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CNRS/IN2P3 53, avenue des Martyrs, 38026 Grenoble cedex, France

(Received 4 October 2021; accepted 2 March 2022; published 18 March 2022)

Most of the phenomenology of loop quantum gravity in the cosmological sector is based on the so-called
holonomy correction to the Hamiltonian constraint. It straightforwardly modifies the Friedmann equations.
In this work, we investigate the influence of corrections generalizing the one usually used in loop quantum
cosmology. We find that a long enough inflation phase can be generated by purely quantum geometrical
effects but we also underline the limitations of this scenario. In addition, we study the effects of generalized
holonomy corrections on an inflationary phase generated by a massive scalar field. At the level of
perturbations, we investigate in detail the consequences on the primordial scalar power spectrum. The
results are actually quite general and can be used beyond the “loop” framework.
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I. INTRODUCTION

Loop quantum gravity (LQG) is a nonperturbative
framework [1] providing a tentative quantization of
general relativity (GR). It has been expressed both in
the canonical form [2] and in a covariant way [3]. As for
all speculative theories the challenge is twofold. On
the one hand, one has to check internal consistency.
This is far from being a trivial requirement, especially in
quantum gravity. From gauge issues to infrared correc-
tions, quite a lot of questions remain—at least partially—
open (see, e.g., [4]). On the other hand, it is mandatory to
face the outstanding question of phenomenological con-
sequences [5]. Making links with observations is the key
missing ingredient for all attempts in quantum gravity,
including string theory [6].
In this article, we address the question of the robustness

of some predictions of LQG in the cosmological sector.
Many different aspects have already been investigated,
taking into account in particular (see, e.g., [7–15])

(i) the way initial conditions are set,
(ii) the validity of the minisuperspace approximation,
(iii) the backreaction effects,
(iv) the deformation of the algebra of constraints,
(v) the inclusion of shear and curvature,
(vi) the quantization of operators associated with neg-

ative powers of the volume operator,
(vii) the inclusion of effects inferred from quantum

reduced loop gravity or group field theory,
(viii) numerical results beyond the semiclassical approxi-

mation, etc.
Here, we tackle a different and somehow underestimated
question: the consequences of a generalized holonomy
correction. The point is not to invent what would be a
superexotic theory, with new free parameters, to boost the

phenomenological richness. Just the other way round, the
aim is to investigate how reliable are the predictions made
so far, taking into account implicit assumptions that went
mostly unnoticed and may play an important role.
The issue of quantization ambiguities in this frame-

work was pointed out in [16]. Those associated with the
quantization of the connection-based holonomy variable
might deeply influence the dynamics and constitute the
subject of this article. New theoretical arguments are being
given in [17], while the present work focuses on potential
observable effects. The question is especially important and
meaningful when considered from a renormalization point
of view.
In the following, the basics of loop quantum cosmology

(LQC) are first briefly reminded. We then go into the details
of generalized holonomy corrections. In the next section,
we show that a long period of inflation can be generated
using only a modified holonomy correction, without any
massive scalar field. We also highlight the limits of such
a model. The consequences of generalized holonomy
corrections on both the background inflationary dynamics
generated by a massive inflaton field and the scalar
primordial power spectrum are finally exposed.

II. FLRW LOOP QUANTUM COSMOLOGY

In order to set the notations and remind the basics to the
unfamiliar reader, we summarize the main ideas behind
LQC. This also allows the article to be self-contained. In
the fully constrained Ashtekar-Barbero formulation of GR,
the canonical variables are

Ai
a ≡ Γi

a þ γKi
a and Ea

i ≡ 1

2
εabcεijke

j
be

k
c; ð1Þ
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where Γi
a is the suð2Þ spin connection, γ the Barbero-

Immirzi parameter, Ki
a the extrinsic curvature, εabc the

totally anti-symmetric tensor, and eia the triads. In this
work, we use a, b, c as spacetime indices and i, j, k as
internal suð2Þ algebra indices. Both sets run from 1 to 3.
These canonical variables satisfy the relations

fAi
aðxÞ; Eb

j ðyÞg ¼ κγδijδ
b
aδ

3ðx − yÞ; ð2Þ

with κ ¼ 8πG.
As GR is a fully constrained theory, its Hamiltonian is

written as a sum of constraints, respectively called scalar,
vector and Gauss constraints. When homogeneity is
assumed, the scalar contribution Cg is the only one to
remain. The Hamiltonian can then be written using the
lapse function N as

CN
g ¼

Z
Σ
dx3NCg ð3Þ

¼ 1

2κ

Z
Σ
dx3

Nffiffiffi
q

p Ea
i E

b
j ðεijk Fk

ab − 2ð1þ γ2ÞKi
½aK

j
b�Þ; ð4Þ

with Σ a compact hypersurface. In a homogeneous,
isotropic, and flat space, the metric reduces to the form

ds2 ¼ −dt2 þ a2ðtÞδabdxadxb; ð5Þ

where the cosmic time is related to the 0-coordinate by
dt ¼ Ndx0. To avoid divergent integrals and an ill-defined
symplectic geometry, we perform the integration on an
arbitrary cubic fiducial cell of comoving volume V0. As
the homogeneity assumption also implies that spatial
derivatives vanish, the spin connection disappears and
the canonical variables become simply

Ai
aðtÞ ¼ γ _aðtÞδia ≡ cðtÞ

V1=3
0

δia; ð6Þ

where the dot represents a derivative with respect to the
cosmic time t, and

Ea
i ðtÞ ¼ a2ðtÞδai ≡ pðtÞ

V2=3
0

δai ; ð7Þ

with the relation

fc; pg ¼ κγ

3
: ð8Þ

Finally, the scalar constraint in this setting reduces to the
simple form

CN
g ¼ −

3

κγ2
N

ffiffiffiffi
p

p
c2: ð9Þ

The lapse function N represents a gauge freedom.
In addition to the gravitational sector, we introduce a

scalar field ϕ with an arbitrary potential VðϕÞ to investigate
an early inflationary period. Using the canonical variables
for the scalar field, namely ϕ and πϕ ¼ p3=2 _ϕ, such that
fϕ; πϕg ¼ 1, the total Hamiltonian describing the coupled
system can be written as

CN ¼ CN
g þ CN

m ¼ N

�
−

3

κγ2
ffiffiffiffi
p

p
c2 þ p3=2ρ

�
; ð10Þ

where ρ ¼ π2ϕ=ð2p3Þ þ VðϕÞ. The first Friedmann equa-
tion can easily be recovered using the evolution equation—
that is _p ¼ fp;CNg—with the choice N ¼ 1 and the
Hamiltonian constraint. In its usual form, it is written as

H2 ≡
�
_a
a

�
2

¼ κ

3
ρ: ð11Þ

Up to now, we have simply recovered the usual GR
result within a specific framework. An effective
Hamiltonian including corrections from LQG is yet to
be constructed. The first step toward canonical quantiza-
tion with well-defined operators in the quantum theory is
to rewrite the Hamiltonian constraint using the holonomy
of the connection. In other words, instead of deriving the
curvature operator Fi

ab directly from the connection c,
we use the holonomy h□ij

of the connection on a fiducial

square curve □ij of length μV1=3
0 , with edges in the

directions i, j. The holonomy measuring the extent to
which the parallel transport of a vector around closed
loops fails to preserve the transported vector, its form
depends on the chosen SUð2Þ representation for the
parallel transport along the curves. This is known as
the spin ambiguity. In standard LQC, the holonomy is
calculated using the fundamental 2D representation of
SUð2Þ, but the holonomy correction has been calculated
for arbitrary representations in [18]. In this section, we
describe the procedure for the fundamental spin 1=2
representation and we recall the procedure to follow for
general corrections.
In the harmonic gauge, whereN ¼ p3=2, the Hamiltonian

constraint in terms of the curvature operator reads

Ch
g ¼ −

1

2κγ2
p2V2=3

0 ēai ē
b
jF

k
ab; ð12Þ

where the superscript h stands for the harmonic gauge and ēai
are the cotriads such that qab ¼ a2ðtÞēiaējbδij. The holonomy
corrected curvature operator in the fundamental representa-
tion is
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Fk
ab ¼ lim

μ→0

−2
μ2V2=3

0

Trfh□ij
τkgēiaējb; ð13Þ

where τk are the generators of the suð2Þ algebra and, in this
case, are represented by the Pauli matrices. By taking the
limitμ → 0, the usual definition of the curvature operator and
of the Hamiltonian of standard GR are recovered. However,
LQG teaches us that the lowest nonzero eigenvalue of the
quantum area operator is λ2 ¼ 4

ffiffiffi
3

p
πγl2pl, hence taking the

limit down to zero is in principle not allowed. One therefore
chooses μ → μ̄ ¼ λ=

ffiffiffiffi
p

p
as an estimator of the smallest

possible length for the edge of the square curve. The
holonomy can then be calculated along a closed curve
defined by

h□ij
¼ hi∘hj∘h−i∘h−j; ð14Þ

where hϵi ≔ expfϵμcτig; ð15Þ

with ϵ ¼ �1. Putting everything together, one obtains
the Hamiltonian constraint of LQC coupled to a scalar field,
that is

Ch ¼ −
3

κγ2μ̄2
p2 sin2ðμ̄cÞ þ p3ρ: ð16Þ

This modified Hamiltonian can be recovered from the
Hamiltonian of GR using the substitution

c2 →
sin2ðμ̄cÞ

μ̄2
; ð17Þ

usually called “the holonomy correction.” Finally, it is
possible to derive the modified Friedmann equation of LQC
using _p ¼ fp;Chg, together with the Hamiltonian con-
straint Ch ¼ 0. This leads to:

H2 ¼ κ

3
ρ

�
1 −

ρ

ρc

�
; ð18Þ

with ρc ¼ 3=ðκγ2λ2Þ. The remarkable feature of this
new equation is the resolution of the big bang singularity.
When ρ → ρc the Hubble parameter vanishes, as obvious
from Eq. (18), and a bounce occurs instead of the GR
singularity.1 When choosing the usual value for the
Barbero-Immirzi parameter γ ¼ 0.2375, the critical density
is of the order of ρc ≈ 0.41ρPl.
The general case for the curvature operator, calculated

using an arbitrary d-dimensional irreducible representation
of SUð2Þ, was studied in [21,22]. A new closed formula for

the Hamiltonian of flat FLRW models regularized with
arbitrary spins was found in [18] and happens to be
polynomial in the basic variables, which corresponds to
well-defined operators in the quantum theory (taking also
into account the inverse-volume corrections). The key-
point lies in the fact that the computation in a representation
of spin j of the trace of an SUð2Þ group element does not
require the explicit knowledge of all its matrix elements and
can be reduced to an expression involving only the trace in
the fundamental representation and the class angle. The
curvature operator can then be written as

Fk
ab ¼

−3
dðd2 − 1Þ

1

μ̄2V2=3
0

sin2ðμ̄cÞ
sin θ

∂
∂θ

�
sinðd · θÞ
sin θ

�
εkijē

i
aē

j
b;

ð19Þ

with

θ ¼ arccos

�
cosðμ̄cÞ þ 1

2
sin2ðμ̄cÞ

�
: ð20Þ

This was derived with a technique quite similar to the one
described previously for the holonomy regularization.
Another technique to find the curvature operator, called
connection regularization, can also be effectively consid-
ered [18]. In this approach, a new definition of the curvature
operator, only valid in homogeneous space, is used and the
result for Fk

ab is slightly different. In the literature, higher
order holonomy corrections were also investigated in
details [22–24]. They arise when higher order terms in
powers of μ̄, usually neglected, are taken into account in the
expression for the regularized curvature. There could exist a
link between these higher order holonomy corrections and
the contribution of higher spin representations. However, it
was shown in [18] that these effects have actually very
different physical consequences. At any order in holonomy
corrections, a physical Hilbert space can be rigorously
constructed and a complete family of Dirac observable can
be identified [22].
It is therefore mandatory to understand the cosmological

implications of more general holonomy corrections.

III. COSMOLOGY WITH ARBITRARY
HOLONOMY CORRECTIONS

Instead of focusing on specific cases within the LQC
framework with either different spin representations or
higher order terms, we remain as general as possible for the
expression for the holonomy correction. This can be
studied by the substitution

c2 → g2ðc; pÞ; ð21Þ

where gðc; pÞ is an arbitrary function such that, in the low
energy limit, standard GR is recovered, that is gðc; pÞ → c.

1We however want to emphasize that contrary to what is often
believed, a past singularity is not unavoidable in GR, even
without exotic matter contents [19,20].
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It should be emphasized that this is not only a way of
taking into account the lessons from specific situations
in LQC, but that this also make sense from a fully
generic quantization ambiguity/renormalization viewpoint.
Furthermore, in the totally constrained Hamiltonian for-
malism of GR, all the constraints are first class. We do not
relax this requirement so that the evolution operator keeps
the subspace of physical states invariant. As shown in [25],
keeping only first class constraints and following the usual
Dirac prescriptions adds an extra condition on the function
gðc; pÞ:

gðc; pÞ ¼ 1

μ̄
fðbÞ; ð22Þ

where fðbÞ is an arbitrary function of b ¼ μ̄c, which must
behave as fðbÞ ≈ b at low energies (i.e., when b ≪ 1). As
opposed to [25], we used the parameter λ to respect the
units of length of gðc; pÞ and be consistent with LQC.
Fortunately, this is fully compatible with the correction
given in Eq. (19), ensuring that any holonomy modification
coming from an arbitrary spin-representation will keep
the algebra of constraints consistent. It is quite remarkable
that the “anomaly freedom” requirement (see [26–28] for
general considerations) allows one to sharpen the general
expression, in a way precisely compatible with known
corrections expected in the loop framework. The simple—
and mandatory—fact that the evolution vector is asked to
be parallel to the submanifold of constraints severely
reduces the a priori freedom.
The modified equations of motion for the canonical

variables c and p are calculated using Hamilton’s equa-
tions. It is more natural to write them in terms of p and b.
Together with the Hamiltonian constraint, they take the
form

_b ¼ −
λκγ

2
ρð1þ wÞ; ð23Þ

_p ¼ 2

γλ
pfðbÞf0ðbÞ; ð24Þ

ρ

ρc
¼ f2ðbÞ; ð25Þ

where f0ðbÞ should be understood as dfðbÞ=db, w ¼ P=ρ
and P ¼ π2ϕ=ð2p3Þ − VðϕÞ. To derive Eq. (23) we used the
continuity equation

_ρ ¼ −3
_p
2p

ρð1þ wÞ: ð26Þ

A general modified Friedmann equation can be found using
H ¼ _p=ð2pÞ together with the constraint (25) and can be
written as

H2 ¼ κ

3
ρðf0ðbÞÞ2: ð27Þ

Since, by construction, fðbÞ → b when b → 0, we indeed
recover the usual Friedmann equation H2 ¼ κρ=3 in this
limit. Let us now investigate the behavior of the model
starting in a regime where GR is valid and going backward
in cosmic time t, toward a classical singularity associated
with ρ → ∞ in GR. Using the null energy condition,
w ≥ −1 together with Eqs. (23) and (24) one can easily
show that db=dt < 0∀ t. Hence, if we start with b > 0 in
the GR regime, b is always positive and increasing when
going backward in time. This is expected as, in the GR
limit, the proportionality relation ρ ∝ b is satisfied and the
density increases in the past direction. Furthermore, since
one has fðbÞ ≈ b in the GR regime, the function f is
monotonic and strictly increasing with b around b ¼ 0. In
the case where there exists a local maximum bbounce > 0,
implying f0ðbbounceÞ ¼ 0, one can see with Eqs. (25) and
(27) that the density has to reach a critical value ρb, where
the Hubble parameter vanishes. It is therefore meaningful
to conclude that the big bang singularity is resolved by a
bouncing scenario of geometrical origin if and only if
the holonomy correction reaches a local maximum. If the
function f is strictly monotonic, two different scenarios
have to be considered. Either lim

b→∞
fðbÞ ¼ ∞, in which case

the singularity is not resolved, or lim
b→∞

fðbÞ < ∞ and the

situation is similar to eternal inflation where ρ tends to a final
constant value behaving as a positive cosmological constant.

IV. FIRST REMARKS ON INFLATION FROM
THE HOLONOMY CORRECTION

A natural question arising in this framework is to wonder
whether it is possible to describe a long-lasting phase of
inflation using only a modification of the holonomy
correction without the need for a fluid satisfying the
equation of state w < −1=3. In the usual LQC framework,
the quantum geometrical super-inflation occurring after
the bounce cannot account for more than a few e-folds
and most of the known inflationary features are due to a
hypothetical massive scalar field filling the Universe.
Furthermore, one should also investigate if the inflation
associated with generalized holonomies could explain the
quasi-scale invariance of the power spectrum observed in
the cosmological microwave background (CMB). The
answer turns out to be positive. However, important
drawbacks inherent to the construction will be mentioned
in this section. We assume here that the content of the
Universe is a massless scalar field, that is w ¼ 1 at all
scales. We also restrict ourselves to holonomy corrections
such that there exists a bounce so as to keep the huge
benefit of the singularity resolution.
First of all, the correction fðbÞ has to be chosen so as to

ensure an exponential growth of the scale factor a. This is
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achieved by _H ≃ 0: the Hubble parameter is nearly constant
during inflation. From the modified Friedmann equa-
tion (27) and the Hamiltonian constraint (25), one can
easily conclude that the holonomy correction should take
the following form:

fðbÞ ∼
ffiffiffi
b

p
: ð28Þ

We assume that fðπÞ ¼ 0 and call bbi the value of b at the
beginning of inflation. We set b ¼ brh at the reheating,
when classical cosmology is recovered. It is therefore
necessary to find a function fðbÞ such that: (i) fðbÞ ∼ b
around b ¼ 0, to recover GR, (ii) fðbÞ ∼ ffiffiffi

b
p

for brh <
b < bbi during the inflationary period, and (iii) fðbÞ
reaches a maximum between bbi and b ¼ π to induce a
bounce. In order to make explicit that such a function can
be constructed, we give an arbitrary example:

f2ðbÞ ¼ ð1þ C1bÞ1−α sin2ðbÞ
1

C1 þ 1

XC1

n¼0

cos2nðbÞ ð29Þ

¼ ð1þ C1bÞ1−α
1þ C1

ð1 − cos2ðC1þ1ÞðbÞÞ; ð30Þ

where C1 can be chosen in accordance with the parameters
bbi and brh so as to obtain the desired inflationary duration.
The parameter α can be chosen to make the power spectrum
slightly red. To illustrate the behavior of this holonomy
correction, Eq. (30) is plotted on Fig. 1 for different values
of C1, assuming α ¼ 0. The higher the value of C1, the
lower the value of b at the end of inflation (denoted brh) and
the closer bbi to π. Let us take a closer look at Eq. (30)
in the case C1 ≫ 1. If b ≫ 1=

ffiffiffiffiffiffi
C1

p
, one indeed recovers

f2ðbÞ ∼ b, because the cosine term is small compared to 1
and C1b ≫ 1. On the other hand, when b ≪ 1=C1 one has
ð1þ C1bÞ → 1 while ð1 − cos2C1ðbÞÞ ∼ C1b2, leading to
f2ðbÞ ∼ b2. However, in the intermediate case, 1=C1 ≪
b ≪ 1=

ffiffiffiffiffiffi
C1

p
, ð1þ C1bÞ ∼ C1b while ð1 − cos2C1ðbÞÞ still

behaves as C1b2, leading to f2ðbÞ ∼ b3. Hence, the
transition at reheating does not straightforwardly go from

f2ðbÞ ∼ b to f2ðbÞ ∼ b2, but goes through transition phase,
behaving as f2ðbÞ ∼ b3. This is not problematic for our
purpose, but it is worth being pointed out. Equation (25)
shows that in order to haveN e-folds of inflation in a matter
dominated universe, one needs f2ðbrhÞe3N ¼ f2ðbbiÞ ∼ 1.
Therefore, if one chooses C1 ∼ e6N , the inflationary period
ends when brh ∼ e−3N ⇒ f2ðbrhÞ ∼ e−3N , leading to the
desired N e-folds. Then, the transition phase takes place
while e−6N < b < e−3N—that can call reheating—and
finally we recover classical cosmology for b < e−6N.
Obviously, a quite strong fine-tuning is needed but sol-
utions matching all the requirements can be found. We shall
discuss this issue later.
Another potential problem to consider is related with the

evolution of the energy density. In usual models of
inflation, where the exponentially accelerating expansion
is produced by a negative pressure fluid, the density of
the latter stays roughly constant around (slightly above)
the density of reheating ρ ∼ ρrh. However, the density of
radiation, dust or a massless scalar field evolve as a−4, a−3,
and a−6, respectively, thus increase exponentially during
inflation as well (when thinking backward in time). If
inflation is of quantum geometrical origin and not caused
by the standard mechanism of a field slowly rolling on
its potential, there is no reason to assume that the usual
“contents” are not present and possibly dominant. This
means that if one requires a reheating around the GUT scale
TGUT ∼ 1015 GeV and imposes roughly N ¼ 65 e-folds of
exponential expansion, the energy at the beginning of
inflation Tbi would be vastly trans-Planckian. On the other
hand, one can impose the maximum energy at the Planck
scale Tbi ∼ Tpl and simply ask for more e-folds before
the reheating than after, to solve the usual cosmological
problems. However this translates into Trh ≤ 1 TeV.
Although unusual, this value is not strictly ruled out by
observations.
Finally, it is worth emphasizing that the scalar power

spectrum, as observed in the CMB, cannot be easily
recovered for other contents than a massive scalar field.
To see this, let us consider a massless scalar field and
a holonomy correction of the form (30) with a sufficiently
long inflationary phase. In this example, we choose
Tbi ∼ Tpl and roughly N ¼ 35 e-folds. The gauge invariant
scalar perturbation can, in this context, be described by the
Mukhanov-Sasaki (MS) variables vkðηÞ and zðηÞ ¼ _ϕa=H,
where η is the conformal time, satisfying the equation

v00kðηÞ þ
�
k2 −

z00ðηÞ
zðηÞ

�
vkðηÞ ¼ 0: ð31Þ

It should be noticed that this classical equation is also the
one fulfilled by perturbations in the dressed metric/hybrid
quantization approach to LQC [29,30]. The scalar power
spectrum is obtained by

C1=2

C1=10

C1=1000

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

b

f2
(b

)

FIG. 1. Holonomy corrections as described by Eq. (30) for
different values of the parameter C1.
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PSðkÞ ¼
k3

2π2

���� vkz
����
2
����
k¼aH

≡ k3

2π2
jRkj2jk¼aH; ð32Þ

where, in the standard inflation theory, the curvature
perturbation Rk is constant for super-Hubble modes
k ≤ aH. The scalar power spectrum therefore keeps a
low amplitude matching the observed value. In the case
of the massless scalar field with an inflationary stage due to
the holonomy correction, one can show using Eq. (31) that
Rk is not constant for super-Hubble modes anymore.
During the inflationary period, the Hubble parameter H
is constant, a ∝ eHt and _ϕ ¼ 2

ffiffiffi
ρ

p
, meaning that the second

MS variable behaves as

zðaÞ ∼ a−1=2ð1þ3wÞ: ð33Þ

In the considered example w ¼ 1 but we keep the equation
of state arbitrary so that the conclusion remains general.
Rewriting the Mukhanov-Sasaki equation (31) with respect
to a and taking the limit of large values of a, as one might
expect for super-Hubble modes, we get

d2vk
da2

þ 1

a
dvk
da

−
2

a2
vk ¼ 0; ð34Þ

with solutions vðaÞ ∼ a and vðaÞ ∼ 1=a2. In standard
inflation with a massive scalar field, where w ≈ −1,
choosing the Bunch-Davies vacuum comes down to select-
ing the behavior vðaÞ ∼ a in quasi–de Sitter space, hence
one recovers Rk ¼ vk=z ∼ a0. In the case of a massless
field (w ¼ 1), such a choice of vacuum leads to the
behavior Rk ∼ a3 and therefore the scalar perturbations
with super-Hubble modes exponentially increase during
inflation. To illustrate this, the scalar power spectrum
computed from Eq. (31) for an inflation induced by a
holonomy correction with massless scalar field is shown
in Fig. 2. As one can see, the spectrum is scale invariant in

the UV and keeps its usual shape but the amplitude is
meaningless. In principle, there might exist another vacuum
selecting vðaÞ ∼ 1=a2 and one would recover Rk ∼ a0.
However, in the case of other matter contents, such as
radiation (w ¼ 1=3) or dust (w ¼ 0), the scalar perturba-
tions Rk cannot be frozen for k ≥ aH in geometric
inflation. This is an important point, often forgotten, which
should be taken into account in phenomenological studies.
It should however be emphasized that perturbations

were, more than a decade ago, reunderstood in the
framework of the effective theory of inflation [31]. This
“new” approach somehow disentangles the question of
perturbations themselves from the question of the process
which generates them. From this point of view, this work is
anyway interesting as the perturbations can be treated even
without any use of a scalar field. All that is needed is a
background and an effective “clock”.

V. FOCUS ON THE DURATION OF INFLATION

Detailed studies of the duration of inflation as predicted
by LQC have already been made in [14,32,33] for initial
conditions set in the remote past. In the case of a massive
scalar field playing the role of the inflaton, it was shown
that the number of e-folds, as predicted by LQC, is around
N ¼ 140. Interestingly, the number of e-folds varies only
slightly with respect to most contingent parameters. This
can easily be seen by studying trajectories in the potential

energy xðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðϕðtÞÞ=ρc

p
versus kinetic energy yðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_ϕ=ð2ρcÞ
q

plane. The number N ¼ 140 corresponds to a

quadratic potential VðϕÞ ¼ m2=2ϕ2 with a mass parameter
m ∼ 1.2 × 10−6. For other potentials, the number of e-folds
can be different, but remains of this order of magnitude as
long as one deals with confining potentials. Although
anisotropies can slightly decrease this value, the duration
of inflation is a robust property of the background in LQC
(a different proposal was however suggested in [34] but
relies on conditions set at the bounce, a path that we do not
follow here). The fact that this number is way smaller than
naïve expectations is a key feature of bouncing scenarios.
One can therefore naturally wonder if this prediction
changes for different shapes of the holonomy correction.
The set of initial prebounce conditions ðx0; y0Þ is described
using a phase parameter δ ∈ ½0; 2π½ such that

x0 ¼
ffiffiffiffiffi
ρ0
ρc

r
cos δ and y0 ¼

ffiffiffiffiffi
ρ0
ρc

r
sin δ; ð35Þ

where ρ0 is the initial energy density and defines how far
away in the past initial conditions are set. It has been
checked that the chosen distribution for δ is conserved over
time. For completeness, we reproduce the probability
distribution function (PDF) using the settings of [32] in
Fig. 3 with a uniform distribution of the phase parameter δ.
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FIG. 2. Scalar power spectrum obtained with a massless scalar
field from a stage of “geometrical” inflation entirely produced by
the modified holonomy correction.
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In the following, the mean value of the number of e-folds
for different holonomy corrections is calculated using such
a PDF.
In this section, we investigate the effect of the form of the

holonomy correction on the duration of inflation. For this
purpose, we follow the strategy described in [14,33]: we
assume a uniformly distributed set of initial conditions for δ
and the initial time t ¼ 0 sufficiently far in the contracting
branch so as to remain away from the quantum gravitational
regime. In order to stay conservative about the holonomy
correction shape, we study different general properties such
as an asymmetry, an increase of the maximum of f2, and a
flattening of the correction on the length of inflation. Overall,
we want to keep the asymptotic behavior of LQC, i.e.,
fð0þ δbÞ ¼ fðπ þ δbÞ ¼ δbþOðδb2Þ, hencewechoose a
correction of the form

f2ðbÞ ¼ sin2ðbÞð1þ A1bn1ðb − πÞn2Þ; ð36Þ

where ni ≥ 1, i ¼ 1, 2 and A1 ≥ 0, or

f2ðbÞ ¼ sin2ðbÞ 1

C1 þ 1

XC1

n¼0

cos2nðbÞ; ð37Þ

where C1 ≥ 1. Such parametrizations ensure the desired
behavior at the fix points b ¼ 0; π.
The results of the numerical simulations for different left

and right asymmetries are shown in Figs. 4 and 5. The left
panels represent the chosen holonomy corrections whereas
the right panels display the mean value of the PDF of the
number of e-folds when scanning the full range of initial
phases. It should be pointed out that the PDF is narrow
enough (σ ∼ 10 e-folds) so that its first moment gives the
relevant information. The strength of the asymmetry is
measured by the ratio I2=I1 between the integral of f2ðbÞ
on ½0; bmax� and the integral on ½bmax; π�, where bmax is the
value that maximizes f2ðbÞ. The general trend is a decrease
of the number of e-folds (although this is not true for very
small deformations).
The results of the simulations for different amplitudes

and plateaulike functions are displayed in Figs. 6 and 7,
respectively. In general, increasing the energy density at the
bounce decreases the number of e-folds and flattening the
correction (or reducing the energy of the bounce) increases
the length of inflation. Since the bounce energy density
grows up with max f2, as shown by Eq. (25), this result
seems counter-intuitive at first sight. It is true that the
inflation duration generally increases with the bounce
energy scale, but this is not the only important ingredient
relevant for the number of inflationary e-folds. Another key
parameter is the ratio between potential and kinetic energies
at the bounce xðtbÞ=yðtbÞ. For kinetic energy dominated
bounces, more time will indeed be required before the
potential energy finally dominates and the slow-roll
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PDF

FIG. 3. Probability distribution function of the number of
e-folds of inflation for a quadratic potential with m ¼ 1.2 × 10−6

in LQC.
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FIG. 4. Left: asymmetric holonomy corrections. Right: mean
value of the PDF of the number of inflationary e-folds.
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FIG. 5. Left: asymmetric holonomy corrections. Right: mean
value of the PDF of the number of inflationary e-folds.
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FIG. 6. Left: amplitude-varying holonomy corrections. Right:
mean value of the PDF of the number of inflationary e-folds.
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conditions are met. This leads to a lower inflation energy
scale than for potential energy dominated bounces. Thus,
bounces dominated by kinetic energy will actually lead to
shorter inflation phases. This is the reason why the PDF of
the number of inflationary e-folds in LQC is peaked around
low values of N, close to the experimental lower bound.
Setting initial conditions in the remote past of the con-
tracting branch with a flat PDF on the initial phase of the
scalar field leads to trajectories with kinetic energy domi-
nated bounces, with ratios xðtbÞ=yðtbÞ typically of order
10−6. In the present study, the higher max f2, the more
kinetic energy dominated the bounce is. This phenomenon
is shown in Fig. 8. First, this indeed confirms in the top
right and middle left plots, representing respectively
max f2 with respect to xðtbÞ=yðtbÞ and the number of
e-folds with respect to xðtbÞ=yðtbÞ, that max f2 has a
significant effect on this ratio, which in turn affects the
number of e-folds as expected. Using the middle and
bottom right plots, one can see that it takes longer for a
kinetic energy dominated bounce to start the inflationary
period, leading to a lower energy density at inflation, thus
lowering the number of e-folds.
There are several lessons to be learnt from this analysis.

There is an obvious loss of predictivity associated with a
possible generalization of the holonomy correction. This
can hardly come as a surprise. Whether this should be
considered as good or bad news depends on the point of
view. This obviously makes the theory less easily falsifi-
able. But this also opens up interesting possibilities. It
shows that desired cosmological behaviors can be obtained
by purely geometrical effects, relaxing the need for exotic
matter contents. This also means that, in principle, a good
knowledge of the cosmological dynamics can severely
constrain the shape of the holonomy correction. In par-
ticular, the minimum number of e-folds N > 60 required to
solve the horizon problem sets a constraint on the maxi-
mum of f2ðbÞ as N decreases when the maximum density
at the bounce increases. Most arbitrary shapes are prob-
lematic. It should however be underlined that as long as one
deals with moderate corrections to the usual sin2ðμ̄cÞ=μ̄2,
the effects on the background dynamics remain quite small
and the core of the known LQC predictions remains valid.

The ambiguities considered in this work do not, by
themselves, reveal a theoretical failure. So as to regularize
quantum operators associated with nonlinear functionals of
the fundamental fields, one relies on the diffeomorphism
invariant prescription of “point-splitting” [16]. It happens
to be that the regulator can be removed without encounter-
ing UV divergences. One is then left with a well defined
quantum Hamiltonian constraint, at the price of having
many different quantum theories. This is obviously rem-
iniscent of the usual problem of renormalization of quan-
tum fields: the correct theory must be fixed by the
renormalization conditions.

VI. EFFECTS ON THE PRIMORDIAL
POWER SPECTRA

We now analyze the effects of a modified holonomy
correction on the scalar power spectrum when considering
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FIG. 7. Left: plateau-like holonomy corrections. Right: mean
value of the PDF of the number of inflationary e-folds.
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FIG. 8. Top left: amplitude-varying holonomy corrections. Top
right: maximum of f2ðbÞ with respect to the ratio of potential to
kinetic energy of the scalar field at the bounce, xðtbÞ=yðtbÞ.
Middle left: mean value of the PDF of the number of inflationary
e-folds with respect to xðtbÞ=yðtbÞ. Middle right: mean value of
the elapsed time between the bounce and inflation with respect to
xðtbÞ=yðtbÞ. Bottom left: mean value of the scalar field at the
beginning of inflation with respect to xðtbÞ=yðtbÞ. Bottom right:
mean value of the ratio of the density at the beginning of inflation
over the one at the bounce with respect to xðtbÞ=yðtbÞ.

RENEVEY, MARTINEAU, and BARRAU PHYS. REV. D 105, 063521 (2022)

063521-8



an inflationary period generated by a massive scalar
field of mass m ¼ 1.2 × 10−6mPl. We keep the form of
the Mukhanov-Sasaki equation for the scalar perturbations
unchanged. This allows to specifically investigate the
effects of the modification of the background dynamics,
due to the new holonomy correction, on the shape of the
spectra, independently of possible modifications of the
perturbations propagation equation (which is anyway
beyond the scope of this study).
Figures 9 and 10 display comparisons of the usual LQC

spectrum (in gray) with spectra obtained using new back-
ground dynamics due to modified holonomy corrections
(in blue). Figure 9 represents a double bounce while a
single bounce at higher energy is shown in Fig. 10. The new
features in the spectra corresponding to the modified
dynamics are hardly distinguishable from the usual spec-
trum. The spectra remain (almost) scale invariant and
consistent with CMB data in the so-called ultraviolet
region, that is the region corresponding to the highest
presented wave numbers (and even higher values of kc), in
which the observable scales are located for almost all the
parameter space. The modifications to f2ðbÞ only impact
the details of the oscillations in the intermediate regime.

This was expected as those oscillations are mainly asso-
ciated with the bounce and their details depend on the
detailed dynamics at this time. The ultraviolet regime, i.e.,
the one of interest for comparison with data, is mostly
independent of the bounce dynamics as the wave numbers
of the corresponding modes are much greater than the
potential z00=z during the bounce phase. In other words,
those modes do not even feel the presence of the bounce(s)
It is however worth emphasizing that, as highlighted in
[35], the position of the oscillations is dictated by the value
of the potential z00=z evaluated at the bounce. Thus, sharper
bounces would lead to oscillations in the spectra located
further away in the ultraviolet regime. It is also worthwhile
to underline that modifications of f2ðbÞ around b ≈ 0 or π
would modify the low energy behavior and have a deeper
impact on the spectra.
We have previously seen that an asymmetry (in b) of the

holonomy correction can have a significant influence on the
evolution of the inflaton in the high energy regime. It is
therefore important to estimate the effects of asymmetries
in f2ðbÞ on the spectra. Associated results are shown in
Figs. 11 and 12. The main noticeable effect is an extension
of the oscillatory regime toward higher wave numbers.
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FIG. 9. Left: holonomy corrections for standard LQC (in gray)
and for a double bounce (in blue). Right: comparison between the
associated scalar power spectra (standard LQC in gray and with
modified holonomy correction in blue).
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FIG. 10. Left: holonomy corrections for standard LQC (in gray)
and for a higher energy bounce (in blue). Right: comparison
between the associated scalar power spectra (standard LQC in
gray and with modified holonomy correction in blue).
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FIG. 11. Left: holonomy corrections for standard LQC (in gray)
and for a left asymmetric bounce (in blue). Right: comparison
between the associated scalar power spectra (standard LQC in
gray and with modified holonomy correction in blue).
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FIG. 12. Left: holonomy corrections for standard LQC (in gray)
and for a right asymmetric bounce (in blue). Right: comparison
between the associated scalar power spectra (standard LQC in
gray and with modified holonomy correction in blue).
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This extension is however (for all the functions tested) not
sufficient to be game changing for the noticeable features
of primordial power spectra in loop inspired cosmologies.
All usual conclusions still hold. This effect only makes a
possible detection/invalidation of the bounce in CMB data
slightly more probable as it decreases a little the level of
fine tuning required to bring the window of comoving wave
numbers associated with CMB observations toward the
oscillatory regime.
It should be underlined that the situation might be totally

different in the case of the deformed algebra (DA) approach
to perturbations, where the equation of propagation of
perturbations is usually given by [36,37]:

v00kðηÞ þ
�
ΩðηÞk2 − z00ðηÞ

zðηÞ
�
vkðηÞ ¼ 0; ð38Þ

withΩ ¼ 1–2ρ=ρc. The change of sign ofΩ at high energies
can be interpreted as a switch from a Lorentzian to an
Euclideangeometry [38]. The apparition of thisΩ function in
theMSequation comes from its presence in the anomaly-free
algebra of constraints, more precisely in the Poisson bracket
between scalar constraints [28]:

fSa:f ½M�; Sa:f ½N�g ≈ΩDa:f ½qabðM∂bN − N∂bMÞ�; ð39Þ

where S and D correspond respectively to the scalar and
diffeomorphism constraints, the label a.f stands for
“anomaly-free,” and the ≈ symbol means that this relation
is satisfied on the hypersurface of constraints. But the Ω
function appears in this algebra as a consequence of the
modification of the kinetic term in the scalar constraint (by
the holonomy correction, that is Eq. (17) in the usual case).
If we assume a 1þ 1 dimensional toy model then Ω ¼
ð1=2Þd2f2ðbÞ=db2, which, in the case f2ðbÞ ¼ sin2ðbÞ, and
using the Hamiltonian constraint, gives back the previous
expression Ω ¼ cosð2bÞ ¼ 1–2ρ=ρc. It is thus clear that
modifying the form of fðbÞ would unavoidably modify the
expression of Ω and therefore the Mukhanov-Sasaki equa-
tion. As a consequence, the shape of the primordial power
spectra could be modified in a much more important way in
the deformed algebra scheme than in the approach presented
in this manuscript. This point definitely requires deeper
investigations that are not the purpose of this paper.
We have focused on the scalar spectrum which is the

more interesting one from the viewpoint of observations
(and the more intricate to calculate). The general trends
however obviously remain true for the tensor spectrum as

the new features are due to the modified background
dynamics.

VII. CONCLUSION

Quantization ambiguities are unavoidable. The only
serious requirement in this framework is to recover general
relativity (or the Wheeler-DeWitt equation) in the low
energy limit of the theory. This leaves an infinite dimen-
sional set of ambiguities in the choice of the function f.
Investigating few of its phenomenological properties was
the goal of this study.
We have shown that a long enough inflationary stage can

be generated by an appropriate generalized holonomy
correction without the need for matter violating the energy
conditions. This however requires a serious amount of fine-
tuning in the choice of the parameters entering the definition
of the function. Nevertheless this concept is ill-defined when
no natural measure is available. More profoundly, it is worth
emphasizing that the fine-tuning is a real issue onlywhen it is
required to produce a situation which is a priori singular or
specific (in a Bayesian sense). Otherwise, it is just a mere
versionof thenonproblematic tautology “if the lawshadbeen
different, theWorldwould be different.” In addition, we have
shown that even though a nearly scale invariant primordial
power spectrum can be generated, there are some (often
forgotten) associated issues to face, making the spectrum
hardly compatible with data.
The influence of the shape and amplitude of the holo-

nomy correction on the background dynamics has also been
investigated in details. The effects are quite weak and do
not change drastically the usual conclusions of LQC as
long as the used function remains close enough to the
standard case. Interestingly some new effects tend to
decrease the number of e-folds. This is a good news for
phenomenology. With 140 inflationary e-folds, all the
subtle quantum gravitational effects are deeply super-
Hubble today. Smaller values bring back the hope that
some footprints of the bounce might be seen in the CMB,
especially when taking into account nonlinear effects where
different modes fail to fully decouple one from the other.
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