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Realizing the inflationary epoch driven by a pseudo-Nambu Goldstone boson could ensure the coveted
flatness, and the sub-Planckian scales related to the dynamics of the paradigm. In this work, we have taken
the most general form of such a scenario: Goldstone Inflation, proposed in Croon et al. [High Energy Phys.
Nucl. Phys. 10 (2015) 020], and studied the model in Einstein-Gauss-Bonnet (EGB) gravity. Natural
inflation, which is a limiting case of this model, is also studied here. The specific form of the EGB coupling
gives ample opportunity to study the rich phenomenology associated with inflation as well as the reheating
epoch. Predicted values of the inflationary observables, tensor to scalar ratio (r), and spectral index (ns) are
in good agreement with the recent observations from Planck’18. Thus, in the framework of EGB one can
resurrect the model, which otherwise needs quite a bit of fine tuning or diversion from the canonical domain
as studied in Bhattacharya and Gangopadhyay [Phys. Rev. D 101, 023509 (2020)], to survive in the
standard cold inflationary scenario. Finally, the era of reheating is studied for different choices of model
parameters.
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I. INTRODUCTION

From the onset of the introduction of inflationary
paradigm in the seminal paper by Alan Guth [1], to resolve
some of the hot big bang cosmology puzzles (reviews
can be found in [2–4]), it has become one of the primary
fields of research at the interface of particle physics and
cosmology (readers are advised to go through [5,6] for
important early works). In the last few decades, cosmology
has advanced tremendously in the observational sector,
becoming a part of precision physics. The stupendous
advancement in the observations made it possible to
constrain different theoretical predictions from real data.
Most of the so-called text book models of inflation are
being ruled out by CMB observations from WMAP [7]
and Planck [8], at least in the standard cold inflationary
scenario. After the final observational data reported by
Planck [9], it can at least be said, data prefers sub-Planckian
small field models of inflation, which, in a sense, is
satisfactory from the idea of the effective field theory.
The Goldstone inflationary model was first proposed in

[10], from the idea of minimal composite Higgs model
[11,12]. Precedingly the natural inflation model was
proposed [13] (also see [14–18]). This model used an
axion as the inflaton, which is the Goldstone of a sponta-
neously broken Peace-Quinn symmetry. With a breaking
scale of 10Mpl or higher, the model still lies in the 2 − σ
allowed region. But this has its issues because the dynamics

of the effective field theory could get compromised by the
effects of quantum gravity, which play a significant role in
the super-Planckian domain. Generally quantum gravity
does not conserve global symmetry, so to have a breaking
scale that is super-Planckian in the case of vanilla natural
inflation is philosophically not viable. Even though it has
been studied as that with sufficient fine-tuning, Goldstone
inflation can be rescued with a sub-Planckian breaking scale,
but in the light of new data from the Planck’18 it
does survive even in the canonical domain. Due to the fact
that Goldstone model of inflation is derived from minimal
composite Higgs model, noncanocial origin of the infla-
tionary dynamics is expected [19]. To explain the super-
Planckian breaking scale different models have been pro-
posed, namely, the extranatural inflation [20], hybrid axion
models [21,22], N-flation [23–25], axion monodromy [26],
and other pseudonatural inflationary models in supersym-
metry [27]. A large amount of fine tuning and extra
dimensions are required to save these models of inflation.
The resurrection of the Goldstone model of inflation

and natural inflation, which is a limiting case of Goldstone
inflation, has been tried in the standard inflationary
scenario. But so far this pursuit has been unsuccessful
for sub-Planckian breaking scales (f), as the values of the
inflationary observables obtained are not favored exper-
imentally from Planck’18. To save these inflationary
models in the standard case the breaking scale has to be
super-Planckian.
It has been studied that in modified theories of gravity,

the restrictions on inflationary models can be made less
stringent [28–34], which was otherwise not possible in the
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standard theory of general relativity. We will therefore
consider the validity of Goldstone inflation and Natural
inflation in the domain Einstein-Gauss-Bonnet (EGB)
gravity, in the sub-Planckian regime. Here a term, namely,
the Gauss-Bonnet term, is added to the Einstein-Hilbert
action, which does not make any difference to the equations
of motion as it is a total derivative. But if we couple it with
a function of the scalar field ϕ as ξðϕÞ, it does become
dynamically of substance. Another important thing to note
here is that that Gauss-Bonnet term is an inherent quantum
correction, in the domain of string theory, to the Einstein-
Hilbert action. A number of inflationary models have been
studied in the EGB scenario [35–57]. It has been seen that
in the EGB domain, while the value of spectral index ns
remains unchanged, the tensor-to-scalar ratio becomes
small, consistent with observational constraints.The most
actively studied models with GB coupling involves the
function ξ inversely proportional to the scalar field potential
[36,37,39,40,42,50,51,53,54]. In this work we choose a
different form of the coupling, which has a tanh term. The
specific choice of coupling has found suitable for the study
of Goldstone and natural inflation.
The rest of the paper is organized as follows. In Sec. II

we will discuss some of the basic yet essential aspects of
inflation in the EGB framework. In Sec. III, we will discuss
the formalism, and the slow roll approximation of the
effective potential in the framework of EGB. In Sec. IV, the
inflationary observables are calculated for Goldstone infla-
tion. In Sec. V, we have carried out the analysis for natural
inflation. In Sec. VI, we analyzed the reheating epoch for
the mentioned potential in Secs. IV and V. Finally, in
Sec. VII, we conclude our work.

II. INFLATION IN EGB

We will be considering a modified model of gravity with
the Gauss-Bonnet term (we use the reduced Planck mass,
Mp ¼ 1), [36,37,46]:

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
UR−

gμν

2
∂μϕ∂νϕ−VðϕÞ−ξðϕÞ

2
G
�
; ð1Þ

here, VðϕÞ, and ξðϕÞ are differentiable functions, U is
a positive constant, and G is the Gauss-Bonnet term
given as

G ¼ RμνρσRμνρσ − 4RμνRμν þ R2:

The following set of equations, in a spatially flat
Friedmann universe, can be derived by varying the action
(1) with respect to the scalar field ϕ, [35,58]:

12UH2 ¼ _ϕ2 þ 2V þ 24_ξH3; ð2Þ

4U _H ¼ − _ϕ2 þ 4̈ξH2 þ 4_ξHð2 _H −H2Þ; ð3Þ

ϕ̈ ¼ −3H _ϕ − V 0 − 12ξ0H2ð _H þH2Þ; ð4Þ

here, the dots and primes represent the derivatives taken
with respect to the cosmic time t and the scalar field ϕ, and
H ¼ _a=a is the Hubble parameter, where a is the scale
factor.
We consider the slow roll parameters as given in

Refs. [35,37]:

ϵ1 ¼ −
_H
H2

¼ −
d lnðHÞ
dN

; ϵiþ1 ¼
d ln jϵij
dN

; i⩾1; ð5Þ

δ1 ¼
2

U
H_ξ ¼ 2

U
H2ξ0

dϕ
dN

; δiþ1 ¼
d ln jδij
dN

; i⩾1; ð6Þ

here we are considering d=dt ¼ Hd=dN.
The slow roll approximation will then require

jϵij ≪ 1 and jδij ≪ 1:

Equations (2)–(4) can be simplified using the slow roll
conditions ϵ1 ≪ 1, ϵ2 ≪ 1δ1 ≪ 1 and δ2 ≪ 1. Therefore
we obtain

δ2 ¼
_δ1
Hδ1

¼ 2̈ξ

Uδ1
− ϵ1; ð7Þ

and we have jξ̈j ≪ jH_ξj from jδ2j ≪ 1 and jϵ1j ≪ 1.
Using the conditions jδ1j ≪ 1 and jδ2j ≪ 1, in Eqs. (2)

and (3), we get

12UH2 ≃ _ϕ2 þ 2V; ð8Þ

4U _H ≃ − _ϕ2 − 4_ξH3 ¼ − _ϕð _ϕþ 4ξ0H3Þ: ð9Þ

Using

ϵ1 ¼ −
_H
H2

≃
_ϕ2

3ð _ϕ2 þ 2VÞ þ
1

2
δ1 ≪ 1;

we obtain _ϕ2 ≪ 2V, and Eq. (8) takes the following form

6UH2 ≃ V: ð10Þ

Differentiating the above equation with respect to time and
making use of Eq. (9), we obtain

_ϕ ≃ −
V 0

3H
− 4ξ0H3: ð11Þ

Substituting (11) into Eq. (4), we get jϕ̈j ≃ j12ξ0H2 _Hj ≪
j12ξ0H4j.
Therefore, the slow-roll conditions give the following

results:
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_ϕ2 ≪ V; jϕ̈j ≪ j12ξ0H4j; 2j_ξjH ≪ U; jξ̈j ≪ j_ξjH;

and the leading order equations in the slow-roll approxi-
mation will be

H2 ≃
V
6U

; ð12Þ

_H ≃ −
_ϕ2

4U
−
_ξH3

U
; ð13Þ

_ϕ ≃ −
V 0 þ 12ξ0H4

3H
: ð14Þ

We do the inflationary analysis using the effective
potential formalism, which we will discuss in the following
section.

III. THE EFFECTIVE POTENTIAL

A. The slow-roll approximation

To analyze the stability of de Sitter solutions in model (1)
the effective potential has been proposed in Ref. [58]:

VeffðϕÞ ¼ −
U2

VðϕÞ þ
1

3
ξðϕÞ: ð15Þ

For VðϕÞ≡ 0, the potential is undefined, but for such a
case, inflationary scenarios are always unstable [59] (see
also [38]). In this work, we will be considering inflationary
scenarios with positive potentials only: VðϕÞ > 0 during
inflation. The effective potential characterizes existence
and stability of de Sitter solutions completely. It is however
not enough to completely characterize quasi–de Sitter
inflationary stage, and the potential VðϕÞ enters into
equations for the inflationary parameters as well. But we
will keep the effective potential in the corresponding
formulas, as it would be helpful in our analysis.
Using Eqs. (13) and (14), we get that the functionsHðNÞ

and ϕðNÞ satisfy the following leading order equations:

dH
dN

≃ −
H
U
V 0V 0

eff ; ð16Þ

dϕ
dN

≃ −2
V
U
V 0
eff : ð17Þ

In terms of the effective potential the slow-roll param-
eters are as follows:

ϵ1 ¼ −
1

2

d lnðVÞ
dN

¼ V 0

U
V 0
eff ; ð18Þ

ϵ2¼−
2V
U

V 0
eff

�
V 00

V 0 þ
V 00
eff

V 0
eff

�
¼−

2V
U

V 0
eff ½lnðV 0V 0

effÞ�0; ð19Þ

δ1 ¼ −
2V2

3U3
ξ0V 0

eff ; ð20Þ

δ2 ¼ −
2V
U

V 0
eff

�
2
V 0

V
þ V 00

eff

V 0
eff

þ ξ00

ξ0

�
;

¼ −
2V
U

V 0
eff ½lnðV2ξ0V 0

effÞ�0: ð21Þ

So, jϵ1j ≪ 1 and jδ1j ≪ 1 if V 0
eff is small enough. It

allows us to use the effective potential for construction of
the inflationary scenarios in models with the GB term.
Using the known formulas [37,39] for the tensor-to-

scalar ratio r and the spectral index ns, we obtain

r ¼ 8j2ϵ1 − δ1j; ð22Þ

ns ¼ 1 − 2ϵ1 −
2ϵ1ϵ2 − δ1δ2
2ϵ1 − δ1

: ð23Þ

A standard way to reconstruct inflationary models
[39,40,60] includes the assumption of explicit form of
the inflationary parameter ns and r as functions of N.
The expression for amplitude As in the leading order

approximation is [35]

As ≈
H2

π2Ur
≈

V
6π2U2r

: ð24Þ

In the slow-roll approximation, the e-folding number N
can be presented as the following function of ϕ:

NðϕÞ ¼
Zϕ

ϕend

U
2VV0

eff
dϕ: ð25Þ

To get a suitable inflationary scenario we calculate infla-
tionary parameters for 55 ≤ N ≤ 75 and compare them
with the observation data [9].

IV. GOLDSTONE INFLATION IN EGB

In Goldstone inflation, the form of the potential is
given as

VðϕÞ ¼ V0

�
CΛ þ α cos

�
ϕ

f

�
þ βsin2

�
ϕ

f

��
: ð26Þ

We choose the EGB coupling of the following form [61],

ξðϕÞ ¼ ξ1
V0

tanhðξ2ϕÞ; ð27Þ

where we have normalized the coupling by V0, which
makes the slow roll parameters independent of V0. The
scale of inflation can be fixed from the definition of As.
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Another advantage of this particular choice of EGB
coupling is that it ensures that the shape of the effective
potential is in concordance with the conditions under which
inflation can take place.
In this case the slow-roll parameters can written using

Eqs. (18)–(21) as

ϵ1 ¼
1

3fU

8>><
>>:
�
−αþ 2β cos

�
ϕ

f

��
sin

�
ϕ

f

�264ξ1ξ2sech2ðξ2ϕÞ

−
3U2

�
α− 2β cos

�
ϕ
f

��
sin

�
ϕ
f

�

f
�
CΛ þ α cos

�
ϕ
f

�
þ βsin2

�
ϕ
f

��
2

3
75
9>>=
>>;

ð28Þ

ϵ2 ¼ −
1

3U2

�
CΛ þ α cos

�
ϕ

f

�
þ βsin2

�
ϕ

f

��

×

�
ξ1ξ2sech2ðξ2ϕÞ −

A
fB2

�

×

2
64
�
α cos

�
ϕ
f

�
− 2β cos

�
2ϕ
f

��
csc

�
ϕ
f

�

f
�
α − 2β cos

�
ϕ
f

��

−
C

f2B2 þ D
f2B3 þ 2ξ1ξ

2
2sech

2ðξ2ϕÞ tanhðξ2ϕÞ
ξ1ξ2sech2ðξ2ϕÞ − A

fB2

3
75 ð29Þ

where, A¼ 3U2ðα−2βcosðϕfÞÞsinðϕfÞ, B¼CΛþαcosðϕfÞþ
βsin2ðϕfÞ, C ¼ 3U2ðα cosðϕfÞ − 2β cosð2ϕf ÞÞ, and D ¼
6U2ðα sinðϕfÞ − β sinð2ϕf ÞÞ2

δ1 ¼ −
1

9fU3

	
2ξ1ξ2sech2

�
ϕ

f

��
1

4
fξ1ξ2

�
2CΛ þ β þ 2α cos

�
ϕ

f

�
− β cos

�
2ϕ

f

��
2

× sech2ðξ2ϕÞ − 3U2

�
α − 2β cos

�
ϕ

f

�
sin

�
ϕ

f

���

; ð30Þ

δ2 ¼
1

3f2U
�
CΛ þ α cos

�
ϕ
f

�
þ βsin2

�
ϕ
f

��
	
2fξ1ξ2

�
2CΛ þ β þ 2α cos

�
ϕ

f

�
− β cos

�
2ϕ

f

��

× sech3ðξ2ϕÞ
�
coshðξ2ϕÞ

�
α sin

�
ϕ

f

�
− β sin

�
2ϕ

f

��
þ fξ2

�
2CΛ þ β þ 2α cos

�
ϕ

f

�
− β cos

�
2ϕ

f

��

× sinhðξ2ϕÞ
�
þ 6U2

�
α cos

�
ϕ

f

�
− 2β cos

�
2ϕ

f

�
− 2fξ2

�
α − 2β cos

�
ϕ

f

��
sin

�
ϕ

f

�
tanhðξ2ϕÞ

�

: ð31Þ

Using Eq. (25) we can write the expression of number of e-folds for the Goldstone inflation as

N ¼
Zϕ

ϕend

−
3fU

�
CΛ þ α cos

�
ϕ
f

�
þ βsin2

�
ϕ
f

��

− 1
2
fξ1ξ2

�
2CΛ þ β þ 2α cos

�
ϕ
f

�
− β cos

�
2ϕ
f

��
2
sech2ðξ2ϕÞ þ 6U2

�
α − 2β cos

�
ϕ
f

��
sin

�
ϕ
f

� : ð32Þ

To check the viability of Goldstone inflation in the
framework of EGB gravity we calculate the inflationary
observables, ns and r, using (23) and (22). Following [10],
we consider the potential parameters CΛ ¼ α ¼ 1 and
β ¼ 1

2
. For a particular choice of the parameters U, ξ1,

and ξ2, we calculate the inflationary observations for
different values of f. We fixed ξ1 ¼ 13.3 and ξ2 ¼ 2.3,
which ensures the flatness of the potential. However, due
to the nontrivial nature of the analysis, it is difficult to
solve Eq. (32) analytically. So, here we use numerical
techniques to evaluate the inflationary observables. Using
Eqs. (28)–(31), we compute r and ns, for different
combinations of U and f, mentioned in the Tables I and II.

Case 1: U ¼ 0.5. For this case we take U ¼ 0.5, and
calculate the inflationary observables r and ns for three
different values of f. The results of the analysis have been
laid out in Table I and the plots for r and ns are given
in Fig. 1.
Case 2: U ¼ 0.005. For this we take U ¼ 0.005, and

calculate the inflationary observables r and ns for three
different values off. The results of the analysis have been laid
out in Table II and the plots for r and ns are given in Fig. 2.

V. NATURAL INFLATION

Setting CΛ ¼ α ¼ 1 and β ¼ 0 in Eq. (26), we obtain the
form of natural inflation [13]. For sub-Planckian value of f,

HUSSAIN AHMED KHAN and YOGESH PHYS. REV. D 105, 063526 (2022)

063526-4



it has been extensively studied in the literature that in
standard cold inflationary scenario this model is not
congruent with recent observation. So, it will be interesting
to the check the viability of natural inflation in the
framework of EGB. The potential for natural inflation
can be written as

V ¼ V0

�
1þ cos

�
ϕ

f

��
: ð33Þ

Using the definition of slow roll parameters (18)–(21) we
write

ϵ1 ¼ −
ξ1ξ2sech2ðξ2ϕÞ sin

�
ϕ
f

�
3fU

þ
Utan2

�
ϕ
2f

�
f2

; ð34Þ

ϵ2 ¼
1

3f2U
�
1þ cos

�
ϕ
f

��
2

	
12U2

�
1þ cos

�
ϕ

f

��

þ 8fξ1ξ2cos4
�
ϕ

2f

�
cot

�
ϕ

2f

�
sech2ðξ2ϕÞ

×

�
− cos

�
ϕ

f

�
þ 2fξ2 sin

�
ϕ

f

�
tanh ðξ2ϕÞ

�

; ð35Þ

δ1 ¼ −
1

9fU3

	
2ξ1ξ2sech2ðξ2ϕÞ

�
4fξ1ξ2cos4

�
ϕ

2f

�

× sech2ðξ2ϕÞ − 3U2 sin

�
ϕ

f

��

; ð36Þ

f 0.9

f 0.7

f 0.5

N 75

0.950 0.955 0.960 0.965 0.970 0.975 0.980

2. 10 6

4. 10 6

6. 10 6

8. 10 6

0.00001

ns

r

FIG. 1. Plots of r and ns, forU ¼ 0.5, for Goldstone inflation. The light pink shaded region corresponds to 2 − σ and dark pink shaded
region corresponds to 1 − σ bounds on ns from Planck’18. The deep blue shaded region corresponds to the 1 − σ bounds of future CMB
observations [80,81] keeping the same central value.

TABLE I. Values of the inflationary parameters r and ns for different values of f and number of e-folds N. The
observables are in good agreement with the Planck’18 [9].

f ¼ 0.5 f ¼ 0.7 f ¼ 0.9

N ns r ns r ns r

55 0.9453 1.5226 × 10−6 0.9454 5.8390 × 10−6 0.9445 1.6577 × 10−5

65 0.9540 9.0211 × 10−6 0.9532 3.6696 × 10−6 0.9530 1.0282 × 10−5

75 0.9601 5.8974 × 10−7 0.9594 2.3890 × 10−6 0.9598 6.3976 × 10−6

TABLE II. Values of the inflationary parameters r and ns for
different values of f and number of e-folds N. The observables
are in good agreement with the Planck’18 [9].

f ¼ 0.5 f ¼ 0.7 f ¼ 0.9

N ns r ns r ns r

55 0.9513 0.01658 0.9572 0.04065 0.9605 0.06437
65 0.9576 0.01069 0.9626 0.02850 0.9658 0.04767
75 0.9624 0.00727 0.9666 0.02066 0.9696 0.03642
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δ2 ¼
1

3f2Uð1þ cosðϕfÞÞ

	
2fξ1ξ2sech2ðξ2ϕÞ

�
2 sin

�
ϕ

f

�

þ sin
�
2ϕ

f

�
þ 16fξ2cos4

�
ϕ

2f

�
tanhðξ2ϕÞ

�

þ 6U2

�
cos

�
ϕ

f

�
− 2fξ2 sin

�
ϕ

f

�
tanhðξ2ϕÞ

�

: ð37Þ

Using Eq. (25) we can write the expression of number of
e-folds for the natural inflation as

N ¼
Zϕ

ϕend

3fU
�
1þ cos

�
ϕ
f

��

8fξ1ξ2cos4
�

ϕ
2f

�
sech2ðξ2ϕÞ − 6U2 sin

�
ϕ
f

� : ð38Þ

Again it is difficult to solve the Eq. (38) analytically, so we
follow the same numerical approach as mentioned before.
From Eqs. (34)–(37) we calculate r and ns as mentioned in
Table III, and the plots for r and ns are given in Fig. 3.

VI. REHEATING

At the end of inflation, owing to the fact that the
Universe expands exponentially, it ends up in a supercooled
state. So for the universe to reheat itself, to enter the
radiation dominated era, and to start the big bang nucleo-
synthesis there is a need for a mechanism through which
the Universe can come out of this supercooled state
[62–68]. For other realizations of inflationary dynamics
in nonstandard scenarios, e.g., warm inflation, readers are
suggested to go through Refs. [69–74], where the reheating
phase is not required, and after the end of inflation, we go
directly into the radiation dominated phase. This transition
of the Universe, from supercooled state to a hot, thermal
and radiation dominated state can be realized either through
perturbative process, known as perturbative reheating, or
the process of parametric resonance, better known as (p)
reheating (for a detailed discussion reader is suggested to
follow [75]). The epoch of reheating can be parametrized
by Nre (number of e-folds during the reheating phase), Tre
(thermalization temperature), and the equation of states
during reheating (ωre) [76,77]. The analysis here is inde-
pendent of the exact dynamical process of reheating, and
we can still explore the parameter space [78,79].

Nre ¼
4

ð1 − 3wreÞ
�
61.488 − ln

�
V

1
4

end

Hk

�
− Nk

�
; ð39Þ

Tre ¼
��

43

11gre

�1
3 a0T0

k
Hke−Nk

�
32 · 5Vend

π2gre

�− 1
3ð1þwreÞ

�3ð1þwreÞ
3wre−1

:

ð40Þ

f 0.9

f 0.7

f 0.5

N 75

0.950 0.955 0.960 0.965 0.970 0.975 0.980

0.02

0.04

0.06

0.08

0.10

ns

r

FIG. 2. Plots of r and ns, for U ¼ 0.005, for Goldstone inflation. The light pink shaded region corresponds to 2 − σ and dark pink
shaded region corresponds to 1 − σ bounds on ns from Planck’18. The deep blue shaded region corresponds to the 1 − σ bounds of
future CMB observations [80,81] keeping the same central value.

TABLE III. Values of the inflationary observables r and ns for
different values of f and number of e-folds N. The observables
are in good agreement with the Planck’18 [9].

f ¼ 0.5 f ¼ 0.7 f ¼ 0.9

N ns r ns r ns r

55 0.9502 0.03898 0.9601 0.07752 0.9625 0.10040
65 0.9537 0.02505 0.9650 0.05803 0.9678 0.07929
75 0.9558 0.01642 0.9684 0.04450 0.9716 0.06402
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Here we have used Planck’s pivot (k) of order
0.05 Mpc−1 and gre ≈ 100. To evaluate Nre and Tre, one
need to calculate the Hk, Nk, and Vend for the given
potential. Using the Eq. (24) we can establish the relation

between Hk and ns, similarly Nk can be written in terms of
spectral index (ns). From ϵ ¼ 1 condition at the end of
inflation, it is straightforward to calculate Vend. Equipped
with all the preliminaries and using Eqs. (39) and (40) we

f 0.9

f 0.7

f 0.5

N 75

0.950 0.955 0.960 0.965 0.970 0.975 0.980

0.02

0.04

0.06

0.08

0.10

ns

r

FIG. 3. Plots of r and ns, for U ¼ 0.005, for natural inflation. The light pink shaded region corresponds to 2 − σ and dark pink shaded
region corresponds to 1 − σ bounds on ns from Planck’18. The deep blue shaded region corresponds to the 1 − σ bounds of future CMB
observations [80,81] keeping the same central value.

FIG. 4. Left panel: plots for Tre and Nre for Goldstone inflation as a function of ns for fixed value of U ¼ 0.5 and f ¼ 0.7, four
different color corresponds to different values of ω. Red color stands for ω ¼ − 1

3
, green for ω ¼ 0, blue for ω ¼ 2

3
and black for ω ¼ 1.

The light pink shaded region corresponds to 2 − σ and dark pink shaded region corresponds to 1 − σ bounds on ns from Planck’18. The
deep blue shaded region corresponds to the 1 − σ bounds of future CMB observations. Right panel: plots for Tre and Nre for Goldstone
inflation as a function of ns for fixed value ofU ¼ 0.005 and f ¼ 0.7, four different color corresponds to different values of ω. Red color
stands for ω ¼ − 1

3
, green for ω ¼ 0, blue for ω ¼ 2

3
, and black for ω ¼ 1. The light pink shaded region corresponds to 2 − σ and dark

pink shaded region corresponds to 1 − σ bounds on ns from Planck’18. The deep blue shaded region corresponds to the 1 − σ bounds of
future CMB observations [80,81] keeping the same central value.
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compute the reheating temperature and number of e-folds
during reheating, for the different equation of state (ωre) as
shown in Figs. 4 and 5. Even though the reheating analysis
can be done for any of the values of f that we have done our
inflationary analysis on, we have done our calculations for
f ¼ 0.7. From Fig. 4 it is evident that if one wants to bound
the reheating temperature from the recent CMB observa-
tions, lower value ofU is preferable while keeping the other
parameters ξ1 and ξ2 fixed.

VII. CONCLUSION

In this paper, we have analyzed and studied the validity
of inflationary models in the framework of Einstein-Gauss-
Bonnet gravity. Due to the presence of the extra Gauss-
Bonnet coupling in the action, the inflationary dynamics

deviate from the standard case. We tested two inflationary
models in EGB: Goldstone inflation and natural inflation.
In the case of Goldstone inflation, we calculated the
inflationary parameters r and ns, for two different values
of U, and corresponding three different sub-Planckian
values of f. The results of which are given in Tables I
and II. For the case of U ¼ 0.005, we are able to better
constrain the inflationary observables, r and ns, using the
Planck’18 [9]. ForU ¼ 0.005 and f ¼ 0.7, we also studied
the phase of reheating, where we use an indirect approach
to constrain the reheating parameters, namely the reheating
temperature (Tre) and the number of e-folds (Nre). This
approach is independent of the exact dynamics of the
reheating phase. For U ¼ 0.5, the reheating parameters
cannot be constrained through Planck’18 [9]. We repeated
the aforementioned calculations for natural inflation. In this
case, if we take U ¼ 0.5, it is difficult to achieve the
adequate number of e-folds required for a successful phase
of inflation. For U ¼ 0.005, we were able to perform the
calculations and we found that the inflationary observations
are in agreement with Planck’18 [9]. Results have been laid
out in Table III. We were also be to constrain the reheating
parameters in this case. While we only picked one particular
values of fð¼ 0.7Þ to study the phase of reheating, it is rather
straightforward to check reheating for other values of f.
We found that for both the models of inflation, the

inflationary and reheating parameters are in good agree-
ment with Planck’18 [9], in the sub-Planckian regime.
Another interesting aspect of the early universe that can

be studied in the domain of EGB gravity is the production
of primordial black holes (PBHs) [61]. The seeds for PBH
formation, during inflation, can be provided by an appro-
priate choice of the form of EGB coupling. It is not possible
to probe the scales associated with the seeds of PBH
production, so to study the production mechanism of PBHs
will have interesting phenomenological implications. We
will come back to this in our future studies.
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FIG. 5. Plots for Tre and Nre for natural inflation as a function
of ns for fixed value of U ¼ 0.005 and f ¼ 0.7, four different
color corresponds to different values of ω. Red color stands for
ω ¼ − 1

3
, green for ω ¼ 0, blue for ω ¼ 2

3
, and black for ω ¼ 1.

The light pink shaded region corresponds to 2 − σ and dark pink
shaded region corresponds to 1 − σ bounds on ns from
Planck’18. The deep blue shaded region corresponds to the
1 − σ bounds of future CMB observations [80,81] keeping the
same central value.
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