
Radiation from global topological strings using adaptive mesh refinement:
Methodology and massless modes

Amelia Drew * and E. P. S. Shellard†

Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom

(Received 13 February 2021; accepted 15 February 2022; published 15 March 2022)

We implement adaptive mesh refinement simulations of global topological strings using the public
numerical relativity code, GRChombo. We perform a quantitative investigation of the dynamics of single
sinusoidally displaced string configurations, studying a wide range of string energy densities μ ∝ ln λ,
defined by the string width parameter λ over 2 orders of magnitude. We investigate the resulting massless
(Goldstone boson or axion) radiation signals, using quantitative diagnostic tools to determine the
eigenmode decomposition. Given analytic radiation predictions, we compare the oscillating string
trajectory with a backreaction model accounting for radiation energy losses, finding excellent agreement.
We establish that backreaction decay is accurately characterized by the inverse square of the amplitude
being proportional to the inverse tension μ for 3 ≲ λ≲ 100. We conclude that analytic radiation modeling
in the thin-string (Nambu-Goto) limit provides the appropriate cosmological limit for global strings.
We contextualize these results with respect to axions and gravitational waves produced by cosmic
string networks.
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I. INTRODUCTION

The existence of topological strings is a fundamental
prediction of many physically motivated field theories [1],
from grand-unified (GUT) models to superstring theory,
and has a wide variety of cosmological consequences
(for a review, see [2]). They usually arise as a result of
a symmetry-breaking phase transition, which may have
occurred in the early Universe as it cooled below a critical
temperature. The simplest model is the breaking of a Uð1Þ
symmetry with a single complex scalar field to create so-
called “global” strings with a long-range Goldstone boson
or axion field. A key motivation is offered by the Peccei-
Quinn UPQð1Þ symmetry introduced to solve the strong CP
problem of QCD [3]: when UPQð1Þ is broken, axion strings
are created which are a potential source of dark matter
axions [4].
The evolution of cosmological strings has been exten-

sively studied using large-scale numerical simulations.
However, there is a vast difference in scale between the
typical string width δ and the string curvature scale Λ
(usually set by the Hubble radius R≲H−1, where H is
the Hubble scale). This is characterized by the ratios
lnR=δ ∼ 70 and lnR=δ ∼ 100 for QCD axion and GUT
scale strings respectively. This poses a very significant
computational challenge.

To date, two numerical methods have primarily been
used for string simulations in an expanding background.
The first uses the Nambu-Goto approximation which
assumes that the radius of curvature of the string is much
greater than its thickness, so that the string effectively has
zero width [5–8]. This one-dimensional approach achieves
a wide dynamic range but does not directly couple to the
long-range radiation fields, nor calculate their backreaction
effects. The second method numerically evolves the field
equations of motion in three dimensions, incorporating the
physical effects of radiation [9–12]. However, typical field
theory simulations can only probe ratios lnR=δ≲ 8 (e.g.,
[13]), so struggle to accurately resolve the string cores in a
realistic cosmological context. In order to achieve sufficient
dynamic range in an expanding universe, the string width in
field theory simulation is typically fixed at finite comoving
width (see e.g., [14–20]). These two very different approx-
imations yield significant quantitative discrepancies regard-
ing the typical string network density and the primary
decay mechanism of radiating strings. This has important
consequences, generating a range of predicted cosmic
string gravitational wave signatures (see e.g., [21]) and a
lack of consensus on the mass of the dark matter axion
(see e.g., the review [22]).
In this paper, we address this issue using the computa-

tional technique, adaptive mesh refinement (AMR). AMR
algorithms enable us to simulate cosmic string evolution
while adapting the size of the numerical grid to the local
scale of the problem, using finer resolution at the string
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core. This opens up the possibility for greater dynamic
range, reducing the need to approximate strings as having
either zero or fixed comoving width.
In Sec. II, we outline the theory of global cosmic/axion

strings and their key radiative modes, discussing the
discrepancies between current numerical simulations in
the literature. In Sec. III, we introduce AMR and describe
how it can be applied in the context of global strings, along
with the other numerical techniques used to set up our
simulations. In Sec. IV, we present our main results for
massless radiative modes, investigating their spectral con-
tent and making direct comparisons to analytic radiation
calculations. Finally, we conclude with the main implica-
tions and discuss future work in Sec. V.

II. THEORY OF GLOBAL TOPOLOGICAL
STRINGS

A. Global Uð1Þ field theory

In this section, we outline the theory of global cosmic
strings, including their evolution equations and radiation.
We follow closely the outline of [2], where further details
can also be found.
Cosmic strings are topological defects that arise due to

symmetry breaking within certain field theories. Symmetry
breaking may have occurred as a result of a phase transition
in the early Universe when the temperature cooled below
some critical value, analagous to a ferromagnet cooling
past its Curie point [1]. “Global” cosmic strings refer to
the simplest case, a Uð1Þ symmetry breaking of a complex
scalar field φ.
We consider the Goldstone model with Lagrangian

density given by

L ¼ ð∂μφ̄Þð∂μφÞ − VðφÞ ð1Þ

and

VðφÞ ¼ 1

4
λðφ̄φ − η2Þ2: ð2Þ

The symmetry breaking scale is set by the constant λ, and
the complex scalar field φ is given by

φ ¼ ϕ1 þ iϕ2; ð3Þ

where ϕ1;2 indicate the real and imaginary parts. The Euler-
Lagrange equations are given by

∂2ϕ1;2

∂t2 −∇2ϕ1;2 þ
λ

2
ϕ1;2ðjφj2 − η2Þ ¼ 0; ð4Þ

where η is a constant.
The Goldstone Lagrangian (1) is invariant under the

symmetry transformation

φðxÞ → eiαφðxÞ; ð5Þ

where α is an angle independent of spatial location. If we
apply this transformation to the lowest energy vacuum state

h0jφj0i ¼ ηeiθ ð6Þ

where θ is the complex phase tan−1ðϕ2=ϕ1Þ, a different
expectation value

h0jφj0i ¼ ηeiðθþαÞ ð7Þ

is obtained, spontaneously breaking the symmetry.

B. Structure of global strings

The possibility of nontrivial windings about the circular
vacuum topology leads to the existence of vortex solutions
in two dimensions or linelike global strings in three
dimensions. To find the initial field configuration for
strings, we postulate the static ansatz solution to (4)

φðr; θÞ ¼ ϕðrÞeinwθ; ð8Þ

where ϕ ¼ jφj and nw is the topological winding number
(an integer). This radial ansatz can be substituted into the
static part of the Euler-Lagrange equations (4) to yield an
ordinary differential equation for ϕðrÞ

d2ϕ
dr2

þ 1

r
dϕ
dr

−
n2wϕ
r2

−
λ

2
ϕðϕ2 − η2Þ ¼ 0; ð9Þ

subject to the boundary conditions ϕð0Þ ¼ 0 at the string
core and ϕðrÞ → η as r → ∞. The radial equation (9) can
be solved numerically to obtain the string cross section
ϕðrÞ, plotted in Fig. 1 for the single winding nw ¼ 1 string.
This simple solution allows us to infer the width of the
string core, defined to be
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FIG. 1. Radial profile of a global cosmic string ϕðrÞ for λ ¼ 1
with approximate width δ ≈ 1 (blue solid). Also plotted are
the asymptotic regimes ϕ ¼ 0.412r for r → 0 (red dotted) and
1 − r−2 as r → ∞ (green dashed).
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δ ≈m−1
H ≡ ð

ffiffiffi
λ

p
ηÞ−1; ð10Þ

where m−1
H is the Compton wavelength of the massive

particle (see Sec. II C for further discussion). As can be
seen from Fig. 1, the “half width” of the string core is larger
than this, given by δ1=2 ¼ 1.35δ where ϕ ¼ 0.5 (or 1.68δ
using the same criteria with the energy density). In
subsequent calculations, we perform a rescaling to set
η ¼ 1 (using ϕ → ϕ=η and r → ηr), but retain λ as a free
parameter to modify the string width.
The energy density ρðrÞ ¼ T00 of the string in cylindrical

coordinates can be calculated from the energy-momentum
tensor

Tμν ¼ ∂μφ∂νφ − gμνL ð11Þ

and splits into the following contributions:

ρðrÞ ¼
�
dϕ
dr

�
2

þ λ

4
ðϕ2 − 1Þ2 þ

�
nwϕ
r

�
2

; ð12Þ

where ðð1=rÞj∂φ=∂θjÞ2 ¼ ðnwϕ=rÞ2 from the string cross
section (8). The first two terms are the gradient and
potential energies associated with deviations of the massive
field from the vacuum, i.e., for ϕ≲ 1. These provide the
dominant contribution to the “local core” within a radial
distance r≲ 2δ, as illustrated in Fig. 2. This massive
contribution to the energy density converges rapidly to
the vacuum as 1 − r−2, and integrating out to r → ∞ yields
a core energy density μ0 ¼ 4.9. The third contribution is
due to the “winding” of the long-range massless field about
the string core, which generically dominates the overall
energy density beyond r≳ 2δ (also shown in Figs. 2 and 3).
In principle, this massless contribution is logarithmically
divergent,

μθðRÞ ≈
Z

R

δ

���� 1r
∂φ
∂θ

����
2

2πrdr ¼ 2πη2 ln ðR=δÞ: ð13Þ

However, in practice, it will be cut off at some radius R
associated with the curvature radius of the string, at which
point the correlations implied by the ansatz (8) will be
washed out or canceled. For axion strings on cosmological
scales, we expect μθ ≫ μ0. In fact, (13) provides an
accurate estimate even on much smaller scales, with the
total energy density

μðRÞ ¼ μ0 þ μθðRÞ ≈ 2πη2 lnðR=δÞ ðfor R≳ 2Þ; ð14Þ

achieving better than 2% accuracy for R≳ 10 and 0.1% on
cosmological scales (see Fig. 3).
The internal structure of global strings is an important

factor for numerical simulations, which inherently have a
limited dynamic range. We can identify the positions of
string cores in space x by locating the zeroes of the field
where ϕðxÞ ¼ 0. However, this might not represent the
actual string center of mass because of internal excitations
within the string radius. Inset in Fig. 2 is a closeup view of
the energy density around r ¼ 0 close to the string core,
showing that it becomes “flat” and varies by only 1%
(ρ0 − ρðrÞ ≲ 0.01) within a radius r≲ 0.2δ. This means
there is an internal “zero mode” allowing the string core to
move short distances at little or no energy cost, without
actually moving the bulk string. We can expect such finite
width effects to be present when studying small amplitude
oscillations comparable to the string width A ∼ δ.

C. Massive and massless radiation modes

An oscillating global string will emit both massless
(Goldstone) modes and massive (Higgs) radiation. Analytic
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FIG. 2. String energy density ρ (blue) as a function of radius r
for λ ¼ 1, showing both the core contribution from massive
modes (purple) and exterior massless modes (red) which domi-
nate beyond r ≳ 2. Inset is the energy density close to r ¼ 0
showing a flattened centre which allows small “zero-mode”
excitations within the string core Δr ≈Oðδ=10Þ.
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FIG. 3. Integrated string energy per unit length μðRÞ as a
function of cutoff radius r ¼ R for λ ¼ 1, showing the total
energy density (blue), the massive core (purple), and the long-
range massless contribution (red) which renormalizes μ. Agree-
ment with the simple logarthmic fit μ ≈ 2π lnðR=δÞ is shown for
R≳ 2 (dotted line).
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expectations are very different for these two channels, so it
is important to develop robust diagnostic tools to be able to
numerically extract and analyze them separately. This is a
significant challenge because radiative modes must be
separated from string self-fields, which, in principle, can
also be long range and time varying. We discuss further
how propagating modes can be distinguished from self-
fields in Sec. IVA 2.
We first demonstrate the presence of massive and massless

radiative modes around the broken symmetry vacuum state
(7) using the general form of the Argand representation

φðxμÞ ¼ ϕðxμÞeiϑðxμÞ; ð15Þ
where both the magnitude ϕðxμÞ ¼ jφðxμÞj and the phase
ϑðxμÞ are real scalar fields associated with the orthogonal
excitations illustrated in Fig. 4 (and we have set nw ¼ 1).
The field equations (4) split into real and imaginary parts,
respectively, as

∂2ϕ

∂t2 −∇2ϕ ¼ ϕ

��∂ϑ
∂t

�
2

− ð∇ϑÞ2 þ λ

2
ð1 − ϕ2Þ

�
; ð16Þ

∂2ϑ

∂t2 −∇2ϑ ¼ 2

ϕ

�∂ϕ
∂t

∂ϑ
∂t −∇ϕ∇ϑ

�
: ð17Þ

Assuming that ϑ is nearly constant far from any strings, (16)
becomes

∂2ϕ

∂t2 −∇2ϕ −
λ

2
ϕð1 − ϕ2Þ ¼ 0: ð18Þ

Expanding around the vacuum state jφj ¼ η (where we have
taken η ¼ 1) by setting ϕ ¼ 1þ χ, we linearize to obtain the
Klein-Gordon equation

∂2χ

∂t2 −∇2χ þm2
Hχ ¼ 0; ð19Þ

wheremH ¼ ffiffiffi
λ

p
η. Hence, in this limit, we deduce that χ acts

like a free massive scalar field. On the other hand, if ϕ is
nearly constant, the second equation (17) reduces to the
wave equation

∂2ϑ

∂t2 −∇2ϑ ¼ 0; ð20Þ

where ϑ behaves as a massless scalar field. Asymptotically
far from any strings, it should therefore be a good approxi-
mation to decompose radiation into these distinct massive
and massless modes.
In order to determine individual contributions to the

radiative spectrum from each mode, it will be useful to
measure and separate the components of the energy-
momentum tensor, given by

Tμν ¼ 2∂ðμφ̄∂νÞφ − gμν

�
∂σφ̄∂σφ −

λ

4
ðφ̄φ − 1Þ2

�
: ð21Þ

We can decompose the energy density ρ ¼ T00 into
massive and massless modes using (15) as follows:

T00 ¼ _̄φ _φþ∇iφ̄∇iφþ λ

4
ðφ̄φ − 1Þ2

¼ _ϕ2 þ ð∇ϕÞ2 þ ϕ2ð _ϑ2 þ ð∇ϑÞ2Þ þ λ

4
ðϕ2 − 1Þ2

¼ _ϕ2
1 þ _ϕ2

2 þ ð∇ϕ1Þ2 þ ð∇ϕ2Þ2 þ
λ

4
ðϕ2

1 þ ϕ2
2 − 1Þ2;

ð22Þ

where in the last line we have reintroduced the complex
components (3), φ ¼ ϕ1 þ iϕ2. To make clear the momen-
tum components of the fields in the θ and r directions, we
introduce Φ ¼ ðϕ1;ϕ2Þ. where Φ̂ ¼ Φ=jΦj represents the
radial direction in field space, and Φ⊥ ¼ ðϕ2;−ϕ1Þ which
is orthogonal, as shown in Fig. 4. From this we note the
relations

ð _Φ · Φ̂Þ2 ¼ _ϕ2 ¼ 1

ϕ2
ðϕ1

_ϕ1 þ ϕ2
_ϕ2Þ2; ð23Þ

ð _Φ · Φ̂⊥Þ2 ¼ ϕ2 _θ2 ¼ 1

ϕ2
ðϕ2

_ϕ1 − ϕ1
_ϕ2Þ2: ð24Þ

Extrapolating from (23) and (24), we can therefore deduce
a direct numerical diagnostic for the distinct massive and
massless components of Tμν by defining the following real
momenta and spatial gradients:

Πϕ ≡ ϕ1
_ϕ1 þ ϕ2

_ϕ2

ϕ
; Diϕ≡ ϕ1∇iϕ1 þ ϕ2∇iϕ2

ϕ
; ð25Þ

Πϑ ≡ ϕ1
_ϕ2 − ϕ2

_ϕ1

ϕ
; Diϑ≡ ϕ1∇iϕ2 − ϕ2∇iϕ1

ϕ
: ð26Þ

FIG. 4. Diagram of symmetry breaking potential VðφÞ, with
orthogonal directions Φ and Φ⊥ indicated [see also (23)–(24)].
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We can use these to express the energy density (22) in terms
of massive and massless components in the following form:

T00 ¼ Π2
ϕ þ ðDϕÞ2 þ Π2

ϑ þ ðDϑÞ2 þ λ

4
ðϕ2 − 1Þ2: ð27Þ

Furthermore, the relations (25) and (26) allow us explicitly
to split the momentum component T0i of the stress tensor
into massive and massless components, given by

Pi ≡ T0i ¼ 2ðΠϕDiϕþ ΠϑDiϑÞ: ð28Þ

For our massive and massless scalar radiation fields, the
two quantities in (28) are equivalents of the electromagnetic
Poynting vector describing radiation energy fluxes.
Choosing an outgoing radial direction, we can integrate
the two components of P · r̂ on a distant surface to
determine the energy flow out of the enclosed volume
for each type of radiation.
In this paper, we want primarily to analyze radiative

modes that propagate outwards from the string. The
massless radiation field and string self-field can be of
the same order of magnitude in the energy density ρ,
making them difficult to distinguish. However, the
propagating contribution can be effectively separated
out using the spatial diagnostic Dϑ · r̂. As we shall
see in Sec. IV, time variations of the self-field can be
described asymptotically as nonpropagating solutions
which are low harmonics of the fundamental frequency
of the string. These have weak spatial gradients in the
radial direction, so Dϑ · r̂ is small. This diagnostic is a
very useful quantity for visualization, producing much
cleaner massless radiation signals than the momentum Πϑ

which is more strongly contaminated by the self-field.
Massive radiation proves more complex, with both Πϕ

and Dϕ · r̂ required to provide a full picture of the
propagating modes. The time evolution of the massless
diagnostics will be analyzed in subsequent sections using
Fourier transforms to determine the total spectral com-
position of the outgoing radiation.

D. Separation of scales and current discrepancies

As outlined in the Introduction, two string simulation
methods have been predominantly used to investigate
cosmic and axion string dynamics; 1D vortex lines solving
Nambu-Goto equations, offering a huge dynamic range, or
3D solutions of the full three-dimensional field theory,
including radiation but with a limited dynamic range.
These different approximations appear to produce different
outcomes, which are interpreted by some researchers as
contradictory. This has been an outstanding concern in the
literature on string network simulations for many years, so
renewed effort is needed to establish whether these
approaches converge on cosmological scales.

An important consequence of these alternative
approaches is quantitative uncertainty about the amp-
litude and spectrum of string network decay products.
Topological strings radiate primarily into the lowest mass
channels available, which include axions (or Goldstone
bosons) for axion (or global) strings and gravitational
waves for “local” cosmic strings (arising from a broken
gauged symmetry). Despite the apparent simplicity of
global axion strings, the resulting spectrum of axion
radiation in particular has proved controversial to char-
acterize due to the limited dynamic range of numerical
simulations. From (14), a global axion string has the
logarithmically divergent linear energy density μ ¼
2πf2a lnðR=δÞ, where fa is the Peccei-Quinn energy-
breaking scale. For a typical dark matter axion model
with fa ∼ 1011 GeV, the string width δ ∼ 10−23 m,
whereas R ∼ 1=200 MeV ∼ 1 m at the QCD scale. The
separation of scales in a cosmological context is therefore
given approximately by

lnðR=δÞ ∼ 70: ð29Þ

In contrast, field theory numerical simulations have dif-
ficulty probing a dynamic range larger than lnðR=δÞ ∼ 8,
not taking into account relativistic effects. This means
that numerical axion strings generically have an order
of magnitude stronger relative coupling to massless
radiative modes than their cosmic counterparts. For this
reason, rather than extrapolating results from strongly
coupled numerical simulations of axion strings, most
authors have argued that the renormalization offered by
the logarithmic term (14) means that cosmological global
strings behave qualitatively more like (local) Nambu-
Goto strings [4,23,24]. On this basis, semianalytic
approaches are used to estimate network radiation into
axions [11,25].
For global cosmic strings near the GUT scale, the

difference between typical length scales is even greater,
given by

lnðR=δÞ ∼ 100; ð30Þ

with less than 1% of the energy per unit length localized in
the string core μ0=μ [see (14)]. Under these circumstances,
one would expect the Nambu-Goto approach (coupled
to a massless scalar field) to be a good approximation.
However, despite the much larger dynamic range available
to Nambu-Goto simulations in comparison to field theory
simulations, it remains challenging to establish that the
large-scale properties of networks converge to the predicted
scale-invariant behavior. Even more challenging to deter-
mine are the continuously evolving, fractal-like, small-
scale features, including the loop production function
which is key in analytic Nambu-Goto models (for example,
see [26]). (For axion strings, the presence of much stronger
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radiative effects should influence and probably stabilize
small-scale network properties.) Moreover, there is no clear
prescription for including radiative backreaction in Nambu-
Goto simulations (although see [27]). In the context of
gravitational wave predictions, disagreements in the liter-
ature have meant that the constraints on local cosmic strings
recently published by LIGO consider three separate
Nambu-Goto models [21].
In contrast, field theory simulations evolve the “real”

string equations of motion given by Eq. (4), allowing the
full dynamics of the internal degrees of freedom to be
captured. However, as discussed previously, with current
computational resources it is impossible to simulate string
networks using fixed grid simulations with sufficient
dynamic range to achieve convergent behavior. It is
usually necessary to adopt the so-called “fat string”
approach, growing the string width to match the comov-
ing grid resolution [14,15,17,18,20,28], effectively low-
ering the particle mass mH and keeping light massive
radiative channels competitive with massless modes.
There have been sophisticated attempts to extrapolate
from field theory simulations [18–20], but generally
asymptotic scaling regimes differ on large scales by a
factor of two from Nambu-Goto strings and small-scale
features are strongly affected by radiative effects around
the comoving string width δ. Innovations adding more
gauged fields [29] have enabled global axion string
simulations with larger tensions comparable to (29) to
be performed. However, this approach still uses the
comoving width algorithm, so there remain artificially
more massive radiation channels available.
These alternative approaches yield different predictions

for radiation rates from global cosmic strings, in the
case of axion strings yielding incompatible dark matter
axion mass predictions and an uncertain guide for axion
searches [22]. It is hence necessary to introduce new high
resolution numerical techniques to accurately resolve
these differences, concentrating computational power
where it is needed near the radiating string core.

III. ADAPTIVE MESH REFINEMENT AND
SIMULATION SETUP

A. AMR and GRChombo

In order to accurately numerically evolve nonlinear
physical systems, it is vital that simulations are able to
resolve features that emerge on different length scales. To
resolve small-scale features requires a simulation box with
a sufficiently fine mesh, whereas to capture macroscopic
effects, we require a box size that is sufficiently large.
Traditional “fixed grid” numerical approaches will often be
unable to satisfy this requirement within the constraints of
limited computational resources.
One method that can be used to address this issue is to

adapt the resolution of the numerical grid to the scale of the

features of interest. This technique, known as “mesh
refinement,” allows computational power to be concen-
trated in regions where the most refinement is needed.
This can increase the size and/or precision of simulations
that can be performed using a given amount of computa-
tional resources [30]. Mesh refinement is widely used, for
example, in numerical relativity simulations of black hole
collisions (e.g., [31]). More specifically, adaptive mesh
refinement refers to a particularly flexible approach which
allows the level of refinement and the position, size and
shape of the refined regions to be calculated and adapted as
the simulation progresses, using a physically-motivated
“tagging criterion.” This ensures that regridding is only
performed in areas where it is physically required, without
the need for a lot of prior knowledge about the behavior
of the system.
In this paper, we use GRChombo [32], an open-source

finite difference AMR code that allows for refinement of
the simulation grid “on-the-fly.” Originally designed for
numerical relativity, we use GRChombo to evolve the
global cosmic string field equations without gravity, while
leaving the door open for future analysis in full general
relativity. GRChombo uses an AMR implementation based
on the Berger-Rigoutsos mesh refinement algorithm [33].
First order partial differential equations (PDEs) are evolved
using a fourth-order Runge-Kutta (RK4) method, imple-
mented first on a coarse base grid. The user then imposes a
tagging criterion that determines where to refine the mesh
to higher precision. In our case of a complex scalar field,
this is given by

Δx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∇ϕ1Þ2 þ ð∇ϕ2Þ2

q
> jϕthresholdj; ð31Þ

where Δx is the grid spacing and jϕthresholdj is a custom
threshold input by the user. If this criterion is met, the
simulation will refine that area of the numerical grid.
GRChombo outputs hdf5 files as it runs which can be
easily visualized using software such as Paraview (or the
output can be viewed directly using in situ visualization).
An example of this is shown in Fig. 5, highlighting the
hierarchy of refinement levels concentrated around the
string core.
GRChombo heavily exploits both MPI and OpenMP

parallelism, splitting the simulation box into smaller “AMR
boxes” and using load-balancing to distribute these over
multiple processors, as well as to execute multiple threads
within each. This allows work to be spread evenly between
processors, so that once coarser areas of the simulation
have finished running, areas with higher refinement can
be allocated to the idle processor. This means that less
computational time is wasted and resources are used
more efficiently. The most up-to-date profiling data for
GRChombo is given here [30], along with further infor-
mation about the code. The code has already been used in a
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wide range of applications [34–46], from black hole-axion
star collisions to Abelian-Higgs string loop collapse.

B. Dynamic range

As discussed in Sec. II D, it is vital for the accuracy of
string simulations that the string core is appropriately
resolved. In this paper, we apply AMR to global strings
in order to investigate whether the approximations com-
monly used for the string width give accurate results for
string evolution and radiation. Here, we discuss the
separation of scales that these current simulations reach,
as well as predictions for future simulations.
In this investigation, we use a base-level box size of

256 × 256 × 32 and probe string widths spanning over an
order of magnitude, determined by the parameter λ in
the range 1 ≤ λ ≤ 100. (In fact, we explored a wider
range 0.3 ≤ λ ≤ 300; although the extremes are not pre-
sented in this paper, a detailed investigation of λ < 1 in
particular is presented in upcoming work [47].) Taking
the radius of curvature R to be half of the box length and
δ ∼ 1=

ffiffiffiffiffiffiffiffi
100

p
for the narrowest string λ ¼ 100, this means

that, for these relatively small simulations, we are probing
the ratio

ln ðR=δÞ ∼ 7 − 8: ð32Þ

This is similar to the maximum value that can currently be
reached using fixed grid methods. The maximum level
of refinement in this simulation with λ ¼ 100 uses
Δx ¼ 1=128, so the string core δ is resolved by ∼10 grid
points. This is in contrast to many field theory simulations
in the literature, where the string core is resolved by one or
two grid points only. If we were to instead use this criterion,

this level of refinement would be sufficient to resolve
λ ¼ 10; 000, corresponding to the ratio ln ðR=δÞ ∼ 9–10.1

As with fixed grid methods, the limiting factor for
AMR simulations is computational power. We can
estimate a loose lower bound on the memory required
to resolve a string over a certain number of refinement
levels l by considering a cubic simulation box with
refinement concentrated along a single straight string
which spans the box length L, with the string width
spanned by one cubic AMR box of each level. The
total number of data points up to a given AMR refine-
ment level lmax, using a refinement ratio r ¼ 2, is
given approximately by ðL=Δx0Þ32lmaxþ1. Here, we have
summed over the levels 0 < l < lmax which each use a
number of AMR boxes 2l. Each box has ðL=Δx0Þ3 data
points. For a cubic simulation box, this concentration of
power at the center saves a factor of ∼22lmax−1 in memory,
e.g., ∼213 ≈ 104 for one string with lmax ¼ 7. This saving
becomes even more significant for noncubic boxes,
such as the ones used in this paper, with approximately
another factor of 2 for each doubling of the x or y
dimensions. Therefore, for a given amount of RAM, a
fixed grid simulation will be able to reach an equivalent
maximum level of resolution lmax;fixed ¼ ðlmax;AMR þ 1Þ=3,
corresponding to a factor difference in resolution of
∼22

3
lmax;AMR. Scaling δ appropriately, this corresponds to

a logarithm of ∼ lnðR=ð22
3
lmax;AMRδÞÞ. For our example of a

single string with lmax;AMR ¼ 7, this corresponds to a
lnðR=δÞ approximately 3–4 lower than the AMR simulation.
Using these crude estimates and taking a recent literature
value of lnðR=δÞjfixed ¼ 8 from [13] for fixed grid network
simulations, we could similarly expect AMR network
simulations probing higher logarithms by Oð2–3Þ to be
possible using the same resources, with further potential
savings when using a higher refinement ratio.
However, although there are impressive savings in

memory, unfortunately AMR is not a straightforward
panacea. The regridding and reconstruction of the finer
AMR levels incurs an overhead cost that is not present for
fixed grid simulations. This offsets some of the memory
savings and, at a certain level of resolution, will lead to
AMR simulations becoming unfeasible. Nevertheless,
AMR provides an important step towards probing higher
string energy scales.

FIG. 5. Snapshot of an AMR simulation of a global string using
GRChombo. This figure shows ϕ for a sinusoidally displaced
string with the outlines of AMR boxes for different refinement
levels. Smaller boxes concentrated towards the center of the
string indicate areas where a finer mesh has been used.

1In some of our simulations, we found that Δx ∼ 1=32, i.e.,
approximately three grid points resolving the string core, was
insufficient to accurately capture the decay of the λ ¼ 100 string.
We would expect this effect to be exacerbated when considering
larger amplitudes with more relativistic motion, in part, because
relativistic effects (i.e., length contraction) necessitate higher
resolution. This indicates that using Oð1Þ grid points to resolve
the string core may be insufficient for network simulations in
which large amplitude configurations appear to be common.
Further investigation of this effect is required.
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C. Initial conditions

We simulate the evolution of a sinusoidally displaced
global string for a range of λ. Initial conditions are obtained
first by numerically solving the static field equation (9) to
obtain the radial profile ϕðrÞ, as discussed in Sec. II B. We
use this ϕðrÞ to set the initial values

ϕ1 ¼ ϕ cos ðnwθÞ; ϕ2 ¼ ϕ sin ðnwθÞ; ð33Þ
where nw is the string winding number.
These calculations provide us with the initial data for ϕ1

and ϕ2 in 2D, but this must be extended in the z direction
to create a 3D string. In the present study, we require an
nw ¼ 1 string that is sinusoidally displaced, so we create a
crude initial approximation of the initial conditions by
manually displacing the radial profile in the x direction
from x ¼ 0 as a function of the z coordinate, using

X ¼ ðA sin ðΩzzÞ; 0; zÞ; ð34Þ
where A is the initial amplitude, Ωz ¼ 2π=L is the
fundamental frequency (at small amplitude) and L ¼ 32
is the approximate wavelength of the string, equivalent to
the z dimension of the box, as demonstrated in Fig. 5.
In order to have a general definition for large string

amplitudes, We define the relative amplitude ε as

ε≡ 2πA
T

≈
2πA
L

for A ≪ L; ð35Þ

which characterizes the relationship between the amplitude
A, the spatial periodicity L and the actual oscillation
period T. Note that the time period of oscillations T is
related to the invariant length of the string which is
longer than the spatial periodicity defined by the box side
length L. Keeping to small amplitudesA ≪ L, then we have
T ≈ L. However, the larger ε becomes, the further away the
configuration (34) is from being an appropriate ansatz
for the string initial conditions. We hence need to relax this
initial sinusoidal configuration to obtain lower energy
initial data.
To achieve this we employed gradient flow methods to

create initial conditions using dissipative evolution:

∂φ
∂t −∇2φþ λ

2
φðφφ̄ − η2Þ ¼ 0; ð36Þ

starting with a considerably larger initial A than the target
amplitudeA0. Itwas generally found to be sufficient to choose
A about 50% larger than A0 to obtain reproducible results in
which the long-range fields were sufficiently relaxed.

D. Diagnostic tools

1. Radiation cylinder

In order to extract the radiation emitted from the
oscillating strings, we construct an analysis cylinder
centered on the string core. We choose a radius of

R ¼ 64, a distance far enough from the string core to
minimize the effect of the self-field, but far enough from the
boundaries to allow extended analysis before any radiation
reflections can affect the central region. This diagnostic
cylinder allows us to choose a field to sample at that radius
and to extract the data on the cylinder. As outlined in
Sec. II C, in our analysis, we use the diagnostic Dϑ · r̂ as
defined by (26) to analyze the massless radiation. An
example of this setup is shown in Fig. 6. This is a simi-
lar technique to that used by the LIGO and Virgo
Collaborations in their analysis of gravitational waveforms
from binary black holes, although this instead uses spheri-
cal extraction due to the different overall symmetry.
As the cylinder is defined on a Cartesian grid, it is

necessary to interpolate values from the “nearest-neighbor”
grid points to get an accurate value for the field on the
surface itself. We first choose the number of points on the
circumference of the cylinder to sample (here 256), and
calculate their ðx; y; zÞ coordinates. We then use bilinear
interpolation to determine the accurate value of the radi-
ation fields at these points on the cylinder. The field value
ϕðx; yÞ is given by

ϕðx; yÞ ≈ 1

ðx2 − x1Þðy2 − y1Þ
½ϕðQ11Þðx2 − xÞðy2 − yÞ

þ ϕðQ21Þðx − x1Þðy2 − yÞ
þ ϕðQ12Þðx2 − xÞðy − y1Þ
þ ϕðQ22Þðx − x1Þðy − y1Þ� ð37Þ

FIG. 6. Extraction of the “spatial”massless radiation diagnostic
Dϑ · r̂ (bottom legend) on a cylinder at R ¼ 64. The string in the
center is depicted by jφj ¼ ϕ (top legend). We see a dominant
quadrupole signal on the cylinder surface.
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whereQ11¼ðx1;y1Þ,Q12¼ðx1;y2Þ,Q21 ¼ ðx2; y1Þ,Q22 ¼
ðx2; y2Þ and the coordinates x1;2 and y1;2 are defined as in
Fig. 7. From this,weobtain a 256 × 32 array of points (where
32 comes from the z dimension of the box) for each time
step for both diagnostics Πϕ and Dϑ · r̂, on which we can
perform a 2D FFT to determine the Fourier decomposition.

2. String core position

In addition to Fourier mode extraction, we also need to
track the exact position of the string core to determine
the rate of energy loss. We use a similar technique to the
interpolation onto the diagnostic cylinder, but in reverse,
scanning the domain to detect grid cells in which there is a
nonzero winding. As we know that ϕ ¼ 0 at the string core,
we can use the values of the complex scalar fields at the
corners to fit a quadratic

ax2 þ bxþ c ¼ 0 ð38Þ
to the grid cell shown in Fig. 7 and calculate the position of
the zero. We simultaneously solve the system of equations

aðx1 þ iy1Þ2 þ bðx1 þ iy1Þ þ c ¼ ϕ2;

aðx1 þ iy2Þ2 þ bðx1 þ iy2Þ þ c ¼ ϕ3;

aðx2 þ iy1Þ2 þ bðx2 þ iy1Þ þ c ¼ ϕ1;

aðx2 þ iy2Þ2 þ bðx2 þ iy2Þ þ c ¼ ϕ0; ð39Þ

where ϕ0;1;2;3 are defined by Fig. 7 as the grid points at
the corners of the relevant cell and a, b and c are constants.
We obtain the coefficients

a ¼ −i
8
ðϕ0 þ ϕ2 − ϕ1 − ϕ3Þ;

b ¼ i − 1

8
ðϕ0 − ϕ2 þ iðϕ3 − ϕ1ÞÞ;

c ¼ 1

4
ðϕ0 þ ϕ2 þ ϕ1 þ ϕ3Þ; ð40Þ

for Eq. (38), which can be solved using the quadratic
formula. The smallest root provides us with a fractional
correction to the x coordinate xcorrect, such that

xcore ≈ xcenter þ xcorrect
Δx
2

; ð41Þ

where xcore is the true position of the string core and xcenter
is the x coordinate of the center of the grid cell. We use this
to calculate the x coordinate of the string core within the
cell to second-order accuracy.

E. Simulation setup, AMR parameters
and convergence testing

In Sec. IV, we present, for the first time, simulations of
global strings with string widths spanning over an order of
magnitude, determined by the parameter λ in the range
1 ≤ λ ≤ 100. Fixing the spatial periodicity of the strings at
L ¼ 32 and energy scale η ¼ 1, we survey several pertur-
bation amplitudes in the range 1 ≤ A0 ≤ 8 (or relative
amplitudes 0.20≲ ε0 ≲ 1.0) with initial conditions
obtained using dissipative evolution. Using the diagnostic
tools described previously, we analyze the propagating
radiation modes generated by the strings, as well as the
detailed string trajectory as its oscillation energy decays,
directly comparing with the analytic predictions for mass-
less modes. Over one hundred high resolution simulations
are performed, using up to six levels of grid refinement.
All production simulations are carried out using a coarse

simulation box size of 256 × 256 × 32 (N1 × N2 × N3)
with periodic boundary conditions in the z direction and
Sommerfeld (outgoing radiation) boundary conditions in
the x and y directions. A base grid of resolution Δx0 ¼ 1 is
used with a base time step Δt0 ¼ Δx0=4. We choose a
regridding threshold jϕthresholdj ¼ 0.25 for simulations
with λ < 10 and jϕthresholdj ¼ 0.1 for those with λ ≥ 10.
These values were judged sufficient to capture the dynam-
ics accurately by comparing convergence using different
thresholds.

1. Convergence testing

We establish convergence of our simulations by
measuring the massless radiation Dθ and the oscillation
amplitude of a λ ¼ 10 string with A0 ¼ 4 for the grid

FIG. 7. Diagram of a grid cell to demonstrate two diagnostic
tools: (i) interpolation of radiation diagnostics onto a cylinder
and (ii) calculation of the position of the string core. For (i), the
arc represents a section of the cylinder on which radiation is
analyzed, where ðx; yÞ is the point onto which we interpolate the
field values ϕi and ðxi; yjÞ are the coordinates of the corners of
the cell. The value of the field ϕ at ðx; yÞ is calculated using
Eq. (37). For (ii), the labels ϕi give the values of ϕ at the corners
of a cell inside which has been detected a point of integer
winding. We can substitute these values into (40) to calculate the
position of the string core.

RADIATION FROM GLOBAL TOPOLOGICAL STRINGS USING … PHYS. REV. D 105, 063517 (2022)

063517-9



configurations presented in Table I. We obtain the initial
conditions by dissipative evolution as in our production
simulations, using the corresponding grid parameters to
those in Table I but with maximum refinement level
lmax ¼ 1, damping as close as possible to A0 ¼ 4.
As outlined above, an important parameter when per-

forming string simulations is the regridding threshold
ϕthreshold for the adaptive mesh. This must be chosen so
that higher levels of refinement are concentrated at the
string core, in order for the string to evolve accurately and
to properly resolve the outgoing radiation. This is particu-
larly the case for higher λ, where the string radius becomes
narrower and the wavelength of the lowest energy massive
modes decreases. An example of the effect of insufficient
regridding is given by Fig. 8, which shows the magnitude
of the massless quadrupole fmng ¼ f20g mode for differ-
ent maximum refinement levels lmax emitted by a λ ¼ 10
string with initial amplitude A0 ¼ 4 (see Sec. IV B for
further details about mode calculation). We observe that,
for no refinement with lmax ¼ 0 and Δxlmax

¼ 1, the
massless radiation is not accurately resolved, artificially
dissipating as the simulation progresses (along with arti-
ficial damping of the string motion, not shown). As lmax is
increased, more of the massless radiation is captured,
converging to a stable value at approximately Δxlmax

¼
0.25 (lmax ¼ 2) for this nonrelativistic configuration.
Figure 9 shows a plot of the difference in the f20g mode
between simulations of resolutions Δxlmax

¼ 0.5, 0.25 and
0.125. We also plot the difference between the two finest
levels multiplied by appropriate convergence factors,
defined by [48]

Qn ¼
ðΔxcoarsestÞn − ðΔxmiddleÞn
ðΔxmiddleÞn − ðΔxfinestÞn

; ð42Þ

where n is the order of convergence. By comparison with
the difference in the magnitude of the mode ΔjFDϑð2; 0Þj
between the two coarsest levels, Fig. 9 shows that we
obtain between fourth- and fifth-order convergence.2,3 By
fourth-order Richardson extrapolation of the finest two
simulations, we obtain a discretization error estimate of
ΔjFDϑð2; 0Þj=jFDϑð2; 0Þj ∼ 0.2% (in relation to the late
time radiation amplitude).
Figure 10 gives the results of a convergence test using the

amplitude of the string A. In this case, we fix lmax ¼ 3 and
change the resolution of the base grid, with parameters
given by case (ii) in Table I. We observe approximately
first-order convergence in A. This is what we expect, due to
the dependence of the measured amplitude on Δx, as given
by Eq. (41). Using first-order Richardson extrapolation, we
estimate the error introduced by the discretization to be
ΔA=A ∼ 2% (in relation to the maximum amplitude).
However, we also note that most of the error arises in
the moving parts of the oscillation, rather than the maxima

TABLE I. Grid parameters for the evolution stage of the
convergence tests for the massless diagnostic Dθ and the
amplitude A. We perform two variations of tests: (i) lmax is
changed and the base grid resolution Δx0 remains constant and
(ii) lmax remains constant and Δx0 changes. The base grid box
resolution is given by N1 × N2 × N3, with ðlmax þ 1Þ total
refinement levels including the coarsest base level, and grid
spacings on the coarsest level given by Δxlmax

. The length of the
longest box side is given by Lmax. The grid parameters for the
corresponding damping stages are identical, except that lmax ¼ 1.

Test N1 × N2 × N3 lmax Lmax Δx0 Δxlmax

(i) 256 × 256 × 32 0 256 1 1
256 × 256 × 32 1 256 1 0.5
256 × 256 × 32 2 256 1 0.25
256 × 256 × 32 3 256 1 0.125

(ii) 64 × 64 × 8 3 256 4 0.5
128 × 128 × 16 3 256 2 0.25
256 × 256 × 32 3 256 1 0.125

FIG. 8. Absolute value of the fmng ¼ f20g Fourier mode of
the massless radiation Dϑ · r̂ from a λ ¼ 10 string with initial
amplitude A0 ¼ 4, measured on a cylinder at R ¼ 64 for different
maximum refinement levels lmax [test (i) in Table I]. The radiation
is clearly not accurately captured for Δxlmax

≲ 0.25 (lmax ¼ 2) and
dissipates artificially over time.

2We note that, for this test, we used a more accurate (fourth-
order) extraction cylinder than described in Sec. III D, which was
not available when the bulk of the simulations in this paper were
performed. This is not important for the results in the rest of
the paper, but does affect convergence.

3We further note that, for convergence tests with AMR, often
the resolution of the base gridΔx0 is changed and lmax capped at a
certain level i.e., as in test ii) in Table I. Here we take an
alternative approach, fixing Δx0 to remain the same with lmax
increased for higher resolution simulations.
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or minima which are used in later sections to calculate the
radiation backreaction. This means the discretization error
in the backreaction calculation will be lower than this

estimate, with larger sources of error coming potentially
from systematic effects, such as the amount of dissipative
evolution employed (see e.g., Fig. 25).

2. Massive radiation trapping and relative energy loss

Through running a large number of simulations of global
strings, we observe that massive radiation is very sensitive
to the grid resolution and can be significantly affected by
the adaptive remeshing. This manifests at higher λ by high
frequency massive modes becoming “trapped” on finer
grids near the string, a process which can lead to further
radiation growth due to stimulated emission or resonance.
This is due to the creation of internal reflections from the
AMR boundaries where the grid refinement steps down,
causing a resonant effect which accumulates over time,
as shown in Fig. 11. Further to this, we observe that the
remeshing of the grid itself can introduce artificial massive
radiation, due to the inevitably slightly inaccurate inter-
polation between finer and coarser refinement levels. These
standing wave instabilities are a familiar shortcoming of
AMR for which remedies include the introduction of
artificial dissipation by using Kreiss-Oliger damping.
In practice, the energy loss frommassive radiation can be

ignored for the quasilinear string configurations studied in
this paper. For example, at low amplitude A0 ¼ 1 (ε ≈ 0.2)
and λ ¼ 1, we measure the amplitude of the dominant
massive mode to be ∼105× smaller than the dominant
quadrupole massless radiation signal, so it has a negligible
effect on string motion and should not influence our
massless results. We also note that even for quasinonlinear
intermediate amplitude regimes with A0 ¼ 4 (ε ≈ 0.7), the
magnitude of the massive signal is ∼103× smaller than the
massless emission, so the energy losses remain very small
indeed. This is demonstrated by comparing the massive
modes in Fig. 12 to the massless modes from the same

FIG. 9. Convergence of the Fourier mode jFDϑð2; 0Þj with grid
resolutions on the finest refinement level Δxlmax

¼ 0.5, 0.25 and
0.125 for the string configuration plotted in Fig. 8 [test (i) in
Table I]. We plot the difference in the magnitude of the mode
ΔjFDϑð2; 0Þj between different resolutions, with the higher
resolution results also plotted rescaled according to fourth-
and fifth-order convergence.

FIG. 10. Convergence of the string amplitude A calculated
using the core finder in Sec. III D 2. The grid resolutions on the
finest refinement level lmax ¼ 3 are Δxlmax

¼ 0.5, 0.25 and 0.125.
The top panel shows the difference in amplitude ΔA between
different resolutions, with the higher resolution results also
plotted rescaled according to first-order convergence. The bottom
panel shows the value of the amplitude A for each simulation; the
difference is indistinguishable at this scale.

FIG. 11. Volume rendering of the massive radiation Πϕ from a
λ ¼ 3 string, with AMR blocks outlined in white. Much of the
radiation signal is trapped at the AMR boundary, and this short
wavelength signal grows in amplitude over time.
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configuration in the middle panel of Fig. 20. (Further
information about how the modes are calculated is given in
Sec. IV B.) In both cases, strings therefore radiate prefer-
entially into massless channels and alternative massive
channels are strongly suppressed. Further investigation of
these radiative effects into the nonlinear regime will be
addressed in future work [47].

IV. MASSLESS (AXION) RADIATION

A. Analytic radiation expectations

1. Separable radiation eigenmodes

To guide our analysis of the massless radiation emitted
by an oscillating string, we shall assume as in Sec. II C that
we are far away from the source with the field very close to
the vacuum state ϕ ¼ 1. Removing massive excitations in
this way, we obtain the massless wave equation (20) which
in cylindrical coordinates ϑðt; r; θ; zÞ becomes

∂2ϑ

∂t2 −
∂2ϑ

∂r2 −
1

r
∂ϑ
∂r −

1

r2
∂2ϑ

∂θ2 −
∂2ϑ

∂z2 ¼ 0: ð43Þ

Taking a periodic oscillating string along the z-axis (with
0 ≤ z < L), the massless radiative modes emitted will
become outgoing solutions of (43) at large distances. We
can solve the cylindrical wave equation via separation of
variables with the ansatz

ϑðt; r;φ; zÞ ¼ TðtÞRðrÞΘðθÞZðzÞ ⇒
T 00ðtÞ
TðtÞ −

R00ðrÞ þ R0ðrÞ=r
RðrÞ −

1

r2
Θ00ðθÞ
ΘðθÞ −

Z00ðzÞ
ZðzÞ ¼ 0; ð44Þ

where each component is solved in turn by introducing
appropriate separation constants. The time dependence
TðtÞ is given by the period of the string oscillations (or
their pth harmonics) with angular frequency

ωp ¼ 2π

L
p
α
≡ Ωz

p
α
; ð45Þ

where p is a positive integer and the parameter α ≥ 1 is the
fractional increase in the path length of the string as it is
traverses from z ¼ 0 to z ¼ L. The string oscillates with a
period T ≡ αL≳ L determined by its actual invariant
length, where for small relative amplitude (ε → 0) we have
α ≈ 1 (see the next subsection). The time dependence of the
separable solutions becomes

TpðtÞ ∝ e−iΩzpt=α; ð46Þ

where we take the convention of a negative sign for the
outgoing mode. The fixed periodicity along the z axis
(length L) yields a further separation constant from
Z00=Z ¼ −k2z ¼ −Ω2

zn2, giving the eigenmode

ZnðzÞ ∝ eiΩznz; ð47Þ

where n is an integer and the wave number in the z direction
is kz ¼ Ωzn with Ωz ¼ 2π=L.
Substituting these eigenmodes into Eq. (44), we obtain

the θ dependence

Θ00ðθÞ
ΘðθÞ ¼ −r2

�
R00ðrÞ þ R0ðrÞ=r

RðrÞ þ ω2
p − k2z

�
; ð48Þ

where the right-hand side is independent of θ and can be set
to a constant. The azimuthal periodicity of θ (period 2π)
gives ΘðθÞ00=ΘðθÞ ¼ −m2, with the θ dependence

ΘmðθÞ ∝ eimθ; ð49Þ

where m is an integer. A final rearrangement gives

R00ðrÞ þ R0ðrÞ
r

þ RðrÞ
�
ω2
p − k2z −

m2

r2

�
¼ 0; ð50Þ

where we identify the radial wave number k2r ¼ ω2
p − k2z.

Factoring out the dependence on Ωz from this dispersion
relation and setting kr ¼ Ωzκpn, we obtain the important
expression for the radial wave number for each harmonic

κpn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=αÞ2 − n2

q
: ð51Þ

We note that the radial wave number depends on p and n
only, and that the angular dependence m has decoupled.
This finally leaves the radial Bessel’s equation,

FIG. 12. Dominant 2D Fourier modes of the massive radiation
Πϕ from a λ ¼ 1 string with initial amplitude A0 ¼ 4, measured
on a cylinder at R ¼ 64 and time averaged over approximate half-
period Δt=2 ¼ 66=4.
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R00ðrÞ þ R0ðrÞ
r

þ RðrÞ
�
Ω2

zκ
2
pn −

m2

r2

�
¼ 0; ð52Þ

which has solutions which are arbitrary linear combinations
of Bessel functions of the first kind JmðkrrÞ and second
kind YmðkrrÞ. However, when we impose the Sommerfeld
radiation condition,

r1=2
� ∂
∂r − ikr

�
ϑ → 0 as r → ∞; ð53Þ

the solution is constrained to be a Hankel function of the
first kind, with

RpmnðrÞ ∝ Hð1Þ
m ðΩzκpnÞ ¼ JmðΩzκpnrÞ þ iYmðΩzκpnrÞ:

ð54Þ

By comparing with the time dependence (46), the outgoing
mode from the asymptotic behavior at large radial distances
κnlr ≫ 1 is given by

Hð1Þ
m ðkrrÞ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=πkrr

p
exp ½iðkrr − πm=2 − π=4Þ�: ð55Þ

We note that there is an apparent divergence at r ¼ 0 for
YmðkrrÞ, but that this can be modified and cut off by the
near-field dynamics and structure of the global string. Here,
we are only seeking the matching asymptotic solution for
the far-field with krr ≫ 1. Finally, combining these results,
we find the general outgoing radiation solution from a sum
over the separable modes:

ϑðt; r; θ; zÞ ¼ ℜ
X
pmn

Apnmeimθe−iΩz½ðp=αÞt−nz�Hð1Þ
m ðΩzκpnrÞ

ð56Þ

with amplitude Apmn for the specific ft; θ; zg eigenmode
labeled by the integers fpmng and with the key radial
eigenvalue κpn given by (51).
We can make several observations about the radiation

solution (56) using the associated dispersion relation (51).
First, to aid with interpretation of the discussion, Fig. 13
shows some of the most significant eigenmodes for string
radiation fpnmg ¼ f111g, f200g, f211g and f331g. As
we shall see in the next section, the sinusoidal solution (34)
has a long-range self-field which oscillates backwards and
forwards with the string which can be associated with the
eigenmode fpmng ¼ f111g. This is an apparent dipole,
but it is not true radiation and it will not propagate in
the outward direction because the radial wave number is
imaginary, i.e., κ211 < 0. This self-field contribution is
therefore an evanescent wave with no net flux through
our diagnostic radiation cylinder when averaged over a
full oscillation period. The radiation mode predicted to be
dominant is the quadrupole f220g, which propagates

radially at the speed of light with ω2 ¼ kr ¼ Ωzκ20, where
κ20 ¼ 2=α ≈ 2 at small amplitude. In principle, the second
harmonic f211g can also propagate, but in practice we find
that the third f331g and fourth f440g harmonics make the
next most important contributions. The mode amplitudes
are determined by the dynamics and symmetries of the
near-field physics of the specific configuration of the
oscillating string source. Finally, the dispersion relation
(51) also reveals that not all modes propagate at the speed
of light in the radial direction (Huygen’s principle does
not work in 2D). If n ≠ 0, then there is a wave vector
component in the z direction and the radial speed of
propagation is vr ¼ ∂ω=∂kr ¼ κpn=ωp < 1. For example,
for f211g, we have vr ¼ 0.87, while for f331g we have
vr ¼ 0.94.

2. Separation of propagating modes from self-field

As discussed in Sec. II C, the study of string radiation is
plagued by long-range self-fields that prove difficult to
numerically separate. Given our fixed cylinder at a finite
distance R from the string, there is a prosaic explanation
for this contamination due to the oscillating self-fields
being offset from their central position (rather than the
evanescent waves described above). At small amplitude
(ε ≪ 1), the sinusoidal string solution (34) with the string
field ansatz (8) yields an approximate massless self-field
ϑsfðt;xÞ of the following form:

ϑsfðt;xÞ ≈ tan−1ðy=Xðt;xÞÞ;
Xðt;xÞ ¼ x − A cosΩzt sinΩzz; ð57Þ

which should be valid in the region A ≪ r≲Oðfew × LÞ.
Taking the time derivative of the oscillating field ϑsf , we
find on a cylinder at a distance r ¼ R that to leading order

∂ϑsf
∂t ðt; r; θ; zÞ ≈ AΩz

R
sin θ cosΩzt sinΩzz; ð58Þ

so the nonpropagating self-field at a fixed radius looks like
a dipole field. (This corresponds to the mode f111g derived
in the previous section, also see Fig. 13). The radial
derivative of ∂ϑsf=∂r yields the same dipole space and
time dependence as (58), except that the prefactor becomes
A=R2 so the amplitude falls off more steeply with distance
than the time derivative _ϑsf . This means that the spatial
radiation diagnostic Dϑ in (26) is more effective for
removing self-field contamination than the massless field
momentum Πϑ. An example of this is shown in Fig. 14,
which shows a plot of the absolute value of the
fmng ¼ f11g; f20g; f31g, and f40g Fourier modes of
the two massless radiation diagnostics from a λ ¼ 1 string
with initial amplitude A0 ¼ 12. We clearly observe that Πϑ

is significantly more contaminated by the f11g self-field
signal, and that Dϑ almost entirely removes this signal
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without affecting the other modes. This diagnostic is also
therefore a very useful quantity for visualization, producing
much cleaner massless radiation signal.

3. Dual radiation calculations and string backreaction

There is a well-known duality between the massless
Goldstone boson ϑ in the Uð1Þ model (1) and a two-index
antisymmetric tensor Bμν through the relation [23,49]

ϕ2∂μϑ ¼ 1

2
faϵμνλρ∂νBλρ: ð59Þ

After integrating radially over the massive degrees of
freedom, this alternative description yields the Kalb-
Ramond action which consists of the familiar Nambu
action for a local string coupled to the antisymmetric

tensor Bμν [50]. This is closely analogous to the coupling
of a local string to the gravitational field and allows direct
calculation of the resulting propagating radiation fields.
Specific linearized solutions have been obtained for axion
radiation from both closed loops [23] and the long string
solutions being considered here, see [51,24]. We will not
repeat these calculations, only recounting the key results
from Ref. [24].
For small amplitude ε ≪ 1, our sinusoidal long string

initial condition (34) in a box of length L approximates an
analytic solution of the Nambu-Goto equations of motion
with time period T ≈ L, which we can parametrize in terms
of left-moving (u ¼ σ þ t) and right-moving (v ¼ σ − t)
coordinates along the string. Taking the relative amplitude
ε≡ 2πA=T ¼ ΩA, whereΩ ¼ 2π=T, this periodic solution
takes the form

FIG. 13. Key radiation eigenmodes for a periodic oscillating string as labeled by their eigenvalues ft; θ; zg → fpmng with the key
radial eigenvalue κpn given by the dispersion relation (51). The oscillating string self-field creates a nonpropagating (evanescent) wave
with fpmng ¼ f111g (top left), while the dominant massless radiation mode is the quadrupole f220g (shown top right). The next most
important massless radiation mode is the third harmonic f331g (bottom right) but there appears to be some contribution from a second
harmonic dipole f211g (bottom left). For massive scalar radiation, higher harmonic dipole modes fp11g can provide the leading
contribution, but they compete with quadrupole fp22g and other higher modes.
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X¼
�

ε

2Ω
½cosΩuþ cosΩv�;0; 1

2Ω
½EðΩu;εÞþEðΩv;εÞ�

�
:

ð60Þ

Here, Eðϕ; εÞ is the incomplete elliptic integral of the
second kind

Eðϕ; εÞ ¼
Z

ϕ

0

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2sin2θ

p
ðε ≤ 1Þ

≈
2

π

�
ϕEðεÞ þ ε2

8
KðεÞ sinð2ϕÞ þ � � �

�
ð61Þ

where EðεÞ≡ Eðπ=2; εÞ ¼ π=2ð1 − ε2=4 − 3ε4=64þ � � �Þ
and KðεÞ ¼ π=2ð1þ ε2=4þ 9ε4=64þ � � �Þ are the com-
plete elliptic integrals of the second and first kind res-
pectively. Due to the nonzero amplitude ε, the spatial
coordinate σ measuring the invariant length along the string

is no longer directly proportional to the z coordinate of the
numerical grid, giving z ≈ 2EðεÞσ=π þ periodic terms≈
σð1 − ε2=4 − � � �Þ. Imposing spatial periodicity L in the
z direction, the energy of the string in the same interval
(setting σ ¼ T) becomes

EðεÞ≡ μTðεÞ ¼ π

2EðεÞ μL

≈ μL

�
1þ 1

4
ε2 þ 7

64
ε4 þ � � �

�
: ð62Þ

As ε increases, the true time periodicity T differs from the
spatial periodicity L (with T ¼ αL > L). The increase in
periodicity is illustrated by the oscillating string in Fig. 24
with A0 ¼ 4 (ε ¼ 0.68), which shows an initial periodicity
about 11% longer than L ¼ 32 (at large λ), though this is
lower than the expected 15% due to long-range forces and
radiative backreaction accelerating the string (and modi-
fying ε). Relativistic effects become important as ε → 1
(A0 ¼ 8) with T → πL=2 and, in this limit, two points
along the string approach a cusp (v → 1) twice each period.
In this paper, most quantitative tests will be undertaken at
smaller ε where we can neglect these corrections.
Massless radiation calculations using the antisymmetric

tensor formalism (59) have been undertaken for periodic
solutions like (60), with the radiation power P expressed
as a sum over the n harmonics Pn, generally yielding
combinations of Bessel functions. A particularly interesting
case is the periodic helix for which a full nonlinear analysis
can be performed [51], showing that only harmonics with
mþ n even radiate, with large n harmonics exponentially
suppressed Pn ∝ e−ζn, where ζ is larger at small relative
amplitude ε [24]. Symmetry prevents the helix from
radiating in the generic n ¼ 2 quadrupole mode (the lowest
harmonic is n ¼ 3). We focus here instead on analytic
calculations for the sinusoidal solution (60). In this case, a
linearized calculation of the leading-order radiation from
the second harmonic yields a power per unit length of [24]

dP
dz

¼ π3η2

16L
ε4: ð63Þ

The same calculation applied to more realistic configura-
tions with a superposition of sinusoidal modes (even for a
kink solution i.e., a solution with a discontinuous tangent
vector) also has the leading P ∝ ε4 dependence, summed
over the contributing modes.
This generic quadrupole radiation rate can be developed

into a simple analytic backreaction model describing the
effect of radiation energy losses on string motion [24]. At
small amplitude, we can see from (62) that the oscillation
energy to leading order is given by the square of the
amplitude ε, where E ¼ μLð1þ 1

4
ε2Þ. Equating the rate of

energy loss with the radiation power (63) yields the time
derivative of the energy per unit length,

FIG. 14. Absolute value of the fmng ¼ f11g; f20g; f31g, and
f40g Fourier modes of the massless radiation Πϑ (top) andDϑ · r̂
(bottom) from a λ ¼ 1 string with initial amplitude A0 ¼ 12,
measured on a cylinder at R ¼ 64.
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1

L
dE
dt

¼ μ

4

dðε2Þ
dt

¼ −
π3η2ðε2Þ2

16L
: ð64Þ

This can be easily integrated to obtain the solution for the
relative amplitude,

1

ε2
−

1

ε20
¼ βt

μ̄L
⇒ ε ¼ ε0

�
1þ βε20t

μ̄L

�−1=2
; ð65Þ

where β ¼ π3=4 and μ̄ ¼ μ=η2 ≈ 2π lnð ffiffiffi
λ

p
ηRÞ, where the

cutoff R is related to the curvature radius of the string (see
earlier discussion). Note that (65) is a direct analytic
prediction for the damping rate of a global string as a
function of scale, which we will test numerically. In
evaluating whether an oscillating string conforms with this
model, it is easiest to use the first expression in (65),
seeking a simple linear relation between time t and the
inverse square of the relative amplitude ε−2.
The sinusoidal solution (60) assumes left- and right-

moving modes of equal magnitude. It has been argued,
when these are unequal, that exponential decay may be
more typical of radiation damping processes [27]. For our
purposes, it is useful to have a second alternative model
with which to compare the interpretation of results. In
principle, cross-coupled modes can cause amplitude decay
like that of a damped simple harmonic oscillator, so by
analogy with the power law decay in (65) we consider
the form

ε ¼ ε0 exp

�
−

βt
2μ̄L

�
: ð66Þ

Again we will test the model by seeking a linear relation,
here between the time t and ln ε. We can also introduce
an amplitude dependence (for example, see [24]), so the
damping rate becomes βε2=2μ̄L, where ε2 ¼ jε2L − ε2Rj
represents the difference in amplitude between left- and
right-moving modes.

B. Massless radiation analysis

In this section, we present a quantitative analysis of
the massless radiation from oscillating string configura-
tions with small amplitude A0 ¼ 1 and larger amplitudes
A0 ¼ 4 and A0 ¼ 8. Simulations are set up as described in
Sec. III E, and we investigate the cases λ ¼ 1 and λ ¼ 10.
We analyze propagating massless radiation using the spatial
diagnostic Dϑ · r̂ defined by (26).
As an initial accuracy check and to establish energy

conservation, we integrate the energy within the cylindrical
volume enclosed by R ¼ 64 and the net massless radiation
energy propagating across the cylinder using the interior
density ρ and the time integral of the massless component
of the radial radiation Poynting vector ðΠϑDϑÞ · r̂.
An example is shown in Fig. 15 for a λ ¼ 1 string with
initial amplitude A0 ¼ 4. This confirms accurate energy

conservation for the simulation and the dominance of
massless radiation losses at small amplitude.
To aid with physical understanding prior to the upcom-

ing detailed discussion, we first present Fig. 16, which
shows a 3D spatial visualization of the massless radiation
for λ ¼ 1 with an intermediate amplitude A0 ¼ 4. This late-
time snapshot clearly shows the dominant quadrupole
structure as predicted analytically by the solution to the
massless wave equation (56). Detailed quantitative analysis
of the different configurations is performed in subsequent
sections by extracting and Fourier decomposing the mass-
less radiation field over time on a cylinder at fixed
radius R ¼ 64.

1. Small amplitude oscillations

Here we present results of string simulations with small
initial amplitude A0 ¼ 1 (ε ¼ 0.20) for λ ¼ 1 and λ ¼ 10.
We first present qualitative results from visualization of the
radiation extracted on the diagnostic cylinder. Figure 17
shows the massless radiation field extracted for one time
step at late time at R ¼ 64, revealing an m ¼ 2 angular
dependence and, to a first approximation, no z dependence
(i.e., n ¼ 0). In Fig. 18, the radiation field on the cylinder is
plotted as a function of both space and time (2þ 1D),
showing the consistent periodic behavior of the propagat-
ing field. From the time dependence, we can infer this mode
to be a second harmonic of the fundamental period (p ¼ 2),
so that the observed quadrupole corresponds to the
fpmng ¼ f220g eigenmode from the asymptotic general
solution (56).
The extracted radiation field can be quantitatively

analyzed by decomposing into its constituent 2D Fourier

FIG. 15. Comparison of the total energy within the volume
enclosed by the diagnostic cylinder S (blue line) with the
outgoing massless radiation energy determined by the time
integral of Dϑ · r̂ (orange line). The dominant energy loss
mechanism is massless radiation as indicated by conservation
of the sum (green line). Conserved to �0.1% after t ¼ 250 (1000
time steps).
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modes FDϑðkθ; kzÞ using a 2D fast Fourier transform
(FFT). We can average these eigenmode signals over time
to obtain a measure of their overall magnitude using

F av;Dϑðkθ; kzÞ ¼
Xt¼Δt=4

t¼−Δt=4
2FDϑðkθ; kzÞ=Δt; ð67Þ

where Δt is approximately one period of oscillation.
Figure 19 plots the pattern of fmng eigenmodes F av;Dϑ

for λ ¼ 1 extracted at late time t ¼ 140.75, at which point
the propagating massless signals have reached the cylinder.
We obtain a “checkerboard” pattern that confirms the
analytic selection rule discussed in Sec. IVA 3, i.e., that
only mþ n even eigenmodes can be generated. From
Fig. 19, we determine the six highest magnitude propa-
gating modes, for which the time average is plotted over
time in the top panel of Fig. 20 for λ ¼ 1. A logarithmic
scale is employed to highlight the separation in amplitudes
between the harmonics. We conclude that the quadrupole
f220g eigenmode offers the most significant radiation
pathway, as predicted analytically by (63). We see from
Fig. 20 that the next strongest propagating mode is the third
harmonic dipole f311g which has an approximate relative
amplitude of 0.09, corresponding to a relative energy loss
below 1% that of the quadrupole. We also note that the later
arrival of the f311g mode is consistent with ∼5% lower
propagation velocity, as predicted by (51).
The absolute value of the four largest eigenmodes,

f111g, f220g, f331g and f440g, is shown in the top
panel of Fig. 21 for λ ¼ 1, where the time eigenvalue p is
inferred from the time period. (We note that the initial
f111g mode later acquires a small f211g contribution.)

FIG. 16. Volume rendering in 3D space ðx; y; zÞ of the massless
radiation Dϑ · r̂ from a λ ¼ 1 string with initial amplitude
A0 ¼ 4. The radiation is emitted from a string at the center of
the grid, with the quadrupole mode fmng ¼ f20g clearly
dominant.

FIG. 17. Massless radiation Dϑ · r̂ from a λ ¼ 1 string with
initial amplitude A0 ¼ 1 at late time t ¼ 167.5, measured on a
cylinder at R ¼ 64, where θ is the azimuthal angle. The dominant
quadrupole mode fmng ¼ f20g can be clearly identified.

FIG. 18. Volume rendering in spacetime ðt; θ; zÞ of the massless
radiation Dϑ · r̂ from a λ ¼ 10 string with initial amplitude
A0 ¼ 1 over time, measured on a cylinder at R ¼ 64. The time
axis runs left to right, the azimuthal angle θ from bottom to top
and the z axis out of the page. The dominant quadrupole mode
fpmng ¼ f220g can be clearly identified.
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The equivalent data for λ ¼ 10 is plotted in Fig. 22. The
amplitudes and spectra of massless radiation for the two
string widths with λ ¼ 1 and λ ¼ 10 are very similar.
However, some subtle differences are discernible, including
a smaller initial radiation amplitude for λ ¼ 1 and a slightly
faster amplitude decay rate. Regarding the former, the
initial massless radiation amplitudes are expected to be the

FIG. 19. 2D Fourier eigenmodes of the massless radiation Dϑ ·
r̂ from a λ ¼ 1 string at late time t ¼ 140.75, measured on a
cylinder at R ¼ 64 and time averaged over approximate half-
period Δt=2 ¼ 66=4. The horizontal axis is the angular eigen-
value m, while the vertical is the z-dependent wave number n.
The top figure is for an initial amplitude A0 ¼ 1, the middle is for
intermediate A0 ¼ 4 and the bottom is large A0 ¼ 8. In all cases,
the quadrupole signal fpmng ¼ f220g is dominant, but higher
harmonics contribute at larger amplitudes, provided they satisfy
the checkerboard selection rule: mþ n even.

FIG. 20. Dominant 2D Fourier modes of the massless radiation
Dϑ · r̂ from a λ ¼ 1 string measured on a cylinder at R ¼ 64 and
time averaged over approximate half-period Δt=2 ¼ 66=4. The
top figure is for an initial amplitude A0 ¼ 1, the middle is for
intermediate A0 ¼ 4 and the bottom is large A0 ¼ 8.
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same for all λ (with which we will see our results agree for
λ≳ 3). However, for λ ¼ 1 with A0 ¼ 1 and L ¼ 32, finite
size effects become important as the string core with ϕ < 1
extends into the radiation zone (here, around R≲ 4),

causing some suppression of the quadrupole amplitude
(see Fig. 1). The latter is a consequence of the λ ¼ 1 string
being lighter, so there is a larger relative effect from
radiation backreaction, as we will discuss in the next
section.
We finally note that the dipole mode f111g is present

from the beginning of the simulation before radiation has
had time to propagate to the cylinder, indicating that it is a
long-range self-field of the oscillating string. As discussed
in Sec. IV, this can be understood from the offset motion
of the oscillating string fields from the center of the
diagnostic cylinder. This apparent f111g wave does not
propagate, and so there should be no net flux over one
period (if the amplitude remains constant). Using the spatial
radiation diagnostic Dϑ · r̂, the dipole self-field appears
with an amplitude of 0.15 relative to the propagating
quadrupole mode.

2. Large amplitude oscillations

Here we present massless radiation results for larger
initial amplitudes A0 ¼ 4 (ε ¼ 0.68) and A0 ¼ 8 (ε ≈ 1),
with string widths given by λ ¼ 1 and λ ¼ 10. Figure 23
shows a visualization of the radiation field measured on the
diagnostic cylinder at R ¼ 64, measured over time, for the
example λ ¼ 10 and A0 ¼ 4. Although the f220g quadru-
pole mode remains dominant, the signal is modulated by
higher harmonics. This is also illustrated in the lower
panels in Fig. 19, where many more modes are excited for
A0 ≥ 4 than for A0 ¼ 1 (upper panel).
The center panels of Figs. 20 and 21 show the time-

averaged and absolute magnitude of the largest propagating
eigenmodes, f220g, f331g and f440g for A0 ¼ 4 and

FIG. 21. Absolute value of the fmng ¼ f11g; f20g; f31g, and
f40g Fourier modes of the massless radiationDϑ · r̂ from a λ ¼ 1
string measured on a cylinder at R ¼ 64. The top figure is for an
initial amplitude A0 ¼ 1, the middle is for intermediate A0 ¼ 4
and the bottom is large A0 ¼ 8.

FIG. 22. Absolute value of the fmng ¼ f11g; f20g; f31g,
and f40g Fourier modes of the massless radiation Dϑ · r̂ from
a λ ¼ 10 string with initial amplitude A0 ¼ 1, measured on a
cylinder at R ¼ 64.
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λ ¼ 1, as well as the self-field f111g which is now mixed
with the propagating dipole f211g. We see again that the
f220g quadrupole mode is dominant, contributing most of
the outgoing radiation flux integrated across all modes.
Even in the highly nonlinear regime with A0 ¼ 8 (ε ≈ 1)
and λ ¼ 1 shown in the lower panel of Fig. 21, the next

harmonic f331g has a maximum relative amplitude 0.42,
i.e., initially contributing 18% of the quadrupole energy
flux, with f440g around 8% and f211g5%. We also note
that the maximum quadrupole amplitude scales approx-
imately with the relative oscillation amplitude squared ε2,
in agreement with expectations from (63) that the energy
flux scales as ε4. Again, the amplitude of radiation from the
lighter λ ¼ 1 string always decays more rapidly than the
λ ¼ 10 string because they initially have the same massless
radiation output, a backreaction effect we shall discuss in
the next section. We note that the amplitude decay of high
harmonics (n > 2) is considerably faster than the quadru-
pole, as illustrated in the lower panel of Fig. 20.

C. String radiation backreaction

In this section, we analyze the detailed evolution of the
oscillating string trajectories, observing the decay in
amplitude due to radiation backreaction and comparing
with analytic model predictions. Focusing on regimes
where the AMR evolution is robust and accurate, we
analyze two specific sets of string simulations with
amplitudes A0 ¼ 1 and A0 ¼ 3 (ε ¼ 0.20, 0.54), varying
the string width parameter λ across the wide range
1 ≤ λ ≤ 100. We note that in the present AMR implemen-
tation, large amplitude A0 ≳ 4 (ε≳ 0.7) oscillations at
λ≳ 3 (such as those illustrated in Fig. 24) appear to be
susceptible to small cumulative grid refinement effects at
late times, which may have an effect on the evolution, as
discussed in Sec. III E 2.

FIG. 24. String amplitude over time for a selection of λ parameter values in the range 1 ≤ λ ≤ 100 with an initial amplitude A0 ¼ 4.
The amplitude is measured at the point of maximum displacement z ¼ L=4. The black dashed lines are plotted at intervals of t ¼ 32.

FIG. 23. Volume rendering in spacetime ðt; θ; zÞ of the massless
radiation Dϑ · r̂ from a λ ¼ 10 string with initial amplitude A0 ¼
4 over time, measured on a cylinder at R ¼ 64. The time axis runs
left to right and azimuthal angle θ from bottom to top and the z
axis out of the page. The dominant quadrupole mode fpmng ¼
f220g can be clearly identified, but is distorted by higher modes.
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We first plot string trajectories over time for a represen-
tative sample of λ in Fig. 24, which shows the decay of the
string amplitude. The amplitude is taken to be the position
of the string core at the z coordinate of maximum string
displacement, z ¼ N3=4≡ L=4, calculated using the
winding algorithm described in Sec. III D 2. We see that
as λ increases, the rate of decay of the string generally
decreases, indicating weaker radiation backreaction on
strings with larger μ. We also observe that the period of
oscillation of the string T > L, as outlined in Sec. IVA 1.
Finally, we note that the period for the lightest string λ ¼ 1
approaches T ¼ 32 as the amplitude falls, where the higher
mass strings remain at a higher periodicity. This is due to
the larger radiation backreaction for lighter strings.
We can model the rate of decay by extracting the

maximum and minimum amplitude of the string for each
period of oscillation. Figure 25 plots these values for the
two datasets A0 ¼ 1 and A0 ¼ 3. The extrema of the
oscillating string with small amplitude (ε ¼ 0.20) shown
in the top panel reveal nearly linear decay with a weak
damping rate that decreases, as expected, with increasing λ
(i.e., as the effective mass per unit length of the string
increases). However, at small λ≲ 3, the radiative decay
stalls and it becomes difficult to distinguish different λ. In
this regime, the oscillation amplitude A0 ¼ 1 is very close
to the string width δ ¼ 1=

ffiffiffi
λ

p ≳ 0.6, where massive internal
excitations within the string core can be expected to
represent a non-negligible part of any string oscillation.
These “breather” modes mean that the motion of the zero
(ϕ ¼ 0) at the string core is likely to be larger than the
actual center of mass oscillation, where the center of mass
is determined by the motion of the dominant massless fields
from which the radiation emanates. In our subsequent
analysis, we make a small correction for this finite width
effect. (We also note that the λ ¼ 100 string with A0 ¼ 1
appears to have drifted slightly from the center from which
the maximum amplitude is measured. This is due to the
small difference in amplitude of the quadrupole radiation
produced when the string is moving in the forward or
backward direction relative to the propagation direction.)
The bottom panel of Fig. 25 shows maxima from string

oscillations of intermediate amplitude (ε ¼ 0.54), showing
trajectories with significant curvature, especially for the
lighter strings (small λ) with more damping. This figure
also illustrates the effect of different initial conditions due to
changing the timescale of preceding relaxation before
releasing the string to undergo relativistic hyperbolic evo-
lution (see Sec. II B). The second set of data points (dotted
lines) shows “over-relaxed” initial conditions where the
gradient flow phase was started much earlier, thus removing
longer-range correlations. This hastens the initial amplitude
decay but, asymptotically, the radiating string settles into a
steady state which closely matches that from the other initial
conditions, as can be shown by a simple time translation. The
“under-relaxed” case (not shown here) exhibits opposite
behavior with a smaller initial decay, but again the same

asymptotic limit. These simulations were also performed
usinggrid refinement levels atwhich therewas nodiscernible
improvement from increasing refinement further.

1. Inverse square amplitude model

Analytic radiation calculations for a sinusoidal osci-
llatory string (34) yield a specific prediction for the back-
reaction effect on the string trajectory (65); the inverse
square amplitude 1=A2 (or 1=ε2) is predicted to be linearly
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FIG. 25. Maximum amplitude of decaying string oscillations
for small amplitude A0 ¼ 1 (top) and intermediate amplitude
A0 ¼ 3 (bottom) for different λ at fixed length (L ¼ 32). In both
cases, thin global strings (large λ) have a slower decay rate as the
energy density μ is higher. At small λ < 3, radiative decay
reduces because of finite width effects. For A0 ¼ 3, additional
data is plotted (diamond and dashed lines) for strings with initial
conditions after enhanced relaxation. Here, the initial decay rate
is faster but the asymptotic radiative decay is the same (as shown
with appropriate time translations). The simple backreaction
model (65) predicts that the linear slope depends on the string
energy density (effectively ln λ), but is independent of the
amplitude A.
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related to the time t. We find agreement with this for both
datasets A0 ¼ 1 and A0 ¼ 3, as shown in Fig. 26, which
plots the data for each λ and both amplitudes superposed
with zero intercept. Both datasets are proportional to 1=ε2

and independent of A0 and λ as predicted. The different A0

have approximately matching slopes for the same λ values,
i.e., the string energy density μ̄ alone determines the
damping rate (or, equivalently, μ̄ ∼ ln λ). We can under-
stand this physically; given that the radiation power is
independent of λ as shown by (63), it can be shown by
straightforward manipulation that the greater oscillation
energy (62) of the heavier strings with large λ causes the
amplitude ε to decay more slowly.
Finite width effects for the fat lighter strings (λ≲ 3) at

small amplitude ðε ¼ 0.20) reduce the damping rate (slope)
dependence on ln λ, as discussed previously. Assuming that
internal modes (within the string thickness δ) imply that the
true string oscillation amplitude is slightly smaller than
measured for all λ, we apply a finite width correction (fwc)
to all data by modifying the raw amplitude A to a new value
A0 as follows:

A0 ¼ A − ξ=
ffiffiffi
λ

p
: ð68Þ

A small correction ξ ¼ 0.08 (i.e., only 8% of the string
width) aligns the respective slopes of the A0 ¼ 1, 3 datasets
remarkably well. We note that this small linear correction is
not adequate to align the data with the backreaction model
when A0 ∼ δ as for the λ ¼ 1 case with δ ∼ 1, where much
larger deviations are evident. For this reason, we exclude

the λ ¼ 1 string data from our asymptotic parameter
estimates in the upcoming analysis. This is significant,
as λ ¼ 1 is the case on which most previous numerical
studies have been based. There is also some evidence for
deviation from linear behavior at late times for the λ ¼ 100
string at larger amplitude A0 ¼ 3. We eliminate these last
few time points from the analysis, as this behavior is
unphysical and due to a systematic effect linked to the
numerical evolution (see Sec. III E 2).
In order to determine the accuracy of the inverse square

backreaction model, we perform a least-squares best fit for
each data set shown in Fig. 26 to determine the damping
rate. The best fit lines are plotted, further illustrating the
consistency between the two data sets at different ampli-
tudes. We simultaneously estimate β and R for the back-
reaction model (65) from our data to determine the best fit.
Figure 27 shows the string damping rate plotted against the
string energy density μ̄. We observe a key result: damping
rates associated with λ ¼ 3, 10, 30 and 100 align with the
backreaction model when we take the cutoff scale R ≈ 3.75,
asymptotically projecting to zero damping as λ → ∞, as
expected for an infinitely heavy string. For this R, the
analytic prediction (red line) shown in Fig. 27 is in
remarkable agreement, consistent with all damping rates,
except those for λ ¼ 1 where finite size effects become
important (for L ¼ 32).
Despite this concordance with the inverse square model,

there are fairly large uncertainties with a match possible
within the parameter range

β ¼ 7.6� 1.6; logR ¼ 1.3� 0.3ðR ¼ 3.75Þ: ð69Þ

FIG. 27. Measured radiative damping rates plotted as a function
of inverse string density μ−1 (essentially the inverse ln λ), also
showing errors in the extrapolated slope. Here we interpret the
results with an effective string radius cutoff R ¼ 3.5, for which
the damping rate vanishes as μ → ∞ (λ → ∞). We apply a finite
size correction (fwc) and exclude the data point at λ ¼ 1, due to
string width effects which limit radiative damping at small λ.

FIG. 26. Fit of oscillating string data to the simple backreaction
model (65) for the inverse square of the relative amplitude ε ¼
2πA=T against time t. After a small 8% finite width correction,
the A0 ¼ 1 (ε ¼ 0.2) data (diamonds) align closely with the larger
amplitude data (circles), showing consistent linear behavior for
all λ. The analytic prediction from the inverse square model (65)
for the best fit parameters is plotted (solid lines for A0 ¼ 3,
dashed lines for A0 ¼ 1) for each λ, showing good agreement for
all λ > 3.
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Without any finite width correction, the two datasets are
less consistent, as reflected in larger uncertainties with β ¼
9.5� 3.5 and logR ¼ 1.6� 0.6 (R ¼ 5.2). These values
for the radial string cutoff R ≈ 4may seem lower than those
anticipated for a periodicity scale given by L ¼ 32.
However, the maximum radius of curvature for a large
amplitude perturbation is R≲ L=4 ¼ 8, so half this scale
for the effective radius is not unreasonable. Observing
quadrupole radiation emanating from an oscillating global
string heuristically indicates a delocalized process with
radiation maxima appearing on a comparable scale to the
perturbations on the string (see Fig. 16).
We conclude that the analytic inverse square model (65)

offers an excellent description of an oscillating and radiat-
ing global string, predicting both the correct power law
and magnitude of the radiation damping. Our results are
consistent with the analytic damping rate β ¼ π3=4 ≈ 7.75
and indicate an effective radial cutoff for the string R ≈ L=8
(ϱ≡ R=L ≈ 0.12), about half the string radius of curvature
L=4. We also observe that finite width effects suppress
radiative power in massless modes at small amplitudes
comparable to the string width A ∼ δ. Hence, by accurately
fitting to the inverse square model, we have demonstrated
that dual radiation predictions from the Kalb-Ramond
action (59) are accurate as we asymptotically approach
the small width regime.

2. Exponential damping

For comparison, we also endeavor to fit the oscillating
string data for different λ to the simple exponential damping
model (66). The analysis is plotted in Fig. 28 using the

logarithm of the relative amplitudes for different lnðA=A0Þ
as a function of time t. Although the leading-order behavior
is linear at small amplitude A0 ¼ 1, as it is also for the
inverse square model (65), there are clearly significant
deviations from exponential behavior at larger amplitude
A0 ¼ 3 (with the best fit exponentials deviating from the
measured amplitudes). More significantly, there is clearly a
large decay rate dependence on the initial amplitude which
is inconsistent with the simple model (66). Including an
amplitude dependence ε20 in the exponent improves the
consistency of damping rates between the two amplitudes
and so indicates that it may be applicable to situations with
unequal left- and right-moving modes (see earlier discus-
sion). For our sinusoidal solution here, with equal left- and
right-moving modes, it is clear that the inverse square
model (65) provides a better description of the observed
damping behavior.

V. CONCLUSION AND FUTURE DIRECTIONS

We have presented results from the first fully adaptive
mesh simulations of global cosmic strings, using the code
GRChombo. We investigate single sinusoidally displaced
string configurations with a wide range of string widths,
defined by the parameter λ. The key purpose has been to
obtain a robust asymptotic probe of the radiation emission
from global or axion strings approaching cosmological
scales, improving the limited dynamic range of previous
numerical simulations for these configurations and com-
paring directly against dual radiation predictions using the
Kalb-Ramond action (i.e., in the thin-string limit) [24,51].
We have studied massless (Goldstone boson or axion)

radiation signals, using quantitative diagnostic tools to
determine the eigenmode decomposition. As analytically
predicted, the primary radiation channel for the sinusoidal
string configuration is found to be the massless quadrupole
eigenmode f220g, completely dominating energy losses in
all other modes (n > 2) until we approach highly nonlinear
configurations with relative amplitudes approaching
unity, ε ≈ 1. Even in this nonlinear regime with a broader
spectrum of eigenmodes present, the quadrupole remains
the largest contribution, with backreaction rapidly sup-
pressing the relative contribution from higher harmonics.
The massless radiation rate at a given small amplitude is
independent of λ for L ≫ δ, though finite size effects
appear to cause some suppression around λ ∼ 1 for our
configurations (L ¼ 32).
We have also compared oscillating string trajectories

with the inverse square amplitude model [24], a back-
reaction model which accounts for radiation energy loss.
Comparing with the analytically predicted amplitude
decay rate, we show excellent correspondence for λ > 3.
Critically, the radiation damping rate depends inversely on
the string tension μ ¼ 2π lnðR=δÞ which for a global string
is renormalized by the string width δ ∝ 1=

ffiffiffi
λ

p
at a given

curvature scale R. Mitigating against finite width effects,
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FIG. 28. Relative amplitude lnðA=A0Þ for oscillating strings as
a function of time t. The simple exponential decay model (66)
does not match the observed behavior with the decay rate strongly
dependent on the initial amplitude A0 (contrast the inverse
square model Fig. 26). The best fit lines (dashed) show clear
deviations from exponential behavior when there is larger
damping at A0 ¼ 3.
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we have been able to confirm the backreaction scaling
law dependence μ−1 over the wide range 3≲ λ≲ 100. We
conclude that global string evolution tends towards the
behavior predicted in the Nambu-Goto (thin-string) limit
with radiation damping, providing further confidence that
analytic dual radiation modeling provides the appropriate
large-scale (or cosmological) limit for global strings.
The present work has implications for the study of axion

radiation from global axion strings in the early universe,
scenarios in which the Peccei-Quinn Uð1Þ symmetry is
broken after inflation, forming a network of axion strings
which decays as the axion mass becomes relevant [52]. As
we have discussed, two approaches have been used to
calculate the number and spectrum of axions radiated by
the string network; first, analytic radiation modelling com-
bined with the results of Nambu string simulations and,
secondly, direct numerical simulations of the underlying
string field theory in an expanding universe. Our present
work on individual strings with a field theory study reaches
higher numerical resolution than previous studies and offers
some insight into the lack of agreement between these
approaches. Given that most network simulations to date use
the comoving width (or “fat string”) algorithm, they have an
effective λ≲ 1 when compared to the configurations inves-
tigated here. This is a regime where we have been able to
identify a breakdown in correspondence with predictions
from the thin-string limit and is also where light massive
radiation channels begin to become competitive with mass-
less radiation for nonlinear amplitudes.
Our next step forward involves high resolution simu-

lations of global string networks in an expanding back-
ground which are currently underway. By exploring
different string widths with a range of λ values and using
our radiation diagnostics, we will endeavor to determine
whether convergence towards the thin-string limit occurs
and whether cosmological extrapolations are feasible
numerically. These are important considerations which
should reduce uncertainty in the present string predictions
for the dark matter axion mass. This is also potentially

relevant for predictions of gravitational waves from cosmic
strings where there is even greater uncertainty, and where
there is a close correspondence between string calculations
for gravitational radiation and those for axion or antisym-
metric tensor fields which have been tested in the
present work.
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