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We propose an analytical parametrization of the comoving distance and Hubble parameter to study the
cosmic expansion history beyond the vanilla ΛCDM model. The parametrization is generalized enough to
include the contribution of spatial curvature and to capture the higher redshift behaviors. With this
parametrization, we study the late-time cosmic behavior and put constraints on the cosmological
parameters like present values of Hubble parameter (H0), matter-energy density parameter (Ωm0), spatial
curvature energy density parameter (Ωk0), and baryonic matter-energy density parameter (Ωb0) using
different combinations data like CMB (cosmic microwave background), BAO (baryon acoustic oscillation),
and SN (Pantheon sample for type Ia supernovae). We also rigorously study the Hubble tension in the
framework of late time modification from the standard ΛCDM model. We find that the late time
modification of the cosmic expansion can solve the Hubble tension between CMB and SHOES (local
distance ladder observation for H0), between CMBþ BAO and SHOES and between CMBþ SN and
SHOES, but the late time modification cannot solve the Hubble tension between CMBþ BAO þ SN and
SHOES. That means CMB, BAO, and SN data combined put strong enough constraints on H0 (even with
varying Ωk0) and on other background cosmological parameters so that the addition of H0 prior from
SHOES (or from similar other local distance observations) cannot significantly pull theH0 value toward the
corresponding SHOES value.

DOI: 10.1103/PhysRevD.105.063524

I. INTRODUCTION

Since the discovery of the late time cosmic acceleration
from supernovae type Ia observations in 1998 [1–3], this
comic acceleration has been confirmed by many cosmo-
logical observations like Planck mission for cosmic micro-
wave background (CMB) [4,5], baryon acoustic
oscillations (BAO) observations [6,7], cosmic chronome-
ters measurement for Hubble parameter [8] etc. After that,
many theoretical models have been proposed to explain this
acceleration. Two main broad classes of models are dark
energy [9–19] and modified gravity models [20–29]. In the
dark energy models, the late time acceleration is caused by
an exotic matter, called the dark energy, which has large
negative pressure. This negative pressure introduces repul-
sive gravity which provides the cosmic acceleration within
the framework of general relativity [9–12]. In the second
class of models, i.e., in the modified gravity theories, the
late time cosmic acceleration is caused by the modification
to the general relativity without introducing any exotic
matter [20–22].
The simplest dark energy model is the ΛCDM model,

where the late time cosmic acceleration is caused by a

cosmological constant [4,5]. This model has been put to
many observational tests [30–40] and in some cases, this
model has some discrepancies with observational data to
some extent [30–33,41]. Also, in the ΛCDM model
framework, there is a discrepancy in the H0 value (present
value of Hubble parameter) between the early Universe
observations like CMB and the late time local distance
ladder observations like SHOES [34,42]. This is called the
so called Hubble tension or H0 tension [43–47]. Thus,
these are the motivations to go beyond the ΛCDM model.
ΛCDM model along with other dark energy models like

quintessence and k-essence have theoretical issues like
cosmic coincidence and fine-tuning [11,48–50]. Despite
these theoretical issues, there are some limitations to
different dark energy models. For example, ΛCDM model
possesses constant (fixed to −1) equation of state of the
dark energy, quintessence models have evolving equation
of state of the dark energy (eos, w) but restricted to the
nonphantom (w > −1) regions [9–11]. In the context of the
Hubble tension, the quintessence models make it worse
since this tension is worse for the nonphantom equation of
state while the phantom equation of state improves this
tension [51]. To avoid these limitations, parametric models
are useful. For example, wCDM [52–54] and Chevallier,
Polarski, and Linder (CPL) [55,56] parametrizations where*bikashd18@gmail.com
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equation of state of the dark energy, w is constant and
evolving respectively. Although wCDM model possess
both phantom (w < −1) and nonphantom (w > −1) regions
but it is restricted to a constant value [52–54]. However,
CPL parametrization is widely used in cosmology because
of its generalization that in this parametrization equation of
state of dark energy is evolving with redshift and possesses
both phantom (w < −1) and nonphantom (w > −1) regions
[55,56]. There are other parametrizations of the equation of
state of the evolving dark energy like Barboza and Alcaniz
(BA) [57] and generalized Chaplygin gas (GCG) [58]
parametrizations etc. [59,60].
All the above-mentioned evolving dark energy para-

metrizations (CPL, BA, GCG, etc.) are bidimensional (i.e.,
consists of two parameters or dark energy degrees of
freedom 2) and are (mostly) based on the Taylor series
expansion [61]. Taylor series expansion has the limitation
that it is accurate in the small argument limit, for example,
in CPL parametrization, the equation of state of the dark
energy is accurate when ð1 − aÞ ≪ 1 and the errors in it
increases when ð1 − aÞ ∼ 1. So, it is still necessary to go
beyond these parametrizations and we may need para-
metrization beyond dark energy degrees of freedom 2
[61–72].
With the above-mentioned motivations, we propose an

analytic parametrization of the line of sight comoving
distance and consequently for the Hubble parameter
with some modification to the Taylor series expansion.
This parametrization includes cosmic curvature and the
radiation terms to see how these terms affect the late-
time cosmic acceleration. Although the radiation term is
not that effective to the late time cosmic acceleration,
still inclusion of the nonzero radiation term is important
since its effect increases at higher redshifts. However,
the cosmic curvature term is important at late times.
Because of its importance, in cosmology, many authors
have used it in their analysis and put constraints on it
from different cosmological observations [73–78]. We
also constrain the cosmic curvature from some impor-
tant cosmological observations like CMB and BAO
[79,80].
In literature, some authors (see [43] and references

therein) try to solve the Hubble tension with the late time
modification of the cosmic expansion by different dark
energy models, modified gravity models, and some dark
energy parametrizations. With this motivation, we also
study this issue with our parametrization in detail. Recently,
some authors like in [81,82] have claimed that one should
use M (absolute magnitude of type Ia supernovae peak
amplitude) prior instead of H0 prior and try to solve the M
tension instead of the Hubble tension, while data like
Pantheon sample for type Ia supernova peak magnitude is
used in the data analysis. The reasons are mentioned in the
main text and [81]. So, it is important to study the M
tension and we do so in Sec. V.

This paper is organized as follows: in Sec. II, we present
analytical parametrizations to the line of sight comoving
distance and the normalized Hubble parameter; in Sec. III,
we mention cosmological observational data we use in our
analysis and we do data analysis using these data and put
constraints on the parameters; in Sec. IV, we study the
Hubble tension in details and check whether late time
modification of the cosmic expansion can solve this issue;
in Sec. V, we check whether late time modification can also
solve the M tension; finally, in Sec. VI, we present our
conclusion.

II. PARAMETRIZATION TO THE LINE OF SIGHT
COMOVING DISTANCE AND THE HUBBLE

PARAMETER

A. Basics

The line of sight comoving distance (denoted by dc) is
defined as dc ¼ dHD where D is given by [83]

DðzÞ ¼
Z

z

0

dz0

Eðz0Þ ; ð1Þ

with z (also z0) being the redshift. E is the normalized
Hubble parameter, defined as EðzÞ ¼ HðzÞ=H0, whereH is
the Hubble parameter and H0 is its present (z ¼ 0) value.
dH is defined as dH ¼ c=H0, where c is the speed of light in
vacuum. We call D as the normalized line of sight
comoving dustance.
The inverse normalized Hubble parameter (E−1) can be

computed from D by taking derivative of Eq. (1) and hence
EðzÞ becomes

EðzÞ ¼
�
dDðzÞ
dz

�
−1
: ð2Þ

Form Eqs. (1) and (2), it is clear that if we make
parametrization to D, we shall always get analytic form of
both D and E. On the other hand, if we make para-
metrization to E, we shall not always get an analytic
expression for D. This is the reason that we shall first make
parametrization to DðzÞ and consequently, we shall get
parametrization for EðzÞ.

B. EðzÞ and DðzÞ in ΛCDM model

We shall soon see that our parametrization is based on
the correction to the flat ΛCDM model (we simplify call
this as the ΛCDM model). So, we first mention the
expression for the normalized Hubble parameter (denoted
by EΛCDM) given by

EΛCDMðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0ð1þ zÞ3 þ 1 − Ωm0

q
; ð3Þ

whereΩm0 is the present value of the matter-energy density
parameter. Consequently, we get the normalized line of
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sight comoving distance (denoted by DΛCDM) for the
ΛCDM model given by [obtained by putting Eq. (3) in
Eq. (1)]

DΛCDMðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Ωm0

p
�
−2F1

�
1

3
;
1

2
;
4

3
;

Ωm0

Ωm0 − 1

�

þ ð1þ zÞ2F1

�
1

3
;
1

2
;
4

3
;
ð1þ zÞ3Ωm0

Ωm0 − 1

��
; ð4Þ

where 2F1 is the hypergeometric function.

C. The parametrization

Eq. (2) can be linearized in derivative by defining E−1 ¼
F given by

F ¼ dD
dz

¼ −a2
dD
da

; ð5Þ

where a is the scale factor and it is related to the redshift
given by a ¼ 1=ð1þ zÞ. Using the above equation, we can
split F into two terms corresponding to the splitting ofD in
two terms respectively as follows:

F ¼ FΛCDM þ Fextra; ð6Þ
D ¼ DΛCDM þDextra; ð7Þ

Fextra ¼
dDextra

dz
¼ −a2

dDextra

da
; ð8Þ

where FΛCDM ¼ E−1
ΛCDM. The subscript “extra” is meant for

the extra contribution to the ΛCDM one both for F and D.
Now our task is to parametrize the Dextra term and
consequently we will get analytical expression for Fextra
using Eq. (8).

1. Parametrization of Dextra

We parametrize Dextra with the Taylor series expansion
(with respect to the scale factor, a) around the point a ¼ 0

with a modification given by Dextra ¼ R0 þ am
P

n
i¼0 Piai,

where R0 and Pis are the parameters in this parametriza-
tion. Here, n is an integer. At this stage, m can have any
positive value, i.e.,m ≥ 0. The reason to choose this kind of
parametrization is as follows: first of all, Eq. (1) suggests
that the value ofD at present is zero i.e.,Dðz ¼ 0Þ ¼ 0 and
its value continuously increasing with increasing redshift
provided EðzÞ > 0 (which is the case for the standard
cosmological scenario). Plus, we know that after a certain
high redshift, DðzÞ approximately approaches a constant
value provided EðzÞ is also a continuously increasing
function with increasing z (which is also the case for the
standard cosmological scenario). We impose this fact
through this parametrization, by the consideration that
Dextra approaches a constant value, R0 for a ≪ 1. And this
is possible for m ≥ 0. So, D has the limit given by

D ∼ R0 −
2F1ð13 ; 12 ; 43 ; Ωm0

Ωm0−1
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −Ωm0

p

þ Γð1
6
ÞΓð4

3
Þffiffiffi

π
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −Ωm0
6
p ffiffiffiffiffiffiffiffiffi

Ωm0
3
p þOðaϵÞ; ð9Þ

with ϵ > 0. The second and the third terms (i.e., the terms
without R0) in the right-hand side of the above equation is
a ≪ 1 limit to DΛCDM in Eq. (4). For a special case,
Ωm0 ¼ 0.3, the above equation becomes DðΩm0 ¼ 0.3Þ∼
3.30508þ R0 þOðaϵÞ.
Now, we rewrite the series expansion by defining n ¼

dþ 1 and Piþ1 ¼ Qi ∀ i ∈ ð1; dÞ given by

Dextra ¼ R0 þ am
�
P0 þ P1aþ

Xd
i¼1

Qia1þi

�
; ð10Þ

At present (a ¼ 1), D should be zero. This immediately
gives

R0 ¼ −P0 − P1 −
Xd
i¼1

Qi: ð11Þ

At this stage, no further restrictions or constraints are
required, if we are considering the parametrization forDðzÞ
only. But this is not complete yet. We shall have other
constraints, while we derive the parametrization for EðzÞ
from DðzÞ. We shall see this next.

2. Derived parametrization of Fextra

Using Eq. (8), we get derived parametrization for Fextra
from Eq. (10) given by

Fextra ¼ −a−ðmþ1Þ
�
mP0 þ ðmþ 1ÞP1a

þ
Xd
i¼1

ðmþ 1þ iÞQia1þi

�
: ð12Þ

From the above expression, we can see that the term
corresponding to the lowest power in a is given by

Term ðlowest power in aÞ ¼ −mP0amþ1: ð13Þ
At sufficiently higher redshifts (after the radiation-

dominated era), the Universe is dominated by matter. We
want to impose this condition in E2 in Eq. (12). To do so,
for the time being, we validate our parametrization from the
present time to the matter-dominated era. So, at this
moment, we are not considering radiation or any early
Universe contributions (later we will show how to modify
the parametrization for the early Universe contribution).
That means we want to make the expression of F in Eq. (6)
such that at z ≫ 1 (i.e., a ≪ 1), F behaves as in the matter-
dominated era. To do this, we first check how F behaves at
the small a limit for some special cases given below
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FMatterþCurvature ∼
a

3
2ffiffiffiffiffiffiffiffiffi

Ωm0

p −
a

5
2Ωk0

2Ω
3
2

m0

þOða7
2Þ; ð14Þ

FΛCDMþCurvature ∼
a

3
2ffiffiffiffiffiffiffiffiffi

Ωm0

p −
a

5
2Ωk0

2Ω
3
2

m0

þOða7
2Þ; ð15Þ

FΛCDM ∼
a

3
2ffiffiffiffiffiffiffiffiffi

Ωm0

p þOða7
2Þ; ð16Þ

where, in Eq. (14), we considered matter and curvature
contributions to total E2. In Eq. (15), we considered matter,
cosmological constant and curvature contributions to total
E2. This is the nonflat ΛCDM model and we call this as
oΛCDM model. In Eq. (16), we considered matter and
cosmological constant only to the total E2. This is the flat
ΛCDM model. Ωk0 is the present value of the curvature
energy density parameter. It is defined as Ωk0 ¼ −Kc2=H2

0

withK being the curvature of the spacetime.K < 0,K ¼ 0,
and K > 0 correspond to the open, flat, and closed
Universe respectively.
So, from the above small a limit in Eq. (16), it is clear

that the ΛCDM model (which is a subset in our para-
metrization) already gives required behavior at matter-
dominated era. Another way to see this is that, the extra
term, Fextra should be such that, it becomes dominated after
the early matter-dominated era. To get this behavior, the
required conditions onm becomes [by comparing Eqs. (13)
and (16)] mþ 1 > 3=2, i.e., m > 1=2. Note that, this
condition does not violate the previous condition m > 0.
The condition, m > 1=2 is not complete yet, because we

want to include the curvature term. To have this in our
parametrization, we impose: Termðlowest power in aÞ ¼
Curvature term, i.e., the term with a5=2. This is just making
the extra correctiononly in the late timeerawith the inclusion

of curvature terms. So, −mP0amþ1 ¼ − a5=2Ωk0

2Ω3=2
m0

. So, we get

m ¼ 3

2
; ð17Þ

P0 ¼
Ωk0

3Ω3=2
m0

: ð18Þ

Note that, now we have got a fixed value of m which
does not violate the previous condition m > 1=2. Also,
note that the above condition is equivalent to

E2 ∼Ωm0a−3 þΩk0a−2 þOða−1Þ; ð19Þ
where E is [computed from Eq. (6)] given by

E ¼ 1

FΛCDM þ Fextra
: ð20Þ

We are left with one important constraint that at present
E should be unity, i.e., Eða ¼ 1Þ ¼ 1. This can be rewritten

as Fextraða ¼ 1Þ ¼ 0, because FΛCDMða ¼ 1Þ ¼ 1 ¼
EΛCDMða ¼ 1Þ. Putting this constraint in Eq. (12), we get

P1 ¼ −
1

5

�
Ωk0

Ω3=2
m0

þ
Xd
i¼1

ð2iþ 5ÞQi

�
: ð21Þ

So, in our parametrization, the free parameters are
Q1; Q2;…; Qd. These can be considered as the dark energy
parameters with the dark energy degrees of freedom d. For
example, d ¼ 0 case is the minimal case, where there are no
free parameters and the dark energy degree of freedom is 0.
Note that, in our parametrization, the ΛCDM model is the
special case when d ¼ 0 and Ωk0 ¼ 0. For the case of
d ¼ 1, there is only one free parameter Q1 and the dark
energy degrees of freedom is 1. For the case of d ¼ 2, there
are two free parameters Q1 and Q2 and the dark energy
degrees of freedom is 2 and so on.
Another point to notice that, at first order in z, we get

D ≃ z, i.e., dc ≃ dHz. This further implies v ≃H0dc, where
v ¼ cz is the recessional velocity. This is the Hubble’s law.
So, our parametrization is consistent with the Hubble’s law.

D. Modification to include
the early Universe contribution

So far, we have considered that E behaves like matter-
dominated at higher redshifts instead of radiation-
dominated or others, i.e., the parametrization of E in
Eq. (20) is valid for the late time and matter-dominated
eras only. Now, we want to discuss how to include any early
universe correction, for example, the inclusion of the
radiation-dominated era. In our parametrization, we can
simply do that by adding the early Universe correction to
E2 without correcting the parametrization to D. This is
because, in the standard cosmology, E−1 is a monotonically
decreasing function with increasing z. This further ensures
that [from Eq. (1)], after certain redshift, D approaches
nearly a constant value [the zeroth-order term in a in the
right-hand side of Eq. (9)]. This is a good assumption that
this saturation already happens in the matter-dominated era
and any early Universe correction (before the matter-
dominated era) like the radiation term correction does
not change the values ofD significantly. So, we can express
total E2 (denoted by E2

T) as

E2
TðzÞ ¼ E2ðzÞ þ E2

earlyðzÞ; ð22Þ

where E2
early is the early Universe correction.

At present (z ¼ 0), ET should be unity. This immediately
fixes P1 [from Eqs. (20) and (22)] given by

P1 ¼ −
1

5

��
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − A0

p − 2

�
þ Ωk0

Ω3=2
m0

þ
Xd
i¼1

ð2iþ 5ÞQi

�
:

ð23Þ
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where A0 ¼ E2
earlyðz ¼ 0Þ. Now, we can see that we get

back Eq. (21), if we put A0 ¼ 0 in Eq. (23).
As mentioned before, the total D (denoted by DT) is

assumed to be the same as in Eq. (7), i.e.,

DT ≃D: ð24Þ

The above assumption is valid for A0 ≪ 1 and this is the
case since this is the early Universe correction.

1. Validity of the assumption in Eq. (24)

Let us shortly discuss the validity of the assumption in
Eq. (24) by considering early Universe correction is the
radiation correction only, i.e., E2

earlyðzÞ ¼ Ωr0ð1þ zÞ4,
where Ωr0 is the present value of the radiation energy
density parameter. In Fig. 1, we compare the approximated
total D [denoted by Dappx

T ; using Eq. (24)] with the actual
total D [denoted by Dact

T ; putting Eq. (22) in Eq. (1)] for
four choices of Ωr0 values mentioned in the figure. In this
figure, we have considered d ¼ 0 (minimal case). We see
that the accuracy is at percentage level (up to 0.5% and
1.75% at z ¼ 103 and z ¼ 105 respectively). Note that we
have checked this fact for d ¼ 0 case only, but one can
easily check that, for other values of d, this fact is true.
In the next sections, we will not consider any early

Universe corrections, since our next discussions do not

include higher redshifts like z > 1100. So, in the next
sections, we fix E2

earlyðzÞ ¼ 0 (or A0 ¼ 0).

E. Some other derived quantities

From the line of sight comoving distance, dcðzÞ, we
can compute the transverse comoving distance, dMðzÞ
given by [83]

dM ¼

8>>><
>>>:

dHffiffiffiffiffiffi
Ωk0

p sinh ð ffiffiffiffiffiffiffiffi
Ωk0

p
DÞ; if Ωk0 > 0;

dHD; if Ωk0 ¼ 0;
dHffiffiffiffiffiffiffi
jΩk0j

p sin ð ffiffiffiffiffiffiffiffiffiffijΩk0j
p

DÞ; if Ωk0 < 0:

ð25Þ

The luminosity distance and the angular diameter
distance are given by

dL ¼ ð1þ zÞdM; ð26Þ

dA ¼ dM
1þ z

; ð27Þ

respectively. The deceleration parameter can be written as

q ¼ ð1þ zÞE
0

E
− 1; ð28Þ

where 0 represents the derivative with respect to the
redshift. The equation of the state of the dark energy
can be written as

w ¼ −
�
1

3

�
Ωk0ð1þ zÞ2 þ 2ð1þ zÞEE0 − 3E2

Ωm0ð1þ zÞ3 þΩk0ð1þ zÞ2 − E2
: ð29Þ

F. Summary

We now present the main equations of the parametriza-
tion as a summary given by

D ¼ DΛCDM þ ½ð5 − 3aÞa3=2 − 2�Ωk0

15Ω3=2
m0

þ
Xd
i¼1

1

5
½−ða5=2ð2iþ 5ÞÞ þ 5aiþ5

2 þ 2i�Qi ð30Þ

F ¼ FΛCDM þ a5=2

2

�ða − 1ÞΩk0

Ω3=2
m0

þ
Xd
i¼1

að2iþ 5Þð1 − aiÞQi

�
: ð31Þ

We have mainly summarized the final expressions
for D and F respectively. The other expressions are
straightforward.

FIG. 1. Comparison of the approximated DT (computed from
Eq. (24) and denoted by Dappx

T ) with the total accurate one
(computed by putting Eq. (22) in Eq. (1) and denoted by Dact

T ).
Here, we have considered d ¼ 0 which is the minimal case,
where there is no dark energy degrees of freedom. Here,
E2
earlyðzÞ ¼ Ωr0ð1þ zÞ4. The parameter values, we fix, are given

by Ωm0 ¼ 0.3 and Ωk0 ¼ 0. We consider four choices of Ωr0

values and these are Ωr0 ¼ 0.0 (dashed-dotted green line), Ωr0 ¼
10−5 (solid black line), Ωr0 ¼ 5 × 10−5 (dotted blue line) and
Ωr0 ¼ 10−4 (dashed red line). Note that,Dappx

T can be seen asDact
T

with Ωr0 ¼ 0.
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III. DATA ANALYSIS AND MODEL COMPARISON

We mainly consider three kinds of cosmological data
which are listed below:

(i) We use the Planck 2018 results for TT;TE;EEþ
lowlþ lowEþ lensing from the cosmic microwave
background (CMB) observation for the base ΛCDM
model (with and without cosmic curvature) as prior
[5,84,85]. We denote this as “CMB.”

(ii) We consider the BAO measurements from different
surveys. For this, we closely follow [86] (see refer-
ences therein). We exclude the measurement of
eBOSS (the extendedbaryonoscillation spectroscopic

survey) emission-line galaxies (ELGs) at z ¼ 0.85
from [86] because of asymmetric standard deviation.
We denote this as “BAO”.

(iii) We also consider the Pantheon data for supernovae
type Ia observation [87]. We denote this as “SN.”

In this section, we constrain our model parameters along
with the cosmological parameters like h, Ωb0, and M
(including the cosmological parameters, Ωm0 and Ωk0)
with the cosmological data, mentioned above. Here, h is
defined as H0 ¼ 100 h km s−1 Mpc−1. Ωb0 is the present
value of the baryonic matter energy density parameter. It
arises both in the CMB distance prior data and BAO data.

FIG. 2. Triangle plot to show constraints on model parameters for d ¼ 1 case for four combinations of datasets CMB (black),
CMBþ BAO (blue), CMBþ SN (red) and CMBþ BAOþ SN (green). In this case, there is only one dark energy parameter, Q1 i.e.,
dark energy degrees of freedom is 1.
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TABLE I. 1σ ranges of the parameters for the case of d ¼ 1 for CMB, CMBþ BAO, CMBþ SN, and CMBþ
BAO þ SN combinations of datasets.

CMB CMBþ BAO CMBþ SN CMBþ BAOþ SN

h 0.736� 0.054 0.658þ0.024
−0.028 0.685� 0.027 0.6683� 0.0067

Ωm0 0.265þ0.035
−0.046 0.327� 0.026 0.302þ0.022

−0.025 0.3152� 0.0064
Ωk0 −0.005þ0.028

−0.022 −0.0059þ0.0023
−0.0028 −0.0019þ0.0089

−0.0074 −0.0067� 0.0019
Ωb0 0.0422þ0.0056

−0.0072 0.0523� 0.0043 0.0481þ0.0036
−0.0041 0.0504� 0.0011

Q1 0.20þ0.26
−0.32 0.007þ0.075

−0.092 0.022� 0.033 0.038� 0.016
M � � � � � � −19.409� 0.090 −19.466� 0.018

FIG. 3. Triangle plot for different parametrizations corresponding to different d to show how contour areas (covariances) among
cosmological parameters change with changing d. Here, we consider CMBþ BAOþ SN combination of datasets.
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Here, M is the peak absolute magnitude of type Ia super-
novae. M arises only when SN data is used [87].
To do parameter estimation, we consider flat priors on

the parameters given by

0.4 ≤ h ≤ 1;

0 ≤ Ωm0 ≤ 1;

−0.5 ≤ Ωk0 ≤ 0.5;

0 ≤ Ωb0 ≤ 0.2;

−21 ≤ M ≤ −18;

−100 ≤ Qi ≤ 100:

In Fig. 2, we constrain model parameters for d ¼ 1 case
for four combinations of datasets given by CMB (black),
CMBþ BAO (blue), CMBþ SN (red), and CMBþ
BAOþ SN (green). This is the case where the dark energy
degree of freedom is 1 and there is only one dark energy
parameter which is Q1. We list the 1σ ranges of the
parameters in Table I. We see that 1σ confidence regions
are relatively larger for CMB-only data. When combined
with one of the BAO and SN data, the confidence regions
become tighter. When CMB, BAO, and SN data are
combined altogether, the confidence regions become sig-
nificantly tighter. This is true both for cosmological
parameters (h, Ωm0, Ωk0, Ωb0, and M) and the dark energy
degrees of freedom related parameter, Q1. Note that, we
have not shown the contours for other cases for different
combinations of datasets (except for CMBþ BAOþ SN).
But one can check that a similar conclusion can be drawn
for the other values of d. We only show the results for
CMBþ BAOþ SN data for different values of d in the
next figure (to avoid showing many plots and tables).
In Fig. 3, we consider all three data together i.e., the

combination CMBþ BAOþ SN combination of datasets
and vary d (number of dark energy degrees of freedom) to
show how contour-areas increase with increasing degrees
of freedom. Gray, black, green, orange, and blue contour
regions are for d ¼ 0, 1, 2, 3, and 4 respectively. We list 1σ
ranges of the parameters in Table II for CMBþ BAOþ SN
data for different values of d. We can see that the variances

of each parameter and the contour areas of each pair of the
parameters increase with increasing d. However, an impor-
tant point to notice here is that this increment is significant
for the dark energy degrees of freedom related parameters,
i.e., for Qis, whereas this increment is not very significant
for kthe cosmological parameters except theΩk0 parameter.
The interesting point to notice that the standard deviation in
the Ωk0 parameter increases significantly with increasing d
for lower values of d, but after a certain values of d (around
d ¼ 3 or d ¼ 4), this increment gradually becomes insig-
nificant. This means the Ωk0 parameter is strongly corre-
lated to the dark energy parameters when the dark energy
degrees of freedom is smaller, but for larger dark energy
degrees of freedom, this correlation becomes weaker. It is,
thus, important to include spatial curvature terms in the
cosmological data analysis. Other cosmological parameters
are weakly correlated to the dark energy parameters. We
shall later see that this fact will be reflected in the next
sections when we talk about the Hubble tension or M
tension.
Now, we briefly discuss the comparison of our para-

metrization to some standard cosmological models. For the
standard cosmological models, we consider three types of
models given by oΛCDM, owCDM, and oCPL. The
oΛCDM, owCDM, and oCPL model correspond to the
dark energy equation state −1, constant, and evolving
respectively (for the details of these parameters, see
[55,56]). The prescript “o” represents the presence of the
spatial curvature terms in these models. With these models,
we compare our parametrizations (for the cases from d ¼ 0
to d ¼ 4) in two ways. One is by comparing the lnZ
values, where Z is the Bayesian posterior probability
distribution. Another way is by comparing the Akaike
information criterion (AIC). AIC is defined as AIC ¼
χ2min þ 2κ, where χ2min is the chi-square value corresponding
to the best fit values of the parameters obtained from the
data analysis. κ is the total number of parameters for a
particular parametrization or model. We list the lnZ and
AIC values in Table III. We also compare the values of lnZ
and AIC with the oΛCDM model for a particular
parametrization by defining Δ1 and Δ2 such that Δ1 ¼
lnZ − lnZðoΛCDMÞ and Δ2 ¼ AIC − AICðoΛCDMÞ

TABLE II. 1σ ranges of the parameters for the CMBþ BAOþ SN combination of datasets for d ¼ 0, 1, 2, 3 and 4.

d ¼ 0 d ¼ 1 d ¼ 2 d ¼ 3 d ¼ 4

h 0.6616� 0.0058 0.6683� 0.0066 0.6672� 0.0068 0.6698� 0.0069 0.6645� 0.0083
Ωm0 0.3197� 0.0061 0.3151� 0.0063 0.3165� 0.0066 0.3144� 0.0067 0.3193� 0.0080
Ωk0 −0.0057� 0.0019 −0.0067� 0.0019 −0.0084� 0.0027 −0.0125� 0.0041 −0.0165� 0.0049
Ωb0 0.05163� 0.00096 0.0504� 0.0011 0.0506� 0.0011 0.0501� 0.0011 0.0510� 0.0013
M −19.469� 0.018 −19.466� 0.018 −19.462� 0.019 −19.462� 0.018 −19.463� 0.019
Q1 � � � 0.037� 0.016 0.25� 0.23 2.1� 1.5 11.0� 5.8
Q2 � � � � � � −0.097� 0.11 −1.9� 1.4 −17.0þ8.3

−10
Q3 � � � � � � � � � 0.60� 0.49 12.1� 7.2
Q4 � � � � � � � � � � � � −3.3� 2.0
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respectively. If a model has a positive Δ1 value it is better
compared to oΛCDM and it is significantly better if
Δ1 > 5. On the other hand, if a model has a negative Δ2

value it is better compared to oΛCDM. Comparing both the
methods, we can see that our parametrizations with 0 ≤
d ≤ 2 are equally competitive models compared to the
oΛCDM, owCDM, and oCPL models.

IV. CAN LATE TIME MODIFICATION
SOLVE THE HUBBLE TENSION?

In this section, we discuss the Hubble tension (i.e., the
so-calledH0 discrepancies between early time observations

like CMB [5] and late time local distance ladder observa-
tions like SHOES [42]) in detail.
In Fig. 4, we show the Hubble tension, i.e., discrepancies

in H0 values between CMB data (and with other combi-
nations of datasets) and its local distance ladder measure-
ment from SHOES in the base ΛCDM model. The left and
right panels correspond to the flat and nonflat ΛCDM
models respectively. The H0 value and its standard
deviation corresponding to the SHOES observation is
given by [42]

H0 ¼ 73.2� 1.3: ð32Þ

In Fig. 4, the x-axis shows the H0 value and the y-axis
shows its normalized probability distribution, obtained
from different combinations of datasets. Black, blue, red,
green, and purple lines correspond to CMB, CMBþ BAO,
CMBþ SN, CMBþ BAOþ SN, and SHOES data respec-
tively. The upper panels correspond to the data analysis
without any H0 prior. The lower panels correspond to the
addition of H0 prior from SHOES observation, mentioned
in Eq. (32). Note that we use Eq. (32) as a Gaussian prior
for H0. From the upper-left panel, we can see that, for the
flat ΛCDM model, the central values of H0 corresponding
to CMB, CMBþ BAO, CMBþ SN, CMBþ BAOþ SN
data are around 4.5σ, 5.0σ, 4.1σ and 4.7σ away from the
corresponding central value of SHOES observation

TABLE III. Model comparison by lnZ and AIC. Here
we consider CMBþ BAO þ SN combinations of dataset.
Δ1 ¼ lnZ − lnZðoΛCDMÞ and similarly Δ2 ¼ AIC−
AICðoΛCDMÞ.
Model lnZ Δ1 AIC Δ2

oΛCDM 552.1 0 1085.86 0
owCDM 551.9 −0.2 1081.3 −4.56
oCPL 548.5 −3.6 1083.51 −2.35
d ¼ 0 552.4 0.3 1085.32 −0.54
d ¼ 1 549.7 −2.4 1082.12 −3.74
d ¼ 2 546.6 −5.5 1082.98 −2.88
d ¼ 3 544.9 −7.2 1135.93 50.07
d ¼ 4 539.1 −13.0 1595.82 509.96

FIG. 4. Hubble tension between CMB data (and with other combinations of datasets) and SHOES observation. The left and right
panels correspond to the base flat and nonflat ΛCDM models respectively.
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respectively. Comparing the upper-left and the lower-left
plots, we can see that, even with the addition of the H0

prior, the tension does not improve significantly.
In Fig. 4, in the right panels, we vary the spatial

curvature, Ωk0. Interestingly, from the upper-right panel,
we can see that the 1σ region corresponding to CMB data
overlaps with the 1σ region corresponding to the SHOES
observation. For the CMBþ SN combination of datasets,
the tension decreases a bit from 4.1σ to 2.5σ, when we vary
the Ωk0 parameter. For the other two combinations of
datasets, the tension does not improve significantly. That
means the inclusion of BAO data constrain the H0

parameter more significantly compared to CMB and SN
data. This fact can be seen more clearly in the lower-right
panel when we add the H0 prior. We can see that the H0

tension vanishes for the CMB alone data when we vary Ωk0
(without increasing any dark energy degrees of freedom).
The H0 tension reduces significantly to 0.9σ for CMBþ
SN data. But the tension does not decrease significantly
when we include the BAO data.
Next, we want to see if late time modification of the

cosmic expansion (i.e., by increasing the dark energy
degrees of freedom) can solve the Hubble tension or
not. To do this, we use our parametrization for different
d values to check how much tension can be decreased
for each data combination given by CMBþH0,
CMBþ BAOþH0, CMBþ SNþH0, and CMBþ
BAOþ SNþH0. And for any of these data combinations,

if Hubble tension vanishes, we check for which value of d it
happens so. To do so, we study both the flat and nonflat
cases separately to check the importance of the spatial
curvature term.
In Fig. 5, we plot the normalized probability distribution

of H0 for the CMBþH0 data both for flat and nonflat
cases. In this figure, gray, black, green, orange, and blue
colors represent d ¼ 0, 1, 2, 3, and 4 respectively and the
purple color corresponds to the SHOES value of H0. We
also follow the same color code till Fig. 8. The upper panel
shows that for the flat Universe, Hubble tension can be
solved for d ¼ 1 (i.e., with dark energy degree of freedom
1) or above. From the lower panel, we can see that the
Hubble tension can be solved with d ¼ 0 (corresponding to
no dark energy degrees of freedom) when we varyΩk0. This
is the case we have seen in the previous figure (from the
lower-right panel in Fig. 4) for the nonflat ΛCDM, which is
a model with no dark energy degrees of freedom.
In Fig. 6, we show the normalized probability distribu-

tion of H0 obtained from CMBþ BAOþH0 data and
compare it with the corresponding SHOES observation.
Upper and lower panels correspond to flat and nonflat
cases. Interestingly, with the inclusion of BAO data the
probability distributions of H0 are not significantly differ-
ent in flat and nonflat cases. That means the BAO data put a
strong constraint on theΩk0 parameter. From this figure, we
find that in this case, the Hubble tension can be solved for
d ¼ 3 (i.e., dark energy degrees of freedom 3) or above.

FIG. 5. Normalized probability distribution ofH0 from CMBþ
H0 data with different d values. Purple line corresponds to the
SHOES measurement of H0.

FIG. 6. Normalized probability distribution ofH0 from CMBþ
BAOþH0 data with different d values. Purple line corresponds
to the SHOES measurement of H0.
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In Fig. 7, we show the normalized probability distribu-
tion of H0 obtained from CMBþ SNþH0 data and
compare it with the corresponding SHOES observation.
For the flat case (from the upper panel), the Hubble tension
does not completely vanish but it significantly decreases
with increasing d. On the other hand, for the nonflat case
(from the lower panel), the Hubble tension vanishes for
around d ¼ 4 (i.e., dark energy degrees of freedom 4)
or above.
In Fig. 8, we show the normalized probability distribu-

tion of H0 obtained from CMBþ BAOþ SNþH0 data
and compare it with the corresponding SHOES observa-
tion. Both for flat and nonflat cases, we can see that the
Hubble tension does not significantly decrease for any
value of d for the CMBþ BAOþ SNþH0 data. Note that
we have checked this fact only up to d ¼ 4, i.e., up to dark
energy degrees of freedom 4. Although we have studied the
Hubble tension for d values up to 4, from the trend in Fig. 8,
it is clear that Hubble tension cannot be solved even with
immediate higher values of d (i.e., higher number of
degrees of freedom) except for unexpectedly very large
values of d. This is almost impossible to do the data
analysis with such a large number of parameters and we
should not consider a model which possesses such a large
number of parameters. So, we can safely say that, for a
reasonable good model (i.e., a model which does not have a
large number of parameters or does not possess any
unexpected abrupt changes in behavior at very low

redshifts), the Hubble tension cannot be solved by the late
time modification for the CMBþ BAOþ SN data.
The conclusion is that the late time modification of the

cosmic expansion can solve the Hubble tension for CMB,
CMBþ BAO, and CMBþ SN combinations of datasets,
but interestingly, when three data are combined, i.e., for
CMBþ BAOþ SN combination of datasets, the late time
modification cannot solve the Hubble tension.

V. IS M TENSION MORE FUNDAMENTAL
THAN H0 TENSION?

Recently, some authors like in [81,82] have claimed that
one should not use the H0 prior from distance ladder
observations like SHOES, mentioned in Eq. (32). This is
because the SHOES observation uses low redshift
(0.0233 < z < 0.15) data of type Ia supernova relative
magnitude to derive H0 from the absolute magnitude M.
See [34,81] for details. So, if we use type Ia supernovae
data (Pantheon sample here) and H0 prior simultaneously,
we use the low redshift supernovae data twice. In this sense,
it is wrong. Plus, derivation of H0 from M is a model-
dependent procedure (although model dependency is not
very significant because the redshift range is smaller as
0.0233 < z < 0.15). These are the two reasons that one
should avoid H0 prior and use M prior instead and check
whether there are any discrepancies in values of M between
early time observation and late time local distance ladder

FIG. 7. Normalized probability distribution ofH0 from CMBþ
SNþH0 data with different d values. Purple line corresponds to
the SHOES measurement of H0.

FIG. 8. Normalized probability distribution ofH0 from CMBþ
BAOþ SNþH0 data with different n values. Purple line
corresponds to the SHOES measurement of H0.
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observation. So, M tension should be considered more
fundamental than H0 tension and we should check if late
time modification can solve the M tension or not. See [81]
for more detailed discussions about this issue. So, in this
section, we use M prior and see how the results change.
The equivalent M prior corresponding to the SHOES

observation for the Pantheon sample (in the redshift range
0.0233 < z < 0.15) is given by [81]

M ¼ −19.2435� 0.0373: ð33Þ

For the CMB and CMBþ BAO combinations of data-
sets, the use of M prior is meaningless. It can be used only
when Supernova type Ia (here Pantheon Sample) or
equivalent data is included in the data analysis. So, we
repeat the data analysis for CMBþ SN in Fig. 9 (corre-
sponding to Fig. 7) and CMBþ BAOþ SN in Fig. 10
(corresponding to Fig. 8) combinations of datasets respec-
tively with M prior. In Figs. 9 and 10, we compare three
cases given below.

(i) In the first case, we keepH0 prior as usual, i.e., same
as in the previous section. We represent this by
dashed lines.

(ii) In the second case, we keep H0 prior but exclude
data of the range (0.0233 < z < 0.15) from Pan-
theon Sample and we denote this sample as SN2. We
represent this by dotted lines.

(iii) Finally, in the third case, we use M prior instead of
H0. We denote this by solid lines.

In Fig. 7, we have seen that the nonflat d ¼ 4 (or above)
parametrization can solve the Hubble tension in the case of
CMBþ SN data. So, we take this model in Fig. 9 and
compare the three cases mentioned above. In this figure and
the next figure, in the top panels, the x-axis and the y-axis
correspond to the H0 and its normalized probability
distribution respectively. Similarly, in the bottom panels,
the x-axis and the y-axis correspond to the M and its
normalized probability distribution respectively. From the
top panel in Fig. 9, we can see that H0 follows the SHOES
value both for first (CMBþ SNþH0) and second cases
(CMBþ SN2þH0). It is obvious because we have already
seen that (from Fig. 7), for the case of CMBþ SNþH0,
the H0 value already merges with the SHOES H0 value.
And since SN2 data has a lesser number of data points
compared to SN data, it has the lesser constraining power
onH0, thus, for the case of CMBþ SN2þH0 data, theH0

value would more easily merge with SHOES value of H0.
The H0 value increases a bit for the third case i.e., for
CMBþ SNþM data. One can check that this fact is
consistent with [81]. On the other hand, from the bottom
panel, we can see that the M value is lesser in the first case
(CMBþ SNþH0) compared to the third case
(CMBþ SNþM). The M value for second case (CMBþ
SN2þH0) is further lesser. The third case CMBþ SNþ
M in the bottom panel shows that M tension can also be
solved by the nonflat d ¼ 4 (or above) parametrization. In
summary, the results from the three cases are a little bit
different but these differences are not very significant.

FIG. 9. H0 and M tension comparison for CMBþ SN combi-
nation of datasets.

FIG. 10. H0 andM tension comparison for CMBþ BAOþ SN
combination of datasets.
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In Fig. 10, we repeat the same plot as in Fig. 9 but for the
CMBþ BAOþ SN data. Here, we do it for the nonflat
d ¼ 4 parametrization (since it has the highest number of
degrees of freedom or the parameters in our analysis). Here,
we can see that neitherH0 tension nor theM tension can be
solved for d ≤ 4 parametrization. Other behaviors are
similar as in the previous figure. One extra fact to learn
from this figure is that when CMB, BAO, and SN data are
combined, the M tension is slightly larger compared to the
H0 tension. To mention, the H0 tensions are at 3.7σ, 3.2σ,
and 4.2σ confidence levels for CMBþ BAOþ SNþH0,
CMBþ BAOþ SN2þH0, and CMBþ BAOþ SNþM
respectively, whereas the M tensions are at 5.1σ, 5.1σ, and
4.7σ confidence levels for CMBþ BAOþ SNþH0,
CMBþ BAOþ SN2þH0, and CMBþ BAOþ SNþ
M respectively. So, the M tension is a little bit larger than
the Hubble tension.

VI. CONCLUSION

We present an analytical parametrization to the line of
sight comoving distance and the normalized Hubble
parameter to study the late time modification of the cosmic
expansion beyond the ΛCDM model. This parametrization
includes the contribution from spatial curvature terms as
well as it captures accurate higher redshift behaviors as
well. In this way, all the background quantities (related to
CMB, BAO, and SN data) become analytic. Thus, it is
easier to implement in the data analysis.
With this parametrization, we put constraints on impor-

tant background cosmological parameters like h, Ωm0, Ωk0,
Ωb0, andM. Constraint onΩb0 comes when CMB and BAO
data are included and the constraint on M comes when SN
data is included. We find that CMB, BAO, and SN data
combined put significant constraints on the background
evolution of the Universe.
We also check if late time modification of the cosmic

expansion can solve the so-called Hubble tension between
early Universe observation and the late time local distance
ladderobservations likeSHOES.Wefindthat this tensioncan
be solved between CMB&SHOES, between CMBþ BAO
& SHOES, and between CMBþ SN & SHOES by the late
time modification. But, when CMB, BAO, and SN data are

combined and compared with SHOES, the Hubble tension
cannot be solved by late time modification. This is because
the CMBþ BAOþ SN combination of datasets put strong
enough constraints on background evolution and henceH0,
so the introductionof SHOESH0 prior does not significantly
pull the H0 value toward the corresponding SHOES value.
Recently, some authors like in [81,82] have claimed that

one should consider M prior instead of H0 prior and try to
solve the M tension instead of H0 tension between early
and local cosmological observations. This is because local
distance ladder observations like SHOES already use low
redshift (0.0233 < z < 0.15) type Ia supernova data to
derive H0 from M with some parametrized models of the
luminosity distance, so when we use SN data and H0 prior
simultaneously, we use the low redshift SN data twice.
Also, the derivation of H0 is not model-independent.
Although the model dependency on such low redshifts is
not that significant, for accurate results, we cannot ignore it.
So,with thismotivation,we also replace theH0 prior byM

prior and check if late time modification can solve the M
tension between early and late time local observations. For
the case of CMB andCMBþ BAOdata, it is meaningless to
useM prior or try to solveM tension, since parameterM is
not involved in these two data. But, it is involved in SN data,
sowe check theM tension for the two cases, CMBþ SN and
CMBþ BAOþ SN with the M prior. We find that the late
time modification can solve theM tension between CMBþ
SNandSHOESbut cannot solve it betweenCMBþ BAOþ
SN and SHOES. This is because CMBþ BAOþ SN data
combined put tight constraints on M value as well.
For the CMBþ BAOþ SN combination of datasets, we

also find another interesting fact that the M tension is little
bit higher than the corresponding H0 tension.
In summary, we find that the late time modification of the

cosmic expansion does not solve the Hubble tension nor the
M tension when we combine CMB, BAO, and SN data.
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