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We consider a dynamical model for dark energy based on an ultralight mass scalar field with very large-
scale inhomogeneities. This model may cause observable impacts on the anisotropic properties of the
cosmic microwave background (CMB) intensity and luminosity distance. We formulate the model as the
cosmological perturbations of the superhorizon scales, focusing on the local region of our universe.
Moreover, we investigated the characteristic properties of the late-time evolution of inhomogeneous dark
energy. Our numerical solutions show that the model can mimic the standard ΛCDM cosmology while
including spatially dependent dark energy with flexible ranges of the model parameters. We put a constraint
on the amplitude of these inhomogeneities of the dark energy on very large scales with the observations of
the CMB anisotropies. We also discuss their influence on the estimation of the luminosity distance.
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I. INTRODUCTION

The observations of the redshifts of the distant Type Ia
supernovae (SNe Ia) imply the existence of an unknown
repulsive interaction that accelerates the expansion of the
universe in relatively late times [1–5]; otherwise, this fact
suggests the breakdown of general relativity on cosmo-
logical scales. To account for these observations, dark
energy has become an essential component of cosmology
since the late 1990s, in addition to the cold dark matter
(CDM) [6]. Albert Einstein first introduced a cosmological
constant Λ into general relativity to establish a static
universe. Since the expansion of the universe was discov-
ered and the big-bang cosmology became a paradigm after
the discovery of the cosmic microwave background
(CMB), the cosmological constant Λ was revived and
discussed occasionally (see Ref. [7] for a review). The
cosmological constant Λ is now included in the standard
model of cosmology as the simplest model of dark energy
to explain the accelerated expansion, which has also been
tested by observing the CMB and baryon acoustic oscil-
lations (BAO) in the context of structure formation theories
[8]. The scenario is summarized as the well-known stan-
dard ΛCDM cosmological model [9,10], where dark
energy consists of approximately 70% of the total energy
density of the universe at the present epoch.
Many dark energy models have been proposed as

variants of the cosmological constant, where the equation
of state (EoS) ω is defined by the ratio of pressure p to
energy density ρ as ω ¼ p=ρ is a typical quantity used to
characterize the property of the dark energy. Early

observations of SNe Ia constrained that ω < −1=3 for
dark energy, which have been followed by more precise
observations, suggesting that the dark energy EoS would be
very close to the cosmological constant, with ω ¼ −1. As
the energy density of radiation ρr and matter ρm decays
with ρr ∝ a−4, ρm ∝ a−3 with the scale factor of the
universe a, and dark energy seems to behave as an almost
constant and homogeneous background of the universe, its
energy density is suggested to become dominant in the late
times of the universe when a ≳ 0.5. Hence, the property of
dark energy is important for the evolution of the universe,
especially in the late times and in the future.
The large-scale structure of matter distributions serves as

a useful probe for dark energy EoS because the BAO
signature is useful as a standard ruler. Furthermore, the
growth of clustering of the matter is affected by dark
energy. On the other hand, these also gave rise to another
mysterious aspect of dark energy as a famous fine-tuning
problem, i.e., “cosmological constant problem” (see
Refs. [6,7]). The problem is why the dark energy density
is of the same order as the matter density at the present
epoch, much smaller than the prediction from a naive
expectation of modern particle physics theories, while its
EoS implies linkage with the vacuum energy of quantum
fields. These problems may be closely related to the origin
and nature of dark energy, which remains to be explored.
Many theoretical models of dark energy have been

investigated [6,8], in which dynamical models are very
interesting [11–18], because they are related to the field
theory associated with the primordial high-energy epoch of
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the universe and fundamental theories of theoretical phys-
ics [6,7,19]. Particularly interesting ones are the dynamical
models based on the quantum fluctuations of ultralight
scalar fields [12–18], which reveal an interesting connec-
tion to the string axiverse scenario [20–27]. As in the
ΛCDM model and in many models of dark energy, a basic
assumption of their property is spatial isotropy and homo-
geneity, which follows the cosmological principle.
Nevertheless, since the late-time expansion of the universe
is dominated by dark energy, some interesting outcomes
may occur to affect cosmological observables if large-scale
inhomogeneities of dark energy arise, which could be
tested by various cosmological observations [19,28–31].
On the other hand, anomalous features in the CMB

anisotropies have been pointed out by some authors
[32,33]. Although the cosmic variance limits the ability
for our precise comparison between theoretical predictions
and observations, there is the possibility that the low CMB
multipoles provide us with a clue for physics beyond the
standard cosmological model for dark energy [34,35]. The
general interpretation for the CMB dipole anisotropy is our
peculiar motion toward a CMB rest frame, related to a
dragging toward the great attractor in the sky; at least part
of the peculiar motions is interpreted as evidence of
gravitational bounding [36,37]. The latest result shows
the validity of the interpretation of the CMB dipole by the
peculiar motion [38]. However, the result does not neces-
sarily mean that all of the CMB dipole anisotropy could be
entirely explained by the canonical scenario of peculiar
motion [39,40]. We will present a dark energy model with
very large-scale inhomogeneities, including an intrinsic
dipole component as a possible solution.
Recently, the Hubble tension problem has also garnered

attention due to the precision of the observations. The
present expansion rate H0 locally measured from standard
candles, such as SNe Ia [41] and that inferred from the BAO
statistics on CMB fluctuations [10,42], has shown non-
trivial deviations from each other. Many attempts have been
made to ease or explain this tension, and among them still
stands out the possibility that this tension is related to
new physics concerning dark energy beyond the standard
ΛCDM model [43]. Recent investigations using scaling
relations of galaxy clusters in Refs. [44,45] reported that
the variation in luminosity distance dL appears to exist
in different regions of the sky, potentially suggesting
anisotropy in the local expansion rate H0, whose line
was followed by Refs. [46,47]. Some correlation of H0

anomalies with the CMB dipole direction is commonly
implied by these works, which also facilitates the motiva-
tion of our work.
To shed light on the problems concerning dark energy,

the authors investigated a model for dark energy with
large-scale stochastic fluctuations assumed in an open
universe associated with a specific inflationary scenario
[48]. These fluctuations will be translated into large-scale

spatial inhomogeneities and time-dependent dark energy
EoS in the evolution of the universe. In the present
work, we consider a general dynamical model for dark
energy with large-scale spatial inhomogeneities consisting
of a scalar field ϕ by handling them in the framework of
the cosmological perturbation theory. This model may
introduce some observable effects on the anisotropies
of the cosmological observations to address the prob-
lems concerning the dark energy property mentioned
previously.
The remainder of this paper is organized as follows. In

Sec. II, we propose a basic formulation for the model and
its cosmological setups. Then, we use the formulation to
derive the Einstein equations for the system as well as the
equations of motion: for both the dark energy represented
by the dynamical scalar field ϕ and the matter component
in the late-time universe. In Sec. III, we use the analytic
approximations to solve for the equations in the limit
a ≪ 1, where a denotes the scale factor of the universe.
This is useful to determine the necessary initial conditions
for the numerical solution to the late-time cosmological
evolution of the system. In Sec. IV, we consider the
possible effects of large-scale dark energy fluctuations on
cosmological observations, such as the CMB temperature
power spectra and luminosity distance. Section V is
devoted to summarizing our results and brief discussions.
The appendixes provide additional explanations for spe-
cific technical details. In Appendix A, explicit forms of
the matrices used in the definition of the perturbations are
presented, and their relations with multipole expansion are
discussed. In Appendix B, we show the consistency of the
derived equations with previous works [48,49], especially
for the superhorizon Euler equation of the matter compo-
nent. Appendix C provides additional details for the
background solutions and the analytic approximations.
Appendix D shows the dark energy EoS in our model and
its relation to the Chevallier-Polarski-Linder (CPL) para-
metrization [50,51]. In Appendix E, we show that our
application of the model to the correction of the lumi-
nosity distance is valid and consistent with previous works
[52,53]. Finally, in Appendix F, we present a helpful
toolkit for transforming equations between forms with
respect to different variables in our model.

II. BASIC FORMULATION

In the present paper, motivated by a previous model
with supercurvature-mode dark energy associated with an
open universe scenario [17,18,54], we consider the evo-
lution of dark energy with superhorizon large-scale
inhomogeneities and its possible imprints on cosmologi-
cal observations by characterizing the inhomogeneities
analytically. To formulate these inhomogeneities, we
start with following the cosmological setup of metric
perturbations.
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A. Fundamental setups

The characteristic feature of the dark energy model
previously proposed in Refs. [48,54] is the spatial inho-
mogeneities of the dark energy density on the very large
scales. Following the scenario, such large-scale spatial
inhomogeneities of dark energy originated from the vac-
uum fluctuations of the supercurvature modes of a scalar
field during an open inflationary scenario [54,55]. An
ultralight scalar field ϕ with spatial fluctuations taking a
nonlinear amplitude on the supercurvature scales is respon-
sible for the dark energy in the scenario. Because the
horizon size of our universe is much smaller than the scales
of the inhomogeneities of the dark energy, the breaking of
the cosmological principle is small within the observable
universe, which might enable us to escape from the
observational constraints.
In the present paper, we formulate a phenomenological

model of dark energy that slightly breaks the cosmological
principle by mimicking the previous model [48,54]. We
consider a dark energy model of a scalar field spatially
varying on the superhorizon scales on the spatially flat
background universe, for simplicity, by assuming

ds2 ¼ a2ðηÞ½−ð1þ 2ΨÞdη2 þ ð1þ 2ΦÞδijdxidxj�; ð1Þ
where δij is the Kronecker delta δij, aðηÞ is the scale factor
of the universe with the conformal time η, and Ψ and Φ are
the metric perturbations that we want to characterize later.
Now, we set the cosmological metric perturbation

as Ψ, considering only the large-scale superhorizon mode
perturbations. In Ref. [48], it was discussed that the
inhomogeneities induced by superhorizon fluctuations
are dominated by dipole and quadrupole components
among all possible contributions. Now, neglecting
higher multipoles, we can explicitly write out the metric
perturbations as

Ψ ¼ ϵ1
X3
m¼1

Ψ1ðmÞðηÞPðmÞ
i xi þ ϵ2

X5
m¼1

Ψ2ðmÞðηÞPðmÞ
ij xixj;

ð2Þ

Φ ¼ ϵ1
X3
m¼1

Φ1ðmÞðηÞPðmÞ
i xi þ ϵ2

X5
m¼1

Φ2ðmÞðηÞPðmÞ
ij xixj;

ð3Þ

ϕ ¼ ϕ0ðηÞ þ ϵ1
X3
m¼1

ϕ1ðmÞðηÞPðmÞ
i xi

þ ϵ2
X5
m¼1

ϕ2ðmÞðηÞPðmÞ
ij xixj; ð4Þ

where PðmÞ
i and PðmÞ

ij are the vectors of traceless matrices
related to the multipole expansion of the perturbations to

the spatial basis, whose expressions are explicitly given in
Appendix A. We use ϕ to denote the ultralight scalar field
we assume as the source of dark energy with large-scale
spatial inhomogeneities. Here ϵ1 and ϵ2 are introduced to
explicitly express the order of perturbations for the dipole
and the quadrupole, which can be included in the pertur-
bations. We set ϵ1 and ϵ2 to be unity later. Considering a
standard CDM scenario, we can write the perturbations for
the matter density distribution as

ρ¼ρ0ðηÞþϵ1
X3
m¼1

ρ1ðmÞðηÞPðmÞ
i xiþϵ2

X5
m¼1

ρ2ðmÞðηÞPðmÞ
ij xixj;

ð5Þ

and we define the velocity field as

ui ≡ ∂iV̄; ð6Þ

with constraints uμuμ ¼ −1, where V̄ is the velocity
potential, which is expressed as

V̄¼ ϵ1
X3
m¼1

V1ðmÞðηÞPðmÞ
i xiþϵ2

X5
m¼1

V2ðmÞðηÞPðmÞ
ij xixj: ð7Þ

HereΨlðmÞ,ΦlðmÞ, ϕlðmÞ, ρlðmÞ, VlðmÞ with l ¼ 1, 2 are the
coefficients of the dipole and the quadrupole components,
and ϕ0 and ρ0 are the background quantities.

B. Essence of the equations

The evolution of the system is described by the Einstein
equations

Gμ
ν ¼ 8πGðTðϕÞμ

ν þ TðMÞμ
νÞ; ð8Þ

with the energy momentum tensors for the scalar field with
mass m and the matter component

TðϕÞ
μν ¼ ∂μϕ∂νϕ − gμν

�
1

2
gαβ∂αϕ∂βϕþ 1

2
m2

ϕϕ
2

�
;

TðMÞ
μν ¼ ρuμuν; ð9Þ

and the equations of motion for the scalar field ϕ and the
conservation law for the matter component

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ −m2

ϕϕ ¼ 0; ð10Þ

∇μTðMÞμ
ν ¼ 0: ð11Þ

The EoS of the dark energy field ϕ is an important
quantity characterizing its properties and evolution. From
the standard formula for the energy density and the pressure
of a scalar field, taking the form of a scalar field potential
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VðϕÞ ¼ m2
ϕϕ

2=2 into account we obtain the equation of
state ωϕ as

ωϕ ≡ Pϕ

ρϕ
≃ −

2a2VðϕÞ − _ϕ2

2a2VðϕÞ þ _ϕ2
¼ −

m2
ϕa

2ϕ2 − _ϕ2

m2
ϕa

2ϕ2 þ _ϕ2
; ð12Þ

where the dot denotes the differentiation with respect to
the conformal time η. Here we neglected the contribution
from the spatial variations, which is small in our case. The
EoS depends on the dynamical evolution of ϕ and is a
concordant generalization to the CPL parametrization (see
Appendix D) [50,51].
The linear expansion of Eqs. (2)–(4) ensures that

Eqs. (8)–(11) give the same form as equations for each
multipole component with indices l ¼ 1, 2 and m ¼ 1, 2,
3, 4, 5. Indeed, the components with different l indices, for
example, Ψl¼1 and Ψl¼2, have different dimensions to the
order of length by definition. Keeping this fact in mind,
for simplicity of the notations, we neglect indices (m) in
the following parts and use only the lower indices l to
denote the multipole components of these perturbations. In
the following parts, we use lower indices 0 for the back-
ground quantities and l for the perturbations on the
superhorizon scales.
Using the conformal Hubble parameter H ¼ aHðaÞ ¼

_a=a instead of Hubble parameter HðaÞ, Eq. (10) yields

ϕ̈0 þ 2H _ϕ0 þm2
ϕa

2ϕ0 ¼ 0; ð13Þ

ϕ̈l þ 2H _ϕl þm2
ϕa

2ϕl þ _ϕ0ð3 _Φl − _Ψl − 4HΨlÞ
− 2ϕ̈0Ψl ¼ 0: ð14Þ

On the other hand, Eq. (11) leads to

3Hρ0 þ _ρ0 ¼ 0; ð15Þ
3Hρl þ _ρl þ 3ρ0 _Φl ¼ 0; ð16Þ

_Vl − aΨl ¼ 0: ð17Þ
By defining the density perturbation as ρl ≡ ρ0δl, it is
obvious that Eqs. (15) and (16) are consistent with those
obtained from the continuity equation, and Eq. (25) in
Ref. [48] at a large-scale limit. It is worth mentioning that
the velocity equation in Eq. (17) is also consistent with
Eq. (26) in Ref. [48], which is obtained from the Euler
equation (see Appendix B).
Defining M−2

pl ≡ 8πG for short, the Einstein equations
can be written as

−3H2 þM−2
pl

�
1

2
m2

ϕa
2ϕ2

0 þ
1

2
_ϕ2
0 þ a2ρ0

�
¼ 0; ð18Þ

H2 − 2
ä
a
þM−2

pl

�
1

2
m2

ϕa
2ϕ2

0 −
1

2
_ϕ2
0

�
¼ 0; ð19Þ

−2ðHΨl − _ΦlÞ þM−2
pl ðaρ0Vl þ _ϕ0ϕlÞ ¼ 0; ð20Þ

6HðHΨl − _ΦlÞ
þM−2

pl ða2ρl þm2
ϕa

2ϕ0ϕl − _ϕ0ð _ϕ0Ψl − _ϕlÞÞ ¼ 0;

ð21Þ�
2
ä
a
−H2

�
Ψl þH _Ψl − 2H _Φl − _Φl

þM−2
pl

2
ðm2

ϕa
2ϕ0ϕl þ _ϕ0ð _ϕ0Ψl − _ϕlÞÞ ¼ 0: ð22Þ

We can classify these equations by the order of the
perturbations, dividing them into the background equations
that read

_ρ0 þ 3Hρ0 ¼ 0; ð23Þ

ϕ̈0 þ 2H _ϕ0 þm2
ϕa

2ϕ0 ¼ 0; ð24Þ

−3H2 þM−2
pl

�
1

2
m2

ϕa
2ϕ2

0 þ
1

2
_ϕ2
0 þ a2ρ0

�
¼ 0; ð25Þ

H2 − 2
ä
a
þM−2

pl

�
1

2
m2

ϕa
2ϕ2

0 −
1

2
_ϕ2
0

�
¼ 0; ð26Þ

and first-order perturbative equations relying on the
background as follows:

_ρl þ 3Hρl þ 3ρ0 _Φl ¼ 0; ð27Þ

ϕ̈l þ 2H _ϕl þm2
ϕa

2ϕl þ _ϕ0ð3 _Φl − _Ψl − 4HΨlÞ
− 2ϕ̈0Ψl ¼ 0; ð28Þ

_Vl − aΨl ¼ 0; ð29Þ

−2ðHΨl − _ΦlÞ þM−2
pl ðaρ0Vl þ _ϕ0ϕlÞ ¼ 0; ð30Þ

6HðHΨl − _ΦlÞ
þM−2

pl ða2ρl þm2
ϕa

2ϕ0ϕl − _ϕ0ð _ϕ0Ψl − _ϕlÞÞ ¼ 0;

ð31Þ�
2
ä
a
−H2

�
Ψl þH _Ψl − 2H _Φl − Φ̈l

þM−2
pl

2
ðm2

ϕa
2ϕ0ϕl þ _ϕ0ð _ϕ0Ψl − _ϕlÞÞ ¼ 0: ð32Þ

After solving for the background, we can find out the
evolution of large-scale perturbations originated from the
fluctuations of the dark energy field ϕ.
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III. ANALYTIC APPROXIMATIONS AND
NUMERICAL SOLUTIONS

In this section, we consider solving the evolution
equations obtained in the previous section for both the
background and the perturbations. Because we are inter-
ested in the late-time evolution after the last scattering
(ad ∼ 1=1100), we first find the analytic approximates of
the solutions based in the matter-dominant epoch, which
are useful as the initial conditions for numerical evaluation
when ad ≲ a ≪ 1.

A. The background evolution

First, we must solve the background evolution of our
system in Eqs. (23)–(26) before considering the perturba-
tions, which should yield cosmological observational con-
straints that models close to the ΛCDMmodels are favored.
Moreover, we must use the observed value of the Hubble
parameter at the present epoch to determine the dark energy
density of the field ϕ.
Using these approximates we may infer the initial

conditions of the background for numerical solutions of
the background evolution.
To parametrize the equations, we introduce the

cosmic time t by dt ¼ adη. Defining tilde dimensionless
quantities as

t̃≡H0t; ð33Þ

ϕ̃0 ≡ ϕ0=ϕ̄0; ð34Þ

r̃≡ 1

6
ðϕ̄0=MplÞ2; ð35Þ

m̃≡mϕ=H0; ð36Þ

H̃ ≡H=H0; ð37Þ

we can obtain dimensionless ordinary differential equations
using t̃ as an independent variable as

r̃m̃2ϕ̃2
0ðt̃Þ þ r̃

�
dϕ̃0

dt̃

�
2

þ Ωma−3 ¼
�
1

a
da
dt̃

�
2

; ð38Þ

d2ϕ̃0

dt̃2
þ 3

1

a
da
dt̃

dϕ̃0

dt̃
þ m̃2ϕ̃0 ¼ 0; ð39Þ

whereH0 is the Hubble constant and ϕ̄0 is a constant related
to the initial value of ϕ0. If we use the scale factor a instead
of t, and use superscript 0 to denote the derivative with
respect to scale factor a, then the equations correspond to

ð1 − r̃a2ϕ̃0
02ÞH̃2 ¼ r̃m̃2ϕ̃2

0 þ Ωma−3; ð40Þ

a2H̃2ϕ̃00
0 þ ð4aH̃2 þ a2H̃H̃0Þϕ̃0

0 þ m̃2ϕ̃0 ¼ 0: ð41Þ

Following Eq. (40) we may also write out the dimensionless
expansion rate as

H̃ðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̃m̃2ϕ̃2

0 þ Ωma−3

1 − r̃a2ϕ̃0
02

s
: ð42Þ

We leave more details of procedures of solving
these background equations to Appendix C. It is worth
noting that according to the definitions in Eqs. (33)–(36),
there are 2 degrees of freedom for the parameters m̃ and r̃,
to specify the mass and energy scale of the dark energy
field ϕ, respectively. The unknown component in our
model, dark energy ϕ, can be fundamentally characterized
by two parameters. One is the shape of its potential
VðϕÞ ¼ m2

ϕϕ
2=2, and the other is the initial value in our

universe, while the properties of the other component
(e.g., matter) are considered as known under the standard
cosmological model.
In order to fix the dark energy density today, we have the

constraint from the present Hubble rate by definitions

aðt̃0Þ ¼ aðH0t0Þ≡ 1; ð43Þ

Hðt̃0Þ ¼ HðH0t0Þ≡H0; ð44Þ

where t0 is the proper cosmic time for the present epoch.
Inserting this into Eq. (38) actually gives

1 −Ωm ¼ r̃m̃2ðϕ̃0jt̃¼t̃0Þ2 þ r̃

�
dϕ̃0

dt̃

����
t̃¼t̃0

�
2

: ð45Þ

Equation (45) is the necessary condition for specifying
the dark energy density observed today when solving the
background equations. Together with Eqs. (38) and (39),
the system is now prepared for numerical evaluation to
obtain the evolution of aðt̃Þ and ϕ̃0ðt̃Þ. As we are mainly
interested in the late-time evolution here, we can determine
the initial value for independent variables t̃ or a (to be
discussed later) manually as a typical value; for example,
ai ¼ ad ≈ 1=1100 at the photon decoupling off the last
scattering, by use of Eq. (C2). These solutions determine
the background evolution that we rely on to solve the
perturbation equations.
It is worth mentioning that Eq. (45) also provides a

particular baseline for choosing the parameters m̃ and r̃
from the various parameter spaces, and that the case for the
choice of parameters approximating the ΛCDM model is

r̃m̃2 ≃ 1 −Ωm; ð46Þ

concerning which more details can be found in Appendix C
[see also Eq. (48)]. However, this condition for parameter
choice is not mandatory to solve for the system.
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We can now solve for ϕ̃0ðaÞ numerically under 2 degrees
of freedom for the choice of parameters m̃ and r̃. Examples
of the solutions under the conditions that allow the recovery
of the models close to the ΛCDM universe are presented in
Figs. 1 and 2. To investigate the impact of parameter
choices on the background solutions more specifically, we
also chose other sets of parameters. Table I provides the
parameter sets adopted in the present paper. The cosmo-
logical parameter Ωm is related to the fixing of dark energy

density at the present epoch, hence slightly affecting ϕ̃0 if it
is not fixed, which is shown in Fig. 3. We present some
typical figures showing how parameters can affect the
equation of state ωϕ as a function of a in Figs. 4 and 5,
where r̃ is not important (see discussions on ωϕ later).
Figures 6 and 7 demonstrate the background expansion rate
predicted under different parameters.
We now discuss the behaviors of the background

solutions under different parameters. Figure 1 shows the

FIG. 2. Although the parameters in Fig. 1 seem to be the most natural choices for m̃ and r̃, there could be other possibilities. The left
panel of this figure shows the impact of the value of r̃ on the evolution of the background solution ϕ̃0ðaÞ as a function of a with fixed
m̃ ¼ 1=10. According to Eq. (35), r̃ reflects the value of the scalar field ϕ. Hence, this panel demonstrates that the background solution is
almost constant, whereas its value, taking ϕ0 ≳Mpl, depends on r̃. In contrast, the right panel shows the impact of the value of m̃ on the
evolution of the background solution ϕ̃0ðaÞ as a function of a, where we fixed r̃ ¼ 6.3. Recalling Eq. (36), m̃ is the parameter of the field
mass. These behaviors can be comprehended by Eqs. (47) and (50), where r̃ and m̃ act similarly to some rescaling factors of ϕ̃0. The two
parameters correspond to the 2 degrees of freedom for the potential shape of ϕ, whose parameter space is constrained by the observed
dark energy density [see Eq. (45)] and determines the late-time dynamics of ϕ until the present epoch, which is assumed to be mild.

FIG. 1. An example of the evolution of the background solutions ϕ̃0ðaÞ as a function of the scale factor a with the different sets of
parameters for r̃ and m̃ presented in the figure, which mimic ΛCDM universes withΩm ¼ 0.3 using Eq. (46). Notice that each model has
different initial values for ϕ̃0. We observe from the figure that the lighter field ϕ is more “frozen” in its evolutionary history because m̃ is
normalized by the Hubble constant in Eq. (36). Here, the curve with m̃ ¼ 1=20 and r̃ ¼ 280 is most similar to the cosmological constant
model among the curves.
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impact of the parameter choice on the behavior of the
solution for ϕ̃0ðaÞ in the cases following Eq. (46), where
models close to the ΛCDM cosmologies are expected.
Figure 2 shows how the parameters r̃ and m̃ affect the
behaviors of ϕ̃0, while Fig. 3 shows how Ωm can affect ϕ̃0.
The behaviors of the ϕ̃0 curves in these figures can be
understood as follows. From Eqs. (38) and (45) we can see

that the parameter r̃ can actually be absorbed into the
amplitude of ϕ̃0 as a rescaling factor, namely

m̃2ð
ffiffiffĩ
r

p
ϕ̃0Þ2 þ

�
dð ffiffiffĩ

r
p

ϕ̃0Þ
dt̃

�2

¼
�
1

a
da
dt̃

�
2

−Ωma−3; ð47Þ

with

FIG. 3. Impact of Ωm on the evolution of the background solution ϕ̃0ðaÞ. Here, we fixed r̃ ¼ 70 and m̃ ¼ 1=10. As expected,Ωm only
alter the evolution to a slight extent, suggesting that our model solutions are robust against changes in Ωm.

TABLE I. Numerical results with different model parameters ðr̃; m̃Þ and cosmological parameter Ωm. The models close to the ΛCDM
model are labeled as Nos. (1), (2), (7), (8), (9), (10), (13), and (14). Within these models, Nos. (1), (2), (7), (8), (9), and (10) satisfy the
condition in Eq. (46) with exact holding of the equality. Note that the values for the present comoving horizon η0 also indicate that r̃ is
not important for the background expansion, while Ωm does show its expected influence on η0. To see this, we focus on comparing the
conditions of the models labeled with Nos. (1), (3), (4), (6), and (11), where different values of r̃ rarely change η0; on the other hand, a
comparison among Nos. (1), (13), and (14) shows a slight dependence of η0 on Ωm, as expected. Especially, No. (11) is a model
extremely close to the ΛCDM model, and the EoS of dark energy is almost constant wϕ ≈ −1, predicting a future evolution quickly
approaching the de Sitter expansion.

No. ðr̃; m̃Þ Ωm Q1ðmÞ Q2ðmÞ εmax
1 εmax

2 FS1ðmÞðz ¼ 3Þ FS2ðmÞðz ¼ 3Þ H0η0

(1) ð70; 1=10Þ 0.30 −0.107 −0.0895 1.17 × 10−2 5.72 × 10−5 −0.0462 −0.0693 3.19
(2) ð6.3; 1=3Þ 0.30 −0.107 −0.0896 1.17 × 10−2 5.71 × 10−5 −0.0462 −0.0692 3.19
(3) ð50; 1=10Þ 0.30 −0.0904 −0.0757 1.39 × 10−2 6.76 × 10−5 −0.0390 −0.0586 3.19
(4) ð100; 1=10Þ 0.30 −0.128 −0.107 9.82 × 10−3 4.78 × 10−5 −0.0552 −0.0828 3.19
(5) ð6.3; 1=5Þ 0.30 −0.0642 −0.0537 1.96 × 10−2 9.52 × 10−5 −0.0277 −0.0416 3.19
(6) ð6.3; 1=10Þ 0.30 −0.0321 −0.0269 3.91 × 10−2 1.91 × 10−4 −0.0138 −0.0208 3.19
(7) ð2.8; 1=2Þ 0.30 −0.107 −0.0897 1.18 × 10−2 5.70 × 10−5 −0.0463 −0.0692 3.19
(8) ð280; 1=20Þ 0.30 −0.107 −0.0895 1.17 × 10−2 5.72 × 10−5 −0.0461 −0.0693 3.19
(9) ð72; 1=10Þ 0.28 −0.116 −0.100 1.08 × 10−2 5.11 × 10−5 −0.0503 −0.0770 3.28
(10) ð68; 1=10Þ 0.32 −0.0985 −0.0803 1.27 × 10−2 6.37 × 10−5 −0.0425 −0.0626 3.11
(11) ð1=70; 1=10Þ 0.30 −0.00153 −0.00128 8.21 × 10−1 4.00 × 10−5 −0.000659 −0.000990 3.19
(12) ð6.3; 1=2Þ 0.30 −0.160 −0.135 7.83 × 10−3 3.80 × 10−5 −0.0694 −0.104 3.19
(13) ð70; 1=10Þ 0.32 −0.100 −0.0815 1.25 × 10−2 6.28 × 10−5 −0.0431 −0.0635 3.11
(14) ð70; 1=10Þ 0.28 −0.115 −0.0988 1.09 × 10−2 5.18 × 10−5 −0.0496 −0.07594 3.28
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1 −Ωm ¼ m̃2ð
ffiffiffĩ
r

p
ϕ̃0ja¼1Þ2 þ ð

ffiffiffĩ
r

p
ϕ̃0

0ja¼1Þ2: ð48Þ

These two equations facilitate understanding why changing
r̃ with other parameters fixed only alters the value of ϕ̃0

without causing a nontrivial difference in the characteristic
behaviors of the curves in Fig. 2. Moreover, as we
evaluate ϕ̃0, choosing the condition in Eq. (46) close to
the ΛCDM model as a baseline for the natural choices of
the parameters,

dð ffiffiffĩ
r

p
ϕ̃0Þ

dt̃
≪ 1 or

ffiffiffĩ
r

p
ϕ̃0

0 ≪ 1 ð49Þ

always holds. Hence, it follows Eq. (47) that

ð
ffiffiffĩ
r

p
m̃ϕ̃0Þ2 ≃

�
1

a
da
dt̃

�
2

−Ωma−3: ð50Þ

Because of similar arguments for r̃, we understand that, to
some extent, m̃ also works as a rescaling factor for the
background ϕ̃0, which explains the behavior of ϕ̃0 in Fig. 2.
At the same time, the appearance of Ωm on the right-hand
side of Eq. (50) explains the dependence of the background
solution ϕ̃0 on Ωm in Fig. 3.
Now, let us discuss the parameter dependence of the dark

energy EoS ωϕðaÞ, as shown in Figs. 4 and 5. We may
conclude that the background dark energy EoS ωϕðaÞ is
almost independent of r̃; in contrast, m̃ is the main
influencing factor. There is also a slight dependence on

FIG. 5. This figure demonstrates the weak dependence of the EoS on Ωm with m̃ ¼ 1=10 and r̃ ¼ 70 fixed.

FIG. 4. Evolution of the dark energy EoS ωϕðaÞ with the different sets of the parameters chosen in Fig. 1. From Eqs. (45) and (D3), it
is straightforward to see that r̃ does not affect the EoS of ϕ̃0. The figure shows the influence of m̃ on the EoS of ϕ̃0 with fixed Ωm ¼ 0.3.
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the cosmological parameter Ωm, as shown in Fig. 5. These
behaviors can be understood using Eqs. (D1)–(D4) in
Appendix D as an analogy to the CPL parametrization.
Generally, ωϕðaÞ ≃ −1þ 2ð1 − ðam̃2ϕ̃2

0Þ=ðΩmϕ̃0
02ÞÞ holds

for almost all models; hence, r̃ does not have an impact on
ωϕ at the background level, while m̃ and Ωm do affect the
dark energy EoS ωϕ.
Figure 6 shows a slight dependence on Ωm for the

expansion rate H̃ðaÞ as a function of the scale factor for
0.5 < a < 1, while Fig. 7 shows a possible impact on the
future expansion rate from the mass parameter m̃. To
explain these behaviors for H̃ðaÞ, let us consider the

analytic approximation of H̃ðaÞ starting from Eq. (42).
For models close to the ΛCDM model, where ϕ̃0 ≃ const
and ϕ̃0

0 ≃ 0 with Eq. (46), reading r̃m̃2 ≃ 1 −Ωm holds,
we have

H̃ðaÞ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 −ΩmÞϕ̃2

0 þΩma−3
q

; ð51Þ

which is almost the same as the Hubble equation for the
standard ΛCDM parametrization. Hence, it is obvious that
Ωm is the dominant parameter for the background expan-
sion history when 0 < a < 1.

FIG. 7. Future evolution of the expansion rate. The parameter m̃ is only important for future expansion when 1 ≪ a. The figure
demonstrates examples of how the future expansion rate depends on m̃ for 1 < a < 2, where r̃ ¼ 6.3 and Ωm ¼ 0.3 are fixed.

FIG. 6. Examples of the late-time expansion history H̃ðaÞ as a function of a for 0.5 ≤ a ≤ 1 with different sets of Ωm, r̃ ≈ 70 but with
m̃ ¼ 1=10 fixed. For the late-time expansion history, only Ωm is important.

DARK ENERGY MODEL WITH VERY LARGE-SCALE … PHYS. REV. D 105, 063518 (2022)

063518-9



B. Equations governing first-order perturbations

In the previous subsection, we have solved for the
background, and on the basis of the background solutions
we now consider the numerical solution for the first-order
perturbation equations in Eqs. (27)–(32) that we are
interested in.
We define the perturbation to dark matter density as

ρl ≡ ρ0δl; ð52Þ

together with the following quantity associated with the
velocity as

Ṽl ≡H0Vl: ð53Þ

Then, we can utilize the Friedmann equation relation in
Eqs. (27)–(32) to eliminate quantities such as ρ0 and ρl,
and use δl to characterize the first-order matter perturba-
tions as

ρ0ðaÞ ¼ 3H2
0Ωma−3M2

pl: ð54Þ

Thus the dimensionless differential equations as functions
of t̃ will be

∂δl
∂ t̃ þ 3

∂Φl

∂ t̃ ¼ 0; ð55Þ

∂2ϕ̃l

∂ t̃2 þ 3

a
∂a
∂ t̃

∂ϕ̃l

∂ t̃ þ m̃2ϕ̃l − 2Ψl
∂2ϕ̃0

∂ t̃2 −
6Ψl

a
∂a
∂ t̃

∂ϕ̃0

∂ t̃
þ ∂
∂ t̃ ð3Φl − ΨlÞ

∂ϕ̃0

∂ t̃ ¼ 0; ð56Þ

∂Ṽl

∂ t̃ −Ψl ¼ 0; ð57Þ

−
2

a
∂a
∂ t̃ Ψl þ 2

∂Φl

∂ t̃ þ 3ṼlΩma−3 þ 6r̃ϕ̃l
∂ϕ̃0

∂ t̃ ¼ 0; ð58Þ

6

�
1

a
∂a
∂ t̃

�
2

Ψl − 6

�
1

a
∂a
∂ t̃
� ∂Ψl

∂ t̃ þ 3Ωma−3δl

þ 6r̃

�
m̃2ϕ̃0ϕ̃l þ

∂ϕ̃0

∂ t̃
∂ϕ̃l

∂ t̃ −Ψl

�∂ϕ̃0

∂ t̃
�

2
�

¼ 0; ð59Þ

��
1

a
∂a
∂ t̃

�
2

þ 2

a
∂2a
∂ t̃2

�
Ψl þ

1

a
∂a
∂ t̃

∂
∂ t̃ ðΨl − 3ΦlÞ

−
∂2Φl

∂ t̃2 þ 3r̃

�
m̃2ϕ̃0ϕ̃l −

∂ϕ̃0

∂ t̃
∂ϕ̃l

∂ t̃ þΨl

�∂ϕ̃0

∂ t̃
�

2
�
¼ 0:

ð60Þ

Notice that from Eq. (55)

δl þ 3Φl ¼ const; ð61Þ

where the constant is presumed to be zero as we assume
that the superhorizon perturbations of the scalar field are
the isocurvature perturbations. Then, we assume the initial
values

δlð0Þ ¼ Φlð0Þ ¼ 0: ð62Þ

As in the case of the supercurvature mode dark energy [48],
if we adopt the general condition that anisotropic stress is
negligible, which reads

Φl þ Ψl ≃ 0; ð63Þ

we can eliminate Φl and Ψl using δl and ∂Ṽl=∂ t̃ using
Eq. (57). Finally, wewill have two equations for δl and ϕ̃l to
solve, whose explicit forms are long and trivial; hence, we
omit them here. We note that our analysis is based on the
conformal Newtonian (longitudinal) gauge, which is widely
used in various analyses of cosmological perturbations. It is
known that the conformal Newtonian gauge leaves no
residual gauge freedom except for the long wavelength
mode of k ¼ 0. The effect of the inhomogeneities of our
dark energy model is the isocurvature perturbations in the
long wavelength limit. We consider that the gauge freedom
is fixed for the dipole and quadrupole modes with nonzero
small k; however, the possibility of contamination by the
gauge modes with k ¼ 0 could be mentioned.
Again, we need to consider the initial conditions for

which we solve the equations in the limit a ≪ 1 in an
analytic manner. First, recalling the definition of Eqs. (4)
and (34), we can generalize the dimensionless quantities as

ϕ≡ ϕ0

�
ϕ̃0 þ ϵ1ϕ̃1

X
m

PðmÞ
i xi þ ϵ2ϕ̃2

X
m

PðmÞ
ij xixj

�
: ð64Þ

In the limit a ≪ 1 (t → 0; t̃ → 0), we may assume the
power law form for the perturbations

δl ≡ A1 t̃α; ð65Þ

ϕ̃l ≡DþD1t̃γ: ð66Þ

Furthermore, Eq. (C5) gives

ϕ̃0ðt̃Þ ¼ C1

sinðm̃ t̃Þ
m̃ t̃

≈ C1

�
1 −

m̃2t̃2

6

�
≡ F

�
1 −

m̃2t̃2

6

�
:

ð67Þ

For a given m̃ and r̃, we solve for the background and fix
the value for C1 or F in Sec. III A. We may take F as a
known quantity here. For scale factor a, recall that Eq. (C2)
is the background analytical approximation as
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a ¼
�
9

4
Ωm

�1
3

t̃
2
3 ≡ Bt̃

2
3; t̃ ¼

�
a
B

�3
2

:

Inserting the ansatz Eqs. (65)–(67) into Eqs. (56)–(60)
will give us equations as a function of a or t̃ relating the
unknown coefficients α, γ, A1, D, D1 that we want to
explore. For the limit a → 0 or t̃ → 0, by looking at the
leading order of a for each equation, we have

α ¼ γ ¼ 2; ð68Þ

D1 ¼ −
1

6
m̃2D; ð69Þ

A1 ¼ −
27

22
m̃2r̃FD; ð70Þ

whereDmay be understood as the amplitude of each mode
of the perturbations as ϵ1 and ϵ2, which will be constrained
later with the observational data. For now, D ¼ 1 may be
set for the numerical solution.
Further, the analytic approximations for the evolution

of the perturbations in the limit a ≪ 1 (t → 0; t̃ → 0) are
found as

δl ≃ −
27

22
Dm̃2r̃Ft̃2 ¼ −

27

22
m̃2r̃Ft̃2; ð71Þ

ϕ̃l ≃D
�
1 −

1

6
m̃2 t̃2

�
¼ 1 −

1

6
m̃2t̃2; ð72Þ

allowing us to set the proper initial conditions for δl
and ϕ̃l. The equations using a and t̃ as independent
variables are mutually transformable using Eq. (C2), as
was done in Sec. III A. The analytical solution of the first-
order equations in Eqs. (27)–(32) for the other quantities
can be found in a similar way as

Φl ≃ −Ψl ≃þ 9

22
Dm̃2r̃Ft̃2 ¼ þ 9

22
m̃2r̃Ft̃2; ð73Þ

Ṽl ≃ −
3

22
Dm̃2r̃Ft̃3 ¼ −

3

22
m̃2r̃Ft̃3: ð74Þ

We notice that δl and Ψl are negative values, which
correspond to the positive values of ϕ̃l in Eq. (72).
Physically, this means that an increase in dark energy ϕ
makes the matter density perturbations δl (curvature
potentials Φl) negative (positive).
The first-order equations (27)–(32) can be solved in an

exact manner using a numerical method. We present
examples of the numerical solutions for perturbations
ϕ̃lðaÞ and δlðaÞ in Fig. 8, where we adopted D ¼ 1 with
the same typical parameter sets r̃ and m̃ chosen in

Sec. III A. The consistency between the analytic approx-
imations in Eqs. (71) and (72) (dashed line) with the
numerical results (solid line) when a≲ 0.5 corresponding
to the matter-dominant initial condition is also demon-
strated in Fig. 8, while the analytic approximation deviates
from the numerical solution when a ≳ 0.5.
We show how m̃ affects the solution ϕ̃l in Fig. 9. It

should be noted that there is a slight dependence on Ωm for
ϕ̃l, similar to the behavior of ϕ̃0 in Fig. 3. The behaviors of
ϕ̃l can be roughly understood from Eq. (72), which is valid
for a≲ 0.5. Here m̃ is important for the evolution of ϕ̃l,
whereas r̃ is not. On the other hand, Eq. (28) indicates that
the solution of ϕ̃l depends on ϕ̃0; hence, it slightly depends
on Ωm, which can be understood by a discussion similar to
that on the behavior of ϕ̃0 in Sec. III A [see Eq. (50)].
The dependence on the parameters for δl is shown in

Fig. 10. From Eq. (71), we can conclude that m̃ and r̃ affect

FIG. 8. Comparison of the evolution of δl and ϕ̃l between the
analytic approximation (dashed curve) by Eqs. (71) and (72), and
the exact numerical solutions (solid curves). Here, we adopt r̃ ¼
70 and m̃ ¼ 1=10 for δl, and r̃ ¼ 280 and m̃ ¼ 1=20 for ϕ̃l as
examples. We checked the validity of the analytic approximations
for other values of m̃ and r̃ adopted in Table I. The deviation
between the analytic approximation and the numerical solution
starting around a≳ 0.5 arises from the emerging domination of
dark energy, which breaks down the analytic approximation
obtained from the initial condition of matter domination.
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δl, which is demonstrated in the upper left panel and the
upper right panel of Fig. 10, respectively. However, for
natural choices mimicking the standard ΛCDM scenario,

satisfying Eq. (46), the coefficient F ≈ 1 holds; hence, we
have δl ≃ −ð27=22Þð1 −ΩmÞt̃2, which explains the behav-
ior of δl in the lower panels of Fig. 10.

FIG. 9. Numerical solutions for the perturbation for ϕ̃lðaÞ, with the different values of parameter m̃, where Ωm ¼ 0.3 and r̃ ¼ 6.3 are
fixed.

FIG. 10. Numerical solutions for the matter perturbation δl. The upper left and upper right panels demonstrate the dependence of δl on
m̃ and r̃, respectively. The lower left panel assumes the same value of Ωm ¼ 0.3, while the lower right panel assumes slightly different
values ofΩm, where r̃ ¼ 70 and m̃ ¼ 1=10 are fixed. The lower panels show that δl will be almost independent of r̃ or m̃ values, as long
as they satisfy Eq. (46).
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IV. APPLICATIONS

In this section, we consider two applications of our
model for CMB temperature fluctuations and luminosity
distance. The first is the integrated Sachs-Wolfe (ISW)
effect [48,49]. Some aspects of this effect were investigated
in a previous paper [48], which relies on the statistical
argument based on the two-point correlation function. We
revisit this problem by applying the formulations developed
in the present study. The second is the impact on the
luminosity distances, which is related to the observations of
SNe Ia.
As noted following the definition of ϕ, Eq. (4), ϵl

was introduced to explicitly express the order of perturba-
tions that are small, and was related to the coordinates we
choose to define the multipoles of the perturbations in
Eqs. (2)–(6). These amplitudes of perturbations will be

taken unity, that is, ϵl ∼DðlmÞ ≡ 1 [see also Eqs. (65), (66),
(69), and (70)], for the purpose of numerical evaluation,
where most importantly we are interested in the evolution
of the perturbations. These amplitudes of the perturbations
will be constrained by reintroducing other parameters ε1
and ε2 when comparing with the actual CMB multipoles
observed.

A. CMB temperature fluctuations

Through the ISW effect, the perturbations to the metric
caused by the large-scale inhomogeneities of the dark
energy ϕ affect the observations of the CMB anisotropies.
By using the relation between the comoving distance and
the conformal time on the photon’s path on the background,
χ ¼ η0 − η, we can evaluate the ISW effect on the temper-
ature fluctuations of the CMB as

ΔT
T

≃ 2

Z
η0

ηd

dη

�∂Ψðη; χ; θ;φÞ
∂η

�����
χ¼η0−η

¼ 2

Z
η0

ηd

dη

�X3
m¼1

∂Ψ1ðmÞðηÞ
∂η PðmÞ

i xi þ
X5
m¼1

∂Ψ2ðmÞðηÞ
∂η PðmÞ

ij xixj
�����

χ¼η0−η

¼ 2

Z
η0

ηd

dη

�∂Ψ1ðmÞðηÞ
∂η

X3
m¼1

PðmÞ
i xi

�����
χ¼η0−η

þ 2

Z
η0

ηd

dη

�∂Ψ2ðmÞðηÞ
∂η

X5
m¼1

PðmÞ
ij xixj

�����
χ¼η0−η

; ð75Þ

where ηd denotes the era of the photon decoupling. In the
last line of Eq. (75), we used the Einstein summation
convention with respect to the index of m. We note that
ΨlðmÞ, which are denoted asΨl with the indexm omitted in
the previous section for simplicity, are only functions
of the conformal time η. It can also be confirmed that
the matrices Pm

ij and Pm
i introduced in Sec. II are related

to the real basis spherical harmonics Ym
l ðθ;φÞ (see Ap-

pendix A). By utilizing the relation in Eqs. (A8)
and (A9), it follows that

ΔT
T

¼ 2
X
m

Z
η0

ηd

dη

�∂Ψ1ðmÞ
∂η χYðmÞ

l¼1ðθ;φÞ
�����

χ¼η0−η

þ 2
X
m

Z
η0

ηd

dη

�∂Ψ2ðmÞ
∂η χ2YðmÞ

l¼2ðθ;φÞ
�����

χ¼η0−η

≡ 2
X2
l¼1

X2lþ1

m¼1

QlðmÞY
ðmÞ
l ðθ;φÞ; ð76Þ

with

QlðmÞ ≡
Z

η0

ηd

dηðη0 − ηÞl ∂ΨlðmÞ
∂η ð77Þ

defined. Because we have obtained the evolution of the
perturbation ΨlðmÞ in the previous numerical solution in
Sec. III, QlðmÞ can be numerically evaluated.
On the other hand, the angular two-point correlation

function can be written in multipole expansion as [56]�
ΔT
T

ðγÞΔT
T

ðγ0Þ
�

¼
X
l

2lþ 1

4π
ClPlðcos θÞ; ð78Þ

where γ and γ0 represent different unit line-of-sight direc-
tions with included angle θ, i.e., γ · γ0 ¼ cos θ. The angular
power spectrum Cl is defined by the ensemble of squared
expansion coefficients as follows:

Cl ≡
P

2lþ1
m¼1 jAlmj2
2lþ 1

; ð79Þ

where the coefficients are defined by

ΔT
T

¼
X
l

X2lþ1

m¼1

AlmY
ðmÞ
l ðθ;φÞ: ð80Þ

Here we used 1 ≤ m ≤ 2lþ 1 to denote the magnetic
quantum number. By comparing Eq. (76) with (80), we
find that
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Alm ¼ 2QlðmÞ ¼ 2

�Z
η0

ηd

dηðη0 − ηÞl ∂ΨlðmÞ
∂η

�
: ð81Þ

A constraint on our model from the observational CMB
power spectrum is Cl ≤ Cobs

l , which means that the
contribution of the large-scale mode perturbations to the
CMB power spectrummultipoles should not exceed what is
actually observed, because there may be other sources
contributing to the anisotropies, as long as cancellations do
not occur. Consequently, we have two constraints from the
l ¼ 1 dipole and the l ¼ 2 quadrupole, respectively, as

4
P

2lþ1
m¼1 Q2

lðmÞ
2lþ 1

≤ Cobs
l : ð82Þ

Thanks to the Planck Legacy Archive,1 we can apply the
upper limit of the observational data as Cobs

1 < 6.3 × 10−6

and Cobs
2 < ð2π=6Þ × ð1.0 × 10−10Þ to put constraints on

the amplitudes of the perturbations.
For example, for both parameter sets ðr̃ ¼ 70; m̃ ¼

1=10Þ and ðr̃ ¼ 6.3; m̃ ¼ 1=3Þ, or, more generally, for
models close to ΛCDM sets labeled with Nos. (1), (2),
(7), and (8) in Table I, where the condition in Eq. (46) is
satisfied, the calculations on Q1ðmÞ and Q2ðmÞ give con-
sistent results as

Q1ðmÞ ¼ −1.1 × 10−1Dð1mÞ; ð83Þ

Q2ðmÞ ¼ −9.0 × 10−2Dð2mÞ; ð84Þ

where the amplitude of the perturbations for each mode
DðlmÞ is recovered, which lead to the following constraints:

ε1 ≡
�P2lþ1

m¼1 D2
ð1mÞ

2lþ 1

	1=2
≤ 1.2 × 10−2; ð85Þ

ε2 ≡
�P2lþ1

m¼1 D2
ð2mÞ

2lþ 1

	1=2
≤ 5.7 × 10−5; ð86Þ

because both parameter sets mimic the cosmology close to
a ΛCDM model to yield the observational constraints
safely. We also present numerical evaluations with different
parameter choices in Table I.

B. Perturbations to light propagation
and luminosity distance

Following Refs. [53,57], as we have solved the metric
perturbations Ψl associated with large-scale fluctuations of
the dark energy, we can evaluate the perturbation to the

luminosity distance introduced by the inhomogeneities of
the dark energy by considering the metric perturbations
formulated previously. The relative perturbations of the
luminosity distance in an inhomogeneous universe is given
as [52,53]

I ≡ δdL
dL

¼
Z

λs

0

dλ
λ

λs
ðλ − λsÞ

�
Δð3ÞΨ −

�
Ψ̈þ 2

d _Ψ
dλ

��
;

ð87Þ

where _Ψ≡ ∂Ψðη;χÞ
∂η , and we have assumed a spatially flat

universe. The traceless property of matrices PðmÞ
ij defined by

Eq. (2) in Ψ ensures that Δð3ÞΨ ¼ 0 [see Eq. (A10)].
For the term containing differentiation with respect to the

propagation parameter λ, we may write

d
dλ

¼ dη
dλ

∂
∂ηþ

dχ
dλ

∂
∂χ : ð88Þ

Here, we may take the parameter λ as the comoving
distance χ; hence, λ≡ χ ¼ η0 − η and λs ≡ χs ¼ η0 − ηs
with an arbitrary light source indicated by subscript s.
Thus, we have

I ¼
Z

χs

0

dχ
χ

χs
ðχ − χsÞ

�
Ψ̈ − 2

∂ _Ψ
∂χ

�
: ð89Þ

Using a procedure similar to that used to transform
Eqs. (75) and (76), with the definition of Ψ in Eq. (2)
and Eqs. (A8)–(A9), we can rewrite I as

I ¼
Z

χs

0

dχðχ − χsÞ
χ

χs

��
Ψ̈lðmÞ − 2 _ΨlðmÞ

∂
∂χ

�
×

�X3
m¼1

χYðmÞ
l¼1ðθ;φÞ þ

X5
m¼1

χ2YðmÞ
l¼2ðθ;φÞ

�	

≡X2
l¼1

X2lþ1

m¼1

SlðmÞY
ðmÞ
l ðθ;φÞ; ð90Þ

with the integral defined as

SlðmÞ ≡
Z

χs

0

dχ
χ − χs
χs

ðχlþ1Ψ̈lðmÞ − 2lχl _ΨlðmÞÞ: ð91Þ

It is worth reminding the reader again that ΨlðmÞðηÞ is only
a function of η. SlðmÞ is the quantity that reflects the impact
of accumulative corrections on the luminosity distance by
the inhomogeneities of the dark energy, which can be
evaluated numerically.
We evaluate SlðmÞ due to the perturbation of Ψ caused by

dark energy inhomogeneity as a function of a or the

1Based on observations obtained with Planck (http://www.esa
.int/Planck), an ESA science mission with instruments and
contributions directly funded by ESA Member States, NASA,
and Canada.
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cosmological redshift z, corresponding to the light sources
from different epochs,

SlðmÞðaÞ ¼ FSlðmÞðaÞDðlmÞ: ð92Þ

Then we have

FSlðmÞðaÞ≡
Z

ηsðaÞ

η0

dη
�
ðη0 − ηÞlþ1

∂2ΨlðmÞ
∂η2

− 2lðη0 − ηÞl ∂ΨlðmÞ
∂η

�
η − ηsðaÞ
η0 − ηsðaÞ

; ð93Þ

in a more explicit manner for numerical evaluation with
respect to scale factor a using a1 as the variable of
integration,

FSlðmÞðaÞ

¼ −
Z

1

a
da1

�
ðη0 − ηða1ÞÞlþ1

∂
∂a1

�
a21Hða1Þ

∂ΨlðmÞ
∂a1

�
− 2lðη0 − ηða1ÞÞl

∂ΨlðmÞ
∂a1

	
ηða1Þ − ηsðaÞ
η0 − ηsðaÞ

: ð94Þ

We notice that FSlðmÞðaÞ does not increase or decrease
monotonically, whose typical behaviors are illustrated as a
function of a or z in Fig. 11. The scale factor is related to
the cosmological redshift by z ¼ a−1 − 1, which is used to
convert each other.
Because we have solved for the system as functions of

the scale factor a in Sec. III,ΨlðaÞ, ηðaÞ, andHðaÞ, and the
particle horizon η0 are already known for the given
parameters r̃ and m̃. If necessary, we can also transform
these quantities using the conformal time η as an indepen-
dent variable (see Appendix F). On the other hand, we
put constraints on ε1 and ε2 in Sec. IVA; thus, we can
evaluate the modification to the luminosity distance I with
Eq. (90) by numerically evaluating SlðmÞ with the constraint
Eqs. (85) and (86). Our numerical results FSlðmÞ are shown

in Fig. 11 as a function of a (left panel) and z (right panel),
respectively. Our results with different parameters can be
found in Table I. We evaluated FSlðmÞðaÞ at a ¼ 0.25,
which corresponds to z ¼ 3.
We estimate the multipole components of I as

Il ≡
X2lþ1

m¼1

SlðmÞ ∼ ð2lþ 1ÞSlðmÞ: ð95Þ

Allowed values ofDðlmÞ ∼OðεlÞ (l ¼ 1, 2) are found in
Sec. IVA [see Eqs. (85) and (86)]; e.g., with ε1<1.2×10−2

and ε2 < 5.7 × 10−5, we can evaluate the modification to
the luminosity distance caused by large-scale vector modes
using Eq. (90) that the magnitude of the correction caused
by the l ¼ 1 component isOð10−3Þ, whereas it is Oð10−5Þ
for the l ¼ 2 component. We have the consistent results of
modification to the luminosity distance Il as

Il¼1 ≃ −1.6 × 10−3; ð96Þ

Il¼2 ≃ −2.0 × 10−5; ð97Þ

at the redshift z ¼ 3 for all models in Table I.

V. DISCUSSIONS AND CONCLUSIONS

We formulated a cosmological model with inhomo-
geneous dark energy sourced from a dynamical scalar field
with extremely large-scale fluctuations, by handling them
as cosmological perturbations to a homogeneous back-
ground to focus on a local observable universe. This model
is capable of reproducing an observable universe that
mimics the ΛCDM flat universe favored by the observa-
tions but with inhomogeneity and anisotropy of small
amplitudes on very large scales. We investigated the basic
equations governing the evolution of the universe for the
background and perturbations, and presented the numerical
solutions for these equations by choosing appropriate

FIG. 11. Multipole components of the perturbations to the luminosity distance defined as FSlðmÞða; zÞ as a function of scale factor a
(left panel) and redshift z (right panel). In each panel, the solid curve is the dipole, l ¼ 1, and the dashed curve is the quadrupole l ¼ 2.
Here we adopted model No. (1) in Table I.
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parameters that reproduce cosmological models close to the
ΛCDM universe. As the examples for the application of the
results, we investigated the impact of the extremely large-
scale inhomogeneity of the dark energy on the cosmologi-
cal observations in the late-time universe, where dark
energy becomes important for background evolution.
In our numerical evaluations, we chose the parameters

of the models close to the ΛCDM model, for example,
ðr̃ ¼ 70; m̃ ¼ 1=10Þ and ðr̃ ¼ 6.3; m̃ ¼ 1=3Þ, which sat-
isfies the condition in Eq. (46). However, the prediction of
the models is robust for the different choices of the
parameters (r̃, m̃), as shown in Table I in Sec. III. We
also showed that slight changes in the values of Ωm do not
alter the results. The observational constraints on cosmo-
logical parameters allow deviation from the standard
ΛCDM scenario to some extent [29,30], potentially
suggesting that dynamical quintessence models for dark
energy EoS are favored [58]. Hence it is interesting to
investigate constraints on the parameter space consistent
with these observations.
Using numerical solutions, we focused our investigation

on the impact of the large-scale inhomogeneities of the dark
energy on the large angular anisotropies in the CMB
temperature map and in the luminosity distance. The time
variations of the metric perturbations give rise to the
ISW effect, which affects the temperature anisotropies.
In contrast to previous work [48], we investigated the
multipole spectrum in the spatially flat universe using
numerical solutions without approximations. We obtained
the constraints Eqs. (85) and (86) on the amplitude of the
models from the observational data. The contribution from
the large-scale inhomogeneities of the dark energy on the
dipole of the CMB temperature power spectrum may partly
account for the anomalies in the dipole and low multipoles
of the CMB power spectra [34,56].
The inhomogeneities of the dark energy affect the

cosmic distance, which may impact the observations of
SNe Ia and BAO measurements. We used Eq. (87),
according to Refs. [53,57], for evaluation of these parts.
Our numerical calculations showed that the relative cor-
rection to the luminosity distance could be Oð10−3Þ for the
dipole and Oð10−5Þ for the quadrupole components. For
general parameter choices in Table I, these corrections
seem too small to resolve the Hubble tension, which is
becoming increasingly conspicuous between measure-
ments via CMB and via standard candles such as SNe Ia
[59–61], as addressed in Sec. I. In a potentially related work
Ref. [62] as a comparison with our model, the authors
attempted to ease the H0 tension by introducing local
inhomogeneities from the coupling of a chameleon dark
energy model with dark matter. However, comprehensive
analyses, including wide ranges of the model parameters
and the various observational results taking systematics into
account, will be interesting [58,63,64]. Especially, the
future progress of the gravitational wave observations with

associative electromagnetic observations will be promising
to provide with a standard siren [65–68].
Our model presented here is a possible dark energy

model predicting the anisotropic expansion rate or aniso-
tropic dark energy density and equation of state. Using
the solutions in the present paper, we can realize the
dynamical dark energy models with the inhomogeneous
density on the large scales on the smooth background of the
local universe. Another application of this inhomogeneous
model may be to investigate its prediction on the structure
formation, especially on large scales, though it is beyond
the scope of this paper. Potentially related to this aspect,
Refs. [69,70] investigated the impacts of different classes of
dark energy models on matter clustering, which may help
to discriminate our model from other models in the context
of matter clustering. The inhomogeneous dark energy
model will be interesting from the viewpoint that it is
potentially verifiable/falsifiable by the ongoing/planned
data release of existing observations and future generation
observations [for example, DES, DESI, LSST [71], Euclid
[72], and Roman Space Telescope (formerly known as
WFIRST) [73], cf. [31] ]. Additionally, the neutral hydro-
gen cosmology from the 21 cm spectrum survey planned by
SKA [74] may link BAO with redshift-space distortions
and add up to a better understanding of dark energy. The
future data of these surveys may help to test the inhomo-
geneous properties of the dark energy.
The work in the present paper is inspired by a previous

work [48], in which large-scale dark energy perturbations
are generated by the quantum fluctuations of a scalar field
according to an open-inflation scenario. The original model
predicts a cosmological model with negative spatial cur-
vature. However, in the present study, we considered a
spatially flat universe ΩK ¼ 0; therefore, the origin of the
scalar field as the candidate for dark energy in our model
is a subject to be discussed further. Recently, ultralight
scalar fields such as axionlike particles have attracted great
interest as cosmological candidates for dark energy and
dark matter [27], linked with the strong CP problem and
motivated by the string axiverse and the swampland
conjectures [20,21,24,25,75,76]. Exploring the possibility
to generate the initial conditions necessary for a scalar field
in our model could be interesting within the framework of
these scenarios in future investigations.
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APPENDIX A: MULTIPOLE EXPANSION
MATRICES

The matrices appearing in the definitions of the pertur-

bations in Sec. II A, PðmÞ
i are simply written as

Pðm¼1Þ
i ¼

ffiffiffiffiffiffi
3

4π

r 0B@ 1

0

0

1CA; Pðm¼2Þ
i ¼

ffiffiffiffiffiffi
3

4π

r 0B@ 0

1

0

1CA;

Pðm¼3Þ
i ¼

ffiffiffiffiffiffi
3

4π

r 0B@ 0

0

1

1CA; ðA1Þ

while PðmÞ
ij are traceless matrices related to the multipole

expansion of the perturbations and are listed as follows:

Pðm¼1Þ
ij ¼

ffiffiffiffiffiffiffiffi
15

16π

r 0B@ 0 1 0

1 0 0

0 0 0

1CA; ðA2Þ

Pðm¼2Þ
ij ¼

ffiffiffiffiffiffiffiffi
15

16π

r 0B@ 0 0 0

0 0 1

0 1 0

1CA; ðA3Þ

Pðm¼3Þ
ij ¼

ffiffiffiffiffiffiffiffi
15

16π

r 0B@ 0 0 1

0 0 0

1 0 0

1CA; ðA4Þ

Pðm¼4Þ
ij ¼

ffiffiffiffiffiffiffiffi
15

16π

r 0B@ 1 0 0

0 −1 0

0 0 0

1CA; ðA5Þ

Pðm¼5Þ
ij ¼

ffiffiffiffiffiffiffiffi
15

16π

r 0B@−1 0 0

0 −1 0

0 0 2

1CA: ðA6Þ

Equations (2)–(4) are due to the multipole expansion of
the inhomogeneous perturbations under the real spherical
harmonics: in the space up to l ¼ 2, the quadrupole
component, with the l ¼ 0 component representing the
homogeneous background as the monopole.
Using θ and φ to denote the polar and azimuthal angles

in the spherical coordinates, respectively, taking the spatial
basis

x1 ¼ χ sin θ cosφ;

x2 ¼ χ sin θ sinφ;

x3 ¼ χ cos θ; ðA7Þ

the relation between these matrices and the spherical
harmonics can be understood as

YðmÞ
l¼1ðθ;φÞ≡ PðmÞ

i xi=χ; ðA8Þ

YðmÞ
l¼2ðθ;φÞ≡ PðmÞ

ij xixj=χ2; ðA9Þ

with integer m ∈ ½1; 2lþ 1� instead of m ∈ ½−l;l�, cor-
responding to the three matrices for l ¼ 1 and five matrices
for l ¼ 2 previously.
Note that the traceless property for the matrices corre-

sponds to the conclusion that the large-scale modes make
no source term contribution additional to the scalar modes
as its Laplacian vanishes

Δð3ÞΨ ¼ ∇2Ψ ¼ Ψ1ðmÞ∇2PðmÞ
i xi þ Ψ2ðmÞ∇2PðmÞ

ij xixj

¼ 0þ TrPðmÞ
ij Ψ2ðmÞ∇2χ2

¼ 0: ðA10Þ

APPENDIX B: THE FLUID EQUATION
CONSISTENCY

Starting from Eq. (17), if we refine Vl with respect
to Vl as

Vl ≡ k
a
Vl; ðB1Þ

with k denoting the wave number of the perturbations,
we will have

_Vl − aΨl ¼ _aVl þ a _Vl

k
− aΨl ¼ 0; ðB2Þ

and hence

_Vl þ
_a
a
Vl − kΨl ¼ 0; ðB3Þ

which is consistent with Eq. (26) in Ref. [48].

APPENDIX C: ADDITIONAL DETAILS FOR THE
BACKGROUND EVOLUTION

In this Appendix, we present more details for preparing
the background equations for numerical solutions with the
initial conditions.

1. As functions of dimensionless time t̃

We have introduced the dimensionless ordinary differ-
ential equations of the background using t̃ as an indepen-
dent variable as
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r̃m̃2ϕ̃2
0ðt̃Þ þ r̃

�
dϕ̃0

dt̃

�
2

þΩma−3 ¼
�
1

a
da
dt̃

�
2

;

d2ϕ̃0

dt̃2
þ 3

1

a
da
dt̃

dϕ̃0

dt̃
þ m̃2ϕ̃0 ¼ 0;

where H0 is the Hubble constant and ϕ0 is a constant
related to the initial value of ϕ0.
It is worth noting that according to the definitions in

Eqs. (33)–(36), there are 2 degrees of freedom for the
parameters m̃ and r̃, to specify the mass and energy scale
of the dark energy field ϕ, respectively. The unknown
component in our model, dark energy ϕ, can be funda-
mentally characterized by two parameters. One is the shape
of its potential VðϕÞ ¼ m2

ϕϕ
2=2, and the other is the initial

value in our universe, while the properties of the other
component (e.g., matter) are considered as known under the
standard cosmological model.
To focus on the solution, in search of initial conditions

and the analytic approximations in the limit a ≪ 1, Eq. (38)
approaches �

1

a
da
dt̃

�
2

¼ Ωma−3; ðC1Þ

which has the solution

t̃ ¼ 2

3

a
3
2ffiffiffiffiffiffiffi
Ωm

p or a ¼
�
9

4
Ωm

�1
3

t̃
2
3 ðC2Þ

as an analytic approximation in the limit a ≪ 1.
Inserting this into Eq. (39) gives

d2ϕ̃0

dt̃2
þ 2

1

t̃

�
dϕ̃0

dt̃

�
þ fm2

ϕϕ̃0 ¼ 0; ðC3Þ

which has the general solution

ϕ̃0ðt̃Þ ¼ C1

sinðm̃ t̃Þ
m̃ t̃

þ C2

cosðm̃ t̃Þ
m̃ t̃

: ðC4Þ

The cosine part diverges in the limit a ≪ 1 to be
abandoned; hence, we write

ϕ̃0ðt̃Þ ¼ C1

sinðm̃ t̃Þ
m̃ t̃

; ðC5Þ

which imposes the initial condition

ϕ̃0ðt̃ → 0Þ ¼ lim
t̃→0

C1

sinðm̃ t̃Þ
m̃ t̃

¼ C1: ðC6Þ

However, the initial value of ϕ̃0ðt̃ → 0Þ ¼ C1 is not self-
evident and should be determined in association with the
dark energy density of the present epoch inferred from

observations. We have the constraint from the present
Hubble rate to fix t̃0 by definitions

aðt̃0Þ ¼ aðH0t0Þ≡ 1;

Hðt̃0Þ ¼ HðH0t0Þ≡H0:

Inserting this into Eq. (38) actually gives Eq. (45),

1 −Ωm ¼ r̃m̃2ðϕ̃0jt̃¼t̃0Þ2 þ r̃
�
dϕ̃0

dt̃

����
t̃¼t̃0

�
2

:

Equation (45) is the necessary condition for specifying
the dark energy density observed today when solving the
background equations. Together with Eqs. (38) and (39),
the system is now prepared for numerical evaluation to
obtain the evolution of aðt̃Þ and ϕ̃0ðt̃Þ. As we are mainly
interested in the late-time evolution here, we can determine
the initial value for independent variables t̃ or a (to be
discussed later) manually as a typical value; for example,
ai ¼ ad ≈ 1=1100 at the photon decoupling off the last
scattering, by use of Eq. (C2). These solutions determine
the background evolution that we rely on to solve the
perturbation equations.
It is worth mentioning that Eq. (45) also provides a

baseline for choosing the parameters m̃ and r̃ from the
various parameter spaces. In the case of the cosmological
constant Λ, dϕ̃0=dt̃ is always small, leaving

1 − Ωm ¼ r̃m̃2ðϕ̃0jt̃¼t̃0Þ2: ðC7Þ

Thus, if we take the dimensionless field in the present
epoch normalized as ϕ̃0ðt̃ ¼ t̃0Þ ∼Oð1Þ≡ 1, we will have
a special case for the choice of parameters approximating
the ΛCDMmodel presented in Eq. (46) that r̃m̃2 ≃ 1 −Ωm.

2. As functions of scale factor a

Because the scale factor a can be chosen as a time-
evolution parameter instead of the dimensionless time t̃,
as a double-check for the previous subsection, we can
write out the dimensionless equations for ϕ̃0 and H̃ðaÞ as
functions of the scale factor a. Recall that the superscript 0
means derivative with respect to scale factor a. By inserting
Eq. (42) into Eq. (41), we obtain the background equation
to be solved in the form

m̃2a2ϕ̃0ð1 − r̃a2ϕ̃02
0 Þ þ m̃2r̃a3ϕ̃2

0ð4ϕ̃0
0 − 3r̃a2ϕ̃03

0 þ aϕ̃00
0Þ

þ Ωm

2
ð5ϕ̃0

0 − 3r̃a2ϕ̃03
0 þ 2aϕ̃00

0Þ ¼ 0; ðC8Þ

where an initial condition for ϕ̃0ðaÞ is necessary. After
solving ϕ̃0ðaÞ, we can obtain H̃ðaÞ from Eq. (42).
For the initial conditions, we consider the analytic

approximations. When a ≪ 1, Eq. (42) simply approaches
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H̃ ¼
ffiffiffiffiffiffiffi
Ωm

p
a−3=2: ðC9Þ

Inserting this into Eq. (41) and simplifying will lead to

aϕ̃00
0 þ

5

2
ϕ̃0
0 þ m̃2a2Ω−1

m ϕ̃0 ¼ 0; ðC10Þ

which can be solved analytically as

ϕ̃0ðaÞ ¼ C1

3
ffiffiffiffiffiffiffi
Ωm

p
2m̃a3=2

sin

�
2m̃a3=2

3
ffiffiffiffiffiffiffi
Ωm

p
�
; ðC11Þ

which is identical to that in Eq. (C5) by recalling Eq. (C2).
Then we are able to infer

ϕ̃0ða → 0Þ ¼ C1; ðC12Þ

ϕ̃0
0ða → 0Þ ¼ 0; ðC13Þ

are the appropriate initial conditions for the system, which
are consistent with the equations using dimensionless time t̃
as the independent variable. Now the background equations
can be solved numerically.

APPENDIX D: DARK ENERGY EoS AS A
FUNCTION OF THE SCALE FACTOR a

Following Eq. (12), we have

ωϕ ¼ −
m2

ϕa
2ϕ2 − _ϕ2

m2
ϕa

2ϕ2 þ _ϕ2

¼ −1þ 2

m2
ϕa

2ðϕ= _ϕÞ2 þ 1

≡ −1þ 2WðaÞ; ðD1Þ

where 0 denotes the derivative of the scale factor a,
0 ≡ ∂=∂a, where

WðaÞ≡ 1

m2
ϕa

2ðϕ= _ϕÞ2 þ 1
¼ a2

ðmϕ=HÞ2ðϕ=ϕ0Þ2 þ a2
:

ðD2Þ

At the background level assuming ϕ̃ ≃ ϕ̃0, we can further
write

WðaÞ ≃ ϕ̃02
0 a

2H̃2

m̃2ϕ̃2
0 þ ϕ̃02

0 a
2H̃2

: ðD3Þ

Recall that H̃ðaÞ is defined in Eq. (42), which depends on
the values of r̃, m̃, andΩm. Because m̃2 is typically small in
our model, using Eq. (42) and expanding to the order of
Oðm̃2Þ, we have

WðaÞ ≃ 1 −
am̃2

Ωm

�
ϕ̃2
0

ϕ̃02
0

�
ð1 − r̃a2ϕ̃02

0 Þ

≃ 1 −
am̃2

Ωm

�
ϕ̃2
0ðaÞ

ϕ̃02
0 ðaÞ

�
; ðD4Þ

which can be numerically evaluated with ϕ̃0ðaÞ and ϕ̃0
0ðaÞ

as demonstrated in Sec. III. The second line stands because
a2ϕ̃02

0 is small and negligible for 0 < a < 1 in almost all
cases. Then, we can understand that r̃ hardly affects the
background EoS of the dark energy.
Although slightly complicated in its explicit form,

Eqs. (D1)–(D4) can be considered as a natural extension
of the CPL parametrization of the dark energy EoS [50,51].
This is a manifestation of how the behaviors of the EoS
of dark energy in our model are decided quantitatively by
the parameters.
If we include the first-order perturbations ϕ̃lðaÞ in

Eq. (D1), and hence corrections to (D4), we can evaluate
the anisotropies of the EoS wϕðaÞ of dark energy sourced
by the inhomogeneities of ϕ, although these corrections to
the isotropic background in Eq. (D4) may be small because
of our previous constraints on the amplitudes of ε1 and ε2 in
Eqs. (85) and (86).

APPENDIX E: LUMINOSITY DISTANCE

Starting from Eq. (87), while still taking the propagation
parameter as λ ¼ χ, including the normal mode scalar
fluctuation Ψtot ¼ Ψnorm þ Ψ, to the linear order, we obtain

Itotlin ¼
Z

χs

0

dχ
χ

χs
ðχ − χsÞΔð3ÞΨtot; ðE1Þ

but we have Eq. (A10) for Ψ; hence, we only need to
consider the cosmological Poisson equation as

Δð3ÞΨtot ¼ Δð3ÞΨnorm ¼ 4πGρmδma2: ðE2Þ

In gravitationally bound local systems, for example, where
objects such as SNe Ia are located, the source term of the
scalar perturbations from matter in the Friedmann equation
simply reads

8πGρ̄m ¼ 3H2 ¼ 3H2
0Ωma−3; ðE3Þ

which is identical to Eq. (54); hence,

Itotlin ¼ −
3H2

0Ωm

2

Z
χs

0

dχ
χ

χs
ðχs − χÞaðχÞ−1δmðaðχÞ; γÞ:

ðE4Þ

Because a−1 ¼ 1þ z holds by definition between scale
factor a and cosmological redshift z, if we only look at
the contribution by the inhomogeneous background and
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neglect peculiar motion terms, this result is consistent with
Eq. (6) in Ref. [57].

APPENDIX F: SOME USEFUL
TRANSFORMATION RELATIONS

Here, we provide some useful relations to help transform
equations quickly between forms as functions of t̃, a,
or η. As we defined the dimensionless quantities in
Eqs. (33) and (37),

t̃ ¼ H0t;

H̃ ¼ H=H0;

with

H ¼ 1

a
da
dt

ðF1Þ

as a usual convention. Hence, recalling 0 is the derivative
with respect to a and overdot _ indicates that with respect to
η, for arbitrary function A we have

∂A
∂ t̃ ¼ ∂A

H0∂t ¼ a
H
H0

∂A
∂a ¼ aH̃A0; ðF2Þ

as well as

∂A
∂ t̃ ¼ ∂A

H0∂t ¼
1

aH0

∂A
∂η ¼ H̃

aH
∂A
∂η ¼ H̃

H
_A: ðF3Þ

These will help to transform equations quickly. Following
these we have

∂2A
∂ t̃2 ¼ aH̃

∂
∂a

�
aH̃

∂A
∂a

�
¼ a2H̃2A00 þ ða2H̃H̃0 þ aH̃2ÞA0 ðF4Þ

and

1

a
∂a
∂ t̃ ¼

1

H0

1

a
∂a
∂t ¼ H=H0 ¼ H̃ ðF5Þ

as very useful relations.
Finally let us note a universal relation widely used,

_A ¼ a2HA0: ðF6Þ
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