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Primordial magnetic fields are generated during inflation by considering actions that break the conformal
invariance of the electromagnetic field. To break the conformal invariance, the electromagnetic fields
are coupled either to the inflaton or to the scalar curvature. Also, a parity violating term is often added to
the action in order to enhance the amplitudes of the primordial electromagnetic fields. In this work, we
examine the effects of deviations from slow roll inflation on the spectra of nonhelical as well as helical
electromagnetic fields. We find that, in the case of the coupling to the scalar curvature, there arise certain
challenges in generating electromagnetic fields of the desired shapes and strengths even in slow roll
inflation. When the field is coupled to the inflaton, it is possible to construct model-dependent coupling
functions that lead to nearly scale invariant magnetic fields in slow roll inflation. However, we show that
sharp features in the scalar power spectrum generated due to departures from slow roll inflation inevitably
lead to strong features in the power spectra of the electromagnetic fields. Moreover, we find that such
effects can also considerably suppress the strengths of the generated electromagnetic fields over the scales
of cosmological interest. We illustrate these aspects with the aid of inflationary models that have been
considered to produce specific features in the scalar power spectrum. Further, we find that, in such
situations, if the strong features in the electromagnetic power spectra are to be undone, the choice of the
coupling function requires considerable fine tuning. We discuss wider implications of the results we obtain.
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I. INTRODUCTION

Large-scale magnetic fields are observed in galaxies,
galaxy clusters and in the intergalactic voids (for reviews
on magnetic fields, see Refs. [1–10]). The Fermi/LAT and
HESS observations of TeV blazars suggest that the strength
of magnetic fields in the intergalactic medium is of the
order of 10−15 G [11–17]. Also, magnetic fields of strength
of the order of 10−6 G are observed within galaxies (for a
recent discussion of the various observational constraints,
see, for instance, Refs. [10,18]). It seems challenging to
explain the presence of magnetic fields of such strengths,
specifically in the intergalactic voids, on the basis of
astrophysical phenomena alone [3,4]. Hence, it is believed
that these magnetic fields may have a cosmological origin
and they could have been generated during the inflationary
epoch in the early Universe (for reviews in this context, see
Refs. [5,6,8–10]).

Recall that the standard electromagnetic action is con-
formally invariant. Therefore, the energy density of the
magnetic fields generated in such a theory will be rapidly
washed away during inflation. We should clarify that this is
strictly true only in the case of the spatially flat Friedmann-
Lemaître-Robertson-Walker (FLRW) universe, which is
conformally flat globally. The FLRW universes with non-
vanishing spatial curvature are conformally flat only locally
and, as a result, the adiabatic evolution of magnetic fields in
such scenarios can be affected (see Refs. [19,20]; however,
for further discussions in this context, see Refs. [21–23]).
In this work, we shall focus on the spatially flat FLRW
universe. The spectrum of magnetic fields generated in the
conformally invariant theory will be strongly scale depen-
dent, inconsistent with the recent constraints from the
cosmic microwave background (CMB) [24]. The simplest
way to generate magnetic fields of observable strengths
today seems to break the conformal invariance of the
electromagnetic action (in this context, see, for example,
Refs. [25–33]). Often, this is achieved by coupling the
electromagnetic field to either the scalar field that drives
inflation [27,29,34–36] or to the Ricci scalar describing
the background [28,30,32,33]. In fact, it has also been
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discovered that the addition of a parity violating term in the
electromagnetic action can significantly enhance the ampli-
tude of magnetic fields generated during inflation [37–45].
It can be shown that, for certain choices of the coupling
function, the spectrum of magnetic fields generated can
be nearly scale invariant consistent with the current con-
straints over a wide range of scales (see, for instance,
Refs. [24,46–49]).
The CMB observations point to a nearly scale invariant

primordial scalar power spectrum as is generated in models
of slow roll inflation [50]. Nevertheless, there has been a
constant interest in the literature to examine if there exist
features in the scalar power spectrum. During the last decade
or two, the possibility of features in the inflationary power
spectrum has been often examined with the aim of improving
the fit to the CMB and the large scale structure data (in this
context, see, for instance, Refs. [51–63]).More recently, with
the detection of gravitational waves from merging binary
black holes [64], there has been a tremendous interest in
investigating whether such black holes could have a primor-
dial origin [65–68]. In this context, a variety of inflationary
models generating increased power on small scales (com-
pared to the cosmic background explorer (COBE) normalized
power on the CMB scales) which can lead to an enhanced
formation of primordial black holes have been investigated
(see, for instance, Refs. [69–76]). These features in the scalar
power spectrum—both on the large as well as the small
scales—areusually generated due to deviations from slow roll
inflation. We mentioned above that the spectrum of the
magnetic field depends on the choice of the function that
couples the electromagnetic field to either the inflaton or the
Ricci scalar. These coupling functions are often chosen such
that the power spectrum of the magnetic field is nearly scale
invariant in slow roll inflation (actually, the background is
often assumed to be of the de Sitter or power law forms).
However, if there arise departures from slow roll, the non-
trivial dynamics can influence the behavior of the coupling
functions and thereby affect the spectrum of the magnetic
field. In otherwords, themechanism that generates features in
the scalar power spectrum can also induce features in the
spectrum of the magnetic field depending on the nature of
the coupling that breaks the conformal invariance of the
electromagnetic action or induces violation of parity.
In this work, we shall investigate the effects of deviations

from slow roll inflation on the power spectra of the
electromagnetic fields. While there have been some
earlier attempts to understand the effects of transitions
during inflation (in this context, see, for instance,
Refs. [38,77–79]; for some recent efforts, see
Refs. [80,81]), we find that there does not seem to have
been any effort to systematically examine the imprints of
departures from slow roll inflation on the spectra of the
electromagnetic fields. We find that coupling the electro-
magnetic field to the scalar curvature poses certain diffi-
culties even in slow roll inflation. We consider specific

inflationary models that lead to features in the scalar power
spectrum. We choose functions that are coupled to the
inflaton which lead to nearly scale invariant spectra for the
magnetic field either in the absence of departures from slow
roll or over large scales (which are constrained by the CMB
observations) and examine the effects due to the deviations
from slow roll inflation. We show that, in these cases, unless
the non-minimal coupling function is designed in a specific
manner and is extremely fine-tuned, it is impossible to avoid
features in the spectra of electromagnetic fields. Moreover,
we notice that, in some cases, the strengths of the magnetic
fields can be considerably suppressed over large scales. We
believe that exploring the observational signatures of such
features can help us understand the nature of the non-
conformal coupling that is required to generate magnetic
fields of observable strengths.
This paper is organized as follows. In the next section,

we shall discuss the spectra of electromagnetic fields
generated during inflation, when the fields are coupled
to either the inflaton or the scalar curvature. We shall arrive
at the spectra of electromagnetic fields generated in
de Sitter inflation when the field is coupled to the inflaton.
We shall also evaluate the spectra in the presence of an
additional term in the action that induces the violation of
parity. We shall point out that, even in slow roll inflation,
there arise specific challenges when considering the cou-
pling of the electromagnetic field to the scalar curvature. In
Sec. III, we shall construct specific nonminimal coupling
functions that lead to nearly scale invariant power spectra
for the magnetic fields in some of the popular models
of slow roll inflation. In Sec. IV, we shall introduce a few
inflationary models that lead to features over large, inter-
mediate, and small scales in the scalar power spectrum. In
Sec. V, we shall examine the effects of deviations from slow
roll inflation on the spectra of the electromagnetic fields.
In certain cases, we shall support our numerical compu-
tations with analytical estimates of the amplitude and shape
of the electromagnetic power spectra. In Sec. VI, with the
help of an example, we shall illustrate that, given an
inflationary model leading to features in the scalar power
spectra, a suitably designed nonminimal coupling function
can largely undo the sharp features generated in the spectra
of the electromagnetic fields. Finally, we shall conclude
with a summary in Sec. VII. We shall relegate some of the
details to an appendix.
Let us now clarify a few points regarding the conventions

and notations that we shall work with. We shall work with
natural units such that ℏ ¼ c ¼ 1, and set the reduced
Planck mass to be MPl ¼ ð8πGÞ−1=2. We shall adopt the
signature of the metric to be ð−;þ;þ;þÞ. Note that Latin
indices will represent the spatial coordinates, except for k,
which will be reserved for denoting the wave number. As
we mentioned, we shall assume the background to be the
spatially flat FLRW universe described by the following
line element:
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ds2 ¼ −dt2 þ a2ðtÞdx2 ¼ a2ðηÞð−dη2 þ dx2Þ; ð1Þ

where t and η denote cosmic time and conformal time,
while a represents the scale factor. Also, an overdot and an
overprime will denote differentiation with respect to the
cosmic and conformal time coordinates. Moreover, N
shall represent the number of e-folds. Last, H ¼ _a=a
and H ¼ aH ¼ a0=a shall represent the Hubble and the
conformal Hubble parameters, respectively.

II. GENERATION OF MAGNETIC FIELDS
DURING INFLATION

In this section, we shall quickly summarize the essential
aspects related to the generation of electromagnetic fields
during inflation. We shall outline the spectra that arise in
situations wherein a coupling function is introduced to
break the conformal invariance of the action describing the
electromagnetic fields.

A. The nonhelical case

As is often done, we shall first consider a coupling
between the electromagnetic field and the inflaton to break
the conformal invariance of the standard action describing
electromagnetism. We shall assume that the electromag-
netic field is described by the action (see, for example,
Refs. [5,29])

S½Aμ� ¼ −
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
J2ðϕÞFμνFμν; ð2Þ

where JðϕÞ denotes the coupling function and the field
tensor Fμν is expressed in terms of the vector potential Aμ as
Fμν ¼ ð∂μAν − ∂νAμÞ. On working in the Coulomb gauge
wherein Aη ¼ 0 and ∂iAi ¼ 0, one finds that the Fourier
modes, say, Āk, describing the vector potential satisfy the
differential equation (see, for example Refs. [29,82]):

Ā00
k þ 2

J0

J
Ā0
k þ k2Āk ¼ 0: ð3Þ

If we write Āk ¼ Ak=J, then this equation reduces to

A00
k þ

�
k2 −

J00

J

�
Ak ¼ 0: ð4Þ

The power spectra associated with the magnetic and electric
fields are defined to be [5,29]

PBðkÞ ¼
k5

2π2
J2

a4
jĀkj2 ¼

k5

2π2a4
jAkj2; ð5aÞ

PEðkÞ ¼
k3

2π2
J2

a4
jĀ0

kj2 ¼
k3

2π2a4

����A0
k −

J0

J
Ak

����
2

: ð5bÞ

The initial conditions on the quantityAk can be imposed in
the domain wherein k ≫

ffiffiffiffiffiffiffiffiffiffi
J00=J

p
and the spectra associated

with the electromagnetic fields can be evaluated in the limit
when k ≪

ffiffiffiffiffiffiffiffiffiffi
J00=J

p
.

Let us now arrive at the power spectra of the electro-
magnetic fields in de Sitter inflation wherein the scale
factor is given by aðηÞ ¼ −1=ðHIηÞ, with HI denoting the
constant Hubble parameter. Typically, the coupling func-
tion J is assumed to depend on the scale factor as follows
(see, for instance, Refs. [5,29]):

JðηÞ ¼
�
aðηÞ
aðηeÞ

�
n
¼

�
η

ηe

�
−n
; ð6Þ

where ηe denotes the conformal time at the end of inflation.
Note that we have chosen the overall constant so that the
coupling function reduces to unity at the end of inflation.
We should stress here that the parameter n is a real number
and is not necessarily an integer. In such a case, the Bunch-
Davies initial conditions on the electromagnetic modes Ak

can be imposed in the limit k ≫
ffiffiffiffiffiffiffiffiffiffi
J00=J

p
, which, for the

above choice of the coupling function, corresponds to the
modes being in the sub-Hubble domain at early times.
For the coupling function (6), the solution to Eq. (4) that
satisfies the Bunch-Davies initial conditions is given by

AkðηÞ ¼
ffiffiffiffiffiffiffiffiffi
−
πη

4

r
eiðnþ1Þπ=2Hð1Þ

ν ð−kηÞ; ð7Þ

where ν ¼ nþ ð1=2Þ, and Hð1Þ
ν ðzÞ denotes the Hankel

function of the first kind.
The spectra of the electromagnetic fields can be evalu-

ated in the limit k ≪
ffiffiffiffiffiffiffiffiffiffi
J00=J

p
, which corresponds to the

super-Hubble limit in de Sitter inflation for our choice of
the coupling function. In the limit ð−kηeÞ ≪ 1, the spectra
of the magnetic and electric fields PBðkÞ and PEðkÞ can be
obtained to be [5,29]

PBðkÞ ¼
H4

I

8π
F ðmÞð−kηeÞ2mþ6; ð8aÞ

PEðkÞ ¼
H4

I

8π
GðmÞð−kηeÞ2mþ4; ð8bÞ

where recall that ηe denotes the conformal time at the end of
inflation. The quantities F ðmÞ and GðmÞ are given by

F ðmÞ ¼ 1

22mþ1 cos2ðmπÞΓ2ðmþ 3=2Þ ; ð9aÞ

GðmÞ ¼ 1

22m−1 cos2ðmπÞΓ2ðmþ 1=2Þ ; ð9bÞ

with
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m ¼
�
n; for n < − 1

2

−n − 1; for n > − 1
2

ð10Þ

in the case of PBðkÞ, and with

m ¼
�
n; for n < 1

2

1 − n; for n > 1
2

ð11Þ

in the case of PEðkÞ. Note that the spectral indices for
the magnetic and electric fields, say nB and nE, can be
written as

nB ¼
�
2nþ 6; for n < − 1

2

4 − 2n; for n > − 1
2

ð12Þ

and

nE ¼
�
2nþ 4; for n < 1

2

6 − 2n; for n > 1
2

: ð13Þ

To be consistent with observations, the magnetic field is
expected to be nearly scale invariant and, evidently, this is
possible when n ≃ −3 or when n ≃ 2. In these cases, it
is clear that nE ≃ −2 and nE ≃ 2, respectively. At late times,
nE ≃ −2 implies that the energy density in the electric field
is significant leading to a large backreaction. In order to
avoid such an issue, one often considers the n ¼ 2 case to
lead to a scale invariant magnetic field with negligible
backreaction due to the electric field. Note that, in these
cases, the power spectra reduce to the following simple
forms

PBðkÞ ¼
9H4

I

4π2
; PEðkÞ ¼

H4
I

4π2
ð−kηeÞ2: ð14Þ

B. The helical case

Recall that, we had considered the action (2) to break
the conformal invariance of the electromagnetic field.
The action can be extended to include a parity violating
term as follows (in this context, see, for instance
Refs. [37–41,77]):

S½Aμ�¼−
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
J2ðϕÞFμνFμν−

γ

2
I2ðϕÞFμνF̃μν

�
;

ð15Þ

where F̃μν ¼ ðϵμναβ= ffiffiffiffiffiffi−gp ÞFαβ, with ϵμναβ being the com-
pletely antisymmetric Levi-Civita tensor, and γ is a con-
stant. In such a case, the modes of the electromagnetic field
can be decomposed in a suitable helical basis. Also, we can
work in the Coulomb gauge as we had done in the
nonhelical case. In such a case, it is found that the second

term in the above action amplifies the electromagnetic
modes associated with one of the polarizations when
compared to the other, thereby violating parity or, equiv-
alently, inducing helicity [39–41,44,45].
When we decompose the electromagnetic field in the

helical basis, the Fourier modes of the field, say Āσ
k, are

found to satisfy the differential equation

Āσ00
k þ 2

J0

J
Āσ0
k þ

�
k2 þ σγk

J2
dI2

dη

�
Āσ
k ¼ 0; ð16Þ

where σ ¼ �1 represents positive and negative helicity.
Let us define Āσ

k ¼ Aσ
k=J as we had done in the nonhelical

case. In terms of the new variable Aσ
k , the above equation

reduces to

Aσ00
k þ

�
k2 þ 2σγkII0

J2
−
J00

J

�
Aσ

k ¼ 0: ð17Þ

We shall restrict ourselves to the simplest of scenarios
wherein I ¼ J. In such a case, the above equation sim-
plifies to

Aσ00
k þ

�
k2 þ 2σγkJ0

J
−
J00

J

�
Aσ

k ¼ 0: ð18Þ

The power spectra of the magnetic and electric fields can be
expressed in terms of the modes Āσ

k and the coupling
function J as follows [37–39,41]:

PBðkÞ ¼
k5

4π2
J2

a4
½jĀþ

k j2 þ jĀ−
k j2�;

¼ k5

4π2a4
½jAþ

k j2 þ jA−
k j2�; ð19aÞ

PEðkÞ¼
k3

4π2
J2

a4
½jĀþ0

k j2þjĀ−0
k j2�;

¼ k3

4π2a4

�����Aþ0
k −

J0

J
Aþ

k

����
2

þ
����A−0

k −
J0

J
A−

k

����
2
�
: ð19bÞ

For the form of the coupling function given by Eq. (6),
the solutions to the electromagnetic modes satisfying the
differential equation (18) and the Bunch-Davies initial
conditions can be written as follows (for a recent discus-
sion, see, for example, Ref. [41]):

Aσ
kðηÞ ¼

1ffiffiffiffiffi
2k

p eπσξ=2W−iσξ;νð2ikηÞ; ð20Þ

where ν ¼ nþ ð1=2Þ, ξ ¼ −nγ, and Wλ;μðzÞ denotes the
Whittaker function. In the domain z ≪ 1, the Whittaker
function Wλ;μðzÞ behaves as [83,84]
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Wλ;μðzÞ→
Γð−2μÞ

Γð1
2
−λ−μÞz

ð1=2Þþμþ Γð2μÞ
Γð1

2
−λþμÞz

ð1=2Þ−μ: ð21Þ

Upon using this result and the expression (19), we find that
the spectrum of the magnetic field evaluated in the limit
ð−kηeÞ ≪ 1 is given by [39,41]

PBðkÞ ¼
H4

I

8π2
Γ2ðj2nþ 1jÞ

jΓð1
2
þ inγ þ jnþ 1

2
jÞj2

×
coshðnπγÞ
2j2nþ1j−2 ð−kηeÞ5−j2nþ1j: ð22Þ

Let us now turn to the evaluation of the spectrum of the
electric field. In the calculation of the spectrum, the
following relation for the derivative of the Whittaker
function [83,84]:

dWλ;μðzÞ
dz

¼
�
1

2
−
λ

z

�
Wλ;μðzÞ −

1

z
W1þλ;μðzÞ ð23Þ

and the following recursion relation:

Wλ;μðzÞ ¼
ffiffiffi
z

p
Wλ−1

2
;μ−1

2
ðzÞ þ

�
1

2
− λþ μ

�
Wλ−1;μðzÞ ð24Þ

prove to be helpful. On using the above relations and the
behavior (21) of the Whittaker function, we can obtain the
spectrum of the electric field in the helical case [as defined
in Eq. (19b)] in the limit ð−kηeÞ ≪ 1 to be

PEðkÞ ¼
H4

I

4π2
Γ2ð2jnjÞ

jΓðjnj þ inγÞj2
γ2

1þ γ2
coshðnπγÞ
22jnj−2

ð−kηeÞ4−2jnj

ð25Þ

with the factor γ2=ð1þ γ2Þ arising only for positive values
of the index n. Evidently, the spectral indices for the
magnetic and electric fields—viz. nB and nE—are given by

nB ¼ 5 − j2nþ 1j; nE ¼ 4 − 2jnj: ð26Þ

As in the nonhelical case, we find that the spectrum of the
magnetic field is scale invariant when n ¼ 2 and n ¼ −3.
Interestingly, in the helical case, the spectrum of the electric
field is also scale invariant when n ¼ 2, whereas, when
n ¼ −3, the spectrum has the same tilt (i.e., nE ¼ −2) as in
the nonhelical case.
In our later discussion, we shall be focusing on the n ¼ 2

case. When n ¼ 2, we find that the spectra of the helical
magnetic and electric fields [evaluated in the limit
ð−kηeÞ ≪ 1] can be written as [84]

PBðkÞ ¼
9H4

I

4π2
fðγÞ; ð27aÞ

PEðkÞ ¼
9H4

I

4π2
fðγÞ

�
γ2 −

sinh2ð2πγÞ
3πð1þ γ2ÞfðγÞ ð−kηeÞ

þ 1

9
ð1þ 23γ2 þ 40γ4Þð−kηeÞ2

�
; ð27bÞ

where the function fðγÞ is given by

fðγÞ ¼ sinhð4πγÞ
4πγð1þ 5γ2 þ 4γ4Þ : ð28Þ

Wewill soon clarify the reason for retaining the second and
third terms within the square brackets [despite the fact that
we are considering the ð−kηeÞ ≪ 1 limit] in the above
expression for PEðkÞ. There are two related points that we
need to highlight regarding the results we have arrived at
above. First, note that, as γ → 0, fðγÞ → 1, and these spectra
reduce to the nonhelical results (14), as required. Second, in
the above spectrum for the electric field, the first two terms
go to zero in the limit of vanishing helicity (i.e., as γ → 0). In
other words, even a small amount of helicity modifies the
spectrum of the electric field considerably, making it scale
invariant. It is only in the case of extremely small helicity—
to be precise, when γ ≪ ð−kηeÞ ≃ k=ke, where ke is the
wave number that leaves the Hubble radius at the end of
inflation—that the third term becomes dominant leading to
the behavior that we had encountered in the nonhelical case.

C. Coupling to the scalar curvature

Let us now turn to the case of the electromagnetic field
that is coupled to the scalar curvature R and is described by
the following action [25,30,32]:

S½Aμ� ¼ −
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
J2ðRÞFμνFμν; ð29Þ

where Fμν is the electromagnetic field tensor defined
earlier. Evidently, in such a case, one can work in the
Coulomb gauge and the Fourier modes of the electromag-
netic vector potential Āk and the quantity Ak ¼ JĀk would
continue to be governed by the differential equations (3)
and (4). Therefore, if the coupling function JðRÞ is chosen
so that it depends on the conformal time as in Eq. (6), then
we can expect scale invariant spectra for the magnetic field
when n ¼ −3 and n ¼ 2.
Earlier, while considering the coupling function (6), we

had assumed the background to be that of de Sitter. Note
that the scalar curvature R associated with the FLRW line
element (1) can be expressed as

R ¼ 6
a00

a3
¼ 6H2ð2 − ϵ1Þ; ð30Þ

and we should emphasize that this expression is exact. In a
de Sitter universe wherein H is a constant and ϵ1 vanishes,
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the above relation implies that the scalar curvature is time
independent. Therefore, we cannot work in the de Sitter
limit. Since we are interested in potentials which typically
lead to slow roll inflation, we can assume the scale factor to
be of the slow roll form. In such a case, it can be shown that
the scalar curvature behaves in terms of the conformal time
as R ∝ η2ϵ1 . This suggests that we can possibly work with a
coupling function of the form

JðRÞ ¼
�
RðηÞ
RðηeÞ

�
α

; ð31Þ

where RðηeÞ denotes the scalar curvature at the end of
inflation. In slow roll inflation, such a coupling will behave
in terms of the conformal time coordinate as follows:

JðηÞ ≃
�
η

ηe

�
2ϵ1α

; ð32Þ

which reduces to our original form of the coupling
function, as given by Eq. (6), if we choose α ¼ −n=ð2ϵ1Þ.
Also, we can expect to arrive at a scale invariant spectrum
for the magnetic field without any backreaction in the case
of n ¼ 2.
But, there arises a challenge that in fact proves to be a

rather serious one. When considering a nonconformal
coupling of the form JðRÞ, we find that, in the literature,
the scale factor describing the FLRW background is often
assumed to be of a power law form. Such an assumption
works well in power law inflationary scenarios wherein the
first slow roll parameter ϵ1 is strictly a constant, but poses
difficulties in realistic slow roll models of inflation wherein
ϵ1 evolves towards unity and inflation ends naturally. Note
that, since ϵ1 is rather small at early times in slow roll
inflation (in order to be consistent with the constraints on
the tensor-to-scalar ratio r over the CMB scales; for the
latest constraints, see Refs. [50,85]), the index α ¼ −1=ϵ1
(for n ¼ 2) turns out to be large in magnitude, typically of
the order of 102 or larger. The fact that the index α has a
large magnitude is not surprising and can be easily under-
stood. In slow roll inflation, R ≃ 12H2 and hence it hardly
changes during the initial stages of inflation. Therefore, one
has to raise the scalar curvature to an adequately large
power to achieve the desired time dependence of the
coupling function. Moreover, since, in any realistic slow
roll model of inflation, ϵ1 is not a constant, one has to work
with an α that is determined by, say, the value of ϵ1 when
the pivot scale leaves the Hubble radius. However, because
ϵ1 is time dependent, we are not guaranteed a scale
invariant spectrum for the magnetic field. In order to
illustrate this point, in Fig. 1, we have plotted the quantity
μ2B ¼ J00=ðJa2H2Þ in a slow roll inflationary model
described by the quadratic potential [which we shall
introduce later, see Eq. (40)]. We have chosen the para-
meter α so that μ2B ≃ 6 when the pivot scale leaves the

Hubble radius, which is required to lead to a nearly scale
invariant spectrum for the magnetic field. But, since ϵ1
changes with time, the quantity μ2B grows to large values at
later times. Such a behavior of μ2B not only affects the shape
of the spectra of the electromagnetic fields, it influences
their amplitude as well. Importantly, we find that, in
general, a large value for α leads to rather large values
for the electromagnetic vector potential at either early or
late times.
Phenomenologically, the only way out of this difficulty

is to choose the index α in JðRÞ [cf. Eq. (31)] to be
dependent on time. In order to arrive at a scale invariant
power spectrum for the magnetic field, one may work with
a coupling function of the following form:

J ¼
�

R
6H2

e

�
αðNÞ

¼
�
H2ð2 − ϵ1Þ

H2
e

�
αðNÞ

ð33Þ

and choose αðNÞ to be

αðNÞ ¼ 2ðN − NeÞ
ln ½H2ð2 − ϵ1Þ=H2

e �
; ð34Þ

FIG. 1. The evolution of the quantity μ2B ¼ J00=ðJa2H2Þ, with J
being given by the coupling function (31), as it occurs in the case
of slow roll inflation driven by the quadratic potential (in this
context, see Sec. III), has been plotted as a function of e-folds N.
We have set α ¼ −1=ϵ1� ≃ −102, where ϵ1� is the value of the
first slow roll parameter when the pivot scale k� leaves the Hubble
radius. For the value of the parameter m (describing the quadratic
potential) and the initial conditions we have worked with, we find
that the pivot scale k� leaves the Hubble radius at the e-fold of
N ¼ 18.63. We find that μ2B ≃ 6 near N ≃ 18, which is necessary
to result in a scale invariant spectrum for the magnetic field.
However, since the first slow roll parameter ϵ1 is not a constant,
μ2B changes with time and, actually, grows to a large value towards
the end of inflation. Apart from affecting the shape of the spectra
of the electromagnetic fields, we find that a large value of α also
leads to exceedingly large values of the electromagnetic vector
potential at either the early or the late stages of inflation.

TRIPATHY, CHOWDHURY, JAIN, and SRIRAMKUMAR PHYS. REV. D 105, 063519 (2022)

063519-6



where He and Ne denote the Hubble parameter and the
e-fold at the end of inflation. Such a choice essentially leads
to JðRÞ ∝ a2, thereby guaranteeing a scale invariant spec-
trum for the magnetic field. However, the action (29) of the
electromagnetic field described by the coupling function
(31) with an α that depends on time will not be invariant
under general coordinate transformations. A theory which
breaks general covariance seems unattractive and is also
quite likely to be unviable.

D. Strength of magnetic fields at the present epoch

The spectrum of magnetic fields evaluated at the end of
inflation allows us to arrive at their strengths at the present
epoch. In the conventional picture, the epoch of reheating is
supposed to succeed inflation. During reheating, when the
energy from the inflaton is being transferred to the particles
constituting matter, the Universe is expected to be filled
with a plasma of charged particles. The creation of charged
particles results in a rapid rise in the conductivity of the
plasma during reheating and, as a result, the electric fields
are shorted out; i.e., they decay exponentially. Thereafter,
the magnetic fields are supposed to evolve adiabatically
with the expansion of the Universe due to the fact that the
fluxes freeze in the highly conducting plasma (for a
discussion on these points, see, for instance, Refs. [5,8]).
Let us consider the simple scenario wherein reheating

occurs instantaneously at the termination of inflation. In
such a case, the spectrum of the magnetic field today, say
P0

BðkÞ, can be related to the spectrum PBðkÞ at the end of
inflation as follows:

P0
BðkÞ ≃ PBðkÞ

�
ae
a0

�
4

; ð35Þ

where ae is the scale factor at the end of inflation, while a0
denotes the scale factor today. The ratio ae=a0 can be
determined from the conservation of entropy, i.e., the
constancy of the quantity gsT3a3 from the end of inflation
until today, where T is the temperature of radiation at a
given epoch and gs represents the effective relativistic
degrees of freedom that contribute to the entropy. As a
result, we can write

a0
ae

¼
�
gs;e
gs;0

�
1=3 Te

T0

; ð36Þ

where ðTe; gs;eÞ and ðT0; gs;0Þ denote the temperature and
the effective number of relativistic degrees of freedom at
the onset of the radiation dominated epoch and today,
respectively. The quantity Te can be determined using the
fact that, in the case of instantaneous reheating, the energy
density at the end of inflation equals that of radiation at the
epoch, leading to ρI ≃ 3H2

IM
2
Pl ≃ gr;eðπ2=30ÞT4

e , where gr
denotes the effective number of relativistic degrees that
contribute to the energy density of radiation. For simplicity,

if we assume that gr ≃ gs, upon using the above relation, we
can arrive at

a0
ae

≃
�
ge
g0

�
1=3

�
90H2

IM
2
Pl

geπ2T4
0

�
1=4

: ð37Þ

If we consider ge ¼ 106.75, since g0 ¼ 3.36 and
T0 ¼ 2.725 K, then we obtain that

a0
ae

≃ 2.8 × 1028
�

HI

10−5MPl

�
1=2

: ð38Þ

Given the scale invariant spectrum (27a) for the magnetic
field at the end of inflation in the n ¼ 2, helical case, upon
substituting the above expression for a0=ae in Eq. (35), we
can estimate the present day strength of the magnetic field,
say B0 (at any scale), to be

B0 ≃ 4.5 × 10−12
�

HI

10−5MPl

�
f1=2ðγÞ G; ð39Þ

where the function fðγÞ is given by Eq. (28). Recall that,
in the nonhelical case, since γ ¼ 0, we have fðγÞ ¼ 1.
Therefore, when parity is conserved, if inflation occurs over
energy scales such that 10−10 ≲HI=MPl ≲ 10−5, then
inflationary magnetogenesis can be expected to lead to
magnetic fields of strength in the range 10−17 ≲ B0 ≲
10−11 G today. As we shall discuss later, to avoid back-
reaction due to the generated electromagnetic fields, the
helicity parameter γ is constrained to be less than about 2.5.
We find that, when parity is violated, the above-mentioned
strengths of the magnetic fields today are amplified by a
factor of about 34 when γ ≃ 1 and by a factor of about
4.4 × 103 when γ ≃ 2.

III. COUPLING FUNCTION IN SLOW ROLL
INFLATIONARY MODELS

Before we go on to discuss inflationary models leading
to features in the scalar power spectrum, we shall evaluate
the spectra of electromagnetic fields generated in slow roll
inflation. Specifically, we shall discuss the forms of the
coupling function JðϕÞ that are required to generate nearly
scale invariant magnetic fields in slow roll inflation. This
simple exercise proves to be instructive when we later
consider situations involving departures from slow roll.
Note that, in terms of e-folds, the coupling function (6) is

given by JðNÞ ¼ exp½nðN − NeÞ�, where Ne denotes the
e-fold at the end of inflation. Since the evolution of the field
ϕðNÞ will depend on the inflationary potential, it should be
evident that a specific function JðϕÞ will not lead to the
above-mentioned form of JðNÞ in all the models. We shall
now construct the coupling functions JðϕÞ that result in the
required JðNÞ in some of the popular inflationary models
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that permit slow roll inflation. For these choices of the
coupling functions, assuming n ¼ 2, we shall also numeri-
cally evaluate the power spectra of the electromagnetic
fields in these potentials. We shall impose the initial
conditions on the electromagnetic modes when k ≃
102

ffiffiffiffiffiffiffiffiffiffi
J00=J

p
evolve the modes until late times and we

evaluate the spectra at the end of inflation.
We shall consider three forms for the potential VðϕÞ. The

first model we shall consider is the popular quadratic
potential given by

VðϕÞ ¼ m2

2
ϕ2: ð40Þ

In such a potential, it is well known that, under the slow
roll approximation, the evolution of the field can be
expressed as

ϕ2ðNÞ ≃ ϕ2
e þ 4ðNe − NÞM2

Pl; ð41Þ

where ϕe ≃
ffiffiffi
2

p
MPl denotes the value of the field at the end

of inflation. Clearly, we can arrive at the form of JðNÞ that
we desire if we choose JðϕÞ to be (in this context, see
Refs. [34,35])

JðϕÞ ¼ exp

�
−

n
4M2

Pl

ðϕ2 − ϕ2
eÞ
�
: ð42Þ

Recall that, COBE normalization determines the value
of the parameter m, and we find that we need to choose
m ¼ 7.18 × 10−6MPl to arrive at the observed scalar
amplitude at the pivot scale [50]. To evolve the background,
we shall choose the initial values of the field and the
first slow roll parameter to be ϕi ¼ 16.5MPl and ϵ1i ¼
7.346 × 10−3, respectively. In such a case, we find that
inflation lasts for 68.6 e-folds in the model.
The second example we shall consider is the small field

model described by the potential

VðϕÞ ¼ V0

�
1 −

�
ϕ

μ

�
q
�
; ð43Þ

and we shall focus on the case wherein q ¼ 2. On working
in the slow roll approximation, the evolution of the field in
such a model can be written as

μ2 ln

�
ϕ

ϕe

�
−
1

2
ðϕ2 − ϕ2

eÞ ≃ 2ðN − NeÞM2
Pl; ð44Þ

with ϕe again denoting the value of the field at the end of
inflation. Hence, we can arrive at the JðNÞ of our interest if
we choose the coupling function JðϕÞ to be

JðϕÞ ≃
�
ϕ

ϕe

�
nμ2=2M2

Pl
exp

�
−

n
4M2

Pl

ðϕ2 − ϕ2
eÞ
�
: ð45Þ

If we assume that μ ≫ MPl, then we find that ϕe ≃ μ. We
shall choose μ ¼ 10MPl. We find that COBE normalization
leads to V0 ¼ 5.38 × 10−10M4

Pl. We have set the initial
values of the field and the first slow roll parameter to be
ϕi ¼ 1.6MPl and ϵ1i ¼ 5.39 × 10−4, which lead to about
68.4 e-folds of inflation.
The third case that we shall consider is the Starobinsky

model described by the potential

VðϕÞ ¼ V0

�
1 − exp

�
−

ffiffiffi
2

3

r
ϕ

MPl

��2
: ð46Þ

As we shall consider another model due to Starobinsky
later, we shall refer to this potential as the first Starobinsky
model. In this model, the evolution of the field in the slow
roll approximation is described by the expression

N − Ne ≃ −
3

4

�
exp

� ffiffiffi
2

3

r
ϕ

MPl

�
− exp

� ffiffiffi
2

3

r
ϕe

MPl

�

−
ffiffiffi
2

3

r �
ϕ

MPl
−

ϕe

MPl

��
; ð47Þ

where the value of the field at the end of inflation, viz.
ϕe, is determined by the relation exp½ ffiffiffiffiffiffiffiffiffiffiffið2=3Þp

ϕe=MPl�≃
1þ 2=

ffiffiffi
3

p
. Therefore, to achieve the desired dependence of

the coupling function on the scale factor, we can choose
JðϕÞ in the model to be

JðϕÞ ¼ exp

�
−
3n
4

�
exp

� ffiffiffi
2

3

r
ϕ

MPl

�
− exp

� ffiffiffi
2

3

r
ϕe

MPl

�

−
ffiffiffi
2

3

r �
ϕ

MPl
−

ϕe

MPl

��	
: ð48Þ

Again, COBE normalization fixes the overall amplitude of
the potential to be V0 ¼ 1.43 × 10−10M4

Pl. We have chosen
the initial values of the field and the first slow roll
parameter to be ϕi ¼ 5.6MPl and ϵ1i ¼ 1.453 × 10−4. We
find that, for the above-mentioned value of V0, these initial
conditions lead to about 69.5 e-folds before inflation ends.
Let us now try to understand the amplitude and shape of

the spectra of the electromagnetic fields that arise in these
models. Evidently, to arrive at a nearly scale invariant
spectrum for the magnetic field, we shall choose to work
with n ¼ 2. Since the inflationary models introduced above
will lead to a scale factor of the slow roll form (rather of the
de Sitter type), clearly, we can expect the spectrum of the
magnetic field in both the nonhelical and helical cases to
exhibit a small tilt. Moreover, in these situations, the
spectrum of the electric field can be expected to be nearly
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scale invariant (as the spectrum of the magnetic field) in the
helical case, while it can be expected to behave nearly as k2

in the nonhelical case. In Fig. 2, we have plotted the spectra
arising in the three slow roll models that we discussed
above. Interestingly, we find that, while the power spectrum
for the nonhelical magnetic field arising in the case of the
quadratic potential has a small red tilt, the spectral tilt
happens to be slightly blue in the cases of the small field
and the Starobinsky models. One may have naïvely
imagined that, in such situations, it would be possible to
express the spectral tilts nB and nE completely in terms of
the slow roll parameters. This would have indeed been true
had we assumed that J ∝ an and worked with the slow roll
expression for the scale factor (in this context, see the
Appendix). However, our choices for the coupling func-
tions [viz. Eqs. (42), (45), and (48)] do not exactly mimic
the behavior of J ∝ an but contain small departures from it.
As a result of these deviations, we find that the spectral
indices depend on the parameters describing the potential
apart from the slow roll parameters. In Appendix, we show
that, a simple analytical estimate of the spectral indices
indeed match the results we have numerically obtained in
all these three cases.
Let us now estimate the amplitude of the electromagnetic

spectra in the slow roll models. Let us first consider the
nonhelical case. It can be easily shown that, when n ¼ 2, the
amplitude of the spectra of themagnetic and electric fields at
the pivot scale k� can be expressed as [cf. Eqs. (14)]

PBðkÞ
M4

Pl

≃
9π2

16
ðrAsÞ2; ð49aÞ

PEðkÞ
M4

Pl

≃
PBðkÞ
9M4

Pl

�
k�
ke

�
2

≃
PBðkÞ
9M4

Pl

e−100: ð49bÞ

In these expressions, As ¼ 2.1 × 10−9 denotes the observed
amplitude of the scalar power spectrum at the pivot scale and
r represents the tensor-to-scalar ratio [50,85]. Note that, we
have set ke ≃ −1=ηe, where, as we have indicated earlier, ke
is the wave number that leaves the Hubble radius at the end
of inflation.Also, in arriving at the final equality in the above
expression for PEðkÞ, we have assumed that the pivot scale
leaves the Hubble radius 50 e-folds before the end of
inflation, as we have done in the numerical evaluation of
the electromagnetic spectra plotted in Fig. 2. In the three
slow roll inflationary models of our interest, viz. the
quadratic potential, the small field model and the
Starobinsky model, the tensor-to-scalar ratio can be easily
estimated to be r ≃ ð1.6 × 10−1; 5.79 × 10−2; 4.8 × 10−3Þ.
The above expressions then suggest that these models will
generate nonhelical magnetic fields of amplitudes PBðkÞ ≃
ð6.27 × 10−19; 8.21 × 10−20; 5.64 × 10−22Þ M4

Pl. Moreover,
according to expressions above,PBðkÞ ≃ 10−20 M4

Pl implies
that PEðkÞ ≃ 10−66 M4

Pl. These estimates roughly match the
results we have arrived at numerically and have illustrated in
Fig. 2. Further, sincePBðkÞ ≫ PEðkÞ in the nonhelical case,

FIG. 2. The spectra of the magnetic (on the left) and electric (on the right) fields arising in the three slow roll inflationary models, viz.
the quadratic potential (in red), the small field model (in blue) and the first Starobinsky model (in green), have been plotted over the
CMB scales. We have also plotted the corresponding spectra when a step has been introduced in these potentials (in cyan, purple, and
orange, respectively), a scenario we shall discuss later in Sec. VA. Moreover, we have plotted the spectra in both the nonhelical (as solid
lines) and helical (as dashed lines) cases. We have worked with the parameters mentioned in the text and we have set n ¼ 2 in arriving at
the spectra. In the helical case, we have set γ ¼ 1. We should mention that the shapes and amplitudes of these numerically evaluated
spectra roughly match the analytical estimates discussed in the text. For instance, the spectrum of the magnetic field is nearly scale
invariant in all the models (and in both the nonhelical and helical cases), modulo a small steplike feature that arises when a step is
introduced in the potential. Also, the spectrum of the electric field behaves as k2 in the nonhelical case and it is scale invariant and
matches the amplitude of the magnetic field in the helical case, as we had discussed. Further, clearly, the amplitude of the spectrum of the
helical magnetic field is about 103 larger than the amplitude of the nonhelical field, as expected when γ ¼ 1.
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clearly, most of the energy in the generated electro-
magnetic fields is in the magnetic field. Last, since
PBðkÞ=M4

Pl ≃ ðHI=MPlÞ4 ≲ 10−20 in these models, we have
PBðkÞ=M4

Pl ≪ ρI=M4
Pl ∼H2

I =M
2
Pl, where, recall that, ρI is

the energy density of the inflaton. This suggests that the
energy density in the generated electromagnetic field is
smaller than the background energy density and hence these
scenarios do not suffer from the backreaction problem (for
an early discussion in this context, see Ref. [35], for more
recent discussions, see Ref. [36,86]).
Let us now turn to case of the helical electromagnetic

fields. In the helical case, when n ¼ 2, the amplitude of the
spectra of the magnetic and electric fields can be expressed
as [cf. Eqs. (27)]

PBðkÞ
M4

Pl

≃
9π2

16
ðrAsÞ2fðγÞ; ð50aÞ

PEðkÞ
M4

Pl

≃
PBðkÞ
M4

Pl

γ2; ð50bÞ

where fðγÞ is given by Eq. (28). Note that, in contrast to the
nonhelical case, the energy density in the electric field is
now comparable to that of the magnetic field and, in fact,
the contribution due to electric field dominates when γ > 1.
Therefore, if we need to avoid backreaction due to the
helical electromagnetic fields which have been generated,
we require that PBðkÞ þ PEðkÞ ≪ ρI. Since we are con-
sidering inflationary models wherein H=MPl ≲ 10−5, on
using the above expressions for the spectra of the electro-
magnetic fields, we find that the condition for avoiding
backreaction leads to fðγÞð1þ γ2Þ ≲ 1010. This limits the
value of γ to be γ ≲ 2.5. In Fig. 2, assuming γ ¼ 1, we have
also plotted the spectra of the helical electromagnetic fields
in the three inflationary models discussed above. When
γ ¼ 1, we find that fðγÞ ≃ 103. As should be evident from
the figure, the spectra of the helical magnetic fields is
indeed amplified by the factor of 103 when compared to the
nonhelical case in all the models. Also, it should be clear
that, the spectra of the helical electric and magnetic fields
are comparable, as expected.

IV. INFLATIONARY MODELS LEADING TO
FEATURES IN THE SCALAR POWER SPECTRUM

In this section, we shall discuss specific examples
wherein deviations from slow roll inflation lead to features
in the scalar power spectrum. In due course, we shall
discuss the effects of such deviations on the spectra of the
electromagnetic fields. When departures from slow roll
occur, in general, the background and the modes describing
the scalar perturbations prove to be difficult to evaluate
analytically, and one resorts to numerics. We shall begin by
recalling a few essential points regarding the evaluation of
the scalar power spectrum.

Let fk denote the Fourier modes associated with the
curvature perturbation. The modes fk satisfy the differ-
ential equation (see, for instance, the reviews [87–97])

f00k þ 2
z0

z
f0k þ k2fk ¼ 0; ð51Þ

where the quantity z is given by z ¼ ffiffiffiffiffiffiffi
2ϵ1

p
MPla, with

ϵ1 ¼ − _H=H2 being the first slow roll parameter. In terms
of the Mukhanov-Sasaki variable vk ¼ fkz, the above
equation reduces to

v00k þ
�
k2 −

z00

z

�
vk ¼ 0: ð52Þ

The standard Bunch-Davies initial conditions are imposed
on the variable vk at very early times when k ≫

ffiffiffiffiffiffiffiffiffi
z00=z

p
,

which corresponds to the modes being in sub-Hubble
regime. The scalar power spectrum is defined as

PSðkÞ ¼
k3

2π2
jfkj2 ¼

k3

2π2
jvkj2
z2

: ð53Þ

The modes fk are evolved from the Bunch-Davies initial
conditions and the power spectra are evaluated in the super-
Hubble regime at late times, i.e., when k ≪

ffiffiffiffiffiffiffiffiffi
z00=z

p
. Since

the modes oscillate in the sub-Hubble domain and the
amplitude of the scalar modes are known to freeze on
super-Hubble scales, numerically, one often finds that it is
sufficient to evolve the modes from k ≃ 102

ffiffiffiffiffiffiffiffiffi
z00=z

p
and

evaluate the power spectrum when k ≃ 10−5
ffiffiffiffiffiffiffiffiffi
z=00z

p
(in this

context, see, for instance, Ref. [98]).

A. Potentials with a step

The first scenario leading to features in the scalar power
spectrum that we shall consider are inflationary potentials
wherein a step has been introduced by hand. Given an
inflationary model described by the potential VðϕÞ, we
shall introduce a step in the potential as follows (for an
early discussion, see Ref. [99]):

VstepðϕÞ ¼ VðϕÞ
�
1þ α tanh

�
ϕ − ϕ0

Δϕ

��
; ð54Þ

where, evidently, ϕ0, α, and Δϕ denote the location, the
height and the width of the step. For the original potential
VðϕÞ, we shall consider the three models admitting
slow roll we had discussed in the previous section. Also,
as far as the parameters regarding the original potential is
concerned, we shall work with the values we had men-
tioned earlier. Moreover, we shall work with the following
values of the three parameters describing the step:
ðϕ0; α; ΔϕÞ ¼ ð14.6616MPl; 1.55177 × 10−3; 2.60584 ×
10−2MPlÞ, ð2.14MPl;−0.1153 × 10−3; 0.0070MPlÞ, and
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ð5.3052MPl; 5.0 × 10−5; 5.0 × 10−3MPlÞ in the cases of the
quadratic potential, the small field model and the first
Starobinsky model, respectively.
As we described above, to arrive at the scalar power

spectrum, we impose the initial conditions on the modes
when k ≃ 102

ffiffiffiffiffiffiffiffiffi
z00=z

p
and evaluate the power spectrum

when k ≃ 10−5
ffiffiffiffiffiffiffiffiffi
z00=z

p
. Moreover, in these three models,

we shall assume that the pivot scale of k� ¼ 0.05 Mpc−1

leaves the Hubble radius 50 e-folds before the end of
inflation. The scalar power spectrum that arises with the
introduction of the step in the quadratic potential is
illustrated in Fig. 3. As one would expect, the introduction
of the step in the potential leads to a short period of
deviation from slow roll as the field crosses the step. The
deviation from slow roll, in turn, generates a short burst
of oscillations in the scalar power spectrum over wave
numbers that leave the Hubble radius during the period of
departure from slow roll. It is known that such features in
the power spectrum can improve the fit to the CMB data to
a certain extent [56,57].

B. Suppressing power on large scales

Since the advent of the Wilkinson microwave anisotropy
probe (WMAP) data, it has been known that a suppression
in power on large scales comparable to the Hubble radius
today leads to an improvement in the fit to the CMB data
(for earlier discussions, see Refs. [51–55,58,59]; for a
recent discussion, see Ref. [62]). In this subsection, we
shall discuss two models that have often been considered in
this context.
The first example that we shall consider is a model due to

Starobinsky, which is governed by the potential [100]

VðϕÞ ¼
�
V0 þ Aþðϕ − ϕ0Þ; for ϕ > ϕ0

V0 þ A−ðϕ − ϕ0Þ; for ϕ < ϕ0

: ð55Þ

To distinguish from the Starobinsky model (46), which
permits the slow roll inflation that we had discussed earlier,
we shall refer to the above potential as the second
Starobinsky model. Evidently, the model consists of a
linear potential with a sudden change in its slope at the
point ϕ0. If we assume that the constant term V0 in the
potential is dominant, then the first slow roll parameter
remains small and the scale factor can be described by the
de Sitter form. Under this condition, it is possible to arrive
at analytical solutions for the evolution of the background
[100,101]. We shall discuss the evolution of the field later,
when we consider the coupling between the inflaton and
the electromagnetic field. It is found that, as the field
crosses ϕ0, while the first slow roll parameter remains
small, the second and the third slow roll parameters turn
large leading to a departure from slow roll. Also, notice that
the second derivative of the potential is described by a
Dirac delta function with its peak at ϕ0. It is the Dirac delta
function that dominates the behavior of the quantity z00=z
that appears in the Mukhanov-Sasaki equation (52).
Working in the de Sitter approximation to describe the
scale factor as well as the scalar modes fk, the deviation
from slow roll could be accounted for by essentially
considering the effects due to the Dirac delta function.
In fact, under these conditions, it is possible to arrive at an
analytical form for the power spectrum [62,100,101]. We
shall instead arrive at the scalar power spectrum numeri-
cally. In order to permit numerical analysis, we shall
modify the potential so that the change in the slope is

FIG. 3. The scalar power spectra with features over the CMB and smaller scales have been plotted in some of the inflationary models
that we have considered. We have plotted the scalar spectra with features over the CMB scales (on the left) in the cases of the quadratic
potential with a step (in red), the second Starobinsky model described by the linear potential with a sharp change in its slope (in blue) and
the first punctuated inflation model (in green). We have also plotted the scalar power spectra with a peak in power at small scales (on the
right) that are generated in the ultra slow roll (in red) and the second punctuated (in blue) inflation models. As we shall point out later, the
scalar spectra with a sharp rise in power on small scales are often considered to produce significant amount of primordial black holes.
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smooth and not abrupt. We shall assume that the potential is
given by

VðϕÞ ¼ V0 þ
1

2
ðAþ þ A−Þðϕ − ϕ0Þ

þ 1

2
ðAþ − A−Þðϕ − ϕ0Þ tanh

�
ϕ − ϕ0

Δϕ

�
; ð56Þ

and work with the following values of the parameters
involved: V0¼2.98×10−9M4

Pl, Aþ¼4.35881×10−10M3
Pl,

A−¼2.499×10−10M3
Pl, ϕ0¼5.628MPl, and Δϕ ¼ 10−4ϕ0.

We shall choose the initial value of the field and the first slow
roll parameter to be ϕi ¼ 8.4348MPl and ϵ1i ¼ 10−4.
The second model that we shall consider is the so-called

punctuated inflationary model described by the potential
(in this context, see Refs. [54,55,62])

VðϕÞ ¼ m2

2
ϕ2 −

2m2

3ϕ0

ϕ3 þ m2

4ϕ2
0

ϕ4: ð57Þ

It is easy to see that this potential contains a point of
inflection at ϕ0. The point of inflection leads to two epochs
of slow roll sandwiching a brief period of departure from
inflation, which has led to the name of punctuated inflation.
As we shall consider another model of punctuated inflation
which leads to enhanced power at small scales in the
following subsection, we shall refer to the above potential
as the first model of punctuated inflation. In this case, we
shall work with the following values of the parameters
involved: m ¼ 7.17 × 10−8MPl and ϕ0 ¼ 1.9654MPl. We
shall choose the initial values of the field and the first slow
roll parameter to be ϕi ¼ 12.0MPl and ϵ1i ¼ 2 × 10−3.
The drawback of these two models is that they lead to

much longer epochs of inflation than the nominally
required 60 odd e-folds [62]. In the Starobinsky model
(55), we stop the evolution by hand after 72 e-folds, and
assume that the pivot scale leaves the Hubble radius about
44.5 e-folds earlier. In the case of the punctuated infla-
tionary model (57), inflation ends naturally after nearly
110.5 e-folds and the pivot scale is assumed to exit the
Hubble radius about 91e-folds before the termination of
inflation. The departure from slow roll in these two
potentials leads to a steplike feature in the scalar power
spectrum, as illustrated in Fig. 3.

C. Enhancing power on small scales

Over the last few years, there has been a considerable
interest in examining models of inflation that lead to
enhanced power on scales much smaller than the CMB scales
(in this context, see, for example, Refs. [69–73,75,76]).
Apart from leading to copious production of primordial
black holes, these models can also generate secondary
gravitational waves of considerable strengths, which can
possibly be detected by the current and forthcoming

gravitational wave observatories. Most of these inflation-
arymodels contain a point of inflection (just as themodel of
punctuated inflation we discussed in the previous sub-
section), which permits a brief periodwherein the first slow
roll parameter decreases exponentially. Such a period of
ultra slow roll proves to be responsible for enhancing the
power on small scales in these models.
We shall consider two potentials that lead to enhanced

power on small scales. The first model that we shall
consider, which leads to a brief period of ultra slow roll,
is described by the potential [72]

VðϕÞ¼V0

�
tanh

�
ϕffiffiffi
6

p
MPl

�
þAsin

�
1

fϕ
tanh

�
ϕffiffiffi
6

p
MPl

��	
2

:

ð58Þ

We shall choose to work with the following values of the
parameters involved: V0 ¼ 2 × 10−10M4

Pl, A ¼ 0.130383,
and fϕ ¼ 0.129576. For these values of the parameters,
the point of inflection in the potential is located at ϕ0 ¼
1.05MPl [75]. Also, if we choose the initial value of the
field to be ϕi ¼ 6.1MPl, with ϵ1i ¼ 10−4, we obtain about
66 e-folds of inflation in the model. Moreover, we shall
assume that the pivot scale exits the Hubble radius about
56.2 e-folds prior to the termination of inflation.
The second model that we shall consider which permits

punctuated inflation is described by the potential [72,76]

VðϕÞ¼V0

�
c0þc1 tanh

�
ϕffiffiffi
6

p
MPl

�

þc2 tanh2
�

ϕffiffiffi
6

p
MPl

�
þc3 tanh3

�
ϕffiffiffi
6

p
MPl

��
2

: ð59Þ

In this case, we shall work with the following values for the
parameters involved: V0 ¼ 2.1 × 10−10M4

Pl, c0 ¼ 0.16401,
c1 ¼ 0.3, c2 ¼ −1.426, and c3 ¼ 2.20313. As in the
previous model, this potential also contains a point of
inflection. For the above values for the parameters, the
point of inflection is located at ϕ0 ¼ 0.53MPl. If we set the
initial value of the field to be ϕi ¼ 7.4MPl and choose
ϵ1i ¼ 10−3, for the above choice of parameters, we find that
inflation is terminated after about 67.8 e-folds. Also, we
shall assume that the pivot scale leaves the Hubble radius
about 54.5 e-folds before the end of inflation.
The scalar power spectra that arise in the above two

potentials are illustrated in Fig. 3. Note that the power
spectra exhibit a sharp rise in power on small scales in these
models. As has been repeatedly emphasized in the liter-
ature, it is the period of ultra slow roll, with its rather small
value for the first slow roll parameter ϵ1, that turns out to be
responsible for the increased power in the scalar power
spectrum on small scales (in this context, see, for instance,
Ref. [102]).
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V. EFFECTS OF DEVIATIONS FROM SLOWROLL
ON THE ELECTROMAGNETIC POWER SPECTRA

Let us now turn to understand the effects of deviations
from slow roll on the power spectra of electric and magnetic
fields.

A. In potentials with a step

As we discussed earlier and illustrated in Fig. 3, the
introduction of the step in a potential which otherwise
admits only slow roll inflation leads to a short burst of
oscillations in the scalar power spectrum. In Sec. III, we
had constructed coupling functions JðϕÞ [as given by
Eqs. (42), (45), and (48)] in the three slow roll models
(40), (43), and (46) so that they lead to nearly scale
invariant spectra for the magnetic field when n ¼ 2.
Even after the introduction of the step, we have chosen
to work with the above-mentioned coupling functions JðϕÞ
that we had constructed in the slow roll approximation. In
Fig. 2, we have plotted the resulting spectra of the magnetic
and electric fields arrived at numerically in both the
nonhelical and helical cases. As should be clear from
the figure, the step in the inflationary potential only has a
small effect on the spectra of the electromagnetic fields. It
essentially generates a small steplike feature in the power
spectra. This is not surprising since, for the choices of the
parameters we have worked with, the step in the potential
leads to only a small and brief departure from slow roll
inflation.

B. In models leading to suppression of
power on large scales

In this context, we shall first consider the second
Starobinsky model described by the potential (55). As
we had mentioned earlier, in the model, the field rolls
slowly until it reaches ϕ0 where the slope of the potential
changes from Aþ to A−. In the slow roll approximation,
the evolution of the field prior to it crossing ϕ0 can be
determined to be [100,101]

ϕþðNÞ≃−
�
V0

Aþ
−ϕ0

�
þ
��

ϕi−ϕ0þ
V0

Aþ

�
2

−2M2
PlN

�
1=2

;

ð60Þ

where ϕi is the initial value of the field (i.e., at N ¼ 0). If
we choose to work with a suitably large value of V0 so that
it dominates the potential, then the above expression
simplifies to be

ϕþðNÞ ≃ ϕi −
AþM2

Pl

V0

N: ð61Þ

Evidently, once the field has crossed ϕ0 and slow roll has
been restored, the evolution of the field can be expressed as

ϕ−ðNÞ ≃ −
�
V0

A−
− ϕ0

�
þ
��

V0

A−

�
2

− 2M2
PlðN − N0Þ

�
1=2

;

ð62Þ

where N0 denotes the e-fold when the field crosses ϕ0.
If we again assume that V0 is dominant, then the above
expression reduces to

ϕ−ðNÞ ≃ ϕ0 −
A−M2

Pl

V0

ðN − N0Þ: ð63Þ

We should clarify here that, in arriving at the above
expressions for the evolution of the field after it has crossed
ϕ0, we have ignored the effects that arise due to the change
in the slope. As we had described, the change in the slope
causes a brief period of departure from slow roll. If we take
into account the effects due to the deviation from slow roll,
the evolution of the field after it has crossed ϕ0 can be
obtained to be [100,101]

ϕ−ðNÞ ≃ ϕ0 þ
ΔAM2

Pl

3V0

½1 − e−3ðN−N0Þ� − A−M2
Pl

V0

ðN − N0Þ;

ð64Þ
where ΔA ¼ ðA− − AþÞ. Upon comparing the above two
equations, it should be obvious that it is the intermediate
term that accounts for the departure from slow roll which
occurs as the field crosses ϕ0. On using the above
expressions describing the behavior of the field, one can
show that, while the first slow roll parameter remains small,
the second and the third slow roll parameters turn large as
the field crosses ϕ0.
Let us now turn to constructing the coupling function

JðϕÞ for the second Starobinsky model. As we had done in
the case of the models discussed in Sec. III, we can choose
to work with the solutions for the field in the slow roll
approximation. If we choose to do so, we are left with two
choices, viz. the slow roll solutions (60) and (62) for the
field before and after the transition. In other words, we can
work with either of the following choices for the coupling
function:

JþðϕÞ ¼ J0þ exp

�
−

n
2M2

Pl

��
ϕþ − ϕ0 þ

V0

Aþ

�
2

−
�
ϕi − ϕ0 þ

V0

Aþ

�
2
�	

; ð65aÞ

J−ðϕÞ ¼ J0− exp

�
−

n
2M2

Pl

��
ϕ− − ϕ0 þ

V0

A−

�
2

−
�
V0

A−

�
2

− 2N0M2
Pl

�	
; ð65bÞ

where the constants J0� are to be chosen suitably so that
J�ðϕeÞ ¼ 1; i.e., the value of J is unity at the end of
inflation.
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The power spectra of the magnetic field for the two
coupling functions J�ðϕÞ for the case of n ¼ 2 are plotted
in Fig. 4 for both the nonhelical and helical cases. A few
points needs to be emphasized regarding the spectra we
have obtained. First, the spectra are scale invariant only
over either large or small scales. Let k0 be the mode that
leaves the Hubble radius when the field crosses ϕ0. Then,
clearly, for the choice of the coupling functions JþðϕÞ and
J−ðϕÞ, the magnetic field spectra are scale invariant only
over k < k0 and k > k0, respectively. This should not come
as a surprise as the coupling functions J�ðϕÞ have been
constructed based on the behavior of the field in the slow
roll approximation before and after it crosses ϕ0. Second,
when n ¼ 2, for the coupling function JþðϕÞ, the spectral
index of the magnetic field for k > k0 can be estimated to
be nB ¼ −4ΔA=Aþ, while for the function J−ðϕÞ the index
over large scales can be determined to be nB ¼ 4ΔA=A−.
Since ΔA ¼ ðA− − AþÞ < 0, nB > 0 (i.e., the spectrum is
blue) in the first case and nB < 0 (i.e., the spectrum is red)
in the second. These estimates are indeed corroborated by
the numerical results we have plotted in Fig. 4. Third, while
the amplitude of the magnetic field is considerably sup-
pressed over large scales if we work with the coupling
function JþðϕÞ, it is considerably enhanced over these
scales in the case of J−ðϕÞ. In fact, for the choice J−ðϕÞ, the
strength of the electromagnetic fields on large scales are
considerable and hence they will lead to a significant
backreaction.
Let us now turn to the first punctuated inflation model

described by the potential (57). It proves to be difficult to

obtain an analytical solution for the evolution of the
background scalar field in such a potential. Therefore,
we shall solve for the background numerically to first arrive
at ϕðNÞ. We then choose a quadratic function of the form
NðϕÞ ¼ a1ðϕ2=M2

PlÞ þ b1ðϕ=MPlÞ þ c1 to fit the numeri-
cal solution we have obtained in the initial slow roll regime.
When doing so, for the specific values of the parameters of
the potential and the initial conditions that we have worked
with, we obtain the values of the three dimensionless fitting
parameters to be ða1; b1; c1Þ ¼ ð−0.104;−0.0408; 15.949Þ.
Finally, to evaluate the spectra of the electromagnetic
fields, we shall work with a coupling function of the
form

JðϕÞ ¼ exp

�
n

�
a1

�
ϕ2 − ϕ2

e

M2
Pl

�
þ b1

�
ϕ − ϕe

MPl

��	
; ð66Þ

and note that JðϕÞ reduces to unity at ϕe, as required. In
Fig. 5, we have plotted the spectra of the resulting magnetic
and electric fields in both the nonhelical and helical cases
for n ¼ 2. We need to highlight a few points regarding the
figure. The spectra of the electric and magnetic fields in the
helical case and the spectrum of the magnetic field in
the nonhelical case are scale invariant over large scale
modes that leave the Hubble radius during the initial stages
of slow roll. Also, over the scale invariant domain, the
helical amplitudes are 103 times larger than the nonhelical
amplitudes, as expected for γ ¼ 1. For the choice of the
coupling function that we have worked with, we find that
the spectra of both the magnetic and electric fields behave

FIG. 4. The power spectra of the magnetic field arising in the second Starobinsky model for the two choices of coupling functions
JþðϕÞ (on the left) and J−ðϕÞ (on the right) [cf. Eq. (65)] have been plotted for n ¼ 2 in the nonhelical (in solid red) as well as the helical
(in dashed red) cases. A linear fit (indicated in dashed blue) to the nonhelical power spectra over the small and the large scales (on the left
and the right) lead to the spectral indices nB ¼ 1.75 and nB ¼ −2.72, respectively. For the values of the parameters we have worked
with, the analytical estimates for these indices prove to be nB ¼ 1.71 and nB ¼ −2.98, which are close to the numerically determined
values. As in Fig. 2, we have set the helicity parameter γ to be unity. Moreover, note that, for γ ¼ 1, the spectra of the magnetic field over
the scale invariant domain is about 103 times larger in the helical case when compared to the nonhelical one, as we had estimated earlier.
Last, we should add that, when the coupling function is given by J−ðϕÞ, the strength of the magnetic fields generated is fairly large and
hence the scenario will lead to a significant backreaction.
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as k4 (in the absence as well as in the presence of helicity)
over the small scale modes that leave the Hubble radius at
later stages. As we shall discuss in more detail in the
following section, when the field approaches the point of
inflection in the potential and enters a phase of ultra slow
roll inflation, the coupling function J hardly changes.
This implies that J00=J ≃ 0, which is responsible for the k4

behavior of the spectra at small scales. We should also
point out that this behavior significantly suppresses
the scale invariant amplitude of the magnetic field over
large scales.
The two examples discussed in this subsection point to

the fact that unless the coupling function is suitably chosen,
strong departures from slow roll inflation result in spectra
of magnetic fields that contain significant deviations from
scale invariance.

C. In models leading to enhanced power on small scales

Let us now turn to the two models described by the
potentials (58) and (59) that lead to enhanced scalar power
on small scales. As in the case of the first punctuated
inflation model we discussed in the previous subsection,
these models too lead to an epoch of ultra slow roll inflation
wherein the first slow roll parameter decreases exponen-
tially over a short period before it starts rising, leading to an
end of inflation. It is the sharp decrease in the first slow roll

parameter that is responsible for the rise in the scalar power
in such models (in this context, see Refs. [69–73,75,76]).
In these models, one chooses the parameters of the

background potential as well as the initial conditions such
that there occurs an extended period of slow roll inflation
which generates scalar and tensor power spectra that are
consistent with the CMB observations on large scales. If we
require a nearly scale invariant spectrum of the magnetic
field over the CMB scales, then, evidently, we need to
choose a coupling function JðϕÞ that is based on the
evolution of the field during the long initial epoch of slow
roll inflation. Since the potentials (58) and (59) do not seem
to admit simple analytical solutions, we repeat the exercise
we had carried out in the case of the first punctuated
inflation model. Utilizing the numerical solution, we arrive
at NðϕÞ and fit a polynomial to describe the function. We
find that we can fit fourth and sixth order polynomials to
describe the NðϕÞ in the potentials (58) and (59). The
coupling functions that we shall work with in these two
cases can be expressed as

JðϕÞ ¼ exp

�
n

�
a2

�
ϕ4 − ϕ4

e

M4
Pl

�
þ b2

�
ϕ3 − ϕ3

e

M3
Pl

�

þ c2

�
ϕ2 − ϕ2

e

M2
Pl

�
þ d2

�
ϕ − ϕe

MPl

��	
; ð67aÞ

FIG. 5. The spectra of the magnetic (on the left) and electric (on the right) fields arising in the case of the first punctuated inflation
model (57) have been plotted for both the nonhelical (in solid red) and helical (in dashed red) cases. In arriving at these spectra, we have
worked with the coupling function (66) and, as earlier, we have set the helicity parameter γ to be unity. As expected, over the large scales,
when the modes leave the Hubble radius during the initial stages of slow roll inflation, the spectra of the magnetic as well as the electric
fields in the helical case are nearly scale invariant and also have roughly the same amplitude. Moreover, the amplitude of the helical
magnetic fields are 103 times greater in amplitude than the nonhelical fields over the scale invariant domain, as one may have guessed.
Further, note that the spectra behave as k4 over small scales. This behavior can be attributed to the fact that, as the background scalar field
approaches the point the inflection, leading to an epoch of ultra slow roll inflation, the nonminimal coupling function J hardly evolves.
We should point out that, in the above plots, we have multiplied the spectra of the electromagnetic fields by the factor of by a4e (in
contrast to the other figures) since their amplitudes turn out to be extremely small otherwise. As will be evident from the discussion in
the following subsection, the rather small amplitudes in these cases can be attributed to a very early onset of the ultra slow roll epoch
required to suppress the scalar power on the largest scales.
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JðϕÞ ¼ exp

�
n

�
a3

�
ϕ6 − ϕ6

e

M6
Pl

�
þ b3

�
ϕ5 − ϕ5

e

M5
Pl

�

þ c3

�
ϕ4 − ϕ4

e

M4
Pl

�
þ d3

�
ϕ3 − ϕ3

e

M3
Pl

�

þ e3

�
ϕ2 − ϕ2

e

M2
Pl

�
þ f3

�
ϕ − ϕe

MPl

��	
; ð67bÞ

with the dimensionless fitting parameters being given
by ða2; b2; c2; d2Þ ¼ ð−0.184; 1.822;−7.040; 10.676Þ and
ða3;b3;c3;d3;e3;f3Þ¼ð−1.53×10−3;2.37×10−2;−0.158;
0.439;−0.459;−0.778Þ, respectively.
In Fig. 6, we have plotted the spectra of the electro-

magnetic fields that arise for the above choices of the
coupling functions in the two models of our interest. We
should mention that, in arriving at the spectra, we have set
n ¼ 2 and γ ¼ 1, as we have done before. The following
points are clear from the figure. Note that the spectra of the
magnetic fields in both the nonhelical and helical cases are
nearly scale invariant over large scales. This is because the
coupling functions have been determined by the slow roll
behavior of the field. Also, as we have seen earlier, the
magnitude of the helical magnetic field is about 103 larger
than the nonhelical field over the scale invariant domain.
Moreover, over large scales, as expected, the spectrum of
the electric field behaves as k2 in the nonhelical case and is
nearly scale invariant with an amplitude comparable to the
spectrum of the magnetic field in the helical case. Further,
at small scales, all the spectra behave as k4 for the same

reasons as we had encountered in the case of the first
punctuated inflation model (57). When the background
scalar field approaches the point of inflection in these
models, the coupling functions J hardly evolve (in this
context, see Fig. 7) and the electromagnetic modes effec-
tively behave as in the conformally invariant case leading to
the k4 behavior. Last, we should mention that such a
background behavior not only changes the shape of the
spectra of the electromagnetic fields at small scales, it also
suppresses the scale invariant amplitudes of the spectra at
large scales.

D. An analytical estimate

In this subsection, we shall analytically arrive at the
power spectra of the electromagnetic fields in models
which permit ultra slow roll inflation and lead to enhanced
scalar power on small scales.

1. A simple approximation

Recall that, in these scenarios, we had constructed the
coupling function JðϕÞ so that we obtain a scale invariant
spectrum for the magnetic field on large scales
[cf. Eqs. (67); also see Eq. (66)]. In order to achieve such
a scale invariant spectrum, during the initial stage of slow
roll inflation, let us assume that JðηÞ ∝ a2. Note that, in
these models, for our choices of the dependence of the
coupling function on the field, we find that J freezes when
the epoch of ultra slow roll sets in. This is evident from
Fig. 7 wherein we have plotted the evolution of the
coupling function in the first and second models of

FIG. 6. The spectra of the magnetic (on the left) and electric (on the right) fields arising in the ultra slow roll inflationary model (58) (in
red) and the second punctuated inflationary model (59) (in blue) have been plotted in the nonhelical (as solid lines) and helical (as
dashed lines) cases, respectively. Note that we have worked with the coupling functions (67) to arrive at these spectra. Also, we have
chosen n ¼ 2 and set γ ¼ 1, as we have done earlier. Clearly, the spectra of the electromagnetic fields in both the helical and nonhelical
cases are along expected lines, as we have discussed in the text. In particular, we should point out that the spectra in the two models
behave as k4 at large wave numbers. This behavior arises due to the fact the coupling functions cease to evolve as the field approaches
the point of inflection in these models. In such a situation, the electromagnetic modes effectively behave as in the conformally invariant
case, leading to the k4 behavior. We should also add that, apart from changing the shape of the spectra at small scales, the background
evolution significantly suppresses the power in the spectra on large scales.
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punctuated inflation [cf. Eqs. (57) and (59)] as well as in the
model of ultra slow roll inflation [cf. Eq. (58)]. Therefore,
we can assume that, after a time, say η1, JðηÞ ≃ constant. In
such a case, during the initial stage, the electromagnetic
modes Ak can be easily obtained to be

AI
kðηÞ ¼

1ffiffiffiffiffi
2k

p
�
1 −

3i
kη

−
3

k2η2

�
e−ikη: ð68Þ

It should be evident that, after η1, the electromagnetic
modes can be written as

AII
k ðηÞ ¼

1ffiffiffiffiffi
2k

p ðαke−ikη þ βkeikηÞ: ð69Þ

The coefficients αk and βk are to be determined by
imposing the matching conditions on the modes at the
transition at η1.
Since J0 ≃ −2η21=η3 prior to η1 and J0 ≃ 0 after, there is a

discontinuity in J0 at η1. This leads to a Dirac delta function
in the behavior of J00=J at the transition at η1. As a result,
the modes in the two domains are related by the matching
conditions

AI
kðη1Þ ¼ AII

k ðη1Þ; ð70aÞ

AII0
k ðηÞ −AI0

k ðηÞ ¼
2

η1
AI

kðη1Þ: ð70bÞ

These conditions lead to the following expressions for the
coefficients αk and βk:

αk ¼ 1þ 2ik1
k

−
3k21
2k2

; ð71aÞ

βk ¼
�
ik1
k

−
3k21
2k2

�
e2ik=k1 ; ð71bÞ

where we have set k1 ¼ −1=η1, i.e., the wave number
which leaves the Hubble radius at the onset of the ultra slow
roll epoch. The power spectra of the magnetic and electric
fields at late times [i.e., in the limit ð−kηeÞ ≪ 1] can be
evaluated to be

PBðkÞ ¼
H4

I

4π2
ð−kηeÞ4jαk þ βkj2; ð72aÞ

PEðkÞ ¼
H4

I

4π2
ð−kηeÞ4jαk − βkj2: ð72bÞ

For large k such that k=k1 ≫ 1, we find that αk → 1 and
βk → 0 [cf. Eqs. (71)]. Therefore, in such a limit, both the
above power spectra behave as k4, which is what we
observe numerically (see Figs. 5 and 6). It can be shown
that, in the limit k=k1 ≪ 1,

jαk þ βkj2 ¼
9k41
k4

; jαk − βkj2 ¼
16k21
k2

; ð73Þ

so that the above spectra reduce to the following forms:

PBðkÞ ≃
9H4

I

4π2

�
aðη1Þ
aðηeÞ

�
4

; ð74aÞ

PEðkÞ ≃
H4

I

4π2

�
4k
k1

�
2
�
aðη1Þ
aðηeÞ

�
4

: ð74bÞ

In other words, on the large scales, we obtain spectral
shapes that are expected to occur when the coupling
function behaves as J ≃ a2 [cf. Eqs. (14)]. This should
not come as a surprise since these modes leave during the
initial slow roll regime. However, note that the factor
½aðη1Þ=aðηeÞ�4 considerably suppresses the amplitudes of
the electromagnetic spectra on large scales. In fact,
the earlier the onset of the ultra slow roll regime, the
larger is the suppression. It is for this reason that the
electromagnetic spectra in the first punctuated inflation
model had substantially small amplitudes on large scales
(see Fig. 5).
Let us now examine the corresponding situation in

the helical case. In the case of the helical field, during
the initial stage of slow roll inflation, when n ¼ 2, the
electromagnetic modes Aσ

k are given by [cf. Eq. (20)]

FIG. 7. The evolution of the nonminimal coupling function J
[as given by Eqs. (66) and (67)] that we had considered in the
models described by the potentials (57), (58), and (59) has been
plotted (in solid red, blue, and green, respectively) as a function
of the e-fold N. The onset of the ultra slow roll phase corresponds
to the time when the first slow roll parameter starts to decrease
rapidly. We have indicated the beginning of the ultra slow roll
epoch (as dashed vertical lines of the corresponding color) in all
these cases. Recall that, we had constructed coupling functions
JðϕÞ so that they behave as a2 during the initial slow roll phase.
For such choices of JðϕÞ, the coupling function does not seem to
change appreciably (until very close to the end of inflation) after
the ultra slow roll phase has set in.
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AσI
k ðηÞ ¼

1ffiffiffiffiffi
2k

p e−πσγW2iσγ;5
2
ð2ikηÞ: ð75Þ

Since the coupling function J hardly evolves after the onset
of ultra slow roll, the electromagnetic modes during the
second stage, say AσII

k , can be expressed just as in Eq. (69)
for the nonhelical case. Moreover, the matching conditions
continue to be given by Eq. (70). However, we should
clarify that the coefficients αk and βk now depend on the
polarization σ. The power spectra of the magnetic and
electric fields at late times, i.e., when ð−kηeÞ ≪ 1, can be
obtained to be

PBðkÞ ¼
H4

I

8π2
ð−kηeÞ4ðjαþk þ βþk j2 þ jα−k þ β−k j2Þ; ð76aÞ

PEðkÞ ¼
H4

I

8π2
ð−kηeÞ4ðjαþk − βþk j2 þ jα−k − β−k j2Þ: ð76bÞ

On matching the modes at η1, we obtain the coefficients ασk
and βσk to be

ασk ¼ −
e−ik=k1e−πσγ

2ðk=k1Þ
�
2ðiþ σγÞW2iσγ;5

2
ð−2ik=k1Þ

− iW1þ2iσγ;5
2
ð−2ik=k1Þ

�
; ð77aÞ

βσk ¼ −
eik=k1e−πσγ

2ðk=k1Þ
�
2

�
−i −

k
k1

− σγ

�

×W2iσγ;5
2
ð−2ik=k1Þ þ iW1þ2iσγ;5

2
ð−2ik=k1Þ

�
; ð77bÞ

where, as earlier, we have set k1 ¼ −1=η1. In the limit
k=k1 ≫ 1, we find that ασk → 1 and βσk → 0, as in the
nonhelical case. This suggests that the power spectra of
both the electric and magnetic fields behave as k4 in
such a limit, which is indeed what we obtain numerically
(see Figs. 5 and 6). Whereas, in the limit k=k1 ≪ 1, we find
that [84]

jασk þ βσkj2 ¼
9ð1 − e−4πσγÞ

4πσγð1þ 5γ2 þ 4γ4Þ
�
k
k1

�
−4
; ð78Þ

jασk − βσkj2 ¼
9σγ2ð1 − e−4πσγÞ

4πγð1þ 5γ2 þ 4γ4Þ
�
k
k1

�
−4
; ð79Þ

and hence the spectra (76) reduce to the following forms:

PBðkÞ ≃
9H4

I

4π2
fðγÞ

�
aðη1Þ
aðηeÞ

�
4

; ð80aÞ

PEðkÞ ≃
9H4

I

4π2
fðγÞγ2

�
aðη1Þ
aðηeÞ

�
4

; ð80bÞ

where, recall that fðγÞ is given by Eq. (28). Clearly, over
large scales, the spectra of both the electric and magnetic
fields are scale invariant as is expected in the helical case
when J ≃ a2 and the modes cross the Hubble radius during
a slow roll regime. Moreover, note that, as in the nonhelical
case, the onset of the ultra slow roll epoch leads to a
suppression in the amplitudes of the power spectra on large
scales by the factor of ½aðη1Þ=aðηeÞ�4.
We have been able to understand the shape of the

electromagnetic spectra arising in models involving an
epoch of ultra slow roll inflation using analytical argu-
ments. Let us now compare the numerical results for the
amplitudes of the spectra over large scales with the
analytical estimates in both the nonhelical and helical
cases. In the case of the ultra slow roll model described
by the potential (58), we find that, when the pivot scale
leaves the Hubble radius, the value of the Hubble parameter
is HI ¼ 9.05 × 10−6MPl. The epoch of ultra slow roll
inflation can be said to begin when the first slow roll
parameter ϵ1 attains the maximum value (prior to the end of
inflation) and begins to decrease rapidly thereafter. We
find that, in the model of our interest here, ultra slow roll
sets in about 22.4 e-folds before the end of inflation. Also,
the value of the wave number that equals

ffiffiffiffiffiffiffiffiffiffiffiffiffijJ00=Jjp
at the

onset of ultra slow roll inflation proves to be
k1 ¼ 2.2 × 1013 Mpc−1. For these values, in the nonhelical
case, the analytical estimates we have obtained above lead
to PBðkÞ ≃ 10−60M4

Pl and PEðkÞ ≃ 10−89M4
Pl at the pivot

scale. Numerically, we have obtained the corresponding
values to be PBðkÞ ≃ 10−63M4

Pl and PEðkÞ ≃ 10−84M4
Pl.

In the helical case, for γ ¼ 1, the analytical estimates
lead to PBðkÞ ¼ PEðkÞ ≃ 10−57M4

Pl at the pivot scale.
The corresponding numerical values turn out to be
PBðkÞ ¼ PEðkÞ ≃ 10−60M4

Pl.
Similarly, in the case of the second model of punctuated

inflation described by the potential (59), we find that the
value of the Hubble parameter at the time when the pivot
scale exits the Hubble radius is HI ¼ 1.01 × 10−5MPl.
Moreover, the onset of the ultra slow roll epoch occurs
about 18.3 e-folds prior to the end of inflation, which
implies that k1 ≃ 1.6 × 1014 Mpc−1. According to the
analytical estimates, in the nonhelical case, these values
lead to PBðkÞ ≃ 10−53M4

Pl and PEðkÞ ≃ 10−84M4
Pl at the

pivot scale. Numerically, we obtain the corresponding
values to be PBðkÞ ≃ 10−50M4

Pl and PEðkÞ ≃ 10−83M4
Pl.

In the case of the helical fields, when γ ¼ 1, the analytical
estimates suggest that PBðkÞ ¼ PEðkÞ ≃ 10−50M4

Pl at the
pivot scale, while the corresponding numerical values turn
out to be PBðkÞ ¼ PEðkÞ ≃ 10−47M4

Pl.
While the analytical estimates broadly match the

numerical results, there arise differences of the order
of 103–105 in the values for the power spectra of the
electromagnetic fields. These differences can be attrib-
uted to the coarseness of the analytical modeling and the
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fact that J evolves to a certain extent as one approaches
the end of inflation.

2. A closer look at the evolution of the modes at late times

In Fig. 7, we had plotted the evolution of the nonminimal
coupling function in the ultra slow roll model and the two
punctuated inflation models we have considered. We had
found that, once the epoch of ultra slow roll begins, the
coupling function J hardly evolves. Based on such a
behavior, we had assumed that J0 and J00 were zero and
had arrived at the analytical form for the modes Ak and,
eventually, the power spectra of the electromagnetic fields.
While the coupling function J is almost a constant, one can
show that it is not correct to set J0 and J00 to zero in these
scenarios. In Fig. 8, we have plotted the evolution of jJ00=Jj
in the three models. It is clear from the figure that the
quantity does not vanish once the ultra slow roll phase
begins, as we have assumed earlier. Therefore, it seems that
we need to revise our previous discussion.
One can expect that, since J as well as J00=J behave as a2

during the initial slow roll phase, the power spectra over
modes that leave the Hubble radius—to be precise, when
k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffijJ00=Jjp

—will be scale invariant. However, in the
ultra slow roll and the second punctuated inflation models,
once the epoch of ultra slow roll comes to an end, J00=J

behaves as a5=2 (as illustrated in Fig. 8), while J is a
constant. Let us now focus on large wave numbers in these
models over which, numerically, we find that the power
spectra of the magnetic as well as electric fields behave
as k4. In these cases, at suitably early times when
k ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffijJ00=Jjp
, the Fourier modes of the nonhelical vector

potential [governed by Eq. (4)] can be written as

AI
kðηÞ ¼

1ffiffiffiffiffi
2k

p e−ikη: ð81Þ

Also, since, J is a constant, at late times when
k ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffijJ00=Jjp
, we can express the nonhelical electromag-

netic modes as

AII
k ðηÞ ¼

1ffiffiffiffiffi
2k

p ½αk þ βkη�; ð82Þ

where the coefficients αk and βk are to be determined by
matching the above solutions and their derivatives at the
time ηk corresponding to k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffijJ00=Jjp

. The coefficients αk
and βk can be easily obtained to be

αk ¼ ð1þ ikηkÞe−ikηk ; βk ¼ −ikηke−ikηk ; ð83Þ
and hence, at late times, we have

AII
k ðηÞ ¼

1ffiffiffiffiffi
2k

p ½1 − ikðη − ηkÞ�e−ikηk : ð84Þ

Since J is constant, this implies that the quantity
ffiffiffi
k

p
Āk will

have the same value at late times [i.e., when ð−kηeÞ ≪ 1]
for large wave numbers provided ðkηkÞ is small. We shall
see below that ðkηkÞ is indeed small in the models of our
interest. In Fig. 9, we have plotted the evolution of the
electromagnetic modes at late times in the case of the ultra
slow roll inflation model (58) for a range of wave numbers.
It is clear from the figure that, over large enough wave
numbers for which ηk occurs after the epoch of ultra slow
roll, the quantity

ffiffiffi
k

p jAkj has the same amplitude at late
times. This, in turn, implies that the power spectrum of the
magnetic field will behave as k4, which is what we obtain
numerically.
Note that, because of the fact that the first slow roll

parameter remains small until we approach close to the end
of inflation, the de Sitter expression for the scale factor
remains valid. As a result, on using the above form for
the electromagnetic modes, we obtain the spectra of the
magnetic and electric fields in the limit ð−kηeÞ ≪ 1 to be

PBðkÞ ¼
H4

I

4π2
ð−kηeÞ4ð1þ k2η2kÞ; ð85aÞ

PEðkÞ ¼
H4

I

4π2
ð−kηeÞ4: ð85bÞ

FIG. 8. The evolution of the quantity J00=J corresponding to the
three coupling functions we had illustrated in the previous figure
has been plotted as a function of e-fold N (with the same choice
of colors). The insets highlight the behavior of the quantity
around the onset of the epoch of ultra slow roll. We find that
J00=J ∝ e2N during the initial slow roll phase, as expected. It is
clear J00=J does not vanish once ultra slow roll inflation begins
(indicated by the vertical lines). In fact, the quantity is almost a
constant during the ultra slow roll period and it actually grows
(either as e2N in the case of the first punctuated inflation model or
as e5N=2 in the other two models) when the ultra slow roll phase is
complete and the first slow roll parameter begins to rise. We
should also mention the fact that J00=J can turn negative during
these latter stages.
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While PEðkÞ is independent of ηk and evidently behaves as
k4 over large wave numbers, we need to determine ηk in
order to understand the shape ofPBðkÞ. Since J00=J ∝ a5=2 at
late times, on using the behavior of the scale factor in
de Sitter, based on dimensional grounds, we can write
J00=J ¼ ðktη5Þ−1=2, where kt is a wave number. The quantity
kt needs to be determined from the numerical value of J00=J
at the end of the ultra slow roll phase. Hence, the condition
k2 ¼ J00=J ¼ ðktη5kÞ−1=2 leads to k2η2k ¼ ðk=ktÞ2=5. In the
ultra slow roll and the second punctuated inflation models,
we find that, for our choices of the coupling functions,
kt ≃ 1023 Mpc−1, whereas the largest wave number of our
interest is k ≃ 1019 Mpc−1. These imply that ðk2η2kÞ≲ 10−2.
Therefore, we can expect PBðkÞ to behave as k4 over the
wave numbers 1015 Mpc−1 ≲ k≲ 1019 Mpc−1, which is
what we observe numerically.
In retrospect, it should be clear that the approaches in the

last two subsections yielded similar results for the behavior
of the spectra at large wave numbers because of the fact that
the modesAII

k as given by Eqs. (69) and (82) have the same
amplitudes at late times.

VI. CAN THE FEATURES BE IRONED OUT?

It is now interesting to examine whether the features
in the spectra of the electromagnetic fields can be ironed
out so that we arrive at nearly scale invariant spectra for
the magnetic field. In this section, we shall discuss this
possibility in the second Starobinsky model [cf. Eqs. (55)
and (56)] that leads to features in the scalar power spectrum
over the large scales.

Earlier, we had arrived at the spectra of the magnetic
field in this model assuming that the coupling function was
given by either JþðϕÞ or J−ðϕÞ described by Eqs. (65). In
order to remove the strong features that arise in the
spectrum of the magnetic field, it seems reasonable to
stitch together these two coupling functions in the follow-
ing fashion:

JðϕÞ ¼ J1
2J0þ

�
1þ tanh

�
ϕ − ϕ0

Δϕ1

��
JþðϕÞ

þ J1
2J0−

�
1 − tanh

�
ϕ − ϕ0

Δϕ1

��
J−ðϕÞ; ð86Þ

where J1 is constant which is determined by the condition
that JðϕÞ reduces to unity at the end of inflation and Δϕ1 is
another constant which we shall choose suitably. Note that,
for a small enough Δϕ1, the quantities within the square
brackets (involving the hyperbolic tangent functions) in the
above expression behave as step functions. It should then
be evident that the above coupling function has been
constructed in such a fashion that it is essentially described
by JþðϕÞ when ϕ > ϕ0 and J−ðϕÞ when ϕ < ϕ0. In
Fig. 10, we have plotted the resulting spectra for the
magnetic as well as electric fields obtained numerically
in the nonhelical and helical cases. As can be seen from the
figure, there arise two nearly scale invariant regions in the
power spectra of the magnetic field (and in the case of
the helical electric field), with a burst of oscillations in
between. Clearly, the scale invariant parts correspond to the
evolution of the field over the two linear parts of the

FIG. 9. The evolution of the electromagnetic modes in the case of the ultra slow roll inflation model (58) has been plotted for the five
choices of the wave numbers k ¼ ð1012; 1013; 1014; 1016; 1018Þ Mpc−1 (in red, blue, green, cyan, and purple), respectively. We have
worked with the coupling function (67) and have plotted the evolution of the dominant real part of the quantity

ffiffiffi
k

p jĀkj in the nonhelical
case (on the left) and the quantity

ffiffiffi
k

p jĀ−
k j in the helical case (on the right). We have also indicated the onset of the ultra slow roll epoch

(as the solid vertical line in black) and the e-folds corresponding to the time ηk, i.e., when k2 ¼ jJ00=Jj, for the different wave numbers
(as dashed vertical lines, with the same choice of colors as the modes). It is clear that the amplitude of the electromagnetic modes freeze
at late times. Importantly, we find that, for k ≳ 1013 Mpc−1, the late time values of the quantities

ffiffiffi
k

p jĀkj and
ffiffiffi
k

p jĀ−
k j are the same for the

different wave numbers, which points to the k4 behavior for the spectrum of the magnetic field over small scales.
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potential and the oscillations arise as the deviations from
slow roll occur when the field crosses ϕ0. Thus, in a model
involving a strong departure from slow roll, with a suitable
choice of the coupling function, we have been able to arrive
at electromagnetic spectra that do not lead to significant
backreaction and can also be largely consistent with the
current constraints. However, we should stress the fact that
it has been achieved only at the severe cost of an extremely
fine tuned nonminimal coupling function.

VII. CONCLUSIONS

A nearly scale invariant primordial scalar power spec-
trum, as is generated in slow roll inflationary models,
is remarkably consistent with the CMB data [50,85].
However, it has been repeatedly noticed that certain
features in the scalar power spectrum can improve the fit
to the data. Such features are often generated by consid-
ering potentials that induce departures from slow roll
inflation [51–63].
Magnetic fields are generated during inflation by break-

ing the conformal invariance of the electromagnetic action.
In this work, we have investigated the effects of deviations
from slow roll on the spectra of the electromagnetic fields
generated during inflation. Specifically, we have consid-
ered a class of inflationary models which allow transient
deviations from slow roll and, as a result, generate localized
features in the scalar power spectrum. When the electro-
magnetic fields are coupled to the scalar curvature, we
found that it proves to be challenging to obtain nearly scale
invariant magnetic fields of the desired shapes and
strengths even in slow roll inflation. In contrast, this is
easy to achieve when the electromagnetic field is coupled
nonminimally to the inflaton, provided we work with

model-dependent coupling functions. Therefore, we
focused on situations wherein the electromagnetic field
is coupled to the inflaton and evaluated the spectra of
nonhelical as well as helical electromagnetic fields in
nontrivial scenarios involving deviations from slow roll.
We found that, when strong departures from slow roll arise,
apart from generating features in the scalar power spec-
trum, quite generically, these deviations also led to features
in the spectra of electromagnetic fields. Moreover, in
certain scenarios, it is also possible that the strengths of
the magnetic fields are considerably suppressed on large
scales. While it seems possible to remove the strong
features in the spectra of the electromagnetic fields
allowing us to arrive at nearly scale invariant spectra of
required strengths, it is achieved at the terrible cost of
extreme fine-tuning. In summary, if future observations
confirm the presence of strong features in the primordial
scalar power spectrum and, if the electromagnetic fields are
to be generated by coupling them to the inflaton that is
responsible for these features, then there seems to arise a
severe challenge in being able to produce magnetic fields of
the desired shape and strength in single field models of
inflation. We are currently exploring possible ways of
overcoming the challenge.
There are a couple of related points we wish to clarify

before we conclude. As we have stressed earlier, in
this work, we have focused on a domain wherein back-
reaction due to the electromagnetic fields is negligible
[35,36]. Another interesting aspect of generating electro-
magnetic fields during inflation is that they can induce
nonadiabatic pressure perturbations which can source the
adiabatic scalar perturbations on super-Hubble scales
(in this context, see, for instance, Refs. [36,79,103]).

FIG. 10. The spectra of the magnetic (on the left) and electric (on the right) fields arising for the choice of the coupling function
(86) in the second Starobinsky model (56) have been plotted for both the nonhelical (in red) and helical (in blue) cases. As before,
we have set n ¼ 2 and γ ¼ 1 when computing the spectra. Note that, with the new coupling function, the strong features have
disappeared and we are left with relatively smaller features that can be expected to be consistent with the current constraints.
Evidently, the burst of oscillations that remain in the spectra occurs because of the departure from slow roll as the field crosses the
point ϕ0.
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This additional contribution can lead to distinguishable
features in the CMB both at the level of the power spectrum
as well as non-Gaussianities. However, for most of
the models we have considered in this work, since the
strength of generated magnetic fields over CMB scales is
relatively weak, the effects arising from the induced
curvature perturbations can be expected to be negligible.
Nevertheless, it seems important to investigate these effects
more closely in nontrivial scenarios involving departures
from slow roll inflation. We are also presently examining
these issues.
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APPENDIX: THE ELECTROMAGNETIC
SPECTRAL INDICES IN SLOW ROLL

INFLATION

In this appendix, we shall derive the spectral indices of
the nonhelical magnetic and electric fields, viz. nB and nE,
in the slow roll approximation.
Given the form J ¼ ½aðηÞ=aðηeÞ�n for the nonminimal

coupling function [cf. Eq. (6)], one finds that

J00

J
¼ H2ðn2 þ n − nϵ1Þ; ðA1Þ

where ϵ1 ¼ − _H=H2 is the first slow roll parameter, and we
should emphasize that this relation is exact. In the slow roll
approximation, one can express the conformal Hubble
parameter as [87–97]

H ¼ a0

a
≃ −

1

ð1 − ϵ1Þη
; ðA2Þ

so that, at the first order in the slow roll parameter ϵ1,
we have

J00

J
≃

1

η2
½n2 þ nþ ð2n2 þ nÞϵ1�: ðA3Þ

In such a case, the solution to Eq. (4) that satisfies the
Bunch-Davies initial conditions is given by

AkðηÞ ¼
ffiffiffiffiffiffiffiffiffi
−
πη

4

r
ei½νþð1=2Þ�π=2Hð1Þ

ν ð−kηÞ; ðA4Þ

where, as we had mentioned earlier, Hð1Þ
ν ðzÞ is the Hankel

function of the first kind. For ϵ1 ≪ 1, at the first order in the
slow roll parameter, the index ν is given by

ν ≃
�
nþ 1

2

�
þ nϵ1: ðA5Þ

Note that, when ϵ1 ¼ 0, the above solution reduces to the
de Sitter solution (7), as required. Since we are eventually
interested in the case n ¼ 2, for convenience, we shall
assume that ν > 1. In such a case, we find that the power
spectra of the magnetic and electric fields evaluated at late
times can be expressed as

PBðkÞ ∝ k5−2ν; PEðkÞ ∝ k7−2ν; ðA6Þ

which correspond to the spectral indices of

nB ¼ 4 − 2nð1þ ϵ1Þ; nE ¼ 6 − 2nð1þ ϵ1Þ: ðA7Þ

For n ¼ 2, these correspond to nB ¼ −4ϵ1 and nE ¼ 2–4ϵ1.
Since 0 < ϵ1 ≪ 1, the above results imply that, for

n ¼ 2, in the nonhelical case, the spectrum of the magnetic
field should be red in slow roll inflation. However, on
closer inspection of Fig. 2, we find that the spectrum of
the magnetic field is red in the case of the quadratic
potential (40), but is mildly blue in the cases of the small
field model (43) and the first Starobinsky model (46),
which lead to slow roll inflation. This can be attributed to
the fact that the coupling functions (42), (45), and (48) do
not exactly mimic the coupling function J ¼ ½aðηÞ=aðηeÞ�n.
In the case of the quadratic potential, for the choice of the
coupling function (42), we find that the quantity J00=J can
be expressed as

J00

J
¼ a2H2

�
n2H2

m2
ð3ϵ1 − ϵ21Þ − nϵ1

þ nH
m

ð3ϵ1 − ϵ21Þ1=2
�
1 − ϵ1 þ

ϵ2
2

��
: ðA8Þ

We should mention that no approximations have been made
in arriving at this expression. It does not seem possible to
express the quantity J00=J purely in terms of the slow roll
parameters. For n ¼ 2, if we make use of the expression
(A2) for the conformal Hubble parameterH, we obtain that
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J00

J
¼ 1

η2

�
1

ð1 − ϵ1Þ2
�
4H2

m2
ð3ϵ1 − ϵ21Þ − 2ϵ1

þ 2H
m

ð3ϵ1 − ϵ21Þ1=2
�
1 − ϵ1 þ

ϵ2
2

��	
: ðA9Þ

We should clarify that, while the quantity within the square
brackets in this expression is an exact one, the conformal
Hubble parameter has been evaluated in the slow roll
approximation. Clearly, in such a case, the solution to the
electromagnetic vector potential can be written in terms of
the Hankel function as in Eq. (A4). The index ν can be
determined by equating the quantity within the curly
brackets in the above expression for J00=J to ν2 − ð1=4Þ.
At the time when the pivot scale leaves the Hubble radius,
for the choice of the parameters we have worked with, we
find that ν ¼ 2.513. Since 2ν > 5, the spectrum of the
magnetic field exhibits a red tilt for our choice of the
coupling function in the case of the quadratic potential
[cf. Eq. (A6)].
We find that, in general, the quantity J00=J can be

expressed as

J00

J
¼ a2H2μ2BðNÞ; ðA10Þ

where μBðNÞ is given by

μ2BðNÞ ¼ JNN

J
þ ð1 − ϵ1Þ

JN
J
; ðA11Þ

with JN ¼ dJ=dN and JNN ¼ d2J=d2N. If we make use of
the conformal Hubble parameter in the slow roll approxi-
mation [cf. Eq. (A2)], then we can write

J00

J
¼ 1

η2
μ2BðNÞ

ð1 − ϵ1Þ2
; ðA12Þ

which implies that ν2 − ð1=4Þ ¼ μ2B=ð1 − ϵ1Þ2, with μB and
ϵ1 evaluated, say, when the pivot scale leaves the Hubble
radius. Note that one obtains a strictly scale invariant
spectrum for the magnetic field when μ2B=ð1 − ϵ1Þ2 ¼ 6,
which corresponds to 2ν ¼ 5. For our choice of the
coupling function, in the case of the quadratic potential,
at the time the pivot scale leaves the Hubble radius, we find
that μ2B=ð1 − ϵ1Þ2 ¼ 6.068, which leads to ν ¼ 2.513 that
we mentioned above. In the cases of the small field and the
first Starobinsky models, for the choices of the coupling
functions (45) and (48), we find that, when the pivot scale
exits the Hubble radius, μ2B=ð1 − ϵ1Þ2 ¼ 5.935 and 5.939
which correspond to ν ¼ 2.487 and 2.488, respectively.
Since, 2ν < 5, we obtain magnetic field spectra with blue
tilts in these two cases.
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