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We study the coupled dark energy model constructed from the general conformal transformation in
which the coefficient of the conformal transformation depends on both the scalar field and its kinetic term.
Under this conformal transformation, the action for subclass of degenerate higher-order scalar-tensor
(DHOST) theories is related to the Einstein-Hilbert action. The evolution of the background universe has
the scaling fixed point which corresponds to acceleration of the universe at late time. For the choices of
parameters which make the late-time scaling point stable, the fixed point corresponding to ¢-matter-
dominated-era ()MDE) is a saddle point, and the universe can evolve from radiation dominated epoch
through ¢MDE before reaching the scaling point at late time with the cosmological parameters which
satisfy the observational bound. During the $MDE, the effective equation of state parameter is slightly
positive, so that one of possible mechanisms for alleviating the Hy tension can be achieved. In this coupled
dark energy model, the effective gravitational coupling for dark matter perturbations on small scales can be
smaller than that in the ACDM model. Therefore a growth rate of the dark matter perturbations is
suppressed compared with the ACDM model, which implies that the oy tension could be alleviated.
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I. INTRODUCTION

One of the challenges in cosmology is to explain the
cosmic acceleration at late time which could be a con-
sequence of unknown forms of dark energy or deviation
from Einstein gravity on large scales [1-6]. To avoid the
cosmological constant problem due to extremely large
difference of the value of cosmological constant from
theoretical predictions and from observations, dark energy
should be dynamical energy component. However, the
dynamical dark energy encounters the problem why the
energy density of dark energy is comparable with that for
dark matter at late time even though they evolve differently.
This problem of dark energy is the coincidence problem
which could be alleviated if there are attractors correspond-
ing to the cosmic acceleration at late time [7,8]. Such
attractors can exist under the assumption that dark energy is
coupled to cold dark matter (CDM) [9-12].

Possible models of coupled dark energy are inspired
from the frames transformation in theories of gravity. The
interaction between dark energy and CDM can be inspired
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from the conformal transformation [13—17] and disformal
transformation [18-26]. When the transformation coeffi-
cient depends on the scalar field only, the coupling due to
conformal transformation leads to a coupling between field
and energy density of CDM which corresponds to a energy
transfer between the dark components [9,27]. For the
coupling from disformal transformation, the velocity per-
turbations and the time derivative of density perturbation in
CDM can be eliminated from the effective coupling term in
the evolution equation on small scales. As a result, the
effective coupling term depends only on the perturbations
in energy density of CDM similar to the coupling from the
conformal transformation [28]. The effects of the disformal
coupling appear at the background level through the
modification of the cosmic expansion and the coefficient
of the perturbed coupling term. The growths of the
matter perturbations on small scales for these two types
of coupled dark energy models are higher than that for
ACDM model [28,29].

The interaction between the dark components can also
be arisen from a coupling between the a field derivative
a,,¢ and a CDM four velocity #* in the action [30—40]. This
form of the coupling can lead to a pure momentum transfer
between the dark components. Interestingly, it can reduce
the effective gravitational coupling relevant to the growth of
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CDM perturbations, and therefore a growth of matter
perturbations on small scales is suppressed [30,31,36,41].

The suppression of the matter growth rate in this class of
coupled dark energy models potentially alleviates oy
tension, where oy is the amplitude of matter perturbation
inside comoving radius 84~! Mpc, h = H,/100 and H is
the Hubble expansion rate at present. Even though the
ACDM model satisfies the observational data well, it
suffers from the tension of the og between the cosmic
microwave background (CMB) and shear lensing analyses
[42,43]. The estimated g from CMB data is larger than that
from shear lensing analyses. Since the oy tension arises in
ACDM model, the o3 tension could be solved if the growth
of matter perturbations is suppressed compared with that
for ACDM.

The other interesting feature of the coupled dark energy
models is the existence of the scaling fixed points [30,44].
These points can describe the accelerated expansion of the
universe at late time as well as the matter dominated epoch.
The scaling point that can represent the matter dominated
epoch is the MDE point in which there is a small density
fraction of dark energy during matter domination. The
coincidence problem could be alleviated if the universe can
evolve from the radiation dominated epoch through the
¢MDE which should be a saddle point and then reach the
attractor corresponding to cosmic acceleration at late time.

The existence of the pMDE potentially resolves the H|,
tension as follows. The H,, tension is the discrepancy of the
estimated H, from CMB [45] and that from the local
measurements of the expansion rate of the universe. The H,,
from CMB data analysis which is based on ACDM is lower
than that from local measurements by more than 30 [46].
Hence, to solve the H, tension, the dynamics of the
universe should be different from that for ACDM. The
resolutions from modification of the late-time expansion of
the universe [47-49] are tightly constrained by baryon
acoustic oscillations (BAO) [50-52]. Potential resolution of
the H, tension is based on the modification of the dynamics
of the universe during the last scattering epoch and matter
domination by early dark energy [53-55]. In these models,
the sound horizon at the last scattering is reduced and
therefore the CMB acoustic peaks shift to smaller angular
scales. Then the location of the acoustic peaks can shift to
the larger angular scales and match with the data when H,
increases [55]. Possible other resolutions can be found
in [56,57].

For coupled dark energy models with MDE, a small
fraction of energy density for dark energy during the
@MDE rises the effective equation of state parameter wyg =
Quwy = Q to slightly positive. Here, Q and w,, are the
density parameter and equation of state parameter of scalar-
field dark energy. The positive effective equation of state
parameter during matter domination can also shift the CMB
acoustic peaks to smaller angular scales leading to a higher
H, [30]. However, the cosmic evolution from radiation

domination through ¢MDE toward acceleration epoch
cannot be achieved in the models of coupled dark energy
inspired from the conformal transformation [44]. This
sequence of evolutions can be realized in the coupled dark
energy model in which the coupling term consists of Z =
utd, ¢ [30].

From the above discussion, we see that the coupled dark
energy model containing Z in the coupling term could
solve both H, and oy tensions. This inspires us to study the
coupled dark energy model from the general conformal
transformation, in which the coefficient of the transforma-
tion depends on both the scalar field and its kinetic term.
We are interested in whether the H,, and oy tensions can be
alleviated in this model. Different from the cases of usual
conformal and disformal couplings, the time derivative of
the density perturbations in CDM appears in the effective
coupling term for this model of coupled dark energy.
Hence, this could differently affect the growth of matter
perturbations on small scales.

This paper is organized as follows. In Sec. I we study
the coupling between dark energy and dark matter inspired
by the general conformal transformation in which the
conformal coefficient depends both on scalar field and
its kinetic term. We investigate the evolution of background
universe in Sec. III, and study the growth of matter
perturbations on small scales in Sec. IV. We give the
conclusion in Sec. V.

II. COUPLED DARK ENERGY MODEL FROM
GENERAL CONFORMAL TRANSFORMATION

Let us consider the general conformal transformation
defined by

g;w = C(X’ ¢)gﬂl/’ (1)

where the coefficient of the conformal transformation C
depends on the scalar field ¢ and its kinetic term

= —g¥0,¢0p¢/2. This form of the conformal trans-
formation transforms the Einstein-Hilbert action to the
action of DHOST theories in the class where the propa-
gation speed of gravitational waves is equal to speed of
light and gravitational waves do not decay to dark energy
perturbations [58,59]. From the above metric transforma-
tion, we have

~“cxa?” (2)

In order to construct the coupled dark energy model
inspired from the conformal transformation, we suppose
that the dark energy is in the form of a scalar field ¢
involving the conformal transformation, and therefore the
interaction between the dark energy and the dark matter
arises when the Lagrangian of the dark matter depends
on the metric g,, defined in Eq. (1). Hence, the model of
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coupled dark energy can be described by the action in
which the gravitational part of the action is written in terms
of the metric g,, while the part of the coupled matter is
written in terms of g, as

S = /d4x {\/—_g<%R + P(X,¢) + EM(g,w)>
+V=IL (G . w,ﬂ)] : (3)

where we have set 1/4/87G = 1, R is the Ricci scalar, g is
the determinant of the metric g,,, P(X,¢) =X —V(¢),
V(¢) is the potential of the scalar field, £, is the
Lagrangian of ordinary matter including baryon and
radiation, L. is the Lagrangian of dark matter, y is the
matter field and v, is the partial derivative of the field.
Varying this action with respect to g,;, we obtain the
Einstein equation in the form

G B __ Taﬂ + Ta/)’ + T(zﬂ ( 4)
where G* is the Einstein tensor computed from Gu» and

the energy-momentum tensors for scalar field and matter
are defined in an unbarred frame as

VA Gy N
(5)
Tﬂl/ = i5(\/__g£c) (6)

CVEI b9

From these definitions of the energy-momentum tensor and
V,G* =0 as well as the conservation of the energy-
momentum tensor for the ordinary matter, we have
VuT§ +T¢)
compatible with the metric g,5. However, we see that the
energy-momentum tensors of dark energy and dark matter
do not separately conserve because the Lagrangian of dark
matter depends on field ¢. Since the metric tensor does
not depend on y, variation of the action (3) with respect
to y yields

= 0. Here, V, is the covariant derivative

v(Jz T?ﬁ =Y, (7)

where va is defined from barred metric. This implies the
conservation of 7% in the barred frame. The energy-
momentum tensor in the barred frame is related to that

in the unbarred frame defined in Eq. (6) through the relation

Tqﬂ _ V _g 5gp0' 2 5( \Y4 _QL ) \Vaum 5gp6 T/m
Vami'} 5gaﬁ V _g 5gpa v égaﬂ

(8)

Varying the action with respect to the field ¢, we obtain the
evolution equation for scalar field as

V.V -V, +0=0, (9)

where a subscript , denotes derivative with respect
to the field ¢». The coupling term Q in the above equa-
tion is a result from a variation of the dark matter action
[ d*x\/=gL. in Eq. (3) with respect to ¢. The variation of
this part of the action can be computed as

5/d4X\/—_g£C :/d4X5¢{ aﬁc(/)ga/)'
VT 0 Cad) | (10)

where the subscript y denotes derivative with respect to X
and ¢ = 0°¢. Using Eq. (8), we have

;—T(lﬁ C /—T(l/i C,X¢’a¢'ﬂ /_gg/mT/Cm. (1 1)

Applying g,; to both sides of the above equation, and
setting T, = gaﬁT?ﬁ , we can write the above equation as

vV _ch = (C + C,XX) \% —ggﬂo.ng, (12)
which yields
v=9T,
V=59,T" = 13
99ap CH+CxX’ (13)

Using this relation, we can write Eq. (10) as

6/d4x\/—_gﬁc = /d4x\/_5¢{(cficx)Tc

+%vﬂ<c+c x? T)} (14)

Combining this equation with Eq. (9), we get
Vo Vep =V 4= -TT. = V4(EP'T.) = -0, (15)
whereI'=C 4 /[2(C+ C xX)]and E= C x/[2(C + C x X)].

Equation (15) can be written in terms of the energy-
momentum tensor as

vaqub = _Q¢.ﬂ’ (16)

where 77, is the energy-momentum tensor of the scalar

field. According to the conservation of the total energy-
momentum tensor, the above equation gives
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vaTZC = Q(:bﬁ’ (17)

In the case of a conformal transformation in which the
conformal coefficient C depends only on the field ¢, we have
C x = 0 and therefore Eq. (15) reduces to the equation for
the case of usual conformal transformation. When C y is not
vanish, the coupling term Q contains coupling between the
field derivative and the energy density as well as between the
field derivative and the derivative of energy density of CDM.
The latter form of the coupling can lead to different effects on
cosmic evolution and the growth of matter perturbations
compared with the usual conformal coupling case.

III. EVOLUTION OF THE BACKGROUND
UNIVERSE

In this section, we study effects of the interaction
between dark energy and dark matter due to the gen-
eral conformal transformation on the evolution of the
background universe. Using the Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric,

ds? = —di* + a®5,;dx'dx/, (18)

where §;; is the Kronecker delta, and supposing that the
scalar field is homogeneous and other matter components
in the universe are described by perfect fluid, Egs. (15) and
(17) become

45+3H<I.5+V,¢:Q’ (19)
and

Here, p, is the energy density of dark matter, H = d/a is
the Hubble parameter, a dot denotes a derivative with
respect to time ¢, and

Q = —Tp. + (§+3H$)Ep, + 22 4, Xp,
+ 2B xpXp. + Edpp.. (21)

We see that the interaction term Q in the above equation

depends on ¢ and p.. Hence, we combine Egs. (19) and
|

H  V6(yQ. +2y) + 6x + 3v6(rzQ. — 2Q.x 4 + 24yz)x* + 362x> — 18v/62Q1 4x*

(20) to write the evolution equations for ¢ and p, in the
forms

$+3Hp+V,4=0Qp and p.+3Hp. =—¢0Q,. (22)
Here, we define the effective coupling term as

~ _Qy_ OV, +3HO)-2XE; +T

_ % 2
o e Op, —2XE—1 - (23)

where ® =E+2XE x. Since the energy-momentum
tensors of baryon and radiation are separately conserve,
in the background universe the conservation of these
energy-momentum tensors yields

/51; = _3Hpbv and .br = _4H/)r7 (24)
where p, and p, are the energy density of baryon and
radiation.

A. Autonomous equations

Let us compute the autonomous equations by defining
the dimensionless dynamical variables as

R oy

VeH' 3H?’ ¢ 3H%

Pb Pr
Q="' o =1 25
b 32 3H? (25)

and the dimensionless functions as

Cy v

_ H2, l:_” 26
2=-5 v (26)
y=T, x = EH>. (27)

In terms of the above dimensionless variables, the
Friedmann equation gives

1=x>+y+Q.+Q,+Q,. (28)

From the above dimensionless variables, we obtain autono-
mous equations from Eq. (22) as

L , 29
72 36x2Q, (3x%z + 1)y x + 329, — 1232z -2 (29)
H
y = V6lxy — 2y?, (30)
Cy H Cy H
ZI_6X<?>’X<X?+XI> +\/8X<7>.¢+2Z?, (31)
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H B 36x3(3x%z + 1)(6x +V64y)y x + 3vV6Axyz — 2v/6yx(3x%7 + 1)

Q

o=

36x2Q.(3x%z + 1)y,x +32Q. — 12x*7 =2

C

12V6x°(3x%z + 1)y 4 + 18x22 + 6

+
36x2Q.(3x%z + )y x +32Q. — 12x27 -2 ¢

9[12(3x*z + x*)y x + 2

C36x2Q,(3x%z + Dy x +32Q, — 12x%2 -2 ¢

where a prime denotes a derivative with respectto N = Ina
and

(Q. —2x% +4y —4). (33)

N =

H
H?
From Eq. (24), we get

H

Q) = -3Q, ~ 2259, (34)
H
Q) =-40,-2-30, (35)

Let us consider the denominator of the terms in Egs. (29)
and (32). The denominators of all terms except the terms

which are proportional to H/H? are the same and can
vanish when

3zQ, — 12x2z =2
36x2Q.(3x%z + 1)

Xx = (36)

This suggests that x” and Q. can be infinite when the above
equation is satisfied. To ensure that the background uni-
verse properly evolves, the situations in which the above
equation is satisfied have to be avoided.

To perform further analysis, we use the coefficient C in
the simple form that could reveal the main features of this
form of coupling. Since the coupling terms in the evolution
equations depend on derivatives of C with respect to ¢ and
X, the coefficient C should be a polynomial function of X.
Moreover, the following autonomous equations can be a
complete set of equations if the coupling term O given in
Eq. (23) does not depend on ¢. Hence, we choose the
potential of the scalar field and coefficient C in the forms

V()= Vo, C(.X) = Coeh? [1 | okt @) i]
0

(37)

where Cy, 4, 4,, and 45 are dimensionless constants, while
Vo and A, are constants with the same dimension as X.
According to Eq. (27), the above form of the potential
implies that 1 is a dimensionless constant. For this form of
C, Eq. (36) gives

2, (32)

[

27x°72Q, + 329, + 36x*7% + 18x27 + 2 .
3= 60 - (38)
For the case of positive 43, we get z > 0 according to the
definition in Eq. (27). This suggests that the above equation
can be satisfied if A3 > 0. This implies that x" and Q. can be
infinite at some time during the evolution of the universe if
A3 is positive. Based on the numerical investigation, the
divergence of x" and Q. can be avoided if 45 < 1.

B. Fixed points

Since we are interested in the fixed points corresponding
to the matter dominated epoch and the late-time universe,
we ignore the contribution from the radiation energy
density in the dynamical analysis. To compute the fixed
points, we also drop the contribution from baryon because
Eq. (34) has fixed points at Q, = 0 and at H/H?* = —3/2.
The first point can be reached in the future while the second
point corresponds to the matter dominated epoch. The
second point is not exactly compatible with ¢MDE because
the pMDE requires H/H? = —=3(1 + we)/2 < —3/2 dur-
ing matter domination. Hence, to study the MDE point in
the dynamical analysis, we drop the contribution from the
baryon energy density. However, it will be shown in the
numerical integration that the inclusion of baryon energy
density does not forbid the existence of pMDE, because we
still get Q) ~0 when H/H? < -3/2.

Ignoring the contributions from radiation and baryon
energy density, Eq. (28) gives

Q. =1-x>—y. (39)

Substituting this expression into Eq. (33), we get

H 3
ﬁ:—i(xz—y—l—l). (40)

Setting y' = 0, Eq. (30) is satisfied by two solutions which
correspond to the fixed points y. = 0 and

H 3
7P 41
H? \/2/““ (41)

where the subscript . denotes evolution at the fixed point.
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1. Field dominated point and scaling point

We first consider the fixed point y,. # 0. We can compute
y at the fixed point by matching Eq. (40) with Eq. (41)

which yields
2
Ve = \/;lxc +x2+ 1.

Substituting Eqs. (39), (41), and (42) into Egs. (29) and
(31), then inserting C from Eq. (37) into the resulting
equations, and finally setting x' = z' = 0, we obtain the
equations for the fixed points,

(42)

0 = =6l + (Ady — 2(A% +3))Asx,
+V645(4; — A9z, + 2))x2
4 3(=2422 4 (=542 + 1A — 2254 — 18) 43 4 Ahy)z.x2
+3v62, (=234 + A + A3(A — A(243 + 62, + 5)))x?
— (A2 + 12)A3 — 344,)22x5 4+ 9V6(35 — A43) 2245,
(43)
|

6(21; +1)?

6
0= /1£ (}42 + lﬂj,)chc (13 - 3)(%20). (44)
3
From Eq. (44), we can solve for z. as
A3
=0 d z.==—5. 45
z and 2z =35 (45)

We concentrate on the second solution rather than z, = 0
solution, because the z. = 0 solution corresponds to the
case where the kinetic dependence of C is negligible, i.e.,
z = Cx/C = 0. In addition to the above solutions, Eq. (44)
is also satisfied by the condition 4, + 443 = 0. However,
this case can be viewed as a special case of solutions in
Eq. (45), so that we will not discuss this case in detail.

Inserting the second fixed point of z from the above
equation into Eq. (43), we obtain two fixed points of
variable x as

A
e {_%’Al + 2y —4(323 +2)

Inserting x,. from above equation into Eq. (42), we obtain

/12
yc:{l__7l+

6 (A + 4 — (343 +2))>

24225 + 1) } @)

M+ 4o — (34 +2)

From x. and y,., we can compute the density parameter and equation of state of scalar field at the fixed points from the

definitions Q, = x* 4+ y and w; = (x> —y)/Q, as

We see that the first pair of (x., y..) corresponds to the field
dominated point, while the second pair corresponds to the

12(2 1)2 2202 |
Qq&c—{l, (243 +1) i (225 + 1) +1}, -
(i + 20— 2305 T 20 ' 2y + 4 — A3 + 2)
A+ A+ A4
) A+ A —A34+2 ]ﬁ2(221:1)23 24(245+1) 1 } (49)
(l+ 2 ( 3+ ))((/11+12—/1(3/13+2)>2+/1]+/12_A(313+2)+ )
[
3 (=303, Qe — 2wy Qe + A
by = iy VI3~ 200 Ry ) o

scaling point. From the above equations, we can write 4 in
terms of wy,. for the case of field dominated point as

A= \/3(wpe + 1), (50)

which is the same as that for the field-dominated solution
for uncoupled quintessence with exponential potential. For
the scaling point, we write 4 and 4, in terms of Q. and w,.
by solving Egs. (48) and (49) for A and 4;. The results are

\/g(wq’)cgd)c + 1)

(Wpe +1)Qy,

Using the above equations, we can compute the values of
A and 4; from 4,, 43, wy., and Q.. The values of wy,.
and Q. can be specified based on observational con-
straints, i.e., if we suppose that the scaling point
corresponds to the late-time universe, we can set wy. =
—0.99 and Qj. =0.7. This suggests that to perform
further analysis, we need to specify only the parameters
A, and A3 instead of all parameters of the model 4, 4, 4,
and A;. As a result, the cases where the fixed points
do not satisfy the observational constraints can be
excluded in our analysis. Inserting A and A; from the
above equations into Eqs. (46) and (47), we obtain
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1
and Ye = _Quc(l - W{/)L)

1
- Q{)c(l + Wuc) )

==
X, 2

(53)

2. Kinetic dominated point and ¢ MDE point

We now consider the point y. = 0. For this point,
Eq. (40) gives

H 3
Inserting y. = 0 and Eq. (54) into Egs. (29) and (31) and

performing the same procedures as those for Egs. (43) and
(44), we obtain

0 = (1 —x2)[V64,43 + 343((643 — 3)z, + 2)x,
+ 3V6(=2434s + Ay + A1 A3)z.x2
+ 9232, (245 — 9z, + 5)x2 + 27V6A,22x% + 272522x3),
(55)

1
0= —TZC(3A3(x% +1) = V6Arx,) (43 — 3x2z,).  (56)
3

In the following consideration, we use a superscript (%) to
denote the quantities corresponding to the fixed point
v. = 0, which will be seen in the subsequent considerations
that this point can play a role of $MDE. From Eq. (56), we
obtain z at the fixed point as

A
=0 and P =—23_, (57)
3(X£-¢))2

which are similar to the case of scaling point. Substituting

the second solution for ZE‘I))

xgd’) as

into Eq. (56), we can solve for

xkinetic — 41 and

@ A+
X ===
V6(343 +2)
VAT 420,00 + 23+ 643343 +2) Cs®)
V6(343 +2)

The first two solutions are kinetic-dominated points, while
the other solutions correspond to ¢ MDE points. We insert
xg‘/’) into the definition of Q, we get the expression for Q

at y. = 0 in the form

(M 4o 4+ /P2 42254, + 23+ 625343 +2))

o) = 1.1, ,
fe 6(3/3+2)?
th - V242000 + 75+ 623343 +2))°
6(313+2)? '

(59)

Since y = 0 at these fixed points, we get wgz) = 1. Hence,

the effective equation of state parameter wey = Quwy =
Q)

@pc

is slightly positive during the ¢MDE. Similar to

scaling fixed point, we write 4; in terms of Qg’?, Ay and A3
using Eq. (59) as

33,0 420! — )]
W =i F \/2 ’ ’ . (60)

(¢)
Qye

In the following consideration, we use the subscripts _ and
. to indicate the selected sign in the expressions which
contain &+ or F. As an example, if we apply this notation to
Eq. (58), we get

(¢) /11 + ﬂ,z
xL‘ T e—

VA3 + 20,0, + A3+ 643(34; +2)
V6(34; +2) '
(61)

Using such notation, the possible expressions of 4 and 4,
for the scaling points can be expressed as follows:
according to Egs. (51) and (52), there are two possible
forms of A and A; such that (4,4;) = (4_,4;;) and
(A4, 4,_). For ¢MDE point, Eq. (58) shows that there

are two possible forms of x£¢>, 1.e., x(ﬁ) and x(cﬁ) Each of

them leads to two possible choices of 4; given in Eq. (60).

C. Stability

We now consider stability of the fixed points considered
in the previous section by linearizing the autonomous
equations (29)—(31) around the fixed points. Before per-
forming the linearization, we set Q, = 1 — x> — y and use
C from Eq. (37). The linearized equations can be written in
the matrix form, and the stability of the deviation around
the fixed points can be estimated from the signs of the
eigenvalues of the Jacobian matrix defined by

Ji == , (62)
’ an fixed point

where x; = (x,y, 2).

1. Field dominated point

We first consider the field dominated point in which x
and y at fixed point are given by the first solution in
Egs. (46) and (47), while z at the fixed point is the second
solution in Eq. (45). The eigenvalues for this case are
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= 323(1 +wye) + Ay /3(1 + wye),

3
Hy = —5(1 _W(/Ic)’
. /13(9W¢C - 3) + 6W¢C — \/g(/ll + /12)1 /1 + W¢C

s 4, +2 ’

(63)
where we have expressed 4 in terms of w, at the fixed point

using Eq. (50). One can check that the field dominated point
is stable when both of the following conditions are satisfied

d<—2 64
7 V3o, (o
__ 2W¢(:<2£?;-3+1;W‘) for 13 < —1/2
) ”e . (65
! _2W¢¢(2\/§Az—3 Woet1) for 43 > —1/2 ( )
V3w t1) .

Since u, is always negative when wy, < 1 which is the case
for scalar field with standard kinetic term, the field dominated
points cannot be unstable.

2. Scaling fixed point

For the scaling point in which the expressions for x,. and
y. are given in Eq. (53), the eigenvalues are

1 = 343(1 4+ wpcpe) F Aoy /3Qpc (1 +wye),

Uy = —Z(l — WpeQyp) + 3\/:—2, and
3 T,
H3 = —1(1 = Wy Qpe) =3 P (66)
|
=y = Q¢C(w§w(w¢c + I)Qic -

2(Wéc + 5W¢C - 4)Q¢C + 9W¢c - 7)

where

ra = A3(W2wge + 1)Q) .+ (=3wj, — 18wy +16)Q5,
+ (16wy. — 15)Q4. + 1) + Q¢C(W§)c(w¢c + I)Qéc

ry, = 16(/139(/,‘ + ZA'SW(/)cQz/;c +W¢CQ¢,C + Qq’)c +ﬂ3) (68)

In the above eigenvalues, we have written A and 4; in
terms of wy. and €. using Egs. (51) and (52). The
fixed point x., and x._ in Eq. (53) lead to the same y, and
p3 but different ;. The first eigenvalue can be negative
when

I\ /39,. (T Wy
1 < £ 2V 3% (L wye)

(69)

The eigenvalues u, and p3 in Eq. (66) can be infinite if
rp = 0 which occurs when

(e + 1€y
2W¢CQ¢C + Q¢C + 1 '

/13 = /13b = (70)

The real parts of both u, and 3 can be ensured to be
negative if the ratio r,/r, < 0. To check the sign of this
ratio, we also compute A5 at which r, = 0. It can be shown
that r, = 0 when

For Q. > 0.6 and wy. 2 —1, the coefficient of 43 in
Eq. (67) is negative while that in Eq. (68) is positive.
Hence, r, <0 when 43 < 13, while r, <0 when A3 > A3,.
Since 43, < A3, the ratio r,,/ry, is negative when 13 < A3, or
A3 > A35,. As a result, the scaling point is stable when 43 <
A3q OF A3 > A3, for suitable choice of A, according to
Eq. (69). For the case 43 € (13,,43,), we have to evaluate
1o and ps numerically. The real parts of y, and 5 for some
choices of €. are plotted in Fig. 1. From this figure, the
real parts of the eigenvalues weakly depend on 4,.

3. Kinetic dominated point and ¢MDE point

We first consider the kinetic dominated points where
x. = 1. For these points, the eigenvalues are

Wéc (zw(/)c + I)Q?bc + (_3W$§c -

18wy + 16)Q2, + (16w, — 15)Qy + 1 (71)
[
3A34+1) | V6(4 + )
M=l dt2
po =6k F V6l and 3 =6+V6i (72)

The second eigenvalue y, can be either positive or negative
depending on the values of 1, and 13. This means that these
kinetic points can be saddle point, and therefore these
points could be reached for some ranges of 1,, 4; and some
choices of initial conditions. However, we are interested in
the cases where the cosmic evolution satisfies observational
data, so that we will not discuss these points in more detail.

We next consider the pMDE points given by Eq. (58).
The eigenvalues for these fixed points are complicated and
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FIG. 1.

Plots of the real parts of y, and p; for scaling fixed
point. In the plots, wy, = —0.99 and 4, = 1. The lines I and II
represent the real part of 4, while the lines III and I'V represent the
real part of y3. The lines I and III show the cases of Q. = 0.65
while the lines II and IV show the cases of Q4. = 0.95.

their values consist of many possible cases according to the
range of 4;, 4, and 43;. However, if we are interested in the
case where the pMDE is followed by accelerating epoch
described by scaling points, we have to demand that 4,
from Eq. (52) is equal to that from Eq. (60). Matching these

two equations, we get the relation between Qg’? and Q, as

AT | BBw e = 1) + 2wy Q4 [VB

()
Q = , (73
b (s +2)(rge + 10, 73)
where
A= ﬂ§(9w§mQ{Z/}C — 3(W¢C — 1)Q¢C +1)
+ 2/13Q¢C(6W5CQ¢C - W¢C + 1) + 4W§CQiC, (74)
B = 25(9w;, Q5. +6Q, + 1)
+ 4/13Q¢c(3wé69¢c +1)+ 4W%¢c955c- (75)

The right-hand side of Eq. (73) could be infinite when A3
is equal to —2/3. Nevertheless, if we take the limit
Az = =2/3, Eq. (73) gives

QY = (wpe + DQp. QY. =00, (76)

N =

Hence, from now we consider only Qg’?_ which will be

denoted by Qg’?. It follows from Eq. (73) that Qg’? can have
an imaginary part if B is negative which occurs when

2 2 2 2 2
2(-3w3 5, -\ /3, w30, - 2.
Iwg 5, 469, + 1

2 2 2 2 2
_ 2(—3W¢CQ¢C +/Q, - w392, - Q¢C)

<
: W2 Q2 +6Qy +1

(77)

For wy,. = —0.99, the above condition becomes —0.45 <
A3 <—=0.41 and -0.51 < 13 < —0.47 when . = 0.65 and
Q. = 0.95, respectively. To ensure that the scaling points
are stable, we choose 45 in the ranges A3 < A3, or A3 > A3,
For wy, = —0.99, we have (43,, 43,) = (-=0.57,-0.01) and
(=0.57,-0.13) when Q. = 0.65 and ;. = 0.95. Hence,
for 13 < A3, or A3 > A3, Qg’? is real. In the case where
Wwge 2 —1 and Q, > 0.65, Eq. (73) gives Q) <107,
According to the numerical values of A3, and A3,, we
restrict A3 within the ranges A3 < =2/3 and 0 <13 <1 in
the following analysis, where the upper bound A; <1 is
imposed to avoid divergence of x" and Q[ which can occur
when A5 satisfies Eq. (38).

The quantity Qg’? is the value of Q at the pMDE point.
We plot this quantity as a function of A5 in Fig. 2. We note
that 1; in Egs. (52) and (60) can be matched only for
suitable conditions for 1;. For example, we obtain the same
expression for Q(("Z)
which are constructed by matching 4, from Eq. (52) with

when we solve for it from the equations

either /15"1) or /1@ from Eq. (60). However, if we compute

the numerical value of Q{(/i) from Eq. (73) for given values

of Q4.,wy., 4, and 43, and insert the result back into

Eq. (60), the numerical value of 4;, will be equal to /1541>

when 43 < —2/3 while it will be equal to 4\ when 25 > 0.

0005 et
0.004

0.003

@
Q

[
1
[
1
[
1
1
1
1
1
1
1
i

0.002F

0.001 |

FIG. 2. Plots of ngz) as a function of 5. The solid line shows
the case Qq,,(, = 0.65, while the dashed line shows the case
Q. = 0.95. In the plots, wy, = —0.99, 1, = 1 and 43 lies within
the range 43 < —2/3 and 0 < A3 < 1. The plots are not sensitive
to A,.
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TABLE 1.
magnitude of xE )

Matching of 4, from Eqgs. (52) and (60) and the required conditions on 43. The fourth column shows the
. The fifth and the sixth columns present the signs of 4; and A computed from Egs. (52) and (51).

The main conclusions from the table do not change if |A,| ~ O(1), wy. Z —1 and Q. > 0.65.

Matching Cases Scaling = ¢MDE A x(C¢> A4 A
[ Iy = AP A3 <-2/3 |xc_| <1and |xc+| >1 <0 <0
1 Ay =27 A3>0 |xc |>1 and |xc+| <1 >0 <0
1 A= &ﬁ> A3 < =2/3 |x(_ | > 1 and |xL+| <1 >0 >0
v A= /1(1‘11) 43>0 x| <1 and |xc+| >1 <0 >0

Moreover, |x£¢i)| <1 and |x<cqu)| > 1 for the former case
while |x£ff)| > 1 and |x£‘@\ < 1 for the latter case. The case
where \x§¢)| > 1 is not physically relevant case. We

summarize the matching of 4; and i<1¢) and the conditions
on A3 in Table I. We now investigate the eigenvalues of the
¢MDE points based on the choices of parameters in Table 1.
The first eigenvalues of all cases are simple and are shown
in Table II. From the table, we see that the eigenvalues
could be negative depending on the sign of 1. Nevertheless,

the terms A are multiplied by \/Qg’? which is in order of

1072, so that these terms have no sufficient contribution to
make the eigenvalues negative. For these MDE points, the
polynomial for the eigenvalues is complicated. Fortunately,

the order of the polynomial by dividing the polynomial
with (¢, — p). The resulting polynomial is second order in
u, which can be written in the form

W+ ap+a, =0, (78)

where a; and a, are complicated functions of the param-

eters and Q(¢) Since Q(‘m <1073, we expand a; and a,

around Q((/) ) =0up to Q{(,L) as shown in Egs. (79)—(82).
Cases I and II:

3 ; 6 3 )
a :5—31\/69;"2 + (—2413 +Z—§>Q§jj T

the first eigenvalue takes the simple form, so we can reduce (79)
|
9 3\/4 [ada(ds = 5) +30(2 + 1))
a, = lez)
/13(/13 +1)
3[/1%(—2'1% + 53 + 1) = hidyag, = 2(A5 (45 + 1) = 33a50)] (¢
: Q 80
i A3 +1) be (80)
Cases Il and 1V:
3 @) 6 _3\qw
9 3\/ [41(A43 = 5)43 + 345(43 + 1)]
a2 o
/13 (43 +1)
3/122/12—5/1—1 AA 2(A3(A5 + 1) = 3Aza,,
34243 3= 1) +hiday +2(43(43 + 1) 3azc)]ggzz)+m’ (82)

Bz +1)

TABLE II.

The first eigenvalues for all possible matching cases.

First Eigenvalue

Cases I and II

Cases III and IV

# /69 + 3@ +1)

—a/6Q) + 30 +1)
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T T T T

1 10 100 1000 10*
1+7
FIG. 3. Evolutions of Q for various values of 5. In the plots,
1+Z=1/a.
where  ay, =223-313+1 and ay =213 213+

343 + 1. The solutions of Eq. (78) are

—a; + /a3 —4a,
He = 3 .

(83)

From these solutions we see that the real part of at least one
solution is negative if a; > 0. If a; < 0, the real part of one
solution is negative when a, < 0. According to Egs. (79)
and (81) and the sign of 1; in Table I, the main contributions
to a; for the cases I and III are positive. As a result, the real
part of at least one eigenvalue for each case is negative. For
the cases II and IV, it follows from Eqs. (80) and (82)
together with the sign of 1; and the range of 45 in Table I
that the main contributions to a, can be negative. However,
to ensure that a, is negative, we suppose that |4,| < |4,| and
impose the additional condition 43 < 1 which is required to
avoid divergence of x" and Q... This suggests that the real
part of one eigenvalue for each case is negative. From the
above discussion, we conclude that the pMDE point can be

0.100

0.010

0.001

1074

0.1 1 10 100 1000 10* 10°
1+Z

saddle for 13 given in the table, A3 < 1, |4,| ~ O(1) and for
Wyer Ly satisfying the observational bound, e.g., wy. =
—0.99 and Q> 0.65.

D. Evolution from the ¢ MDE point
to scaling point

We now numerically study the evolution of the back-
ground universe through the fixed points discussed in the
previous sections. The evolution equations used in the
numerical integration are obtained by substituting Eq. (37)
into Egs. (29)-(32). To illustrate some results in the
previous sections, the evolutions of €, for various values
of 15 are plotted in Fig. 3. In the figure, we set 1, = 1,
Q;, =0 and specify 4 and 4; by setting Q4. = 0.7 and
wpe = —0.99. From the figure, we see that the fixed point
Q; = Q4. = 0.7 can be reached at late-time. From the
numerical investigation, the whole evolution of Q,,)
weakly depends on 4,, and the late-time evolution is robust
under the change of initial conditions. We next add the
contribution from the energy density of baryon into the
numerical integration by setting €, ~0.022 at present.
The evolutions of Q,, Q, and €, for 43 = —3 /2 are plotted
in Fig. 4. In these plots, we set A, = 1. The parameters 4
and A; are specified by setting €Q,.=0.95 and
wpe = —0.99. We set €. to be larger than the observa-
tional bound for the present value of €, because this
scaling point can be reached in the future when Q, ~ 0.
From the figure we see that the universe evolves from the
radiation domination to ¢MDE point and then evolves
toward the scaling point at late time with Qj — 0.95 and
€, — 0. This pattern of the evolution is achieved for wide
ranges of 4, and initial conditions. Before reaching the late-
time attractor, the cosmic evolution can pass the point
Q, ~0.68, Q. ~0.3, and €, ~ 0.022 at present as required
by observations.

1 1l 1l 1l
0.1 1 10 100 1000 104 10°
1+ 7

FIG. 4. The left panel shows the evolutions of ., Q,, ., and £, while the right panel shows the evolution of w,,. The $MDE takes

place around 1 + Z ~ 20.
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IV. GROWTH OF DENSITY PERTURBATIONS

In this section, we consider the growth of density
perturbations of matter on small scales. To compute the
evolution equations for the perturbations, we use the metric
perturbation in the Newtonian gauge written in the form

ds? = =(142¥)dr> + a*(1 = 2¥)5;;dx'dx’,  (84)

where W is the metric perturbation and the anisotropic
perturbations are omitted. The field ¢ is decomposed into
the background and perturbed parts as

¢ = ¢+ o, (85)

where ¢ on the right-hand side of the arrow denotes
the homogeneous background part of the field while d¢
denotes the perturbed part. Applying these decompositions
to Eq. (15), we obtain the evolution equation for the field
perturbations as

.. . . K\ 2
S¢p + 3H(6¢p — 2¥¢) + (V,M) + (E) )54&
—2§% — 4 ¥ = 50, (86)
where the perturbations in the coupling 6Q is given by

8Q = 605 + (—~QohE 4 + P(2XE 4x + E,)
+2XE 4y — T y)0 + [~ 000 + p(2XE 45
+28,—Tx) + ¢(2XE xx + 3Ex)]6¢
+ ©6¢ — 6HP(XE x + E)Y — E24Y + 49 P)

_2X ( (&sa,x’f +2XE 4y + 28, - Ty

c

+ 2XE yxd + 5,,@') v+ 435,,(\1") . (87)

Here, 6Q¢ contains the dominant contribution to 6Q on
small scales which its expression is given by

k\? ~

+ OP|5, + ¢S, (88)

where k is the comoving wave number of the perturbation
modes. The density contrast §. = p../p., where ép, and p,.
are the perturbations in energy density and background
energy density of CDM. The term 6Qy is obtained from the
fact that on small scales, |5¢)| and |H8¢| are much smaller
than |k26¢/a?| and |H§,| as well as |5,.| are much larger
than the ¥ terms. The latter approximation follows from the
perturbed Einstein equation on small scales:

N2 3
" Wy — —§H (QC5C+Qb5b), (89)

where 8, = 6p,/p,, is the density contrast of baryon. In the
above equation, the small contributions from the perturba-
tions in the energy density of radiation and dark energy are
neglected. On small scales, Eq. (86) becomes

(k> 2545 = 5Q. (90)

a
Combining the above equation with Eq. (88), we get
k\2 ~
(5) 6 = p.60. 91)

where the effective coupling term in the perturbed
universe is

(2XQyE - 2XE ;, + ' — ©¢)5, — $E5,

50 =
Q Ep.—1

(92)

We see that there is the term that is proportional to 5, in
the effective coupling term, this term vanishes when the
transformation coefficient C does not depend on X. The
evolution equations for the perturbations in energy density
and velocity v, of CDM are computed from Eq. (17). The
resulting equations are given by

2
5. — 3% — ("—) ve = 06, — 2
a P

c

- QOSQS? (93)

.1}C+(H—¢}Q0)vc+%‘l’=%6¢. (94)

Since we concentrate on small scales perturbations, we
replace 6Q/p, in Eq. (93) by 8Q from Eq. (92) and keep
only the dominant terms on small scales. The resulting
equation is

: <k2> Ep.— 1
b= — ) s—F5v= 7 Ve
a)Zp.—2XE-1
:¢®V,¢+3H®¢—2XE’{/,+F5‘
Op. —2XE -1 ‘
20XE , — ¢T + O ¢
L20XE, =T -0
Bp, —2XE -1

AS,. (95)

It can be checked that if the coefficient of the conformal
transformation solely depends on the field ¢, A vanishes.
Hence, A describes effects of the coupling due to general
conformal transformation on the growth of matter pertur-
bations. To discuss the influences of A on the matter
perturbations, we suppose that |4,| ~ O(1), 45 lies with in
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the ranges shown in Table I and the evolution of z does not
much deviate from the fixed point z = 13 /x>. Based on this
assumption, we have H?E = z/(2 + 6zx?) ~ O(1/(6x?))
and 2h*°XE y ~—4/(3x?), so that © is negative and
1p®| ~ |p.E| ~ O(Q./x*) > 1. For T, we have I'~ 4,/
(2 + 62x%) ~ 4/(643), while we have |XZ,| < 1. From
Eq. (52), we can check that the second term on the right-
hand side is the dominant term because we always set
wye = —0.99. To simplify our analysis, we suppose that
€. > 0.65 and impose the additional condition for the
positive 43 to be 1/2 < A3 < 1. Hence, Eq. (52) implies that
A1 has the same sign as A; while 4,_ and 15 have opposite
signs. As aresult, I is positive when 4, = 4, and becomes
negative when 4; = 4;_. From our numerical investigation,
the sign of gb is preserved through the cosmic evolution.
It follows from Egs. (52) and (53) that ¢ is positive for
A1 = 41+ and negative for 4; = 1,_. Hence, the term q'bF,
which gives the dominant contribution to the numerators of
A, is positive. For the denominators of A, the dominant
contributions come from ®p,. and Ep,. which are negative
and positive, respectively. According to the above analysis,
the dominant contribution to A is negative and therefore
this term suppresses the growth of J..

To perform the numerical investigation, we compute the
evolution equation for the CDM perturbation 6, by differ-
entiating Eq. (95) with respect to time. The time derivative
of v, in the resulting equation is eliminated using Eq. (94).
Finally, the remaining v, terms can be eliminated using
Eq. (95), and we get

3
5/6/ + Clﬁ/c - E (Gccgcéc + Gcbgbéb) = O’ (96)

where Cy, G,.. and G, are the functions of x,y,z,Q., €,
and parameters of the model. The expressions for these
coefficients, especially G.., are lengthy, so that their
explicit forms are not shown here. Since Q. > Q,, the
contribution to the evolution of §. from G, is larger than
that from G_,. Hence, the effective gravitational coupling
relevant to CDM perturbations on small scales is dominated
by G,.. The numerical value of G, is shown in Fig. 5. We
see that after the matter dominated epoch, G.. for the
coupled model from general conformal transformation is
smaller than unity, while G.. from the usual conformal
coupling is larger than unity. Since G.. =1 for ACDM
model, the effective gravitational coupling is suppressed in
the coupled dark energy model inspired from general
conformal transformation. This suggests the weaker growth
of CDM perturbations on small scales which can be
estimated by numerically solving Eq. (96). In order to
solve Eqg. (96), we have to know the evolution equation for
0, Since the energy-momentum tensor of the baryon is
separately conserved, the evolution equation for the density
contrast of baryon on small scales takes the usual form as

T —

——

0.6"“‘“““““1““1““1““1““
0 1 2 3 4 5 6 7

Z

FIG. 5. Plots of G,. as a function of Z. The lines I and II
represent the cases where (13,9, wy.) = (1/2,0.96,-0.99)
and (—3/2,0.99,-0.99), respectively. For these lines, 4, = 1.
The line III represents the case of usual conformal coupling
(z=0) with (4, 4) =(-1/10,-2/10). In all plots, Q, =~
0.022,Q, ~0.3 and €, ~0.68 at present.

H 3
5+ (2 + F) 8, =5 (8, +Qcd.) = 0. (97)

We solve Egs. (96) and (97) numerically based on the
parameters in Fig. 5. The evolutions of 6,./a are plotted in
Fig. 6. In the figure, we normalize §,./a such that it is unity
at the present. From the figure, we see that 6./a for the
coupled dark energy model from general conformal cou-
pling is larger than that for ACDM model in the early
epoch. This implies that the growth of CDM perturbations
is weaker in this coupled dark energy model. To estimate
how much the og tension can be resolved in the coupled
dark energy model with general conformal coupling, we
have to perform a likelihood analysis which we leave for a
future work.

FIG. 6. Evolutions of §./a. The choices of parameters for the
lines I, II, and III are the same as those for the lines in Fig. 5. The
line IV represents the case of ACDM with Q;, ~0.022, Q. ~ 0.3
and Q, ~ 0.68 at present.
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V. CONCLUSIONS

In this work, we have studied coupled dark energy model
inspired from general conformal transformation in which
the transformation coefficient depends on both scalar field
and its kinetic term. The effective coupling term consists of
the multiplication between the derivative of the scalar field
and the energy density as well as between the derivative of
the scalar field and derivative of energy density of CDM
which can lead to different influences on the growth of
matter perturbations compared with the usual conformal
coupling case.

The scaling solutions can exist in this coupled dark
energy model. The solution which corresponds to the
¢MDE can be a saddle point, while the solution for
the cosmic acceleration at late time can be attractor. The
background universe can evolve from the radiation domi-
nated epoch through the pMDE toward the cosmic accel-
eration epoch at late time. This sequence of the evolution
can be achieved for the cosmological parameters which
satisfy the observational bounds. The existence of the
¢MDE modifies the effective equation of state parameter
during the matter dominated epoch, such that the H, from
the CMB analysis for this model could be larger than that

for the ACDM model, which potentially solves the H,
tension. However, the actual likelihood analysis is required
to estimate how much the H, tension can be resolved.

The growth of the linear matter perturbations on small
scales for this coupled dark energy model is weaker than
that for the ACDM model. This is a consequence of the
reduction of the effective gravitational constant relevant to
the CDM perturbations on small scales. The suppression of
the growth of CDM perturbations on small scales suggests
that the og tension could be alleviated in this model.
However, to investigate whether this model of coupled
dark energy can actually solve the H, and og tensions,
a full likelihood analysis is needed which we leave for a
future work.
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