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Since the advent of the accelerated expanding homogeneous universe model, some other explanations
for the type Ia supernova dimming have been explored, among which there are inhomogeneous models
constructed with exact Λ ¼ 0 solutions of Einstein’s equations. They have been used either to be a one
patch or to build Swiss-cheese models. The most studied ones have been the Lemaître-Tolman-Bondi
(LTB) models. However, these models being spatially spherical, they are not well designed to reproduce the
large scale structures which exhibit clusters, filaments, and nonspherical voids. This is the reason why
Szekeres models, which are devoid of any symmetry, have recently come into play. In this paper, we give
the equations and an algorithm to compute the redshift drift for the most general quasispherical Szekeres
(QSS) models with no dark energy. We apply it to a QSS model recently proposed by Bolejko and Sussman
(BSQSS model) who averaged their model to reproduce the density distribution of the Alexander and
collaborators’ LTB model which is able to fit a large set of cosmological data without dark energy. They
concluded that their model represents a significant improvement over the observed cosmic structure
description by spherical LTB models. We show here that this QSS model is ruled out by a negative
cosmological redshift, i.e., a blueshift, which is not observed in the universe. We also compute a positive
redshift and the redshift drift for the model of Alexander et al. and compare this redshift drift to that of the
ΛCDM model. We conclude that the process of averaging an unphysical QSS model can lead to obtain a
physical model able to reproduce our observed local universe with no dark energy need and that the redshift
drift can discriminate between this model and the ΛCDM model. For completeness, we also compute the
blueshift drift of the BSQSS model.
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I. INTRODUCTION

In 1998 the type Ia supernova (SN Ia) observations
revealed that their observed luminosity was lower than
what was expected in the cold dark matter (CDM) model
[1,2]. In other words, the SN Ia were found to be at a
distance farther than that predicted by the CDM model.
Also, the deceleration parameter was found to be negative
in the CDM model. A negative deceleration parameter
implies that the universe expansion rate is accelerating.
This can be explained in Friedmann-Lemaître-Robertson-
Walker (FLRW) metric models only if a fluid with negative
pressure is assumed to fill the universe. Such an exotic fluid
is named dark energy. Since this discovery, there have been
many dark energy models proposed in the literature, but
none of them satisfactorily addresses the question of its
origin and nature [3]. There are a number of reported cases
where the ΛCDM model cannot explain some observa-
tional phenomena, or where the constraint on cosmological

parameters coming from different experiments seem to be
inconsistent with each other [4,5].
However, there have been attempts to explain these

observations without assuming any dark energy compo-
nent. The main attempts can be broadly divided into two
categories: inhomogeneous models and modified gravity.
As the names suggest, the first category abandons the space
homogeneity assumption and the second category works
with modified Einstein’s equations (see, e.g., Refs. [6–8],
and Ref. [9] for a review). In this article, we limit ourselves
to the study of inhomogeneous models.
The two inhomogeneous solutions of Einstein’s equa-

tions which have been most frequently used in the literature
can be divided into two classes: Lemaître-Tolman-Bondi
(LTB) [10–12] models and Szekeres [13] models. The LTB
metric is a spatially spherical dust solution of the Einstein
equations while the Szekeres metric is a dust solution of
these equations with no symmetry, i.e., no Killing vector
[14]. One can find in the literature many LTB models and a
few Szekeres models which claim to explain the cosmo-
logical observations without assuming dark energy (see,
e.g., Ref. [15] for a review and also Refs. [16–18] for a*preet.tifr@gmail.com
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study of a particular Szekeres model not included in this
previous review). Since these solutions are considering
only dust as a gravitational source, they are valid only in the
universe region where the radiation effect is negligible, i.e.,
between the last scattering surface and our current location.
We will use them to study our local universe where dark
energy is supposed to have the strongest effect.
Most spherical LTB void models have been ruled out,

but more general nonspherical inhomogeneities still need
to be tested by observation [19]. More discriminators
should be computed to find out which model of the
universe can explain all the cosmological observations.
In this paper, we are interested in the study of the Szekeres
model proposed by Bolejko and Sussman [20], which,
once spatially averaged, reproduces qualitatively the
density profile of the LTB model of Alexander and
collaborators (A09 model) [21]. This LTB model is a
very good fit to the SN Ia data and is also consistent with
the WMAP three-year data and local measurements of the
Hubble parameter.
However, for models reproducing cosmological data

measured on our past light cone, the discrimination
between inhomogeneous models and ΛCDM models is
impossible. The problem is completely degenerate. This is
the reason why several tests using effects outside the light
cone have been proposed, one of these being the source
redshift drift while the observer’s proper time is elaps-
ing [22,23].
In a previous paper [24], we have calculated the redshift

drift for the axially symmetric Szekeres model of Ref. [25]
and compared it to the redshift drift in some LTB models
found in the literature and to that of the ΛCDM model. We
found that the redshift drift is indeed able to distinguish
between these different models.
Here, our first purpose was to compute the redshift drift

for the most general Szekeres model of Bolejko and
Sussman which displays no symmetry and for the LTB
A09 model to see whether upon averaging the redshift drift
changes significantly and then to compare these redshift
drifts to that in the ΛCDM model.
We have thus calculated the equations and written a

code able to compute, among other features, the redshift
and the redshift drift of the most general quasispherical
Szekeres (QSS) model. We have applied this code to
the Bolejko and Sussman quasispherical Szekeres
(BSQSS) model. We have also computed these quantities
for the A09 model with the same recipe used in our
previous [24] paper. However, we found that the BSQSS
model exhibits a negative cosmological redshift, i.e., a
blueshift, which is not observed in the universe. This
must be considered as enough to rule out the model;
however, for completeness, we have computed the blue-
shift drift for this model.
The structure of the present paper is as follows. In Sec. II,

we present the Szekeres models and the particular QSS

subclass used here. In Sec. III we display the differential
equations for the redshift and the redshift drift in the most
general QSS models and an algorithm to numerically
integrate them. In Sec. IV we compute the redshift and
the redshift drift in the model proposed by Bolejko and
Sussman [20]. In Sec. V, we display our results for the
redshift and redshift drift computation in the LTB model
studied by the A09 model [21]. In Sec. VI, we present our
conclusions.

II. SZEKERES MODELS

The Szekeres metric [13] is the most general dust
solution of Einstein’s equations. By the most general
solution we mean that this solution has no symmetry;
i.e., it has no Killing vector. In comoving and synchronous
coordinates the Szekeres metric is written as

ds2 ¼ c2dt2 − e2αdr2 − e2βðdx2 þ dy2Þ; ð2:1Þ

where α≡ αðt; r; x; yÞ and β≡ βðt; r; x; yÞ are two func-
tions which will be determined by the field equations.
Szekeres solutions are divided into two categories

depending upon the value of β0 where the prime denotes
derivative with respect to r. The class II family, where
β0 ¼ 0, is a simultaneous generalization of the Friedmann
and Kantowski-Sachs models [26]. Its spherically sym-
metric limit is the Datt-Ruban solution [27,28]. The class I
family where β0 is nonzero contains the LTB solution as a
spherically symmetric limit.
Therefore, we choose this class of solutions to study

Szekeres models. After a change of parameters more
convenient for our purpose [29] and after solving
Einstein’s equations, the class I Szekeres metric can be
written as

ds2¼ c2dt2−
ðΦ0−ΦE0=EÞ2

ϵ−k
dr2−

Φ2

E2
ðdx2þdy2Þ; ð2:2Þ

where ϵ ¼ 0;�1, Φ is a function of t and r, k is a function
of r, and

E ¼ S
2

��
x − P
S

�
2

þ
�
y −Q
S

�
2

þ ϵ

�
; ð2:3Þ

with SðrÞ, PðrÞ, QðrÞ, functions of r.
From (2.2) it can be seen that all three Friedmann limits

(hyperbolic, flat, and spherical) can be achieved only in the
case where ϵ ¼ þ1. This is induced by the requirement of a
Lorentzian signature for the metric. Since we are interested
in studying such an inhomogeneous model which becomes
homogeneous at large scales, i.e., before the last scattering,
we consider only the ϵ ¼ þ1 case. It is called the quasi-
spherical Szekeres solution. This QSS solution can be
imagined as a LTB model generalization in which the
constant mass spheres are nonconcentric. For the QSS
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metric with ϵ ¼ þ1 (2.2) the Einstein equations reduce to
the following two:

1

c2
_Φ2 ¼ 2M

Φ
− kþ 1

3
ΛΦ2; ð2:4Þ

where the dot denotes derivation with respect to t, Λ is the
cosmological constant, andMðrÞ is an arbitrary function of
r related to the density ρ via

κρc2 ¼ 2M0 − 6ME0=E
Φ2ðΦ0 −ΦE0=EÞ ; ð2:5Þ

where κ ¼ 8πG=c4.
The integration of (2.4) yields

�
ZΦ
0

dΦ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kþ 2M=Φ̃þ 1

3
ΛΦ̃2

q ¼ c½t − tBðrÞ�; ð2:6Þ

where tBðrÞ is an arbitrary function which is called bang
time function and it defines the initial moment of evolution.
When t0B ≠ 0, i.e., in general, this singularity instant is
position dependent, as in the LTB model. The plus sign
applies for expanding regions. The minus sign applies for
collapsing regions. Here, we study the QSS model
with Λ ¼ 0.
All the equations written so far are covariant under

coordinate transformations of the form r̃ ¼ gðrÞ. It means
that one of the six functions kðrÞ, SðrÞ, PðrÞ, QðrÞ, MðrÞ,
or tBðrÞ can be fixed at our convenience by the choice of g.
Hence, each Szekeres solution is fully determined by
only five functions of r and a coordinate choice. In the
BSQSS model, these functions are S, P, Q, M, and tB,
and the coordinate choice is Φðtls; rÞ ¼ r, where the
radial coordinate is the areal radius at the last scattering
instant, tls.

III. REDSHIFT AND REDSHIFT DRIFT
IN QSS MODELS

As stressed in the Introduction, our first aim was to
compute the redshift drift for the BSQSS model and to
compare it to that in the A09 model. However, while
calculating this drift, we first computed the redshift and
found that it was negative, i.e., a blueshift. Since a
cosmological blueshift is not observed in the universe,
this is enough to rule out the BSQSS model as a physical
cosmological model. Hence, the redshift drift, which, in
this model, would be a blueshift drift, should also be
unphysical. However, we do not claim that such a blueshift
is a QSS model general feature. Hence, since, to our
knowledge, the equations and method to calculate the
redshift drift for the most general QSS models have
never been displayed in the literature, we present them

in this section, so that they might be used in future
works to discriminate between physical QSS models and
other models.

A. Definition of the redshift drift

The redshift drift is the temporal change in the redshift
measured by an observer looking at the same comoving
source on her past light cone at different proper time. Its
mathematical definition is δz=δt0 which is explained
schematically in Fig. 1.
The redshift drift has first been calculated by Sandage

[22] and McVittie [23] in 1962 for FLRW models. Its
expression in these models is given by

δz
1þ z

¼ H0δt0

�
1 −

HðzÞ
ð1þ zÞH0

�
; ð3:1Þ

where H0 and HðzÞ are Hubble expansion rates at redshifts
0 or scale factor ða0 ¼ 1Þ and z, respectively. Since it is a
quantity evolving off the observer’s past light cone, it can
be used to suppress the degeneracy between models
reproducing the same cosmological data on this light cone.
It has been calculated for some LTB models [30,31], an
axially symmetric QSS model [24], Stephani models [32],
as well as in varying speed of light (VSL) theory [33] with
no dark energy and many other cosmological models
[34–44]. Since axially symmetric QSS models [25] are
not realistic universe models, we give two new recipes for
calculating the redshift drift for QSS models which do not
exhibit any symmetry.

B. The equations for the redshift and the
redshift drift

The geodesic equations for the QSS model in ðt; r; x; yÞ
coordinates are [45]

c2
d2t
ds2

þΦ;tr −Φ;t E;r =E
1 − k

ðΦ;r −ΦE;r =EÞ
�
dr
ds

�
2

þΦΦ;t
E2

��
dx
ds

�
2

þ
�
dy
ds

�
2
�
¼ 0; ð3:2Þ

FIG. 1. The redshift drift δz of a source, initially at a redshift z
on the past light cone of an observer at O, as measured by the
same observer at O0 after an elapsed time δt0 of the observer’s
proper time.
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d2r
ds2

þ 2c
Φ;tr −Φ;t E;r =E
Φ;r −ΦE;r =E

dt
ds

dr
ds

þ
�
Φ;rr −ΦE;rr =E
Φ;r −ΦE;r =E

−
E;r
E

þ 1

2

k;r
1 − k

��
dr
ds

�
2

þ 2
Φ
E2

E;r E;x −EE;xr
Φ;r −ΦE;r =E

dr
ds

dx
ds

þ 2
Φ
E2

ðE;r E;y −EE;yr Þ
Φ;r −ΦE;r =E

dr
ds

dy
ds

−
Φ
E2

1 − k
Φ;r −ΦE;r =E

��
dx
ds

�
2

þ
�
dy
ds

�
2
�
¼ 0; ð3:3Þ

d2x
ds2

þ 2c
Φ;t
Φ

dt
ds

dx
ds

−
1

Φ
Φ;r −ΦE;r =E

1 − k
ðE;r E;x −EE;xr Þ

�
dr
ds

�
2

þ 2

Φ

�
Φ;r −Φ

E;r
E

�
dr
ds

dx
ds

−
E;x
E

�
dx
ds

�
2

− 2
E;y
E

dx
ds

dy
ds

þ E;x
E

�
dy
ds

�
2

¼ 0; ð3:4Þ

d2y
ds2

þ 2c
Φ;t
Φ

dt
ds

dy
ds

−
1

Φ
Φ;r −ΦE;r =E

1 − k
ðE;r E;y −EE;yr Þ

�
dr
ds

�
2

þ 2

Φ

�
Φ;r −Φ

E;r
E

�
dr
ds

dy
ds

þ E;y
E

�
dx
ds

�
2

− 2
E;x
E

dx
ds

dy
ds

−
E;y
E

�
dy
ds

�
2

¼ 0: ð3:5Þ

And the null condition is

c2
�
dt
ds

�
2

−
ðΦ;r −ΦE;r=EÞ2

1 − k

�
dr
ds

�
2

−
Φ2

E2

��
dx
ds

�
2

þ
�
dy
ds

�
2
�

¼ 0: ð3:6Þ

Now, we choose the r coordinate as the affine parameter,
using the following transformation relation:

d2xμ

ds2
¼
�
dr
ds

�
2 d2xμ

dr2
þ d2r
ds2

dxμ

dr
: ð3:7Þ

Then, from (3.3) we have

d2r
ds2

¼
�
dr
ds

�
2
�
−2c

Φ01

Φ1

dt
dr

−
�
Φ11

Φ1

−
E;r

E
þ 1

2

k;r
1 − k

�

− 2
Φ
E2

E12

Φ1

dx
dr

− 2
Φ
E2

E13

Φ1

dy
dr

þ Φ
E2

1 − k
Φ1

Σ
�

¼ Uðt; r; x; yÞ
�
dr
ds

�
2

; ð3:8Þ

where

Φ1 ¼ Φ;r −ΦE;r=E; ð3:9Þ

Φ01 ¼ Φ;tr −Φ;tE;r=E; ð3:10Þ

Φ11 ¼ Φ;rr −ΦE;rr=E; ð3:11Þ

E12 ¼ E;rE;x − EE;xr; ð3:12Þ

E13 ¼ E;rE;y − EE;yr; ð3:13Þ

Σ ¼
�
dx
dr

�
2

þ
�
dy
dr

�
2

; ð3:14Þ

and

U ¼ −2c
Φ01

Φ1

dt
dr

−
Φ11

Φ1

þ E;r

E
−
1

2

k;r
1 − k

− 2
Φ
E2

E12

Φ1

dx
dr

− 2
Φ
E2

E13

Φ1

dy
dr

þ Φ
E2

1 − k
Φ1

Σ: ð3:15Þ

The above transformation will bring the geodesic
equations and the null condition equation in the following
form:

c2
d2t
dr2

þΦ1Φ01

1 − k
þΦΦ;t

E2
Σþ cU

dt
dr

¼ 0; ð3:16Þ

d2x
dr2

þ 2c
Φ;t

Φ
dt
dr

dx
dr

−
1

Φ
Φ1

1 − k
E12 þ

2Φ1

Φ
dx
dr

−
E;x

E

�
dx
dr

�
2

− 2
E;y

E
dx
dr

dy
dr

þ E;x

E

�
dy
dr

�
2

þU
dx
dr

¼ 0; ð3:17Þ

d2y
dr2

þ 2c
Φ;t

Φ
dt
dr

dy
dr

−
1

Φ
Φ1

1 − k
E13 þ

2Φ1

Φ
dy
dr

þ E;y

E

�
dx
dr

�
2

− 2
E;x

E
dx
dr

dy
dr

−
E;y

E

�
dy
dr

�
2

þ U
dy
dr

¼ 0; ð3:18Þ

c2
�
dt
dr

�
2

−
Φ2

1

1 − k
−
Φ2

E2
Σ ¼ 0: ð3:19Þ
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The equation for the redshift in QSS models is [26,45]

dz
dr

¼ 1þ z
c

_Φ0 − _ΦE0=Effiffiffiffiffiffiffiffiffiffiffi
1 − k

p : ð3:20Þ

Initially the observer’s coordinates are ðtðsoÞ; rðsoÞ;
xðsoÞ; yðsoÞÞ, which we write ðt0; r0; x0; y0Þ, and the source
coordinates are ðtðseÞ; rðseÞ; xðseÞ; yðseÞÞ, which we
write ðte; re; xe; yeÞ.
Substituting t ¼ tþ δt in (3.19), and keeping terms only

up to first order in δt, we get

c2
�
dðtþδtÞ

dr

�
2

−
ðΦ1þ _Φ1δtÞ2

1−k
−
ðΦþ _ΦδtÞ2

E2
Σ¼0: ð3:21Þ

Now subtracting (3.19) from (3.21), and still keeping terms
only up to first order in δt, we get

c2
dt
dr

dδt
dr

−
Φ1

_Φ1

1 − k
δt −

Φ _Φ
E2

δtΣ ¼ 0: ð3:22Þ

Substituting z ¼ zþ δz and t ¼ tþ δt in (3.20) we obtain

dðzþδzÞ
dr

¼1þzþδz
c

_Φ0ðtþδtÞ− _ΦðtþδtÞE0=Effiffiffiffiffiffiffiffiffiffi
1−k

p : ð3:23Þ

Subtracting (3.20) from (3.23), and keeping terms only
up to first order in δt and δz, we get

dðδzÞ
dr

¼ 1þ z

c
ffiffiffiffiffiffiffiffiffiffiffi
1 − k

p _Φ01δtþ
δz

c
ffiffiffiffiffiffiffiffiffiffiffi
1 − k

p Φ01: ð3:24Þ

We will solve (3.24) together with (3.16)–(3.18) and (3.22)
to get the redshift drift in QSS models.
The redshift drift can also be calculated by the following

method.
Initially the observer’s coordinates are ðtðsoÞ; rðsoÞ;

xðsoÞ; yðsoÞÞ, which we write ðt0; r0; x0; y0Þ, and the
source coordinates are ðtðseÞ; rðseÞ; xðseÞ; yðseÞÞ, which
we write ðte; re; xe; yeÞ. The redshift of this source is z
given by

1þ z ¼ ket
kot

; ð3:25Þ

¼ dt=dsjs¼se

dt=dsjs¼so

: ð3:26Þ

After some proper time elapse δt0 at the observer’s location,
the observer’s coordinates become ðt0 þ δt0; r0; x0; y0Þ, and
the source coordinates become ðte þ δtðseÞ; re; xe; yeÞ.
Since we are working with comoving coordinates, r, x,
and y do not change.
Substituting t ¼ tþ δt in (3.2)–(3.5), we get

c2
d2ðtþ δtÞ

ds2
þ
�
Φ;tr −Φ;t E;r =E

1 − k
ðΦ;r −ΦE;r =EÞ

�

× ðtþ δt; r; x; yÞ
�
dr
ds

�
2

þ
�
ΦΦ;t
E2

�
ðtþ δt; r; x; yÞ

×

��
dx
ds

�
2

þ
�
dy
ds

�
2
�
¼ 0; ð3:27Þ

d2r
ds2

þ 2c

�
Φ;tr −Φ;t E;r =E
Φ;r −ΦE;r =E

�
ðtþ δt; r; x; yÞ dðtþ δtÞ

ds
dr
ds

þ
��

Φ;rr −Φ;r E;r =E −ΦE;rr =EþΦðE;r =EÞ2
Φ;r −ΦE;r =E

�

× ðtþ δt; r; x; yÞ þ 1

2

k;r
1 − k

��
dr
ds

�
2

þ 2

�
Φ
E2

E;r E;x −EE;xr
Φ;r −ΦE;r =E

�
ðtþ δt; r; x; yÞ dr

ds
dx
ds

þ 2

�
Φ
E2

ðE;r E;y −EE;yr Þ
Φ;r −ΦE;r =E

�

× ðtþ δt; r; x; yÞ dr
ds

dy
ds

−
�
Φ
E2

1 − k
Φ;r −ΦE;r =E

�
ðtþ δt; r; x; yÞ

��
dx
ds

�
2

þ
�
dy
ds

�
2
�
¼ 0; ð3:28Þ

d2x
ds2

þ 2c
Φ;t
Φ

ðtþ δt; rÞ dðtþ δtÞ
ds

dx
ds

−
�
1

Φ
Φ;r −ΦE;r =E

1 − k

× ðE;r E;x −EE;xr Þ
�
ðtþ δt; r; x; yÞ

�
dr
ds

�
2

þ 2

�
Φ;r
Φ

ðtþ δt; rÞ − E;r
E

�
dr
ds

dx
ds

−
E;x
E

�
dx
ds

�
2

− 2
E;y
E

dx
ds

dy
ds

þ E;x
E

�
dy
ds

�
2

¼ 0; ð3:29Þ

d2y
ds2

þ 2c
Φ;t
Φ

ðtþ δt; rÞ dðtþ δtÞ
ds

dy
ds

−
�
1

Φ
Φ;r −ΦE;r =E

1 − k

× ðE;r E;y −EE;yr Þ
�
ðtþ δt; r; x; yÞ

�
dr
ds

�
2

þ 2

�
Φ;r
Φ

ðtþ δt; rÞ − E;r
E

�
dr
ds

dy
ds

þ E;y
E

�
dx
ds

�
2

− 2
E;x
E

dx
ds

dy
ds

−
E;y
E

�
dy
ds

�
2

¼ 0: ð3:30Þ
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Subtracting (3.2) from (3.27), and keeping only the first
order terms in δt, we obtain

c2
d2δt
ds2

þ ∂
∂t
�
Φ;tr −Φ;t E;r =E

1 − k

�
Φ;r −Φ

E;r
E

��
δt

�
dr
ds

�
2

þ ∂
∂t
�
ΦΦ;t
E2

�
δt

��
dx
ds

�
2

þ
�
dy
ds

�
2
�
¼ 0: ð3:31Þ

Now we want to calculate the change in redshift δz which
would be observed after a proper time elapse δt0 at the
observer’s location. We proceed as follows.
The new redshift ðzþ δzÞ is given by

1þ zþ δz ¼ dðtþ δtÞ=dsjs¼se

dðtþ δtÞ=dsjs¼so

: ð3:32Þ

Subtracting (3.26) from (3.32), we obtain

δz ¼ dðtþ δtÞ=dsjs¼se

dðtþ δtÞ=dsjs¼so

−
dt=dsjs¼se

dt=dsjs¼so

; ð3:33Þ

δz ¼ ðdt=dsþ dδt=dsÞjs¼se

ðdt=dsþ dδt=dsÞjs¼so

−
dt=dsjs¼se

dt=dsjs¼so

; ð3:34Þ

δz ¼ dt=dsjs¼se

dt=dsjs¼so

 
1þ dδt=ds

dt=ds js¼se

1þ dδt=ds
dt=ds js¼so

!
−
dt=dsjs¼se

dt=dsjs¼so

; ð3:35Þ

δz ¼ð1þ zÞ
 dδt=ds

dt=ds js¼se −
dδt=ds
dt=ds js¼so

1þ dδt=ds
dt=ds js¼so

!
: ð3:36Þ

We also write Eq. (3.36) for the redshift drift as

δz ¼ ð1þ zÞ
 dδt=dr

dt=dr jr¼re −
dδt=dr
dt=dr jr¼ro

1þ dδt=dr
dt=dr jr¼ro

!
: ð3:37Þ

This is another equation to calculate the redshift drift in
any QSS model. By solving (3.37) one can compute the
change in redshift of a source at ðte; re; xe; yeÞ after a δt0
proper time has elapsed at the observer’s initial location in
spacetime, ðto; ro; xo; yoÞ. The quantities dδt=dr and dt=dr
appearing in (3.37) are obtained by solving (3.16)–(3.19)
simultaneously.
In the first method we have to solve five first order with

degree two equations simultaneously to obtain the redshift
drift, whereas in the second method we have to solve only
three equations simultaneously to get the redshift drift.
Therefore, the second method is better in any case.

C. Calculation of the function kðrÞ
Since we know MðrÞ, the function kðrÞ is needed to

compute Φ from the parametric solution of (2.4) we can
obtain when Λ ¼ 0, once we have determined the sign

of kðrÞ. There are two different methods for calculating
kðrÞ depending on the value of the tBðrÞ function.

1. tBðrÞ ≠ 0

In this case, we use the parametric method. However,
there are three different parametric solutions depending on
the sign of kðrÞ:

(i) k > 0

Φðt; rÞ ¼ M
k
ð1 − cos ηÞ ð3:38Þ

and

t − tBðrÞ ¼
M

k3=2
ðη − sin ηÞ: ð3:39Þ

(ii) k ¼ 0

Φðt; rÞ ¼
�
9

2
Mðt − tBðrÞÞ2

�
1=3

: ð3:40Þ

(iii) k < 0

Φðr; tÞ ¼ M
ð−kÞ ðcosh η − 1Þ ð3:41Þ

and

t − tBðrÞ ¼
M

ð−kÞ3=2 ðsinh η − ηÞ; ð3:42Þ

where ηðt; rÞ is the parameter.
We do not know a prioriwhat is the kðrÞ sign. Therefore,

we have to try the above three solutions at random. Our
coordinate choice is Φðt0; rÞ ¼ r. This choice helps us to
determine the function kðrÞ as following.
The case k ¼ 0 is the easiest to deal with. Setting t ¼ t0

in (3.40) and replacingMðrÞ and tBðrÞ by their expressions,
and Φðt0; rÞ by r, we see at once whether (3.40) is fulfilled
for some given r values. There might indeed be cases when
k vanishes for some r value(s) and k changes sign (or not) at
this (these) value(s). In these cases, we have to test k < 0
and k > 0 for the different r ranges, between the values
where k is null. If k vanishes nowhere, we just guess the
sign of k for all the r values and proceed as follows.
We give here the reasoning for k < 0. Since at t ¼ t0,

Φðt0; rÞ ¼ r, and ηðt0; rÞ ¼ η0ðrÞ, we set t ¼ t0 in (3.41)
and (3.42) and eliminate kðrÞ between both. We obtain

−k ¼ M
r
ðcosh η0 − 1Þ; ð3:43Þ

t0 − tBðrÞ ¼
r3=2

M1=2

ðsinh η0 − η0Þ
ðcosh η0 − 1Þ3=2 : ð3:44Þ
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We keep the nonvanishing root of (3.44) for η0ðrÞ, and we
substitute it in (3.41) where we have set t ¼ t0 to get kðrÞ.
An analogous method applies for the case k > 0.

2. tBðrÞ= 0
In this case, we do not need to guess a priori the sign of

kðrÞ. It proceeds directly from the calculations. However,
we must guess the sign in front of the integral in (2.6), since
we do not know whether the region of the model we are
considering is expanding or collapsing. Since we are
supposed to study a cosmological model, we could guess
that the plus sign applies, but we will see in the following
that the BSQSS model region of interest is blueshifted and
therefore collapsing.
As an example, we describe this method with the plus

sign. The method with the minus sign follows easily. We set
t ¼ t0 and Λ ¼ tBðrÞ ¼ 0 in (2.6) with the plus sign and
obtain

Z
r

0

dΦ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kðrÞ þ 2MðrÞ=Φ̃

q ¼ ct0: ð3:45Þ

To avoid divergences due to the 1=Φ̃ term, we multiply

the integrand by
ffiffiffiffiffiffiffiffiffiffi
Φ̃=Φ̃

p
. Equation (3.45) becomes

Z
r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ̃

−kðrÞΦ̃þ 2MðrÞ

s
dΦ̃ ¼ ct0: ð3:46Þ

Now, for a given r value,
(i) We choose a kðrÞ value in this function definition

interval, i.e., −∞ < k < 1. We span this interval
with k values separated by some given step. Since
we cannot span all this interval toward negative
values, we begin with taking as limits −1 < k < 1
(if necessary, we try an extended interval after-
wards). We try first k ¼ −1, and then k ¼ 1, since
we will use an interpolation method to find k.

(ii) We insert each k value, and that of M for the given
r value, in the integral of (3.46) which we
integrate with, e.g., the trapezium method, with a

r=n integration step. We write
R
r
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ̃

−kΦ̃þ2M

q
dΦ̃ ¼P

n
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ̃i

−kΦ̃iþ2M

q
δΦ̃ ¼ IðrÞ, with δΦ̃ ¼ r=n and

Φ̃i ¼ ir=n.
(iii) Then, we check whether IðrÞ ¼ ct0. If this is the

case, that means that the k value chosen corresponds
actually to the given r value. If not, we try another
value for k using an interpolation method and so on.
By this method, we are able to check whether the
interval −1 < k < 1 is satisfactory or whether we
need to extend it toward more negative values.

We reiterate the above calculation for a number of r
values spanning the light cone section of interest.

D. The algorithm

In order to calculate the redshift and the redshift drift, we
proceed in the following manner:
(1) Once kðrÞ is determined by one of the above

methods, we use the corresponding parametric
solution for Φ to find Φðt; rÞ and its derivatives
on the past light cone.

(2) We substitute the Σ value from (3.19) into the
geodesic equations (3.16)–(3.18) to transform them
into null geodesic equations.

(3) Then we split the three second order null geodesic
equations thus obtained into six first order ordinary
equations.

(4) We find tðrÞ, xðrÞ, yðrÞ, and their first order
derivatives on the past light cone by numerically
solving these null geodesic equations. The initial
conditions at the current observer where r ¼ ro are
chosen as t ¼ t0, x ¼ x0, y ¼ y0, dx=dr ¼ dx=drj0,
and dy=dr ¼ dy=drj0, and the initial condition for
dt=dr is determined from the null condition.

(5) Then we find the redshift z by numerically integrat-
ing (3.26).

(6) After having found z, we find δt and δz by numeri-
cally solving (3.22) and (3.24) together.

(7) Then we find the redshift drift δz=δt0 with
δt0 ¼ 10 years. δt0 has been chosen as 10 years
to observe the change in redshift drift in 10 years.
For δt0 less than this, the change would be too small
to observe and for δt0 much larger than this, it would
not be possible to measure the redshift drift with the
upcoming satellites which are planned for years of
the order of 10 only.

IV. COMPUTATION OF THE REDSHIFT
AND THE REDSHIFT DRIFT

IN THE BSQSS MODEL

A. The BSQSS model

The BSQSS model is defined at the last scattering
surface by specifying five among its six arbitrary functions
of r and one coordinate choice. The five functions
are tBðrÞ;MðrÞ; SðrÞ; PðrÞ; QðrÞ.
We have chosen this model because on spatial averaging,

it has been shown in Ref. [20] that the averaged model
reproduces qualitatively the minimum void (MV) model of
Ref. [21] which fits SN Ia and WMAP data and is
consistent with the local H0 value.
In the BSQSS model, the bang time function, tBðrÞ, is

null and the MðrÞ function is given by

MðrÞ ¼ 4π
G
c2

Z
r

0

ρbð1þ δρ̄Þr̄2dr̄;

where δρ̄ ¼ −0.005e−ðl=100Þ2 þ 0.0008e−½ðl−50Þ=35�2 þ
0.0005e−½ðl−115Þ=60�2þ0.0002e−½ðl−140Þ=55�2 , and l≡r=1kpc.
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The functions Q, P, and S are defined as follows:
S ¼ 1 ⇒ S0 ¼ 0,
D ¼ 1.05ð1þ rÞ−0.99e−0.004r,
Q0 ¼ D, P0 ¼ 0 for l ≤ 27,
Q0 ¼ −D, P0 ¼ 0 for 27 < l ≤ 35,
Q0 ¼ 0, P0 ¼ −D for 35 < l ≤ 41,
Q0 ¼ 0, P0 ¼ D for 41 < l ≤ 51.5,
Q0 ¼ 0.88D, P0 ¼ −0.5D for 51.5 < l ≤ 61,
Q0 ¼ 0.71D, P0 ¼ 0.71D for 61 < l ≤ 69,
Q0 ¼ 0, P0 ¼ −D for 69 < l ≤ 77,
Q0 ¼ −D, P0 ¼ 0 for 77 < l ≤ 86.5,
Q0 ¼ 0.74D, P0 ¼ −0.74D for 86.5 < l ≤ 96,
Q0 ¼ D, P0 ¼ D for 96 < l ≤ 102,
Q0 ¼ −D, P0 ¼ 0 for 102 < l ≤ 115,
Q0 ¼ D, P0 ¼ 0 for 115 < l ≤ 129,
Q0 ¼ 0, P0 ¼ −D for l > 129.

B. Calculation of the function kðrÞ
Since tBðrÞ ¼ 0, we could have used the second method

described in Sec. III C to compute kðrÞ. However, we faced
a problem in our numerical calculations since an a priori
expanding cosmological model was not compatible with
the BSQSS model. Of course, we could have changed the
sign in (3.45), but we found that the first method used less
CPU time, since the same equations give kðrÞ and Φðt; rÞ.
Therefore, we switched to the first method and found that

the equations with k < 0 for all r gave us a proper solution
to our problem. The kðrÞ function is displayed in Fig. 2.

C. The redshift

We have run our code over a huge number of initial
conditions, and we have always found the same qualitative
results for the redshift, in particular its sign.
For Fig. 3 displayed here, the initial conditions at the

current observer where r ¼ ro ¼ 100 Mpc are

t ¼ to ¼ 13.7 Gyr; ð4:1Þ

x ¼ 0.00001; ð4:2Þ

y ¼ 0.00001; ð4:3Þ

dx=dr ¼ 0.0001; ð4:4Þ

dy=dr ¼ 0.0001; ð4:5Þ

and the initial condition for dt=dr is determined from the
null condition.
Figure 3 shows the redshift as a function of the comoving

distance r in the BSQSS model. This redshift is found to be
negative which means that the light rays reaching the
observer in a BSQSS universe are blueshifted. We observe
this blueshift because the observer’s location is not at this
model origin which is at the last scattering surface. Since in
this model the universe is expanding away from this origin,
the sources are coming toward the observer which is at
t ¼ t0 and r0 ¼ 100 Mpc. Hence, the light rays are blue-
shifted. Since such a cosmological blueshift is not observed
in the universe, this means that the nonaveraged BSQSS
model is ruled out as a cosmological model.

D. The redshift drift (blueshift drift)

For completeness, we have used the above described
recipe to compute the redshift drift (which is actually a
blueshift drift) in this model. The result is depicted in Fig. 4
where we have plotted the blueshift as a negative redshift.
For this calculation, we have set the proper time elapse δt0
to the value of 10 years, i.e., 10−8 Gyr. This is the reason
why the redshift drift is given in units Gyr−1. We see from
Fig. 4 that the redshift drift is negative and that its effect is
very small, of order years−13 at a blueshift of around 0.7. Of
course, since the model is already ruled out by the blueshift,
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FIG. 3. The negative redshift (blueshift) as a function of the
comoving distance r for the BSQSS model.
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we do not need to worry about measuring such a small drift,
but this computation shows that our recipe and our code for
calculating the redshift drift work well and can be used for
other general Szekeres models with no symmetry.

V. AVERAGING EFFECT: THE REDSHIFT AND
THE REDSHIFT DRIFT IN THE MV MODEL

It has been shown in Ref. [20] that, once spatially
averaged, the BSQSS model reproduces qualitatively the
density profile of the LTB MV model of Ref. [21] with a
central observer. We calculate in this section the MV model
redshift to see what becomes of the BSQSS blueshift once
the model is averaged. We find this blueshift becomes a
cosmological redshift and then, to discriminate it from the
ΛCDM model, we compute the MV model redshift drift.

A. LTB models

LTB models are spatially spherically symmetric solu-
tions of Einstein’s equations with dust as a gravitational
source. Their metric in comoving and synchronous time
gauge is, with the usual notations [45],

ds2 ¼ −c2dt2 þ R02

1þ 2EðrÞdr
2 þR2ðt; rÞðdθ2 þ sin2 θdϕ2Þ;

ð5:1Þ

where EðrÞ is an arbitrary function [corresponding to
−kðrÞ=2 in QSS models and to M̄r2kðrÞ in the MV model]
and Rðt; rÞ obeys the same Eq. (2.4) as Φðt; rÞ in QSS
models, in which a new arbitrary function of r, MðrÞ,
appears. A third arbitrary function, the tBðrÞ bang time,
appears as an integration constant of (2.4) in (2.6). Hence,
an LTB solution can be defined by three arbitrary functions
of r, EðrÞ, MðrÞ, and tBðrÞ.

The mass density in energy units is

κρ ¼ 2M0

R0R2
; ð5:2Þ

with κ ¼ 8πG=c4.
In the MVmodel, the cosmological constant Λ is also set

to zero, since the aim is to reproduce the cosmological
observations without dark energy. Then, the solutions to
(2.4) are the same as (3.38)–(3.42), with an inverse sign for
E as regards the one for k in the QSS models.

B. The equation for the redshift drift

After averaging the BSQSS model, the current observer
is located at the center of the occurring LTB model [20].
Therefore, we give below the redshift drift equation for a
central observer.
We consider a comoving observer O located at the

origin, with coordinates ðt0; r ¼ 0Þ. The observer receives
the light emitted by a comoving source at ðt; rÞ. We denote
this source redshift by zðt; rÞ. After a δt0 proper time elapse,
the comoving observer moves to a new location, O0
ðt0 þ δt0; r ¼ 0Þ, and the comoving source moves to the
new coordinates ðtþ δt; rÞ. Now, this source redshift
observed at O0 will be

ZðrÞ ¼ zðrÞ þ δzðrÞ; ð5:3Þ

and its time coordinate

TðrÞ ¼ tðrÞ þ δtðrÞ; ð5:4Þ

with tðr¼0Þ¼ t0, zðr¼0Þ¼Zðr¼0Þ¼0, δzðr ¼ 0Þ ¼ 0,
and δtðr ¼ 0Þ ¼ δt0.
The equation for the redshift is

dz
dr

¼ 1þ z
c

_R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p : ð5:5Þ

Differentiating (5.3) with respect to r and rearranging the
terms, it comes to

dδzðrÞ
dr

¼ dZðrÞ
dr

−
dzðrÞ
dr

: ð5:6Þ

Using (5.5) in (5.6) and keeping only the first order terms
in δz and δt since they are very small compared to z and t,
we obtain

dδz
dr

¼ 1þ z
c

R̈0ðt; rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p δtþ
_R0ðt; rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p δz
c
: ð5:7Þ

Differentiating (5.4) with respect to r and rearranging the
terms, it comes as
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FIG. 4. The redshift drift (blueshift drift) as a function of the
negative redshift (blueshift) z for the BSQSS model.
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dδtðrÞ
dr

¼ dTðrÞ
dr

−
dtðrÞ
dr

: ð5:8Þ

Using the null condition equation, with the minus sign
for incoming light rays, in (5.8) and keeping only the first
order term in δt, we obtain

dδtðrÞ
dr

¼ −
1

c

_R0ðt; rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p δt: ð5:9Þ

We consider the case where the redshift z is monoton-
ically increasing with r. We replace the independent
variable r by z by using the following chain rule of
differentiation:

d
dr

¼ dz
dr

d
dz

¼ 1þ z
c

_R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p d
dz

: ð5:10Þ

Using (5.10) in (5.7) and rearranging the terms, we
obtain

dδz
dz

¼ R̈0

_R0 δtþ
δz

1þ z
: ð5:11Þ

Similarly, using the transformation equation (5.10) in
(5.9) and rearranging the terms, we obtain

dδt
dz

¼ −
δt

1þ z
: ð5:12Þ

We integrate (5.12) from the observer O at ðt0; z ¼ 0Þ to
the source at ðt; zÞ and obtain

δt ¼ δt0
1þ z

: ð5:13Þ

We insert this expression for δt into (5.11) and obtain the
equation for the redshift drift:

d
dz

�
δz

1þ z

�
¼ 1

ð1þ zÞ2
R̈0

_R0 δt0: ð5:14Þ

We numerically integrate (5.14) for a fixed δt0 value to
obtain δz, and then we calculate the redshift drift from its
definition _z ¼ δz=δt0.

C. The minimum void model

This minimum void model is a void, in an Einstein-de
Sitter (EdS) background, with minimal underdensity
contrast around −0.4, and minimal radius of order
200–250 Mpc=h able to reproduce the SN Ia data with
no dark energy and to be consistent with the three-year
WMAP data and measurements of the local Hubble
parameter H0.

In this LTB void model the mass function, the curvature
function, and the bang time function are defined as follows,
in units c ¼ G ¼ 1 and the Planck mass obeyingM2

p ¼ 8π:

MðrÞ ¼ 1

6
M̄2M2

pr3; ð5:15Þ

EðrÞ ¼ ðM̄rÞ2kmax

�
1 −

�
r
L

�
4
�
2

; ð5:16Þ

tBðrÞ ¼ 0; ð5:17Þ

where M̄, kmax, and L are parameters of the model and EðrÞ
is positive or null.
The M̄ parameter is an arbitrary unphysical mass scale,

related to the Hubble parameter via the following relation:

M̄ ¼
ffiffiffiffiffiffi
3

8π

r
hout
3000

; ð5:18Þ

where hout is the Hubble parameter in the EdS region.
One can see from (5.16) that the kmax parameter

corresponds to the amplitude of the density fluctuation
inside the void and L is the void radius beyond which the
universe is described by a flat EdS metric.
For this model best fit to the data, the parameter values

are hout ¼ 0.452, kmax ¼ 5.302, and L is 250 Mpc=hwhere
h ¼ 0.55.

D. The algorithm for the MV model

In our numerical calculations, we use units in which the
fundamental constants are set to their usual values. Notice
that the factor of 1=3000 in (5.18) appears for a 1=c factor.
In order to calculate the redshift and the redshift drift, we
proceed as follows:
(1) First, we compute tðrÞ on the past light cone by

numerically solving the following null condition
equation for incoming geodesics in LTB models:

dt
dr

¼ −
1

c
R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p : ð5:19Þ

(2) Since EðrÞ, corresponding to the quantity we de-
noted −kðrÞ=2 in QSS models, is nearly everywhere
positive, we use the parametric solution for QSS
kðrÞ negative. Substituting tðrÞ in (3.42) we obtain
ηðrÞ, using which in (3.41) we calculate RðtðrÞ; rÞ
and its derivatives on the past light cone.1

1The parametric equations are the same for QSS and LTB
models because (2.4) with a vanishing Λ is the same.
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(3) Then we numerically solve the following equation
for the redshift zðtðrÞ; rÞ:

dz
dr

¼ 1þ z
c

_R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p : ð5:20Þ

(4) After having found z, we compute the redshift drift
at this z by numerically solving (5.14).

E. The results

Figure 5 shows the redshift in the MV model up to the
border of the void where r ¼ L ¼ 450 Mpc and z ¼ 0.085.
It is quite proportionally increasing with r up to around
300Mpc above which the rate of increase slows down. This
might be due to a nonproper matching between the void and
the background EdS universe.
Figure 6 depicts the redshift drift behavior as a function

of the redshift in the MV LTB model and in the ΛCDM

model. In the redshift range of interest, the redshift drift in
this LTB model remains negative while in the ΛCDM
model it is positive. In principle, this may allow us to
discriminate between both models even if they reproduce
the same observational data. Also, in both models, the
magnitude of the redshift drift increases monotonically
with the redshift. However, it is a very small effect, of order
Tyr−1 at the void border in the MV model, and therefore,
very difficult to observe in future experiments.

VI. CONCLUSIONS

The type Ia supernova data, when analyzed in a FLRW
framework, seems to be revealing that our universe expan-
sion is accelerating from redshifts that correspond to
nonlinear structure formation. In the standard ΛCDM
cosmological model, this is put down to the effect of a
dark energy component which, up to now, is not under-
stood. Among different other explanations, the use of exact
inhomogeneous models with no dark energy to reproduce
the cosmological data has been rather extended in the
literature. The first models used have been of the LTB class.
These are dust spherically symmetric models and have been
used either to build one patch models or to construct Swiss-
cheese models (see, e.g., Refs. [15,46] for a review).
However, we observe that the structures in the universe
are not spherically symmetric. Therefore, Λ ¼ 0 Szekeres
models with no symmetry are now coming into play (see,
e.g., [15,16,20,24,25]), the ones most frequently used being
of the quasispherical class [45].
Now, these Szekeres models are much more complicated

to deal with and the first authors who used them as
cosmological models added some symmetry, e.g., axial
[24,25]. Then, other studies have been made with Szekeres
models with no symmetries [20,47]. However, it is very
tricky to reproduce directly cosmological data with such
models.
This is the reason why, in Ref. [20], the authors have

considered a very general quasispherical Szekeres model,
then spatially averaged it, and obtained the LTB MVmodel
density profile of Ref. [21]. Since this MV model repro-
duces the SN Ia data and is consistent with the three-year
WMAP data and the local Hubble parameter measure-
ments, the Szekeres model of Ref. [20] can be considered
as a proper inhomogeneous model which, once coarse
grained and averaged, is consistent with these datasets. This
strengthens the argument proposed in Ref. [48] that void
model spherical symmetry is but a mathematical simplifi-
cation of an energy density smoothed out over angles
around us.
Now, models which reproduce the same cosmological

data as ΛCDM ones on the observer past light cone cannot
be distinguished from this model. The problem is com-
pletely degenerate. This is the reason why we have been
interested in calculating the redshift drift of both models
with a view to comparing them, first between them, then to
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that of the ΛCDM model. We have therefore, for the first
time in the literature to our knowledge, given two equation
sets and an algorithm to compute the redshift drift in the
most general QSS model. Then, we have applied them to
the BSQSS model of Ref. [20]. One of the steps to obtain
the redshift drift is to calculate the redshift and, in doing
this for the BSQSS model, we have found that this redshift
was negative, i.e., a blueshift. We observe this blueshift
because the observer’s location is not at the origin in this
model. Actually, the origin is at the last scattering surface.
Since, in this model, the universe is expanding away from
this origin, the sources are coming toward the observer
which is at t ¼ t0 and r0 ¼ 100 Mpc. Hence, the light rays
are blueshifted. Since such a cosmological blueshift is not
observed in the universe, this means that the nonaveraged
BSQSS model is ruled out as a cosmological model.
However, we cannot claim it is a generic feature of all
quasispherical Szekeres models.
For completeness, and to test our recipe and our code, we

have calculated the redshift drift (blueshift drift) for the
BSQSS model. We have found that this redshift drift is
negative, that its amplitude is increasing with the blueshift
and that it is a very tiny effect. Indeed, for a ten-year
observation, and around a blueshift of z ¼ −0.7, the
blueshift variation amplitude is jδzj ∼ 10−12. However,
since the model is already ruled out by its blueshift, the
redshift drift consideration is purely theoretical.
It has been shown in Ref. [20] that, once spatially

averaged, the BSQSS model reproduces qualitatively the
density profile of the LTB MV model of Ref. [21] with a
central observer. We have thus calculated the MV model
redshift to see what becomes of the BSQSS blueshift once
the model is averaged. We have found that this blueshift
becomes a cosmological redshift and then, to discriminate
it from the ΛCDM model, we have computed the MV
model redshift drift. This redshift appeared to be negative,
with an amplitude increasing with redshift. On the contrary,

in the redshift range of interest, the ΛCDM model redshift
drift is positive which, in principle, would allow one to
discriminate between both models by measuring their drift.
However, these redshift drifts are also very tiny effects,
since the void border is only at a small redshift of z ∼ 0.085.
At this redshift, the redshift variation amplitude of the MV
model, for a ten-year observation, is merely jδzj ∼ 2.10−11.
This will not be measurable by the future experiments
dedicated to the redshift drift measurement in the universe
such as CODEX/EXPRESSO [30,49,50], SKA [51], and
the gravitational waves observations DECIGO/BBO [52].
However, the model proposed in Ref. [20] is a mere toy

model, only reproducing a single void in a FLRW back-
ground. The important results of our paper are to show that,
even if a QSS model of this kind exhibits a cosmological
blueshift, the averaging process transforms it into a
cosmological redshift which is in accordance with obser-
vations and that the redshift drift can, in principle, allow us
to discriminate between the averaged model and the
ΛCDMmodel while both reproduce the same cosmological
data on the observer’s past light cone.
It might happen that, in the future, more elaborate

inhomogeneous models with no dark energy, such as
Swiss-cheese models where the patches could be QSS
without any symmetry and whose average might be LTB
Swiss-cheeses reproducing the cosmological data, or QSS
Swiss-cheese models reproducing themselves the data,
should be proposed in the literature. In this case, our work
could serve as a recipe to calculate the redshift and a then
measurable redshift drift in these models. It has indeed
been shown in Ref. [50] that a 42-m telescope is able to
unambiguously detect the redshift drift over a 20-year
period at a redshift 2 < z < 5. Therefore, if one constructs
a QSS Swiss-cheese model of the kind described above
reaching a redshift of at least z ¼ 2, the comparison with
measured redshift drifts might become possible in the
future.
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[15] K. Bolejko, M.-N. Célérier, and A. Krasiński, Classical

Quant. Grav. 28, 164002 (2011).

PRITI MISHRA PHYS. REV. D 105, 063520 (2022)

063520-12

https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1134/S0202289319020154
https://doi.org/10.1134/S0202289319020154
https://doi.org/10.1142/S021827181630007X
https://doi.org/10.1093/mnrasl/slx025
https://doi.org/10.1093/mnrasl/slx025
https://doi.org/10.1103/PhysRevD.73.023520
https://doi.org/10.1142/S0218271812420023
https://doi.org/10.1142/S0218271812420023
https://doi.org/10.1088/1475-7516/2006/03/004
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1023/A:1018855621348
https://doi.org/10.1023/A:1018855621348
https://doi.org/10.1073/pnas.20.3.169
https://doi.org/10.1073/pnas.20.3.169
https://doi.org/10.1093/mnras/107.5-6.410
https://doi.org/10.1007/BF01608547
https://doi.org/10.1007/BF01617918
https://doi.org/10.1088/0264-9381/28/16/164002
https://doi.org/10.1088/0264-9381/28/16/164002


[16] A. Nwanko, M. Ishak, and J. Thompson, J. Cosmol.
Astropart. Phys. 05 (2011) 028.

[17] K. Bolejko and M. Korzyński, Int. J. Mod. Phys. D 26,
1730011 (2017).

[18] K. Bolejko, J. Cosmol. Astropart. Phys. 06 (2017) 025.
[19] Z.-S. Zhang, T.-J. Zhang, H. Wang, and C. Ma, Phys. Rev. D

91, 063506 (2015).
[20] K. Bolejko and R. Sussman, Phys. Lett. B 697, 265 (2011).
[21] S. Alexander, T. Biswas, A. Notari, and D. Vaid, J. Cosmol.

Astropart. Phys. 09 (2009) 025.
[22] A. Sandage, Astrophys. J. 136, 319 (1962).
[23] G. McVittie, Astrophys. J. 136, 334 (1962).
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