiffiffi
−ḡ

p
gαβT̄

αβ
c ¼

ffiffiffiffiffiffi−gp
Tc

Cþ C;XX
: ð13Þ

Using this relation, we can write Eq. (10) as

δ

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
Lc ¼

Z
d4x

ffiffiffiffiffiffi
−g

p
δϕ

�
C;ϕ

2ðCþ C;XXÞ
Tc

þ 1

2
∇β

�
C;X

Cþ C;XX
ϕ;βTc

��
: ð14Þ

Combining this equation with Eq. (9), we get

∇α∇αϕ − V;ϕ ¼ −ΓTc −∇βðΞϕ;βTcÞ≡ −Q; ð15Þ

where Γ≡C;ϕ=½2ðCþC;XXÞ� and Ξ≡C;X=½2ðCþC;XXÞ�.
Equation (15) can be written in terms of the energy-
momentum tensor as

∇αTα
βϕ ¼ −Qϕ;β; ð16Þ

where Tα
βϕ is the energy-momentum tensor of the scalar

field. According to the conservation of the total energy-
momentum tensor, the above equation gives
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∇αTα
βc ¼ Qϕ;β: ð17Þ

In the case of a conformal transformation in which the
conformal coefficientC depends only on the fieldϕ, we have
C;X ¼ 0 and therefore Eq. (15) reduces to the equation for
the case of usual conformal transformation. When C;X is not
vanish, the coupling term Q contains coupling between the
field derivative and the energy density as well as between the
field derivative and the derivative of energy density of CDM.
The latter form of the coupling can lead to different effects on
cosmic evolution and the growth of matter perturbations
compared with the usual conformal coupling case.

III. EVOLUTION OF THE BACKGROUND
UNIVERSE

In this section, we study effects of the interaction
between dark energy and dark matter due to the gen-
eral conformal transformation on the evolution of the
background universe. Using the Friedmann-Lemaítre-
Robertson-Walker (FLRW) metric,

ds2 ¼ −dt2 þ a2δijdxidxj; ð18Þ

where δij is the Kronecker delta, and supposing that the
scalar field is homogeneous and other matter components
in the universe are described by perfect fluid, Eqs. (15) and
(17) become

ϕ̈þ 3H _ϕþ V;ϕ ¼ Q̄; ð19Þ

and

_ρc þ 3Hρc ¼ −Q̄ _ϕ : ð20Þ

Here, ρc is the energy density of dark matter, H ≡ _a=a is
the Hubble parameter, a dot denotes a derivative with
respect to time t, and

Q̄ ¼ −Γρc þ ðϕ̈þ 3H _ϕÞΞρc þ 2Ξ;ϕXρc

þ 2Ξ;Xϕ̈Xρc þ Ξ _ϕ _ρc: ð21Þ

We see that the interaction term Q̄ in the above equation
depends on ϕ̈ and _ρc. Hence, we combine Eqs. (19) and

(20) to write the evolution equations for ϕ and ρc in the
forms

ϕ̈þ 3H _ϕþ V;ϕ ¼ Q0; and _ρc þ 3Hρc ¼ − _ϕQ0: ð22Þ

Here, we define the effective coupling term as

Q̃0 ≡Q0

ρc
¼ ΘV;ϕ þ 3HΘ _ϕ − 2XΞ;ϕ þ Γ

Θρc − 2XΞ − 1
; ð23Þ

where Θ≡ Ξþ 2XΞ;X. Since the energy-momentum
tensors of baryon and radiation are separately conserve,
in the background universe the conservation of these
energy-momentum tensors yields

_ρb ¼ −3Hρb; and _ρr ¼ −4Hρr; ð24Þ

where ρb and ρr are the energy density of baryon and
radiation.

A. Autonomous equations

Let us compute the autonomous equations by defining
the dimensionless dynamical variables as

x ¼
_ϕffiffiffi
6

p
H
; y ¼ V

3H2
; Ωc ¼

ρc
3H2

;

Ωb ¼
ρb
3H2

; Ωr ¼
ρr
3H2

; ð25Þ

and the dimensionless functions as

z ¼ C;X

C
H2; λ ¼ V;ϕ

V
; ð26Þ

γ ¼ Γ; χ ¼ ΞH2: ð27Þ

In terms of the above dimensionless variables, the
Friedmann equation gives

1 ¼ x2 þ yþΩc þ Ωb þΩr: ð28Þ

From the above dimensionless variables, we obtain autono-
mous equations from Eq. (22) as

x0 ¼ −x
_H

H2
þ

ffiffiffi
6

p ðγΩc þ λyÞ þ 6xþ 3
ffiffiffi
6

p ðγzΩc − 2Ωcχ;ϕ þ 2λyzÞx2 þ 36zx3 − 18
ffiffiffi
6

p
zΩcχ;ϕx4

36x2Ωcð3x2zþ 1Þχ;X þ 3zΩc − 12x2z − 2
; ð29Þ

y0 ¼
ffiffiffi
6

p
λxy − 2y

_H
H2

; ð30Þ

z0 ¼ 6x

�
C;X

C

�
;X

�
x

_H
H2

þ x0
�
þ

ffiffiffi
6

p
x

�
C;X

C

�
;ϕ
þ 2z

_H
H2

; ð31Þ

THIPAKSORN, SAPA, and KARWAN PHYS. REV. D 105, 063527 (2022)

063527-4



Ω0
c ¼ −2Ωc

_H
H2

−
36x3ð3x2zþ 1Þð6xþ ffiffiffi

6
p

λyÞχ;X þ 3
ffiffiffi
6

p
λxyz − 2

ffiffiffi
6

p
γxð3x2zþ 1Þ

36x2Ωcð3x2zþ 1Þχ;X þ3zΩc − 12x2z − 2
Ωc

þ 12
ffiffiffi
6

p
x3ð3x2zþ 1Þχ;ϕ þ 18x2zþ 6

36x2Ωcð3x2zþ 1Þχ;X þ 3zΩc − 12x2z − 2
Ωc

−
9½12ð3x4zþ x2Þχ;X þ z�

36x2Ωcð3x2zþ 1Þχ;X þ 3zΩc − 12x2z − 2
Ω2

c; ð32Þ

where a prime denotes a derivative with respect to N ≡ ln a
and

_H
H2

¼ 1

2
ðΩc − 2x2 þ 4y − 4Þ: ð33Þ

From Eq. (24), we get

Ω0
b ¼ −3Ωb − 2

_H
H2

Ωb; ð34Þ

Ω0
r ¼ −4Ωr − 2

_H
H2

Ωr: ð35Þ

Let us consider the denominator of the terms in Eqs. (29)
and (32). The denominators of all terms except the terms
which are proportional to _H=H2 are the same and can
vanish when

χ;X ¼ −
3zΩc − 12x2z − 2

36x2Ωcð3x2zþ 1Þ : ð36Þ

This suggests that x0 and Ω0
c can be infinite when the above

equation is satisfied. To ensure that the background uni-
verse properly evolves, the situations in which the above
equation is satisfied have to be avoided.
To perform further analysis, we use the coefficient C in

the simple form that could reveal the main features of this
form of coupling. Since the coupling terms in the evolution
equations depend on derivatives of C with respect to ϕ and
X, the coefficient C should be a polynomial function of X.
Moreover, the following autonomous equations can be a
complete set of equations if the coupling term Q̃0 given in
Eq. (23) does not depend on ϕ. Hence, we choose the
potential of the scalar field and coefficient C in the forms

VðϕÞ ¼ V0eλϕ; Cðϕ; XÞ ¼ C0eλ1ϕ
�
1þ eλ2ϕ

�
X
Λ0

�
λ3
�
;

ð37Þ

where C0, λ1, λ2, and λ3 are dimensionless constants, while
V0 and Λ0 are constants with the same dimension as X.
According to Eq. (27), the above form of the potential
implies that λ is a dimensionless constant. For this form of
C, Eq. (36) gives

λ3 ¼
27x2z2Ωc þ 3zΩc þ 36x4z2 þ 18x2zþ 2

6zΩc
: ð38Þ

For the case of positive λ3, we get z > 0 according to the
definition in Eq. (27). This suggests that the above equation
can be satisfied if λ3 > 0. This implies that x0 andΩ0

c can be
infinite at some time during the evolution of the universe if
λ3 is positive. Based on the numerical investigation, the
divergence of x0 and Ω0

c can be avoided if λ3 < 1.

B. Fixed points

Since we are interested in the fixed points corresponding
to the matter dominated epoch and the late-time universe,
we ignore the contribution from the radiation energy
density in the dynamical analysis. To compute the fixed
points, we also drop the contribution from baryon because
Eq. (34) has fixed points at Ωb ¼ 0 and at _H=H2 ¼ −3=2.
The first point can be reached in the future while the second
point corresponds to the matter dominated epoch. The
second point is not exactly compatible with ϕMDE because
the ϕMDE requires _H=H2 ¼ −3ð1þ weffÞ=2≲ −3=2 dur-
ing matter domination. Hence, to study the ϕMDE point in
the dynamical analysis, we drop the contribution from the
baryon energy density. However, it will be shown in the
numerical integration that the inclusion of baryon energy
density does not forbid the existence of ϕMDE, because we
still get Ω0

b ∼ 0 when _H=H2 ≲ −3=2.
Ignoring the contributions from radiation and baryon

energy density, Eq. (28) gives

Ωc ¼ 1 − x2 − y: ð39Þ

Substituting this expression into Eq. (33), we get

_H
H2

¼ −
3

2
ðx2 − yþ 1Þ: ð40Þ

Setting y0 ¼ 0, Eq. (30) is satisfied by two solutions which
correspond to the fixed points yc ¼ 0 and

_H
H2

¼
ffiffiffi
3

2

r
λxc; ð41Þ

where the subscript c denotes evolution at the fixed point.
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1. Field dominated point and scaling point

We first consider the fixed point yc ≠ 0. We can compute
y at the fixed point by matching Eq. (40) with Eq. (41)
which yields

yc ¼
ffiffiffi
2

3

r
λxc þ x2c þ 1: ð42Þ

Substituting Eqs. (39), (41), and (42) into Eqs. (29) and
(31), then inserting C from Eq. (37) into the resulting
equations, and finally setting x0 ¼ z0 ¼ 0, we obtain the
equations for the fixed points,

0 ¼ −
ffiffiffi
6

p
λλ3 þ ðλλ1 − 2ðλ2 þ 3ÞÞλ3xc

þ
ffiffiffi
6

p
λ3ðλ1 − λð9zc þ 2ÞÞx2c

þ 3ð−2λ2λ23 þ ð−5λ2 þ λ1λ − 2λ2λ − 18Þλ3 þ λλ2Þzcx3c
þ 3

ffiffiffi
6

p
zcð−2λ3λ2 þ λ2 þ λ3ðλ1 − λð2λ3 þ 6zc þ 5ÞÞÞx4c

− 9ððλ2 þ 12Þλ3 − 3λλ2Þz2cx5c þ 9
ffiffiffi
6

p
ð3λ2 − λλ3Þz2cx6c;

ð43Þ

0 ¼
ffiffiffi
6

p

λ3
ðλ2 þ λλ3Þxczcðλ3 − 3x2czcÞ: ð44Þ

From Eq. (44), we can solve for zc as

zc ¼ 0 and zc ¼
λ3
3x2c

: ð45Þ

We concentrate on the second solution rather than zc ¼ 0
solution, because the zc ¼ 0 solution corresponds to the
case where the kinetic dependence of C is negligible, i.e.,
z ¼ C;X=C ¼ 0. In addition to the above solutions, Eq. (44)
is also satisfied by the condition λ2 þ λλ3 ¼ 0. However,
this case can be viewed as a special case of solutions in
Eq. (45), so that we will not discuss this case in detail.
Inserting the second fixed point of z from the above

equation into Eq. (43), we obtain two fixed points of
variable x as

xc ¼
�
−

λffiffiffi
6

p ;

ffiffiffi
6

p ð2λ3 þ 1Þ
λ1 þ λ2 − λð3λ3 þ 2Þ

�
: ð46Þ

Inserting xc from above equation into Eq. (42), we obtain

yc ¼
�
1 −

λ2

6
; 1þ 6ð2λ3 þ 1Þ2

ðλ1 þ λ2 − λð3λ3 þ 2ÞÞ2 þ
2λð2λ3 þ 1Þ

λ1 þ λ2 − λð3λ3 þ 2Þ
�
: ð47Þ

From xc and yc, we can compute the density parameter and equation of state of scalar field at the fixed points from the
definitions Ωϕ ≡ x2 þ y and wϕ ≡ ðx2 − yÞ=Ωϕ as

Ωϕc ¼
�
1;

12ð2λ3 þ 1Þ2
ðλ1 þ λ2 − λð3λ3 þ 2ÞÞ2 þ

2λð2λ3 þ 1Þ
λ1 þ λ2 − λð3λ3 þ 2Þ þ 1

�
; ð48Þ

wϕc ¼
(
1

3
ðλ2 − 3Þ;− λ1 þ λ2 þ λλ3

ðλ1 þ λ2 − λð3λ3 þ 2ÞÞ
	

12ð2λ3þ1Þ2
ðλ1þλ2−λð3λ3þ2ÞÞ2 þ

2λð2λ3þ1Þ
λ1þλ2−λð3λ3þ2Þ þ 1



)
: ð49Þ

We see that the first pair of ðxc; ycÞ corresponds to the field
dominated point, while the second pair corresponds to the
scaling point. From the above equations, we can write λ in
terms of wϕc for the case of field dominated point as

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðwϕc þ 1Þ

q
; ð50Þ

which is the same as that for the field-dominated solution
for uncoupled quintessence with exponential potential. For
the scaling point, we write λ and λ1 in terms of Ωϕc and wϕc

by solving Eqs. (48) and (49) for λ and λ1. The results are

λ ¼∓
ffiffiffi
3

p ðwϕcΩϕc þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðwϕc þ 1ÞΩϕc

p ; ð51Þ

λ1 ¼ −λ2 �
ffiffiffi
3

p ð−3λ3wϕcΩϕc − 2wϕcΩϕc þ λ3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðwϕc þ 1ÞΩϕc

p : ð52Þ

Using the above equations, we can compute the values of
λ and λ1 from λ2, λ3, wϕc, and Ωϕc. The values of wϕc

and Ωϕc can be specified based on observational con-
straints, i.e., if we suppose that the scaling point
corresponds to the late-time universe, we can set wϕc ¼
−0.99 and Ωϕc ¼ 0.7. This suggests that to perform
further analysis, we need to specify only the parameters
λ2 and λ3 instead of all parameters of the model λ, λ1, λ2,
and λ3. As a result, the cases where the fixed points
do not satisfy the observational constraints can be
excluded in our analysis. Inserting λ and λ1 from the
above equations into Eqs. (46) and (47), we obtain
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xc ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
Ωϕcð1þ wϕcÞ

r
and yc ¼

1

2
Ωϕcð1 − wϕcÞ:

ð53Þ

2. Kinetic dominated point and ϕMDE point

We now consider the point yc ¼ 0. For this point,
Eq. (40) gives

_H
H2

¼ −
3

2
ðx2c þ 1Þ: ð54Þ

Inserting yc ¼ 0 and Eq. (54) into Eqs. (29) and (31) and
performing the same procedures as those for Eqs. (43) and
(44), we obtain

0 ¼ ð1 − x2cÞ½
ffiffiffi
6

p
λ1λ3 þ 3λ3ðð6λ3 − 3Þzc þ 2Þxc

þ 3
ffiffiffi
6

p
ð−2λ3λ2 þ λ2 þ λ1λ3Þzcx2c

þ 9λ3zcð2λ3 − 9zc þ 5Þx3c þ 27
ffiffiffi
6

p
λ2z2cx4c þ 27λ3z2cx5c�;

ð55Þ

0 ¼ −
1

λ3
zcð3λ3ðx2c þ 1Þ −

ffiffiffi
6

p
λ2xcÞðλ3 − 3x2czcÞ: ð56Þ

In the following consideration, we use a superscript ðϕÞ to
denote the quantities corresponding to the fixed point
yc ¼ 0, which will be seen in the subsequent considerations
that this point can play a role of ϕMDE. From Eq. (56), we
obtain z at the fixed point as

zðϕÞc ¼ 0 and zðϕÞc ¼ λ3

3ðxðϕÞc Þ2
; ð57Þ

which are similar to the case of scaling point. Substituting

the second solution for zðϕÞc into Eq. (56), we can solve for

xðϕÞc as

xkineticc ¼ �1; and

xðϕÞc ¼ −
λ1 þ λ2ffiffiffi
6

p ð3λ3 þ 2Þ

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ21 þ 2λ2λ1 þ λ22 þ 6λ3ð3λ3 þ 2Þ

p
ffiffiffi
6

p ð3λ3 þ 2Þ : ð58Þ

The first two solutions are kinetic-dominated points, while
the other solutions correspond to ϕMDE points. We insert

xðϕÞc into the definition of Ωϕ, we get the expression for Ωϕ

at yc ¼ 0 in the form

ΩðϕÞ
ϕc ¼

�
1;1;

ðλ1þλ2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ21þ2λ2λ1þλ22þ6λ3ð3λ3þ2Þ

p
Þ2

6ð3λ3þ2Þ2 ;

×
ðλ1þλ2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ21þ2λ2λ1þλ22þ6λ3ð3λ3þ2Þ

p
Þ2

6ð3λ3þ2Þ2
�
:

ð59Þ

Since y ¼ 0 at these fixed points, we get wðϕÞ
ϕc ¼ 1. Hence,

the effective equation of state parameter weff ¼ Ωϕwϕ ¼
ΩðϕÞ

ϕc is slightly positive during the ϕMDE. Similar to

scaling fixed point, we write λ1 in terms of ΩðϕÞ
ϕc ; λ2 and λ3

using Eq. (59) as

λðϕÞ1 ¼ −λ2 ∓
ffiffiffi
3

2

r j3λ3ΩðϕÞ
ϕc þ 2ΩðϕÞ

ϕc − λ3jffiffiffiffiffiffiffiffiffi
ΩðϕÞ

ϕc

q : ð60Þ

In the following consideration, we use the subscripts − and
þ to indicate the selected sign in the expressions which
contain� or∓. As an example, if we apply this notation to
Eq. (58), we get

xðϕÞcþ ¼ −
λ1 þ λ2ffiffiffi
6

p ð3λ3 þ 2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ21 þ 2λ2λ1 þ λ22 þ 6λ3ð3λ3 þ 2Þ

p
ffiffiffi
6

p ð3λ3 þ 2Þ :

ð61Þ
Using such notation, the possible expressions of λ and λ1
for the scaling points can be expressed as follows:
according to Eqs. (51) and (52), there are two possible
forms of λ and λ1 such that ðλ; λ1Þ ¼ ðλ−; λ1þÞ and
ðλþ; λ1−Þ. For ϕMDE point, Eq. (58) shows that there

are two possible forms of xðϕÞc , i.e., xðϕÞc− and xðϕÞcþ . Each of
them leads to two possible choices of λ1 given in Eq. (60).

C. Stability

We now consider stability of the fixed points considered
in the previous section by linearizing the autonomous
equations (29)–(31) around the fixed points. Before per-
forming the linearization, we set Ωc ¼ 1 − x2 − y and use
C from Eq. (37). The linearized equations can be written in
the matrix form, and the stability of the deviation around
the fixed points can be estimated from the signs of the
eigenvalues of the Jacobian matrix defined by

Jij ¼
∂x0i
∂xj

����
fixed point

; ð62Þ

where xi ¼ ðx; y; zÞ.

1. Field dominated point

We first consider the field dominated point in which x
and y at fixed point are given by the first solution in
Eqs. (46) and (47), while z at the fixed point is the second
solution in Eq. (45). The eigenvalues for this case are
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μ1 ¼ 3λ3ð1þ wϕcÞ þ λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wϕcÞ

q
;

μ2 ¼ −
3

2
ð1 − wϕcÞ;

μ3 ¼
λ3ð9wϕc − 3Þ þ 6wϕc −

ffiffiffi
3

p ðλ1 þ λ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ wϕc

p
4λ3 þ 2

;

ð63Þ
where we have expressed λ in terms of wϕ at the fixed point
using Eq. (50). One can check that the field dominated point
is stable when both of the following conditions are satisfied

λ3 < −
λ2ffiffiffiffiffiffiffi
3σ1

p ; ð64Þ

λ1

8>><
>>:

< −
2wϕcð2

ffiffi
3

p
λ2−3

ffiffiffiffiffiffiffiffiffiffi
wϕcþ1

p
Þffiffi

3
p ðwϕcþ1Þ for λ3 < −1=2

> −
2wϕcð2

ffiffi
3

p
λ2−3

ffiffiffiffiffiffiffiffiffiffi
wϕcþ1

p
Þffiffi

3
p ðwϕcþ1Þ for λ3 > −1=2

: ð65Þ

Since μ2 is always negative when wϕc < 1 which is the case
for scalar fieldwith standard kinetic term, the field dominated
points cannot be unstable.

2. Scaling fixed point

For the scaling point in which the expressions for xc and
yc are given in Eq. (53), the eigenvalues are

μ1 ¼ 3λ3ð1þ wϕcΩϕcÞ ∓ λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ωϕcð1þ wϕcÞ

q
;

μ2 ¼ −
3

4
ð1 − wϕcΩϕcÞ þ 3

ffiffiffiffiffi
ra
rb

r
; and

μ3 ¼ −
3

4
ð1 − wϕcΩϕcÞ − 3

ffiffiffiffiffi
ra
rb

r
; ð66Þ

where

ra ¼ λ3ðw2
ϕcð2wϕc þ 1ÞΩ3

ϕc þ ð−3w2
ϕc − 18wϕc þ 16ÞΩ2

ϕc

þ ð16wϕc − 15ÞΩϕc þ 1Þ þ Ωϕcðw2
ϕcðwϕc þ 1ÞΩ2

ϕc

− 2ðw2
ϕc þ 5wϕc − 4ÞΩϕc þ 9wϕc − 7Þ; ð67Þ

rb¼ 16ðλ3Ωϕcþ2λ3wϕcΩϕcþwϕcΩϕcþΩϕcþλ3Þ: ð68Þ

In the above eigenvalues, we have written λ and λ1 in
terms of wϕc and Ωϕc using Eqs. (51) and (52). The
fixed point xcþ and xc− in Eq. (53) lead to the same μ2 and
μ3 but different μ1. The first eigenvalue can be negative
when

λ3 <� λ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ωϕcð1þ wϕcÞ

p
3ð1þ wϕcΩϕcÞ

: ð69Þ

The eigenvalues μ2 and μ3 in Eq. (66) can be infinite if
rb ¼ 0 which occurs when

λ3 ¼ λ3b ¼ −
ðwϕc þ 1ÞΩϕc

2wϕcΩϕc þ Ωϕc þ 1
: ð70Þ

The real parts of both μ2 and μ3 can be ensured to be
negative if the ratio ra=rb < 0. To check the sign of this
ratio, we also compute λ3 at which ra ¼ 0. It can be shown
that ra ¼ 0 when

λ3 ¼ λ3a ¼ −
Ωϕcðw2

ϕcðwϕc þ 1ÞΩ2
ϕc − 2ðw2

ϕc þ 5wϕc − 4ÞΩϕc þ 9wϕc − 7Þ
w2
ϕcð2wϕc þ 1ÞΩ3

ϕc þ ð−3w2
ϕc − 18wϕc þ 16ÞΩ2

ϕc þ ð16wϕc − 15ÞΩϕc þ 1
: ð71Þ

For Ωϕc > 0.6 and wϕc ≳ −1, the coefficient of λ3 in
Eq. (67) is negative while that in Eq. (68) is positive.
Hence, rb < 0 when λ3 < λ3b while ra < 0 when λ3 > λ3a.
Since λ3a < λ3b, the ratio ra=rb is negative when λ3 < λ3a or
λ3 > λ3b. As a result, the scaling point is stable when λ3 <
λ3a or λ3 > λ3b for suitable choice of λ2 according to
Eq. (69). For the case λ3 ∈ ðλ3a; λ3bÞ, we have to evaluate
μ2 and μ3 numerically. The real parts of μ2 and μ3 for some
choices of Ωϕc are plotted in Fig. 1. From this figure, the
real parts of the eigenvalues weakly depend on λ2.

3. Kinetic dominated point and ϕMDE point

We first consider the kinetic dominated points where
xc ¼ �1. For these points, the eigenvalues are

μ1 ¼
3ðλ3 þ 1Þ
2λ3 þ 1

�
ffiffiffi
6

p ðλ1 þ λ2Þ
4λ3 þ 2

;

μ2 ¼ 6λ3 ∓
ffiffiffi
6

p
λ2; and μ3 ¼ 6�

ffiffiffi
6

p
λ: ð72Þ

The second eigenvalue μ2 can be either positive or negative
depending on the values of λ2 and λ3. This means that these
kinetic points can be saddle point, and therefore these
points could be reached for some ranges of λ2, λ3 and some
choices of initial conditions. However, we are interested in
the cases where the cosmic evolution satisfies observational
data, so that we will not discuss these points in more detail.
We next consider the ϕMDE points given by Eq. (58).

The eigenvalues for these fixed points are complicated and
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their values consist of many possible cases according to the
range of λ1, λ2 and λ3. However, if we are interested in the
case where the ϕMDE is followed by accelerating epoch
described by scaling points, we have to demand that λ1
from Eq. (52) is equal to that from Eq. (60). Matching these

two equations, we get the relation between ΩðϕÞ
ϕc and Ωϕc as

ΩðϕÞ
ϕc∓ ¼ A ∓ jλ3ð3wϕcΩϕc − 1Þ þ 2wϕcΩϕcj

ffiffiffiffi
B

p

ð3λ3 þ 2Þ2ðwϕc þ 1ÞΩϕc
; ð73Þ

where

A ¼ λ23ð9w2
ϕcΩ2

ϕc − 3ðwϕc − 1ÞΩϕc þ 1Þ
þ 2λ3Ωϕcð6w2

ϕcΩϕc − wϕc þ 1Þ þ 4w2
ϕcΩ2

ϕc; ð74Þ

B ¼ λ23ð9w2
ϕcΩ2

ϕc þ 6Ωϕc þ 1Þ
þ 4λ3Ωϕcð3w2

ϕcΩϕc þ 1Þ þ 4w2
ϕcΩ2

ϕc: ð75Þ

The right-hand side of Eq. (73) could be infinite when λ3
is equal to −2=3. Nevertheless, if we take the limit
λ3 → −2=3, Eq. (73) gives

ΩðϕÞ
ϕc− ¼ 1

2
ðwϕc þ 1ÞΩϕc; ΩðϕÞ

ϕcþ ¼ ∞: ð76Þ

Hence, from now we consider only ΩðϕÞ
ϕc− which will be

denoted byΩðϕÞ
ϕc . It follows from Eq. (73) thatΩðϕÞ

ϕc can have
an imaginary part if B is negative which occurs when

2
	
−3w2

ϕcΩ2
ϕc −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

ϕc − w2
ϕcΩ2

ϕc

q
− Ωϕc



9w2

ϕcΩ2
ϕc þ 6Ωϕc þ 1

< λ3 <
2
	
−3w2

ϕcΩ2
ϕc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

ϕc − w2
ϕcΩ2

ϕc

q
− Ωϕc



9w2

ϕcΩ2
ϕc þ 6Ωϕc þ 1

:

ð77Þ

For wϕc ¼ −0.99, the above condition becomes −0.45<
λ3 < −0.41 and −0.51< λ3 < −0.47 when Ωϕc ¼ 0.65 and
Ωϕc ¼ 0.95, respectively. To ensure that the scaling points
are stable, we choose λ3 in the ranges λ3 < λ3a or λ3 > λ3b.
For wϕc ¼ −0.99, we have ðλ3a; λ3bÞ ¼ ð−0.57;−0.01Þ and
ð−0.57;−0.13Þ when Ωϕc ¼ 0.65 and Ωϕc ¼ 0.95. Hence,

for λ3 < λ3a or λ3 > λ3b, Ω
ðϕÞ
ϕc is real. In the case where

wϕc ≳ −1 and Ωϕc > 0.65, Eq. (73) gives ΩðϕÞ
ϕc ≲ 10−3.

According to the numerical values of λ3a and λ3b, we
restrict λ3 within the ranges λ3 ≤ −2=3 and 0< λ3 ≤ 1 in
the following analysis, where the upper bound λ3 ≤ 1 is
imposed to avoid divergence of x0 and Ω0

c which can occur
when λ3 satisfies Eq. (38).

The quantity ΩðϕÞ
ϕc is the value of Ωϕ at the ϕMDE point.

We plot this quantity as a function of λ3 in Fig. 2. We note
that λ1 in Eqs. (52) and (60) can be matched only for
suitable conditions for λ3. For example, we obtain the same

expression for ΩðϕÞ
ϕc when we solve for it from the equations

which are constructed by matching λ1þ from Eq. (52) with

either λðϕÞ1þ or λðϕÞ1− from Eq. (60). However, if we compute

the numerical value of ΩðϕÞ
ϕc from Eq. (73) for given values

of Ωϕc; wϕc; λ2 and λ3, and insert the result back into

Eq. (60), the numerical value of λ1þ will be equal to λðϕÞ1−

when λ3 ≤ −2=3 while it will be equal to λðϕÞ1þ when λ3 > 0.

–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0

0.001

0.002

0.003

0.004

0.005

FIG. 2. Plots of ΩðϕÞ
ϕc as a function of λ3. The solid line shows

the case Ωϕc ¼ 0.65, while the dashed line shows the case
Ωϕc ¼ 0.95. In the plots, wϕc ¼ −0.99, λ2 ¼ 1 and λ3 lies within
the range λ3 ≤ −2=3 and 0< λ3 ≤ 1. The plots are not sensitive
to λ2.
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FIG. 1. Plots of the real parts of μ2 and μ3 for scaling fixed
point. In the plots, wϕc ¼ −0.99 and λ2 ¼ 1. The lines I and II
represent the real part of μ2 while the lines III and IV represent the
real part of μ3. The lines I and III show the cases of Ωϕc ¼ 0.65
while the lines II and IV show the cases of Ωϕc ¼ 0.95.
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Moreover, jxðϕÞc− j < 1 and jxðϕÞcþ j> 1 for the former case

while jxðϕÞc− j> 1 and jxðϕÞcþ j< 1 for the latter case. The case

where jxðϕÞc j> 1 is not physically relevant case. We

summarize the matching of λ1 and λðϕÞ1 and the conditions
on λ3 in Table I. We now investigate the eigenvalues of the
ϕMDE points based on the choices of parameters in Table I.
The first eigenvalues of all cases are simple and are shown
in Table II. From the table, we see that the eigenvalues
could be negative depending on the sign of λ. Nevertheless,

the terms λ are multiplied by
ffiffiffiffiffiffiffiffiffi
ΩðϕÞ

ϕc

q
which is in order of

10−2, so that these terms have no sufficient contribution to
make the eigenvalues negative. For these ϕMDE points, the
polynomial for the eigenvalues is complicated. Fortunately,
the first eigenvalue takes the simple form, so we can reduce

the order of the polynomial by dividing the polynomial
with ðμ1 − μÞ. The resulting polynomial is second order in
μ, which can be written in the form

μ2 þ a1μþ a2 ¼ 0; ð78Þ

where a1 and a2 are complicated functions of the param-

eters and ΩðϕÞ
ϕc . Since ΩðϕÞ

ϕc ≲ 10−3, we expand a1 and a2

around ΩðϕÞ
ϕc ¼ 0 up to ΩðϕÞ

ϕc as shown in Eqs. (79)–(82).
Cases I and II:

a1 ¼
3

2
− λ1

ffiffiffiffiffiffiffiffiffiffiffi
6ΩðϕÞ

ϕc

q
þ
�
−24λ3 þ

6

λ3
−
3

2

�
ΩðϕÞ

ϕc þ…;

ð79Þ

a2 ¼ −
9

2
þ
3

ffiffi
3
2

q
½λ1λ3ðλ3 − 5Þ þ 3λ2ðλ3 þ 1Þ�

λ3ðλ3 þ 1Þ
ffiffiffiffiffiffiffiffiffi
ΩðϕÞ

ϕc

q

þ 3½λ21ð−2λ23 þ 5λ3 þ 1Þ − λ1λ2a2b − 2ðλ22ðλ3 þ 1Þ − 3λ3a2cÞ�
λ23ðλ3 þ 1Þ ΩðϕÞ

ϕc þ…; ð80Þ

Cases III and IV:

a1 ¼
3

2
þ λ1

ffiffiffiffiffiffiffiffiffiffiffi
6ΩðϕÞ

ϕc

q
þ
�
−24λ3 þ

6

λ3
−
3

2

�
ΩðϕÞ

ϕc þ…; ð81Þ

a2 ¼ −
9

2
−
3

ffiffi
3
2

q
½λ1ðλ3 − 5Þλ3 þ 3λ2ðλ3 þ 1Þ�

λ3ðλ3 þ 1Þ
ffiffiffiffiffiffiffiffiffi
ΩðϕÞ

ϕc

q

−
3½λ21ð2λ23 − 5λ3 − 1Þ þ λ1λ2a2b þ 2ðλ22ðλ3 þ 1Þ − 3λ3a2cÞ�

λ23ðλ3 þ 1Þ ΩðϕÞ
ϕc þ…; ð82Þ

TABLE I. Matching of λ1 from Eqs. (52) and (60) and the required conditions on λ3. The fourth column shows the

magnitude of xðϕÞc . The fifth and the sixth columns present the signs of λ1 and λ computed from Eqs. (52) and (51).
The main conclusions from the table do not change if jλ2j ∼Oð1Þ, wϕc ≳ −1 and Ωϕc > 0.65.

Matching Cases Scaling ¼ ϕMDE λ3 xðϕÞc
λ1 λ

I λ1þ ¼ λðϕÞ1−
λ3 ≤ −2=3 jxðϕÞc− j< 1 and jxðϕÞcþ j > 1 <0 <0

II λ1þ ¼ λðϕÞ1þ λ3 > 0 jxðϕÞc− j> 1 and jxðϕÞcþ j < 1 >0 <0

III λ1− ¼ λðϕÞ1þ λ3 ≤ −2=3 jxðϕÞc− j> 1 and jxðϕÞcþ j < 1 >0 >0

IV λ1− ¼ λðϕÞ1−
λ3 > 0 jxðϕÞc− j< 1 and jxðϕÞcþ j > 1 <0 >0

TABLE II. The first eigenvalues for all possible matching cases.

First Eigenvalue Cases I and II Cases III and IV

μ1 λ
ffiffiffiffiffiffiffiffiffiffiffi
6ΩðϕÞ

ϕc

q
þ 3ðΩðϕÞ

ϕc þ 1Þ −λ
ffiffiffiffiffiffiffiffiffiffiffi
6ΩðϕÞ

ϕc

q
þ 3ðΩðϕÞ

ϕc þ 1Þ
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where a2b ¼ 2λ23 − 3λ3 þ 1 and a2c ¼ 2λ33 − 2λ23 þ
3λ3 þ 1. The solutions of Eq. (78) are

μ� ¼ −a1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 − 4a2

p
2

: ð83Þ

From these solutions we see that the real part of at least one
solution is negative if a1 > 0. If a1 < 0, the real part of one
solution is negative when a2 < 0. According to Eqs. (79)
and (81) and the sign of λ1 in Table I, the main contributions
to a1 for the cases I and III are positive. As a result, the real
part of at least one eigenvalue for each case is negative. For
the cases II and IV, it follows from Eqs. (80) and (82)
together with the sign of λ1 and the range of λ3 in Table I
that the main contributions to a2 can be negative. However,
to ensure that a2 is negative, we suppose that jλ2j< jλ1j and
impose the additional condition λ3 ≤ 1 which is required to
avoid divergence of x0 and Ω0

c. This suggests that the real
part of one eigenvalue for each case is negative. From the
above discussion, we conclude that the ϕMDE point can be

saddle for λ3 given in the table, λ3 ≤ 1, jλ2j ∼Oð1Þ and for
wϕc, Ωϕc satisfying the observational bound, e.g., wϕc ¼
−0.99 and Ωϕc > 0.65.

D. Evolution from the ϕMDE point
to scaling point

We now numerically study the evolution of the back-
ground universe through the fixed points discussed in the
previous sections. The evolution equations used in the
numerical integration are obtained by substituting Eq. (37)
into Eqs. (29)–(32). To illustrate some results in the
previous sections, the evolutions of Ωϕ for various values
of λ3 are plotted in Fig. 3. In the figure, we set λ2 ¼ 1,
Ωb ¼ 0 and specify λ and λ1 by setting Ωϕc ¼ 0.7 and
wϕc ¼ −0.99. From the figure, we see that the fixed point
Ωϕ ¼ Ωϕc ¼ 0.7 can be reached at late-time. From the
numerical investigation, the whole evolution of Ωϕ

weakly depends on λ2, and the late-time evolution is robust
under the change of initial conditions. We next add the
contribution from the energy density of baryon into the
numerical integration by setting Ωb ≃ 0.022 at present.
The evolutions ofΩr,Ωc, andΩϕ for λ3 ¼ −3=2 are plotted
in Fig. 4. In these plots, we set λ2 ¼ 1. The parameters λ
and λ1 are specified by setting Ωϕc ¼ 0.95 and
wϕc ¼ −0.99. We set Ωϕc to be larger than the observa-
tional bound for the present value of Ωϕ because this
scaling point can be reached in the future when Ωb ∼ 0.
From the figure we see that the universe evolves from the
radiation domination to ϕMDE point and then evolves
toward the scaling point at late time with Ωϕ → 0.95 and
Ωb → 0. This pattern of the evolution is achieved for wide
ranges of λ2 and initial conditions. Before reaching the late-
time attractor, the cosmic evolution can pass the point
Ωϕ ≃ 0.68, Ωc ≃ 0.3, and Ωb ≃ 0.022 at present as required
by observations.
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FIG. 3. Evolutions of Ωϕ for various values of λ3. In the plots,
1þ Z ¼ 1=a.
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FIG. 4. The left panel shows the evolutions of Ωr, Ωb, Ωc, and Ωϕ, while the right panel shows the evolution of wϕ. The ϕMDE takes
place around 1þ Z ∼ 20.
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IV. GROWTH OF DENSITY PERTURBATIONS

In this section, we consider the growth of density
perturbations of matter on small scales. To compute the
evolution equations for the perturbations, we use the metric
perturbation in the Newtonian gauge written in the form

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ð1 − 2ΨÞδijdxidxj; ð84Þ

where Ψ is the metric perturbation and the anisotropic
perturbations are omitted. The field ϕ is decomposed into
the background and perturbed parts as

ϕ → ϕþ δϕ; ð85Þ

where ϕ on the right-hand side of the arrow denotes
the homogeneous background part of the field while δϕ
denotes the perturbed part. Applying these decompositions
to Eq. (15), we obtain the evolution equation for the field
perturbations as

δϕ̈þ 3Hðδ _ϕ − 2Ψ _ϕÞ þ
�
V;ϕϕ þ

�
k
a

�
2
�
δϕ

− 2ϕ̈Ψ − 4 _ϕ _Ψ ¼ δQ; ð86Þ

where the perturbations in the coupling δQ is given by

δQ ¼ δQS þ ð−Q̃0
_ϕΞ;ϕ þ ϕ̈ð2XΞ;ϕX þ Ξ;ϕÞ

þ 2XΞ;ϕϕ − Γ;ϕÞδϕþ ½−Q̃0Θþ _ϕð2XΞ;ϕX

þ 2Ξ;ϕ − Γ;XÞ þ ϕ̈ð2XΞ;XX þ 3Ξ;XÞ�δ _ϕ
þ Θδϕ̈ − 6H _ϕðXΞ;X þ ΞÞΨ − Ξð2ϕ̈Ψþ 4 _ϕ _ΨÞ

− 2X

��
_ϕΞ;X

_ρc
ρc

þ 2XΞ;ϕX þ 2Ξ;ϕ − Γ;X

þ 2XΞ;XXϕ̈þ Ξ;Xϕ̈

�
Ψþ _ϕΞ;X

_Ψ
�
: ð87Þ

Here, δQS contains the dominant contribution to δQ on
small scales which its expression is given by

δQS ¼ Ξ
�
k
a

�
2

δϕþ ½−2Q̃0XΞþ 2XΞ;ϕ − Γ

þ Θϕ̈�δc þ _ϕΞ _δc; ð88Þ

where k is the comoving wave number of the perturbation
modes. The density contrast δc ≡ δρc=ρc, where δρc and ρc
are the perturbations in energy density and background
energy density of CDM. The term δQS is obtained from the
fact that on small scales, jδϕ̈j and jHδ _ϕj are much smaller
than jk2δϕ=a2j and jHδcj as well as j _δcj are much larger
than theΨ terms. The latter approximation follows from the
perturbed Einstein equation on small scales:

�
k
a

�
2

Ψ ¼ −
3

2
H2ðΩcδc þΩbδbÞ; ð89Þ

where δb ≡ δρb=ρb is the density contrast of baryon. In the
above equation, the small contributions from the perturba-
tions in the energy density of radiation and dark energy are
neglected. On small scales, Eq. (86) becomes

�
k
a

�
2

δϕ ¼ δQS: ð90Þ

Combining the above equation with Eq. (88), we get

�
k
a

�
2

δϕ ¼ ρcδQ̃; ð91Þ

where the effective coupling term in the perturbed
universe is

δQ̃ ¼ ð2XQ̃0Ξ − 2XΞ;ϕ þ Γ − Θϕ̈Þδc − _ϕΞ _δc
Ξρc − 1

: ð92Þ

We see that there is the term that is proportional to _δc in
the effective coupling term, this term vanishes when the
transformation coefficient C does not depend on X. The
evolution equations for the perturbations in energy density
and velocity vc of CDM are computed from Eq. (17). The
resulting equations are given by

_δc − 3 _Ψ −
�
k2

a

�
vc ¼ _ϕQ̃0δc − _ϕ

δQ
ρc

− Q̃0δ _ϕ; ð93Þ

: _vc þ ðH − _ϕQ̃0Þvc þ
1

a
Ψ ¼ Q̃0

a
δϕ: ð94Þ

Since we concentrate on small scales perturbations, we
replace δQ=ρc in Eq. (93) by δQ̃ from Eq. (92) and keep
only the dominant terms on small scales. The resulting
equation is

_δc −
�
k2

a

�
Ξρc − 1

Ξρc − 2XΞ − 1
vc

¼ _ϕ
ΘV;ϕ þ 3HΘ _ϕ − 2XΞ;ϕ þ Γ

Θρc − 2XΞ − 1
δc

þ 2 _ϕXΞ;ϕ − _ϕΓþ Θ _ϕ ϕ̈

Ξρc − 2XΞ − 1
δc ≡ Δδc: ð95Þ

It can be checked that if the coefficient of the conformal
transformation solely depends on the field ϕ, Δ vanishes.
Hence, Δ describes effects of the coupling due to general
conformal transformation on the growth of matter pertur-
bations. To discuss the influences of Δ on the matter
perturbations, we suppose that jλ2j ∼Oð1Þ, λ3 lies with in
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the ranges shown in Table I and the evolution of z does not
much deviate from the fixed point z ¼ λ3=x2. Based on this
assumption, we have H2Ξ ¼ z=ð2þ 6zx2Þ ∼Oð1=ð6x2ÞÞ
and 2h2XΞ;X ∼ −4=ð3x2Þ, so that Θ is negative and
jρcΘj ∼ jρcΞj ∼OðΩc=x2Þ ≫ 1. For Γ, we have Γ ∼ λ1=
ð2þ 6zx2Þ ∼ λ=ð6λ3Þ, while we have jXΞ;ϕj ≪ 1. From
Eq. (52), we can check that the second term on the right-
hand side is the dominant term because we always set
wϕc ¼ −0.99. To simplify our analysis, we suppose that
Ωϕc > 0.65 and impose the additional condition for the
positive λ3 to be 1=2 ≤ λ3 ≤ 1. Hence, Eq. (52) implies that
λ1þ has the same sign as λ3 while λ1− and λ3 have opposite
signs. As a result, Γ is positive when λ1 ¼ λ1þ and becomes
negative when λ1 ¼ λ1−. From our numerical investigation,
the sign of _ϕ is preserved through the cosmic evolution.
It follows from Eqs. (52) and (53) that _ϕ is positive for
λ1 ¼ λ1þ and negative for λ1 ¼ λ1−. Hence, the term _ϕΓ,
which gives the dominant contribution to the numerators of
Δ, is positive. For the denominators of Δ, the dominant
contributions come from Θρc and Ξρc which are negative
and positive, respectively. According to the above analysis,
the dominant contribution to Δ is negative and therefore
this term suppresses the growth of δc.
To perform the numerical investigation, we compute the

evolution equation for the CDM perturbation δc by differ-
entiating Eq. (95) with respect to time. The time derivative
of vc in the resulting equation is eliminated using Eq. (94).
Finally, the remaining vc terms can be eliminated using
Eq. (95), and we get

δ00c þ C1δ
0
c −

3

2
ðGccΩcδc þ GcbΩbδbÞ ¼ 0; ð96Þ

where C1, Gcc and Gcb are the functions of x; y; z;Ωc;Ωb
and parameters of the model. The expressions for these
coefficients, especially Gcc, are lengthy, so that their
explicit forms are not shown here. Since Ωc > Ωb, the
contribution to the evolution of δc from Gcc is larger than
that from Gcb. Hence, the effective gravitational coupling
relevant to CDM perturbations on small scales is dominated
by Gcc. The numerical value of Gcc is shown in Fig. 5. We
see that after the matter dominated epoch, Gcc for the
coupled model from general conformal transformation is
smaller than unity, while Gcc from the usual conformal
coupling is larger than unity. Since Gcc ¼ 1 for ΛCDM
model, the effective gravitational coupling is suppressed in
the coupled dark energy model inspired from general
conformal transformation. This suggests the weaker growth
of CDM perturbations on small scales which can be
estimated by numerically solving Eq. (96). In order to
solve Eq. (96), we have to know the evolution equation for
δb. Since the energy-momentum tensor of the baryon is
separately conserved, the evolution equation for the density
contrast of baryon on small scales takes the usual form as

δ00b þ
�
2þ

_H
H2

�
δ0b −

3

2
ðΩbδb þΩcδcÞ ¼ 0: ð97Þ

We solve Eqs. (96) and (97) numerically based on the
parameters in Fig. 5. The evolutions of δc=a are plotted in
Fig. 6. In the figure, we normalize δc=a such that it is unity
at the present. From the figure, we see that δc=a for the
coupled dark energy model from general conformal cou-
pling is larger than that for ΛCDM model in the early
epoch. This implies that the growth of CDM perturbations
is weaker in this coupled dark energy model. To estimate
how much the σ8 tension can be resolved in the coupled
dark energy model with general conformal coupling, we
have to perform a likelihood analysis which we leave for a
future work.
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FIG. 5. Plots of Gcc as a function of Z. The lines I and II
represent the cases where ðλ3;Ωϕc; wϕcÞ ¼ ð1=2; 0.96;−0.99Þ
and ð−3=2; 0.99;−0.99Þ, respectively. For these lines, λ2 ¼ 1.
The line III represents the case of usual conformal coupling
(z ¼ 0) with ðλ; λ1Þ ¼ ð−1=10;−2=10Þ. In all plots, Ωb ≃
0.022;Ωc ≃ 0.3 and Ωϕ ≃ 0.68 at present.
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FIG. 6. Evolutions of δc=a. The choices of parameters for the
lines I, II, and III are the same as those for the lines in Fig. 5. The
line IV represents the case of ΛCDM with Ωb ≃ 0.022;Ωc ≃ 0.3
and ΩΛ ≃ 0.68 at present.
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V. CONCLUSIONS

In this work, we have studied coupled dark energy model
inspired from general conformal transformation in which
the transformation coefficient depends on both scalar field
and its kinetic term. The effective coupling term consists of
the multiplication between the derivative of the scalar field
and the energy density as well as between the derivative of
the scalar field and derivative of energy density of CDM
which can lead to different influences on the growth of
matter perturbations compared with the usual conformal
coupling case.
The scaling solutions can exist in this coupled dark

energy model. The solution which corresponds to the
ϕMDE can be a saddle point, while the solution for
the cosmic acceleration at late time can be attractor. The
background universe can evolve from the radiation domi-
nated epoch through the ϕMDE toward the cosmic accel-
eration epoch at late time. This sequence of the evolution
can be achieved for the cosmological parameters which
satisfy the observational bounds. The existence of the
ϕMDE modifies the effective equation of state parameter
during the matter dominated epoch, such that the H0 from
the CMB analysis for this model could be larger than that

for the ΛCDM model, which potentially solves the H0

tension. However, the actual likelihood analysis is required
to estimate how much the H0 tension can be resolved.
The growth of the linear matter perturbations on small

scales for this coupled dark energy model is weaker than
that for the ΛCDM model. This is a consequence of the
reduction of the effective gravitational constant relevant to
the CDM perturbations on small scales. The suppression of
the growth of CDM perturbations on small scales suggests
that the σ8 tension could be alleviated in this model.
However, to investigate whether this model of coupled
dark energy can actually solve the H0 and σ8 tensions,
a full likelihood analysis is needed which we leave for a
future work.
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