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The cosmic curvature density parameter has been constrained in the present work independent of any
background cosmological model. The reconstruction is undertaken adopting the nonparametric Gaussian
processes (GP). The constraints on Ωk0 are obtained via a Markov Chain Monte Carlo (MCMC) analysis.
Late-time cosmological probes viz., the supernova (SN) distance modulus data, the cosmic chronometer
(CC) and the radial baryon acoustic oscillations (rBAO) measurements of the Hubble data have been
utilized for this purpose. The results are further combined with the data from redshift space distortions
(RSD) which studies the growth of large scale structure in the universe. The only a priori assumption is that
the universe is homogeneous and isotropic, described by the Friedmann-Lemaître-Robertson-Walker
metric. Results indicate that a spatially flat universe is well consistent in 2σ within the domain of
reconstruction 0 < z < 2 for the background data. On combining the RSD data we find that the results
obtained are consistent with spatial flatness mostly within 2σ and always within 3σ in the domain of
reconstruction 0 < z < 2.
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I. INTRODUCTION

The universe on a large scale is described by the spatially
homogeneous and isotropic Friedmann-Lemaître-Robertson-
Walker (FLRW) metric,

ds2¼−c2dt2þa2ðtÞ
�

dr2

1−kr2
þr2dθ2 þr2 sin2θdϕ2

�
: ð1Þ

The scale factor aðtÞ is the only unknown function to be
determined by the field equations. The isotropy and
homogeneity of the space section demand the spatial
curvature to be a constant, which can thus be scaled to
pick up values from −1;þ1, 0. This constant spatial
curvature is termed the curvature index and is denoted
as k. This index is not determined by the field equations but
is rather fixed by hand, essentially from observational
requirements.
The effect of the spatial curvature k in the evolution of

the universe is estimated through the curvature density
parameter, defined as,

Ωk ¼ −
kc2

a2H2
; ð2Þ

where H ¼ _a
a is the Hubble parameter. Ωk is positive,

negative or zero corresponding to k ¼ −1;þ1, 0, which in

turn correspond to open, closed, and flat space sections,
respectively.
For the standard cosmological model to correctly

describe the present state of the evolution, the initial value
of Ωk has to be tantalizingly close to zero, indicating that
the universe essentially starts with a zero spatial curvature.
This is known as the flatness or fine-tuning problem for the
standard cosmology which is believed to be taken care of
by an early accelerated expansion called inflation. For a
brief but systematic description, we refer to the monograph
by Liddle and Lyth [1]. Indeed inflation can wash out an
early effect of spatial curvature, in comparison with the
inflaton energy and the Hubble expansion. However, if Ωk
is negligible but k itself is nonzero, it may reappear in
course of evolution and make its presence felt as the
universe evolves. Reconstruction of some dark energy
parameters indicate that a nonflat space section may not
be easily ruled out. The use of Ωk as a free parameter is
found to affect the reconstruction of dark energy equation
of state parameter wðzÞ, as shown by Clarkson et al. [2].
A reconstruction of the deceleration parameter qðzÞ by
Gong and Wang [3] shows that although a flat universe is
still consistent, jΩk0j is less than only 0.05 for a one-
parameter dark energy model and lies between −0.064 and
0.028 for a ΛCDM model with spatial curvature, where a
subscript 0 indicates the present value of the quantity. The
recent Planck [4] data also indicates that a universe with a
nonzero spatial curvature may not be completely ruled out.
The motivation of the present work is to constrain the

curvature density parameter Ωk0 hence attempt to ascertain
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the signature of the curvature index k, directly from
observational data without assuming any background
cosmological model. We do not start from any theory of
gravity or use any form of matter distribution in the
universe. The only a priori assumption is that the universe
is homogeneous and isotropic, and thus described by the
FLRW metric. There is quite a lot of interest in this
direction, which is normally pursued along with con-
straining other cosmological parameters pertaining to the
alleged accelerated expansion of the universe. Most of
these investigations depend on some chosen parametric
form of cosmological quantities related to the late-time
expansion behavior of the universe [5–14]. This approach
is indeed biased by the parametrization, as the functional
form of the quantity is already chosen.
Another way of reconstruction involves a verification of

the FLRW metric from datasets, and ascertaining the value
of Ωk0 as a by-product by combining the dimensionless
reduced Hubble parameter EðzÞ and the normalized comov-
ing distance DðzÞ [2,15–20].
The present work does not assume any functional form

of Ωk, but rather resorts to a nonparametric reconstruction
ofΩk0, the present value of the curvature density parameter.
The idea is to obtain constraints on the geometrical quantity
Ωk0 using recent observational data provided by the high
precision cosmological probes, namely, the supernova (SN)
distance modulus data, the cosmic chronometer (CC) and
the radial baryon acoustic oscillations (rBAO) measure-
ments of the Hubble parameter. We also combine these data
from background measurements with the data from redshift
space distortions (RSD) due to the growth of large scale
structures. The reconstruction is performed adopting the
nonparametric Gaussian processes (GP) method. The
resulting marginalized constraints on Ωk0 are obtained
via a Markov Chain Monte Carlo (MCMC) analysis,
independent of any parametric model of the expansion
history.
Attempts toward obtaining constraints on Ωk0 using the

nonparametric approach started to gain momentum in the
recent past. Li et al. [21], Wei and Wu [22] proposed to
constrain the cosmic curvature in a model-independent way
by combining the CC-HðzÞ with Union 2.1 [23], and Joint
Light-curve Analysis (JLA) [24] SN-Ia data respectively.
Model-independent constraints on cosmic curvature and
opacity was carried out by Wang et al. [25] using the CC-H
(z) and JLA SN-Ia data. Liao [26] studied constraints on
cosmic curvature with lensing time delays and gravitational
waves (GWs). Model-independent distance calibration and
Ωk0 measurement using quasistellar objects (QSOs) and
CCs was done by Wei and Melia [27]. Ruan et al. [28]
obtained constraints on Ωk0 using the CC-HðzÞ data and
HII galaxy Hubble diagram. Model-independent estimation
for Ωk0 from the latest strong gravitational lens systems
(SGLs) was performed by Zhou and Li [29]. Wang et al.
[30] constrained Ωk0 from SGL and Pantheon [31] SN-Ia

observations. Wang et al. [32] employed a machine
learning algorithm called artificial neural network (ANN)
to constrain Ωk0 using data from CC, SN-Ia and GWs.
Recently, Yang and Gong [33] constrained the Ωk0h2

using CC-HðzÞ, Pantheon SN-Ia and RSD data where
h ¼ H0

100 kmMpc−1 s−1 is the dimensionless Hubble parameter at

the present epoch. Nonparametric spatial curvature infer-
ence using CC and Pantheon data was performed by
Dhawan et al. [34]. A majority of these investigations
use GP as their numerical tool.
We use observational data more recent than most of these

investigations, but the major difference is that we include a
wider variety of data in combination, measuring different
features of the evolution. We also include a section where
the RSD dataset which has mostly eluded the attention so
far, except the work of Yang and Gong [33] in the
reconstruction of Ωk0h2 despite its utmost relevance in
this connection, as the growth of perturbations has to be
consistent with the spatial curvature.
The other crucial addition in the present work is that we

also check the consistency of the constraints on spatial
curvature with thermodynamic requirements. Very recently,
Ferreira and Pavón [35] imposed a relation using the
generalized second law of thermodynamics, which reads
as 1þ q ≥ Ωk, where q is the deceleration parameter. It is
quite reassuring to see that constraints on Ωk0 quite
comfortably satisfies the requirement.
The results obtained indicate that a spatial curvature may

indeed exist at the present epoch. But the estimated sign of
the curvature depends on the strategies for measuringH0 to
some extent. But the results are statistically not too
significant, as a zero curvature is mostly included in 1σ
and always at least in 2σ.
The paper is organized as follows. Section II contains the

details on the reconstruction method. In Sec. III, the
observational data used in the present work have been
briefly reviewed. The methodology is discussed in Sec. IV.
Reconstruction using background data is performed in
Sec. V. Section VI shows the consistency ofΩk0 constraints
with the second law of thermodynamics. Reconstruction
using the perturbation data are presented in Sec. VII. The
final Sec. VIII contains an overall discussion on the results.

II. GAUSSIAN PROCESS

We shall employ the well-known Gaussian processes
(GP) [36–38] for the reconstruction of Ωk0. Assuming that
the observational data obey a Gaussian distribution with
mean and variance, the posterior distribution of the recon-
structed function (say f) and its derivatives can be
expressed as a joint Gaussian distribution. In this method,
the covariance function κðz; z̃Þ plays a key role. It correlates
the values of fðzÞ at two redshift points z and z̃. This
covariance function depends on a set of hyperparameters
which are optimized by maximizing the log marginal
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likelihood. With the optimized covariance function, the
data can be extended to any redshift point. The GP method
has been widely applied in cosmology [39–59].
It deserves mention that the choice of κðz; z̃Þ, affects the

reconstruction to some extent. The more commonly used
covariance function is the squared exponential covariance,
which is infinitely differentiable,

κðz; z̃Þ ¼ σ2f exp

�
−
ðz − z̃Þ2
2l2

�
: ð3Þ

In this particular work we consider the squared expo-
nential, Matérn 9=2, Cauchy and rational quadratic covari-
ance functions. The Matérn 9=2 covariance function is
given by,

κðz; z̃Þ ¼ σ2f exp

�
−3jz − z̃j

l

��
1þ 3jz − z̃j

l

þ 27ðz − z̃Þ2
7l2

þ 18jz − z̃j3
7l3

þ 27ðz − z̃Þ4
35l4

�
: ð4Þ

The Cauchy covariance function is

κðz; z̃Þ ¼ σ2f

�
l

ðz − z̃Þ2 þ l2

�
; ð5Þ

and the rational quadratic covariance function is

κðz; z̃Þ ¼ σ2f

�
1þ ðz − z̃Þ2

2αl2

�−α
; ð6Þ

where σf, l, and α are the kernel hyperparameters.
Throughout this work, we assume a zero mean function
a priori to characterize the GP.
For more details on the GP method, one can refer to the

Gaussian process website1 The publicly available GAPP
2

(Gaussian processes in python) code by Seikel et al. [40]
has been used in this work.

III. OBSERVATIONAL DATA

In this work we use both the background data and the
perturbation data for the reconstruction of Ωk0. The back-
ground level includes different combinations of datasets
involving the cosmic chronometer data (CC), the supernova
distance modulus data (SN), the baryon acoustic oscillation
data (BAO). For the perturbation level data, the growth rate
of structure fσ8 from the redshift-space distortions (RSD)
are utilized. A brief summary of the datasets is given below.

A. Background level

The Hubble parameter HðzÞ can be directly obtained
from the differential redshift time derived by calculating
the spectroscopic differential ages of passively evolving
galaxies, usually called the cosmic chronometer (CC)
method [60]. In this work we use the latest 31 CC HðzÞ
data [61–67], covering the redshift range up to z ∼ 2.
These measurements do not assume any particular cosmo-
logical model.
We take into account the updated and corrected Pantheon

compilation by Steinhardt et al. [68]. This corrected sample
improves upon some errors in the quoted values of the
redshift z in the original Pantheon dataset by Scolnic et al.
[31]. The Pantheon catalogue is presently the largest
spectroscopically confirmed SNIa sample, consisting of
1048 supernovae from different surveys covering the red-
shift range up to z ∼ 2.3, including the SDSS, SNLS,
various low-z and some high-z samples from the HST.
An alternative compilation of the Hubble HðzÞ data can

be deduced from the radial BAO peaks in the galaxy power
spectrum, or from the BAO peak using the Ly-α forest of
quasars, which are based on the clustering of galaxies or
quasi stellar objects (namely rBAO), spanning the redshift
range 0 < z < 2.4 reported in various surveys [69–81].
One may find that some of the HðzÞ data points from
clustering measurements are correlated since they either
belong to the same analysis or there is an overlap between
the galaxy samples. Here in this paper, we mainly consider
the central value and standard deviation of the data into
consideration. Therefore, we assume that they are inde-
pendent measurements as in [56,82].
In view of the known tussle between the value of H0

as given by the Planck [4] 2018 data from the CMB
measurements (hereafter referred to as P18), and that from
HST observations of 70 long-period Cepheids in the Large
Magellanic Clouds by the SH0ES [83] team (hereafter
referred to as R19), reconstruction using both of them have
been carried out separately. The recent global P18 and local
R19 measurements of H0 ¼ 67.27� 0.60 km s−1Mpc−1

for TTþ TEþ EEþ lowE (P18) [4] and H0 ¼ 74.03�
1.42 km s−1 Mpc−1 (R19) [83] respectively, with a 4.4σ
tension between them, are considered for the purpose.

B. Perturbation level

The redshift space distortion (RSD) data is a very
promising probe to distinguish between different cosmo-
logical models. Various dark energy models may lead to a
similar evolution in the large scale but can show a distin-
guishable growth of the cosmic structure. In this work,
we utilize the updated datasets of the fσ8 measurements,
including the collected data from 2006–2018 [84–88],
and the completed SDSS, extended BOSS Survey, DES
and other galaxy surveys [89–109]. We refer to [82] for a
recent compilation of the 63 RSD data within the redshift

1http://www.gaussianprocess.org.
2https://github.com/carlosandrepaes/GaPP.
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range 0 < z < 2 respectively. This fσ8 is called the growth
rate of structure.

IV. THE CURVATURE DENSITY PARAMETER
AND DISTANCE MEASURES

In a FLRW universe, the proper distance from the
observer to a celestial object at redshift z along the line
of sight is given by,

dpðzÞ ¼
c
H0

Z
z

0

dz0

Eðz0Þ ð7Þ

and the transverse comoving distance can be expressed as,

dMðzÞ ¼
c

H0

ffiffiffiffiffiffiffiffiffiffijΩk0j
p sin n

� ffiffiffiffiffiffiffiffiffiffi
jΩk0j

p Z
z

0

dz0

Eðz0Þ
�
; ð8Þ

in which the sinn function is a shorthand for,

sin nx ¼
8<
:

sinh x ðΩk0 > 0Þ;
x ðΩk0 → 0Þ;
sin x ðΩk0 < 0Þ:

We define the reduced Hubble parameter as,

EðzÞ ¼ HðzÞ
H0

: ð9Þ

Here, a suffix 0 indicates the value of the relevant
quantity at the present epoch and z is the redshift, defined
as 1þ z≡ a

a0
. The dimensionless parameter Ωk0, namely

the cosmic curvature density parameter, defined as

Ωk0 ¼ −
kc2

a20H
2
0

; ð10Þ

is positive, negative, or zero corresponding to the spatial
curvature k ¼ −1;þ1, 0 which signifies an open, closed, or
flat universe, respectively.
For convenience, we can define the normalized proper

distance,

DpðzÞ≡H0

c
dpðzÞ ð11Þ

and the normalized transverse comoving distance,

DðzÞ≡H0

c
dMðzÞ ð12Þ

as dimensionless cosmological distance measures which
will be used later in our work.

V. RECONSTRUCTION FROM
BACKGROUND DATA

In the very beginning we use the GP method to
reconstruct the Hubble parameter HðzÞ from the CC data
and CCþ rBAO data. We then normalize the datasets with
the reconstructed value of H0, i.e., Hðz ¼ 0Þ to obtain the
dimensionless or reduced Hubble parameter EðzÞ.
Considering the error associated with the Hubble data as
σH, we calculate the uncertainty in EðzÞ as,

σE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σH

2

H0
2
þ H2

H0
4
σH0

2

s
; ð13Þ

where σH0
is the error associated with H0.

With the function EðzÞ reconstructed from the Hubble
data, as described in Eq. (9), the normalized proper distance
Dp is calculated via a numerical integration using the
composite trapezoidal [110] rule.

DpðzÞ ¼
Z

z

0

dz0

Eðz0Þ

≃
1

2

X
i

ðziþ1 − ziÞ
�

1

Eðziþ1Þ
þ 1

EðziÞ
�
: ð14Þ

Thus we get Dp without assuming any prior fiducial
cosmological model. The error associated withDp, say σDp

,
is obtained from the reconstructed function EðzÞ along
with its associated error uncertainties σEðzÞ described in
Eq. (13), and is given by,

σ2Dp
ðzÞ ≃ 1

4

X
i

ðziþ1 − ziÞ2
�
σ2Eiþ1

E4
iþ1

þ σ2Ei

E4
i

�
: ð15Þ

From this reconstructed Dp, we can calculate the
normalized transverse comoving distance D from the
Hubble data as,

DðzÞ ¼

8>>><
>>>:

1ffiffiffiffiffiffi
Ωk0

p sinh ½ ffiffiffiffiffiffiffiffi
Ωk0

p
DpðzÞ� Ωk0 > 0;

DpðzÞ Ωk0 ¼ 0;
1ffiffiffiffiffiffiffiffi
−Ωk0

p sin ½ ffiffiffiffiffiffiffiffiffiffiffi
−Ωk0

p
DpðzÞ� Ωk0 < 0:

ð16Þ

The error σD of the reconstructed D from the Hubble
data is,

σDðzÞ ¼

8>><
>>:

cosh ½ ffiffiffiffiffiffiffiffi
Ωk0

p
DpðzÞ� σDp

ðzÞ Ωk0 > 0;

σDp
ðzÞ Ωk0 ¼ 0;

cos ½ ffiffiffiffiffiffiffiffiffiffiffi
−Ωk0

p
DpðzÞ� σDp

ðzÞ Ωk0 < 0:

ð17Þ

Steinhardt et al. [68] lists the corrected distance modulus
μ corresponding to different redshift z, along with their
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respective error uncertainties, from supernovae observa-
tions following the BEAMS with bias corrections (BBC)
[111] framework.
The total uncertainty matrix of observed distance modu-

lus given by,

Σμ ¼ Cstat þCsys; ð18Þ

where both the statistical covariance matrix Cstat and the
systematic errors Csys are included in our calculation.
With another Gaussian process on the observed distance

modulus of the SN-Ia data, we reconstruct μSN and the
associated error uncertainties σμSN , at the same redshift as
that of the Hubble data. The subscript SN stands for
supernova.
The distance modulus is theoretically given by,

μ ¼ 5 log10

�
dL
Mpc

�
þ 25: ð19Þ

Here, dL is the luminosity distance. This dL is related to
the normalized transverse comoving distance D as,

dLðzÞ ¼ dMð1þ zÞ ¼ cð1þ zÞD
H0

: ð20Þ

Substituting Eq. (16) in Eq. (19), we estimate the
reconstructed distance modulus from the Hubble data,
say μH along with its 1σ error uncertainty σμH

as,

μH ¼ 5 log10

�
cð1þ zÞD

H0

�
þ 25; ð21Þ

σμH
¼ 5

ln 10
σD
D

: ð22Þ

Equations (16), (17), (21), and (22) will finally be
utilized for obtaining the contour plots between Ωk0 and
H0 at different confidence levels.
Finally we constrain the curvature density parameter Ωk0

and the Hubble parameter H0 simultaneously by minimiz-
ing the χ2 statistics. The χ2 function is given by,

χ2 ¼ ΔμTΣ−1Δμ: ð23Þ

Δμ ¼ μSN − μH is the difference between the distance
moduli of Pantheon SN-Ia and that of the HðzÞ data. Σ ¼
σ2μSN þ σ2μH

is the total uncertainty matrix from combined
Pantheon and Hubble data.
We attempt to reconstruct Ωk0 directly for the following

combination of datasets,
(1) Set I

(a) N1—CCþ SN
(b) P1—CCþ SNþ P18
(c) R1—CCþ SNþ R19

(2) Set II
(a) N2—CCþ rBAOþ SN
(b) P2—CCþ rBAOþ SNþ P18
(c) R2—CCþ rBAOþ SNþ R19

We get the constraints on Ωk0 and H0 along with their
respective error uncertainties by a Markov Chain
Monte Carlo (MCMC) analysis with the assumption
of a uniform prior distribution for Ωk0 ∈ ½−1; 1� and
H0 ∈ ½50; 100� in case of the N1 and N2 combinations
respectively. For the P1 and P2 combinations, we consider
the P18 Gaussian H0 prior whereas, for R1 and R2
combinations, the R19 Gaussian H0 prior has been
used.
In this work, we adopt a python implementation of the

ensemble sampler for MCMC, the publicly available
EMCEE,3 introduced by Foreman-Mackey et al. [112].
The best fit results along with their respective 1σ, 2σ,
and 3σ uncertainties is given in Table I. We plot the results
using the GETDIST

4 module of python, developed by Lewis
[113]. The plots for the marginalized distributions with 1σ
and 2σ confidence contours for Ωk0 and H0 are shown in
Figs. 1, 2, 3, and 4 considering the squared exponential,
Matérn 9=2, Cauchy and rational quadratic covariance
respectively.
The reconstructed Ωk0 for the N1 combination are

consistent with spatial flatness within 2σ confidence level
(CL) for the squared exponential, Matérn 9=2 and Cauchy
covariance functions, and within 3σ CL for the rational
quadratic covariance. With the addition of rBAO data in
Set II, the constraints on Ωk0 become tighter. From the
combined N2 dataset, we find that Ωk0 is consistent with a
spatially flat universe at 1σ CL for the squared exponential,
Matérn 9=2 and Cauchy covariance, whereas in 2σ for the
rational quadratic kernel. The best-fit values shows an
inclination toward a closed universe for N1 and N2 data-
sets. The degeneracy between H0 and Ωk0 along with their
correlation has also been shown.
We also examine if the two different strategies for

determining value of H0, with conflicting results, affect
the reconstruction significantly. We plot the marginalized
distributions with 1σ and 2σ confidence contours for Ωk0
and H0 using the P1 and P2 combinations considering the
P18 prior on H0, and for the R1 and R2 combinations
considering the R19 prior on H0 in Figs. 1–4. With the
inclusion of the P18 data prior we see that the best-fit values
of Ωk0 favor a spatially open universe, whereas in case of
the choice of R19 as a prior, the best-fit values of the
constrained Ωk0 shows that the combined data favors a
spatially closed universe. However, a spatially flat universe
is mostly included at 2σ CL for both cases.

3https://github.com/dfm/emcee.
4https://github.com/cmbant/getdist.
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FIG. 1. Contour plots and the marginalized likelihood of H0 and Ωk0 considering the squared exponential covariance for Set I (left)
and Set II (right). The solid lines represent the results for N1 and N2 dataset combination, dash-dot lines corresponds to the P1 and P2
dataset combination, and the dashed lines represent the results for R1 and R2 dataset combinations. The associated 1σ, 2σ confidence
contours are shown along with the respective marginalized likelihood functions.

FIG. 2. Contour plots and the marginalized likelihood of H0 and Ωk0 considering the Matérn 9=2 covariance for Set I (left) and Set II
(right). The solid lines represent the results for N1 and N2 dataset combination, dash-dot lines corresponds to the P1 and P2 dataset
combination, and the dashed lines represent the results for R1 and R2 dataset combinations. The associated 1σ, 2σ confidence contours
are shown along with the respective marginalized likelihood functions.

FIG. 3. Contour plots and the marginalized likelihood of H0 and Ωk0 considering the Cauchy covariance for Set I (left) and Set II
(right). The solid lines represent the results for N1 and N2 dataset combination, dash-dot lines corresponds to the P1 and P2 dataset
combination, and the dashed lines represent the results for R1 and R2 dataset combinations. The associated 1σ, 2σ confidence contours
are shown along with the respective marginalized likelihood functions.
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VI. THERMODYNAMIC CONSISTENCY OF Ωk0
CONSTRAINTS

In this section, the consistency of constraints obtained on
Ωk0 with the second law of thermodynamics is looked at.
We assume the universe as a system is bounded by a
cosmological horizon, and the matter content of the
universe is enclosed within a volume defined by a radius
not bigger than the horizon [114–116]. In cosmology, the
apparent horizon rA serves as the cosmological horizon,
which is given by the equation gμνR;μR;ν ¼ 0, where
R ¼ aðtÞr is the proper radius of the 2-sphere and r is
the comoving radius. For the FLRW universe with a spatial
curvature index k, the apparent horizon is thus given by

rA ¼
�
H2 þ k

a2

�
−1
2

: ð24Þ

For k ¼ 0, the apparent horizon reduces to the Hubble
horizon rH ¼ 1

H.
Now, the entropy of the horizon SA can be written

as [117],

SA ¼ 8π2r2A ¼ 8π2

H2 þ k
a2
: ð25Þ

For the second law to be valid, the entropy S should be
nondecreasing with respect to the expansion of the uni-
verse. If Sf and SA stand for the entropy of the fluid
describing the observable universe, and that of the horizon
containing the fluid, respectively, then the total entropy of
the system, i.e., S ¼ Sf þ SA, should satisfy the relation

dS
da

≡ dSf
da

þ dSA
da

≥ 0: ð26Þ

Recently Ferreira and Pavón [35] gave a prescription to
ascertain the signature of k from the second law of
thermodynamics. It is a fair assumption that the entropy
of the observable universe is dominated by that of the
cosmic horizon SA [118]. So, the second law can be safely
written as [35],

dSA
da

≥ 0: ð27Þ

Using Eq. (25) in (27) one can obtain the following
condition,

H
dH
da

≤
k
a3

: ð28Þ

The inequality (28) can be rewritten, with a bit of simple
algebraic exercise, as

1þ q ≥ Ωk: ð29Þ

Here q is the deceleration parameter which gives a
dimensionless measure of the cosmic acceleration and is
defined as,

q ¼ −
ä

aH2
¼ −1þ ð1þ zÞH

0

H
: ð30Þ

Testing the thermodynamic validity for the obtained
constraints on Ωk0 requires a reconstruction of q0 from the
respective combination of datasets. Quite a lot of work on a
nonparametric reconstruction of the cosmic deceleration
parameter q is already there in the literature. Some of them

FIG. 4. Contour plots and the marginalized likelihood of H0 and Ωk0 considering the rational quadratic covariance for Set I (left) and
Set II (right). The solid lines represent the results for N1 and N2 dataset combination, dash-dot lines corresponds to the P1 and P2 dataset
combination, and the dashed lines represent the results for R1 and R2 dataset combinations. The associated 1σ, 2σ confidence contours
are shown along with the respective marginalized likelihood functions.
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can be found in [50–54,56]. The list, however, is far from
being exhaustive. We use the same datasets, that were used
for the reconstruction of Ωk0, to find the corresponding
values of q0. Avery brief methodology is the following. For
a more detailed technical description, we refer to [50,57].
The comoving distance DðzÞ, and its derivatives D0ðzÞ and
D00ðzÞ are reconstructed with respect to z for different
combinations of datasets. The uncertainty in DðzÞ from the
corresponding dataset is taken into account. For the CC and
rBAO data, we convert the H − σH data to E-σE dataset
using Eqs. (9) and (13).D0ðzÞ is then connected toDðzÞ and
EðzÞ via Eq. (12) as,

D0ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þΩk0D2ðzÞ

p
EðzÞ : ð31Þ

Thus, we take into account the E data points, the
uncertainty associated σE while performing the GP

reconstruction. We add two extra points Dð0Þ ¼ 0 to the
D dataset, and Eð0Þ ¼ 1 to the E data before proceeding
with the reconstruction. We obtain the reconstructed values
of DðzÞ, D0ðzÞ and D00ðzÞ at the present epoch, along with
their error uncertainties. Now, q can be rewritten as a
function of DðzÞ and its derivatives as,

qðzÞ ¼ −1þ Ωk0DD02 − ð1þ Ωk0D2ÞD00

D0ð1þΩk0D2Þ ð1þ zÞ: ð32Þ

Using the reconstructed Dð0Þ, D0ð0Þ, and D00ð0Þ, we
obtain the values of 1þ q0, shown in the third column of
Table I. Equation (29) asserts that Ωk0 ≤ 1þ q0 for the
second law to be valid. We see that for all combinations, the
second law is satisfied by a generous margin, independent
of the choice of the kernel.

TABLE I. The best fit values of Ωk0, H0, and reconstructed 1þ q0 along with their 1σ, 2σ, and 3σ uncertainties from different
combinations of datasets, for four choices of the covariance function using the background data.

Dataset κðz; z̃Þ H0 Ωk0 1þ q0

N1 68.30þ0.56þ1.09þ1.67
−0.55−1.06−1.59 −0.05þ0.11þ0.21þ0.32

−0.10−0.20−0.31 0.49þ0.06þ0.12þ0.18
−0.06−0.13−0.19

N2 68.94þ0.39þ0.76þ1.15
−0.39−0.75−1.14 0.02þ0.08þ0.16þ0.24

−0.09−0.16−0.25 0.42þ0.03þ0.06þ0.09
−0.03−0.06−0.09

P1 Squared 68.85þ0.16þ0.31þ0.46
−0.16−0.31−0.46 0.11þ0.05þ0.11þ0.16

−0.05−0.11−0.16 0.46þ0.06þ0.12þ0.18
−0.06−0.12−0.18

P2 Exponential 69.37þ0.11þ0.22þ0.33
−0.11−0.22−0.33 0.07þ0.04þ0.08þ0.12

−0.04−0.08−0.12 0.39þ0.03þ0.06þ0.10
−0.03−0.06−0.10

R1 69.08þ0.52þ1.02þ1.54
−0.52−1.03−1.55 0.07þ0.10þ0.19þ0.29

−0.11−0.21−0.31 0.45þ0.06þ0.12þ0.18
−0.06−0.12−0.18

R2 69.29þ0.37þ0.72þ1.10
−0.37−0.73−1.10 0.07þ0.08þ0.15þ0.23

−0.08−0.16−0.24 0.40þ0.03þ0.06þ0.09
−0.03−0.06−0.09

N1 68.91þ0.56þ1.13þ1.72
−0.56−1.10−1.65 −0.15þ0.10þ0.21þ0.32

−0.10−0.20−0.31 0.50þ0.05þ0.11þ0.15
−0.05−0.10−0.16

N2 68.81þ0.35þ0.69þ1.06
−0.35−0.68−1.03 −0.04þ0.08þ0.15þ0.22

−0.07−0.14−0.22 0.43þ0.05þ0.09þ0.14
−0.05−0.09−0.14

P1 Matérn 68.86þ0.17þ0.33þ0.49
−0.17−0.33−0.49 0.07þ0.06þ0.11þ0.17

−0.06−0.11−0.17 0.51þ0.05þ0.10þ0.15
−0.05−0.10−0.15

P2 9=2 69.32þ0.12þ0.24þ0.36
−0.12−0.24−0.36 0.05þ0.04þ0.08þ0.12

−0.04−0.08−0.13 0.40þ0.04þ0.08þ0.13
−0.04−0.08−0.13

R1 68.63þ0.55þ1.09þ1.64
−0.53−1.04−1.57 −0.05þ0.11þ0.21þ0.31

−0.10−0.20−0.30 0.52þ0.05þ0.12þ0.17
−0.05−0.11−0.16

R2 69.04þ0.32þ0.64þ0.96
−0.32−0.63−0.95 −0.01þ0.07þ0.14þ0.21

−0.07−0.14−0.21 0.43þ0.04þ0.08þ0.12
−0.04−0.08−0.12

N1 69.59þ0.58þ1.15þ1.77
−0.57−1.13−1.68 −0.19þ0.10þ0.20þ0.31

−0.10−0.20−0.29 0.41þ0.07þ0.13þ0.20
−0.07−0.13−0.21

N2 68.91þ0.33þ0.66þ0.99
−0.33−0.64−0.97 −0.06þ0.07þ0.14þ0.21

−0.07−0.14−0.21 0.41þ0.04þ0.07þ0.11
−0.04−0.07−0.11

P1 68.94þ0.16þ0.32þ0.49
−0.16−0.32−0.49 0.07þ0.06þ0.11þ0.17

−0.06−0.12−0.17 0.45þ0.07þ0.13þ0.19
−0.07−0.14−0.19

P2 Cauchy 69.35þ0.12þ0.23þ0.35
−0.12−0.23−0.35 0.05þ0.04þ0.08þ0.12

−0.04−0.08−0.13 0.38þ0.04þ0.07þ0.11
−0.04−0.07−0.11

R1 70.23þ0.55þ1.09þ1.67
−0.54−1.06−1.59 −0.10þ0.10þ0.20þ0.30

−0.10−0.19−0.29 0.38þ0.07þ0.15þ0.21
−0.07−0.14−0.20

R2 69.18þ0.33þ0.64þ0.96
−0.32−0.63−0.95 −0.01þ0.07þ0.14þ0.21

−0.07−0.14−0.21 0.39þ0.04þ0.07þ0.11
−0.04−0.07−0.11

N1 70.46þ0.62þ1.22þ1.87
−0.62−1.21−1.83 −0.26þ0.10þ0.20þ0.31

−0.10−0.21−0.31 0.37þ0.07þ0.14þ0.20
−0.07−0.13−0.20

N2 68.95þ0.34þ0.67þ1.02
−0.33−0.65−0.99 −0.08þ0.08þ0.15þ0.22

−0.07−0.14−0.22 0.41þ0.04þ0.07þ0.11
−0.04−0.08−0.11

P1 Rational 68.99þ0.17þ0.34þ0.52
−0.17−0.34−0.52 0.06þ0.06þ0.12þ0.18

−0.06−0.12−0.19 0.45þ0.07þ0.13þ0.20
−0.07−0.13−0.20

P2 Quadratic 69.35þ0.13þ0.25þ0.38
−0.13−0.25−0.38 0.04þ0.05þ0.09þ0.14

−0.05−0.09−0.14 0.38þ0.04þ0.08þ0.12
−0.04−0.08−0.12

R1 71.03þ0.57þ1.22þ1.70
−0.56−1.11−1.68 −0.19þ0.10þ0.20þ0.30

−0.10−0.20−0.30 0.37þ0.06þ0.12þ0.17
−0.06−0.12−0.17

R2 69.23þ0.34þ0.66þ1.00
−0.33−0.64−0.97 −0.03þ0.08þ0.15þ0.22

−0.07−0.14−0.22 0.39þ0.04þ0.07þ0.11
−0.04−0.07−0.11
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VII. RECONSTRUCTION ALONG WITH THE
PERTURBATION DATA

Redshift-space distortions are an effect in observational
cosmology where the spatial distribution of galaxies
appears distorted when their positions are looked at as a
function of their redshift, rather than as functions of their
distances. This effect occurs due to the peculiar velocities
of the galaxies causing a Doppler shift in addition to the
redshift caused by the cosmological expansion. The growth
of large structure can not only probe the background
evolution of the universe, but also distinguish between
GR and different modified gravity theories [119,120].
Recently, nonparametric constraints on the Hubble param-
eter H and the matter density parameter Ωm were obtained
using the data from cosmic chronometers, type-Ia super-
novae, baryon acoustic oscillations and redshift-space
distortions, assuming a spatially flat universe [121]. In
this section, we propose a nonparametric method to use the
growth rate data measured from RSDs to constrain the
spatial curvature.
In a background universe filled with matter and dark

energy, the evolution of matter density contrast is given by,

δ ¼ δρm
ρm

: ð33Þ

In the linearized approximation, δ obeys the following
second order differential equation for its evolution,

δ̈þ 2H _δ − 4πGeffρmδ ¼ 0; ð34Þ

where ρm is the background matter density, δρm represents
its first-order perturbation, and the “dot” denotes derivative
with respect to cosmic time t. Note that Geff is the effective
gravitational constant. For Einstein’s GR, Geff reduces to
the Newton’s gravitational constant G. Considering the
growth factor fðaÞ ¼ d ln δ

d ln a, Gong et al. [122] provided an
approximate solution to Eq. (34) as,

fðzÞ ¼ Ωγ
m þ

�
γ −

4

7

�
Ωk: ð35Þ

Here, Ωm ¼ Ωm0ð1þzÞ3
E2ðzÞ is the matter density parameter,

Ωk ¼ Ωk0ð1þzÞ2
E2ðzÞ is the curvature density parameter and

EðzÞ ¼ HðzÞ
H0

. The growth index γ depends on the model.

For the ΛCDM model, fðzÞ ≃ Ωγ
m, and γ ¼ 6=11 is a

solution to Eq. (34) where the terms Oð1 −ΩmÞ2 are
neglected [123]. For dark energy models with slowly
varying equation of state γ ≃ 0.55 [124]. For modified
gravity models, different values have been predicted in
literature, such as γ ≃ 0.68 for Dvali-Gabadadze-Porrati
(DGP) model [125,126]. The RSD data measure the
quantity fσ8, defined by,

fσ8ðzÞ ¼ fðzÞσ8;0
δðzÞ
δ0

;

¼ σ8;0 fðzÞ exp
�Z

z

0

−
fðz0Þ
1þ z0

dz0
�
; ð36Þ

where σ8 is the linear theory root-mean-square mass
fluctuation within a sphere of radius 8h−1 Mpc [127–131],
h being the dimensionless Hubble parameter at the
present epoch.
On substituting Eq. (35) in (36) we get,

fσ8ðzÞ ¼ σ8;0

�
Ωγ

m þ
�
γ −

4

7

�
Ωk

�

× exp

�Z
z

0

−
½Ωγ

m þ ðγ − 4
7
ÞΩk�

1þ z0
dz0

�
: ð37Þ

We proceed with the integration of Eq. (37) numerically
using the composite trapezoidal rule as in Eq. (14). The
reconstructed EðzÞ function from CC and CCþ rBAO data
are considered. For the Pantheon data, we make use of
Eqs. (16) and (17).
Here we consider the following combination of datasets,
(1) Set III

(a) N3—CCþ SNþ RSD
(b) P3—CCþ SNþ RSDþ P18
(c) R3—CCþ SNþ RSDþ R19

(2) Set IV
(a) N4—CCþ rBAOþ SNþ RSD
(b) P4—CCþ rBAOþ SNþ RSDþ P18
(c) R4—CCþ rBAOþ SNþ RSDþ R19

We use the GP method to reconstruct the function fσ8ðzÞ
from RSD data. Finally, we constrain the cosmological
parameters Ωm0, Ωk0, σ8;0, and γ utilizing the χ2 minimi-
zation technique. The uncertainties associated are estimated
via a Markov Chain Monte Carlo analysis. The best fit
results along with their respective 1σ, 2σ, and 3σ uncer-
tainties is given in Table II. Plots for the marginalized
posteriors with 1σ and 2σ confidence contours using the
Set III and Set IV data combinations are shown in Figs. 5, 6,
7, and 8, for the squared exponential, Matérn 9=2, Cauchy
and rational quadratic covariance respectively.
The marginalized Ωk0 constraints for the N3 combina-

tion is consistent with spatial flatness within 1σ CL for the
squared exponential and Matérn 9=2 covariance, within 2σ
for the Cauchy covariance and within 3σ for the rational
quadratic covariance. For the N4 combination, recon-
structed Ωk0 lies with 1σ for all four kernel choices.
Considering the P18 and R19 H0 prior, it is seen that
the squared exponential kernel includesΩk0 ¼ 0 for P3, P4,
R4 combinations within 1σ and for the R3 combination
within 2σ. The Matérn 9=2 kernel includes Ωk0 ¼ 0 for all
P3, P4, R3, R4 combinations within 1σ. The Cauchy kernel
includes Ωk0 ¼ 0 for the P3, R3 combination in 2σ, and for
the P4, R4 combination in 1σ CL. Lastly, utilizing the

CONSTRAINING THE CURVATURE DENSITY PARAMETER IN … PHYS. REV. D 105, 063516 (2022)

063516-9



rational quadratic kernel, Ωk0 ¼ 0 is included in 3σ for the
P3 and R3 combination, whereas in 2σ for the P4, R4
combination. Inclusion of rBAO data leads to tighter
constraints on Ωk0, and the best-fit values are seen to favor
a spatially open universe (see Table II).
The reconstructed values of γ show that the ΛCDM

model is mostly included in 2σ and always in 3σ, except for
the rational quadratic kernel. From Table II, it can been
seen that for the N4, P4, and R4 combinations, the ΛCDM
model in not included in 3σ considering the rational
quadratic kernel, and marginally included in 3σ while
using the Cauchy covariance.

VIII. DISCUSSION

In the present work, constraints on the cosmic curvature
density parameter Ωk0 have been obtained from different
cosmological probes with the help of a nonparametric
reconstruction. The cosmic chronometer and the radial

baryon acoustic oscillation measurements of the Hubble
parameter, the recent supernova compilation of the cor-
rected Pantheon sample, along with measurement of the
redshift space distortions which measure the growth of
large structure are utilized for the purpose. The widely used
Gaussian process and the Markov Chain Monte Carlo
method have been employed in this work. The analysis has
been performed for four choices of the covariance function,
namely the squared exponential, Matérn 9=2, Cauchy and
rational quadratic kernel. The choice of covariance function
involves some discretion and thus a bit subjective. The use
of various choices of covariance makes the present inves-
tigation quite exhaustive in that respect.
The reconstructed Ωk0 obtained by combining the CC

and Pantheon data are consistent with spatial flatness
within 1σ confidence level for the squared exponential
covariance function, within 2σ CL level for the Matérn 9=2
and Cauchy covariance function, and within 3σ CL for the
rational quadratic covariance. Including the rBAO data to

TABLE II. The best fit values of Ωm0, Ωk0, σ8;0, and γ along with their 1σ, 2σ, and 3σ uncertainties from different combinations of
datasets for four choices of the covariance function using the background and perturbation data.

Set κðz; z̃Þ Ωm0 Ωk0 σ8;0 γ

N3 0.204þ0.042þ0.082þ0.126
−0.041−0.079−0.121 0.040þ0.152þ0.285þ0.419

−0.161−0.313−0.483 0.952þ0.074þ0.163þ0.296
−0.063−0.116−0.171 0.629þ0.053þ0.139þ0.311

−0.045−0.094−0.148

N4 0.196þ0.023þ0.044þ0.068
−0.023−0.045−0.065 −0.097þ0.105þ0.205þ0.299

−0.102−0.202−0.314 0.964þ0.039þ0.082þ0.120
−0.034−0.063−0.090 0.619þ0.020þ0.040þ0.066

−0.020−0.041−0.079

P3 Squared 0.199þ0.042þ0.083þ0.125
−0.041−0.075−0.099 0.077þ0.084þ0.159þ0.212

−0.091−0.178−0.265 0.961þ0.077þ0.159þ0.232
−0.065−0.118−0.164 0.626þ0.049þ0.102þ0.174

−0.049−0.095−0.132

P4 Exponential 0.185þ0.021þ0.041þ0.066
−0.021−0.043−0.063 0.007þ0.065þ0.127þ0.218

−0.063−0.122−0.186 0.976þ0.040þ0.089þ0.141
−0.036−0.067−0.100 0.618þ0.023þ0.047þ0.103

−0.023−0.050−0.078
R3 0.203þ0.032þ0.064þ0.096

−0.033−0.064−0.108 0.078þ0.073þ0.144þ0.212
−0.077−0.155−0.232 0.885þ0.063þ0.132þ0.250

−0.052−0.098−0.144 0.688þ0.058þ0.139þ0.278
−0.050−0.098−0.156

R4 0.159þ0.020þ0.042þ0.077
−0.021−0.041−0.056 0.005þ0.061þ0.115þ0.171

−0.060−0.119−0.228 0.963þ0.045þ0.097þ0.148
−0.040−0.076−0.117 0.625þ0.026þ0.052þ0.079

−0.027−0.056−0.081

N3 0.227þ0.041þ0.079þ0.117
−0.040−0.074−0.105 −0.110þ0.155þ0.307þ0.445

−0.155−0.312−0.498 0.897þ0.057þ0.118þ0.183
−0.048−0.089−0.125 0.615þ0.036þ0.072þ0.118

−0.034−0.066−0.097

N4 0.227þ0.027þ0.053þ0.079
−0.026−0.049−0.074 −0.026þ0.104þ0.202þ0.297

−0.104−0.215−0.322 0.897þ0.039þ0.076þ0.125
−0.034−0.064−0.090 0.633þ0.025þ0.052þ0.082

−0.026−0.050−0.078
P3 Matérn 0.228þ0.038þ0.077þ0.114

−0.038−0.077−0.108 −0.044þ0.089þ0.175þ0.264
−0.090−0.176−0.270 0.903þ0.055þ0.125þ0.195

−0.048−0.091−0.127 0.615þ0.037þ0.073þ0.114
−0.035−0.073−0.107

P4 9=2 0.221þ0.025þ0.049þ0.076
−0.024−0.047−0.066 0.018þ0.067þ0.128þ0.185

−0.067−0.131−0.196 0.902þ0.038þ0.077þ0.115
−0.035−0.065−0.095 0.632þ0.027þ0.054þ0.083

−0.026−0.051−0.072
R3 0.220þ0.032þ0.064þ0.100

−0.032−0.062−0.093 −0.031þ0.083þ0.159þ0.235
−0.081−0.159−0.242 0.853þ0.048þ0.102þ0.171

−0.042−0.079−0.115 0.651þ0.039þ0.080þ0.125
−0.036−0.070−0.107

R4 0.178þ0.024þ0.049þ0.076
−0.023−0.045−0.065 0.034þ0.065þ0.124þ0.177

−0.063−0.123−0.188 0.907þ0.046þ0.096þ0.147
−0.040−0.076−0.110 0.629þ0.031þ0.061þ0.093

−0.030−0.061−0.094

N3 0.245þ0.040þ0.078þ0.120
−0.038−0.073−0.115 −0.227þ0.146þ0.291þ0.426

−0.164−0.318−0.494 0.855þ0.047þ0.099þ0.169
−0.041−0.075−0.107 0.608þ0.029þ0.059þ0.089

−0.029−0.056−0.091

N4 0.278þ0.027þ0.053þ0.080
−0.026−0.050−0.076 −0.015þ0.104þ0.198þ0.295

−0.108−0.208−0.314 0.820þ0.029þ0.061þ0.097
−0.028−0.052−0.076 0.663þ0.028þ0.060þ0.099

−0.026−0.048−0.071
P3 0.246þ0.039þ0.076þ0.115

−0.039−0.082−0.132 −0.137þ0.092þ0.183þ0.285
−0.091−0.180−0.273 0.868þ0.049þ0.114þ0.229

−0.042−0.077−0.110 0.602þ0.031þ0.062þ0.098
−0.031−0.065−0.127

P4 Cauchy 0.275þ0.024þ0.048þ0.073
−0.024−0.047−0.071 0.017þ0.063þ0.124þ0.183

−0.067−0.130−0.196 0.821þ0.029þ0.060þ0.095
−0.027−0.051−0.075 0.665þ0.027þ0.055þ0.086

−0.026−0.050−0.074
R3 0.238þ0.032þ0.063þ0.092

−0.032−0.063−0.092 −0.123þ0.081þ0.159þ0.246
−0.080−0.161−0.243 0.823þ0.041þ0.087þ0.136

−0.036−0.067−0.096 0.633þ0.031þ0.061þ0.097
−0.030−0.059−0.090

R4 0.236þ0.024þ0.048þ0.072
−0.024−0.045−0.072 0.022þ0.059þ0.115þ0.169

−0.061−0.119−0.179 0.807þ0.033þ0.067þ0.112
−0.030−0.057−0.083 0.679þ0.031þ0.063þ0.102

−0.030−0.058−0.092

N3 0.271þ0.039þ0.079þ0.120
−0.040−0.079−0.118 −0.305þ0.155þ0.298þ0.453

−0.163−0.333−0.509 0.799þ0.039þ0.083þ0.133
−0.034−0.064−0.094 0.599þ0.025þ0.051þ0.096

−0.024−0.049−0.075

N4 0.426þ0.045þ0.090þ0.135
−0.045−0.090−0.169 0.049þ0.117þ0.236þ0.375

−0.121−0.235−0.351 0.657þ0.027þ0.057þ0.095
−0.024−0.045−0.066 0.819þ0.050þ0.118þ0.239

−0.042−0.081−0.119

P3 Rational 0.280þ0.040þ0.078þ0.119
−0.040−0.078−0.124 −0.186þ0.096þ0.184þ0.269

−0.098−0.191−0.292 0.811þ0.039þ0.082þ0.141
−0.035−0.063−0.092 0.594þ0.026þ0.053þ0.082

−0.026−0.052−0.082
P4 Quadratic 0.367þ0.024þ0.048þ0.073

−0.024−0.047−0.072 0.110þ0.070þ0.140þ0.208
−0.070−0.140−0.218 0.703þ0.024þ0.048þ0.074

−0.022−0.043−0.063 0.766þ0.045þ0.101þ0.167
−0.038−0.071−0.103

R3 0.265þ0.032þ0.062þ0.097
−0.032−0.063−0.092 −0.162þ0.085þ0.165þ0.250

−0.090−0.179−0.267 0.777þ0.033þ0.069þ0.107
−0.030−0.055−0.083 0.618þ0.025þ0.050þ0.080

−0.025−0.049−0.073

R4 0.331þ0.024þ0.047þ0.070
−0.024−0.047−0.069 0.082þ0.062þ0.124þ0.182

−0.062−0.124−0.185 0.672þ0.023þ0.047þ0.075
−0.022−0.042−0.060 0.807þ0.050þ0.109þ0.170

−0.041−0.076−0.110
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the analysis results in tighter constraints on Ωk0.
Combining the CC and Pantheon data with the BAO data,
it can be seen that Ωk0 is consistent with a spatially flat
universe at the 1σ CL for the squared exponential, Matérn
9=2 and Cauchy covariance, whereas in 2σ for the rational

quadratic kernel. The best-fit values show an inclination
toward a closed universe in these cases. This result
is obtained without using any given H0 priors. We then
introduce the P18 and R19 H0 measurements as priors in
our analysis and examine their effect on the reconstruction.

FIG. 5. Contour plots and the marginalized likelihood of H0 and Ωk0 considering the squared exponential covariance for Set III (left)
and Set IV (right). The solid lines represent the results for N3 and N4 dataset combination, dash-dot lines corresponds to the P3 and P4
dataset combination, and the dashed lines represent the results for R3 and R4 dataset combinations. The associated 1σ, 2σ confidence
contours are shown along with the respective marginalized likelihood functions.

FIG. 6. Contour plots and the marginalized likelihood of H0 and Ωk0 considering the Matérn 9=2 covariance for Set III (left) and
Set IV (right). The solid lines represent the results for N3 and N4 dataset combination, dash-dot lines corresponds to the P3 and P4
dataset combination, and the dashed lines represent the results for R3 and R4 dataset combinations. The associated 1σ, 2σ confidence
contours are shown along with the respective marginalized likelihood functions.
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Plots reveal that the best-fit values of Ωk0 favor a spatially
open universe for the P18 prior choice, whereas the R19
prior favors a spatially closed universe, except for the
squared exponential kernel which favors a spatially open
universe for both the P18 and R19 priors. However, a

spatially flat universe is mostly included at 2σ CL for both
cases (see Table I).
Consistency with thermodynamic requirements imposed

by the generalized second law of thermodynamics for the
reconstructed constraints on Ωk0 from the background data

FIG. 7. Contour plots and the marginalized likelihood of H0 and Ωk0 considering the Cauchy covariance for Set III (left) and Set IV
(right). The solid lines represent the results for N3 and N4 dataset combination, dash-dot lines corresponds to the P3 and P4 dataset
combination, and the dashed lines represent the results for R3 and R4 dataset combinations. The associated 1σ, 2σ confidence contours
are shown along with the respective marginalized likelihood functions.

FIG. 8. Contour plots and the marginalized likelihood ofH0 and Ωk0 considering the rational quadratic covariance for Set III (left) and
Set IV (right). The solid lines represent the results for N3 and N4 dataset combination, dash-dot lines corresponds to the P3 and P4
dataset combination, and the dashed lines represent the results for R3 and R4 dataset combinations. The associated 1σ, 2σ confidence
contours are shown along with the respective marginalized likelihood functions.
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combinations are checked quite exhaustively. This has been
done with the help of the inequality very recently given by
Ferreira and Pavón [35] (see also Ref. [132]). It is quite
encouraging to see that the constraints obtained are quite
consistent with the thermodynamic requirements, indepen-
dent of the choice of the kernel for all possible combina-
tions of datasets (see Table I).
In addition to the background data, we also utilize the

RSD data to determine Ωk0 using two combination of
datasets, CCþ Pantheonþ RSD and CCþ rBAOþ
Pantheonþ RSD respectively. This inclusion does not help
in providing tighter constraints on Ωk0, but is essential as
the spatial curvature and the formation of large scale
structure should be compatible. We also include the R18
and P18H0 priors and see their effect on the reconstruction.
The results obtained are consistent with spatial flatness
mostly within 2σ and always within 3σ in the domain of the
reconstruction, 0 < z < 2 (see Table II).
The GP method has previously been used for con-

straining Ωk0 from observations. Li et al. [21] constrained
the spatial curvature to beΩk0 ¼ −0.045þ0.172

−0.172 with 22HðzÞ
and Union 2.1 SN-Ia data, and Ωk0 ¼ −0.140þ0.161

−0.158 con-
sidering the JLA SN-Ia data, which are in good agreement
with a spatially flat universe. Wei and Wu [22] extended
this analysis using different H0 priors and showed that the
local and globalH0 measurements can affect the constraints
on Ωk0. Wang et al. [25] showed that a spatially flat and
transparent universe is preferred by observations. The
results indicated a strong degeneracy between the curvature
parameter and cosmic opacity. From 100 simulated GWs
signals, Liao [26] found the results favored a spatially flat
universe with 0.057 uncertainty at 1σ, which was reduced
to 0.027 for 1000 GWs signals. On combining with the SN-
Ia data from DES, the uncertainty was further constrained
to 0.027 and 0.018 respectively. The analysis by Wei and
Melia [27] suggests that a mildly closed universe
(Ωk0 ¼ −0.918� 0.429) is preferred at the 1σ level using
quasars and CC data. Recently, Wang et al. [32] found a
spatially open universe is favored at 1σ CL using 31 CC-H
(z) measurements and simulated data form GWs, based on
the ANN method. Another nonparametric reconstruction of
Ωk0 utilizing different approaches like the principal com-
ponent analysis, genetic algorithms, binning with direct

error propagation and the Padé approximation, was carried
out by Sapone et al. [20]. Their results were in good
agreement with Ωk ¼ 0 at the 1σ CL.
Ourwork is similar to the recent works byYang andGong

[33] and Dhawan et al. [34], but there are quite a few
differences to list. Yang and Gong [33], Dhawan et al. [34]
have used the Pantheon compilation by Scolnic et al. [31] in
their analysis. However, in this work we have utilized the
very recent redshift corrected version of Pantheon compi-
lation by Steinhardt et al. [68]. Yang and Gong [33]
reconstructed the quantity Ωk0h2 so that the discrepancy
in the present value of Hubble parameter H0 is avoided.
Dhawan et al. [34] obtained constraints onΩk0 independent
of the absolute calibration of either the SN-Ia or CC
measurements. In this particular work, we have obtained
constraints on both Ωk0 and H0 form the combined CCþ
Pantheon data, thereby capturing the degeneracy or corre-
lation between them. Yang and Gong [33] imposed a zero
mean function, which follows thework Seikel et al. [40] and
is similar to our work. Dhawan et al. [34], on the other hand
used a mean nonzero constant prior equal to 100, following
Shafieloo et al. [41]. Utilizing solely the background data,
Yang and Gong [33] found the case for a spatially open
universe from the combined CC and Pantheon data at more
than 1σ CL considering the squared exponential covariance.
The present work starts with a zero mean prior similar to
[33], but the best-fit value for the combined CCþ Pantheon
data (N1) using the same squared exponential kernel favors a
spatially closed universe, and Ωk0 ¼ 0 is well included
within in 1σ CL. This result is similar in nature to that given
by Dhawan et al. [34] where the obtained constraints on
Ωk0 ¼ −0.03� 0.26 are consistent with spatial flatness at
the Oð10−1Þ level. The qualitative difference of the present
result with that obtained in [33] can stem from the fact that
we have used the redshift corrected version of the Pantheon
compilation [68].
Our conclusion is that although there is indeed a scope of

revisiting the notion of a spatially flat universe, but the
present state of affairs is still quite consistent with k ¼ 0.
Observations from future surveys, as well as more data on
high redshift observations of CC, SN, BAO, and other
observables should be able to provide tighter constraints
on Ωk0.
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