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Measurements of secondary cosmic microwave background (CMB) anisotropies, such as the Sunyaev-
Zel’dovich (SZ) effect, will enable new tests of neutrino and dark sector properties. The kinetic SZ (kSZ)
effect is produced by cosmological flows, probing structure growth. Ultralight axions (ULAs) are a well-
motivated dark-matter candidate. Here, the impact of ULA dark matter (with mass 10−27 to 10−23 eV) on
kSZ observables is determined, applying new analytic expressions for pairwise cluster velocities and
Ostriker-Vishniac signatures in structure-suppressing models. For the future CMB Stage 4 and ongoing
Dark Energy Spectroscopic Instrument galaxy surveys, the kSZ effect (along with primary anisotropies)
will probe ULA fractions ηa ¼ Ωaxion=ΩDM as low as ∼5% ifma ≃ 10−27 eV (at 95% C.L.), with sensitivity
extending up toma ≃ 10−25 eV. If reionization and the primary CMB can be adequately modeled, Ostriker-
Vishniac measurements could probe values ηa ≃ 10−3 if 10−27 eV≲ma ≲ 10−24 eV, or ηa ≃ 1 if
ma ≃ 10−22 eV, within the fuzzy dark matter window.
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I. INTRODUCTION

A standard cosmological model has been established,
using measurements of cosmic microwave background
(CMB) anisotropies [1–4], determinations of cosmic accel-
eration from Type Ia supernovae [5], and the clustering/
lensing of distant galaxies [6]. In this Λ cold-dark matter
(ΛCDM) model, the cosmic energy budget consists of
baryons, nonrelativistic dark matter (DM), neutrinos, and
“dark energy” (DE), with relic-density parameters of
Ωbh2 ¼ 0.0224� 0.0001, Ωch2 ¼ 0.1200� 0.0012, and
ΩDE ¼ 0.6847� 0.0073 [3].
The standard model (SM) of particle physics does not

contain compelling DM or DE candidates, signaling (along
with the hierarchy problem [7], the strong CP problem [8],
and neutrino mass [9]) that new physics is needed. Future
observations will include cosmic-variance limited measure-
ments of CMB polarization using the Simons Observatory
(SO) [10], CMB Stage 4 (CMB-S4) [11], and extensive
maps of large-scale structure (LSS) by the Vera C. Rubin

Observatory [12], the Dark Energy Spectroscopic
Instrument (DESI) [13], the Nancy Grace Roman Space
Telescope [14], and the Euclid satellite [15].
These efforts will test dark-sector physics, probing

neutrino masses [10,11], the number of light relics
[10,11], and the DE equation-of-state parameter [14,15],
as well as physical properties of DM [16]. The CMB’s
sensitivity to new physics will depend on secondary
anisotropies [17–22], such as CMB lensing and the
Sunyaev-Zel’dovich (SZ) effect, caused by the Compton
scattering of CMB photons by free electrons [17,23,24].
The SZ effect induces a CMB intensity change propor-

tional to ðve=cÞτ, where τ is the scattering optical-depth and
ve is the electron velocity. The SZ contribution from
thermal electrons is known as the thermal SZ (tSZ) effect
[23,25], while the bulk-flow contribution is known as the
kinetic (kSZ) effect [17,19]. The tSZ effect is measured
using its nonthermal spectrum [26]. In contrast, the kSZ
effect has a thermal spectrum and responds to real-time
structure growth [27,28], as electron peculiar velocities
scale as vpec;e ∝ _δ by the continuity equation, where δ is a
fractional overdensity and dots denote time derivatives*gsf29@cam.ac.uk
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[27,29–33]. The rms kSZ imprint on the CMB is ∼10 μK
and suppressed as v=c (compared to the tSZ effect), making
detection challenging.
Nonetheless, the kSZ effect due to bulk flows [32,34–37]

has been detected, using the cross-correlation of Atacama
Cosmology Telescope (ACT) CMB maps with Sloan
Digital Sky Survey (SDSS) LRG and CMASS galaxy data
[34,35], as well as other data, such as Planck and South
Pole Telescope (SPT) maps of the CMB, and the Baryon
Oscillation Spectroscopic Survey [32,36,38]. The kSZ
signature of mildly nonlinear fluctuations [known as the
Ostriker-Vishniac (OV) effect] could test models of cosmic
reionization [20,39–49].
Future kSZ measurements could probe neutrino masses

down to ≃33 meV [50], ∼5%-level changes to the DE
equation of state [51–53], and deviations from general
relativity [53,54]. We determine the response of kSZ
observables to ultralight axions (ULAs), hypothetical
particles that could contribute to the dark sector [55–58].
ULAs (with 10−33 eV≲ma ≲ 10−10 eV) are ubiquitous

in string-inspired scenarios, e.g., as Kaluza-Klein modes of
fields in extra dimensions [55,56,59–62], and behave as
“fuzzy”DM (FDM) [63]. Ifma ≳ 10−27 eV, ULAs begin to
dilute as matter (with density ρ ∝ a−3, for scale factor a)
before matter-radiation equality. There could be an “axi-
verse” of ULAs of many masses, with one solving the
strong-CP problem [8,55,57,60,64–69].
Via SM interactions, ULAs could be detected using

experiments and astronomical observations [70–85],
though we focus on gravitational effects [55,58,85,86].
ULAs suppress clustering on galactic scales due to their
large de Broglie wavelengths [63,87–92]. For masses
ma ≳ 10−22 eV, ULAs mitigate challenges to ΛCDM, such
as Milky-Way satellite populations [93–103] and galaxy
cores [104–110]. ULAs would alter the black-hole mass
spectrum and gravitational-wave signatures [111–119].
ULAs may even Bose condense [120–122]. For values
ma ≤ 10−23 eV, data allow a ∼1–5% ULA contribution to
DM [91,123–126]. ULA-like particles could resolve cos-
mological tensions [127–136], such as the ∼5σ tension
between CMB and supernovae inferences of the Hubble
constant H0.
CMB primary temperature anisotropies have been used

to impose the limitΩah2 ≤ 6 × 10−3 at the 95% C.L. [91] if
10−32 eV≲ma ≲ 10−25.5 eV, while polarization and CMB
lensing data require Ωah2 ≤ 3 × 10−3, with considerable
sensitivity extending to ma ≃ 10−24 eV [125]. Using lens-
ing, future efforts like SO and CMB-S4 will probe values as
low as Ωah2 ≤ 2 × 10−4 [10,11,137], with improvements
from galaxy lensing [138] and intensity mapping [139].
The power of CMB lensing motivates us to determine how
ULAs alter the kSZ effect.
We derive and evaluate the OV power spectrum in the

presence of structure-suppressing species (focused on
ULAs, but with applications to neutrinos and ark energy).

We find that ULA fractions of ∼10−3 might be probed
using future OVmeasurements. So far, kSZ detections have
been made by taking the difference between CMB temper-
ature measurements in the directions of galaxy clusters
[29,30,35,52,140–142], probing their pairwise velocities.
Clusters (with masses M ∼ 1014 M⊙) are the heaviest
collapsed objects, and their mass function responds to
ULAs [143]. We apply the halo model [144–155] to
explicitly derive (to our knowledge, for the first time in
the literature) expressions for cluster pairwise velocities in
structure-suppressing scenarios, which differ from those in
Refs. [50,52,53], with more physical behavior at small
scales.
We use AxionCAMB

1 [91,125,137] to obtain power spectra
and perturbation growth rates. We compute pairwise
velocities, which are suppressed at small scales. Our results
are summarized by Fig. 1. Compared to ΛCDM, cluster
galaxies are rarer, more biased, peaks in density, enhancing
velocities at large separations (as noted in Refs. [136,139]).
The effect can be large compared to typical peculiar

velocitis; the residual is as large as 200 km s−1 at comoving
separations r ¼ 50 Mpc h−1 for ma ¼ 5 × 10−26 eV or

FIG. 1. Impact of axions on mean-pairwise velocities of galaxy
clusters as a function of separation r, relative to ΛCDM
predictions. Curves are obtained as described in Secs. III B–
IV B. Velocities for unbiased tracers (dashed lines) are sup-
pressed below characteristic scales (dotted lines), where density
fluctuations drop to 90% of ΛCDM values. Due to structure
suppression, fixed tracers are higher significance peaks in the
density, making them more biased (peak boost behavior), and
thus enhanced relative to ΛCDM on large scales (solid lines). The
level of enhancement is dependent on the axion abundance ηa.

1
AxionCAMB [91], available at http://github.com/dgrin1/

axionCAMB, is a modified version of the Boltzmann code CAMB

[156]. The version of AxionCAMB used here is found at http://
github.com/gerrfarr/axionCAMB. The code used for kSZ pre-
dictions is available at https://github.com/gerrfarr/Axion-kSZ-
source.
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about ∼1.5 times the ΛCDM velocity at r ≥ 50 Mpc h−1.
We perform a sensitivity forecast, finding that CMB/LSS
data at S4 [11] and DESI [13] sensitivity levels will probe
ULA fractions of Ωa=ΩDM ∼ 10−2 forma ≃ 10−27 eV (with
comparable sensitivity up to ma ≃ 10−25 eV).
We begin in Sec. II by summarizing cosmological

aspects of ULAs. We continue in Sec. III by deriving
kSZ observables in ULA scenarios, beginning with the OV
effect, and continuing with pairwise halo velocity signa-
tures. In Sec. IV, we obtain numerical predictions as well
as a Fisher-matrix forecast for the sensitivity of kSZ mea-
surements to ULAs. We conclude in Sec. V. Expressions
for the OV power spectrum are derived in Appendix A.
Halo-model derivations are found in Appendix B, while
some numerical integration techniques/parameter degener-
acies are discussed in Appendices C and D, respectively.

II. ULA STRUCTURE FORMATION

ULAs with cosmologically relevant densities have
extremely high occupation numbers and may be modeled
as a classical wave (see Refs. [56,157] and references
therein). The ULA energy density is roughly constant at
early times and then transitions to DM-like dilution with
the cosmic expansion. Gradient energy in the scalar field
prevents localization of ULAs on length scales smaller than
their de Broglie wavelength λdB ¼ 1=ðmavÞ, leading to the
suppression of growth in cosmological structure for comov-
ing wave numbers k > 2π=ðaλdBÞ [56].
The fractional temperature difference induced by inverse

Compton scattering of CMB photons (the kSZ effect) off
ionized material in the intergalactic medium is given by the
integral along the line of sight [39]

ΔT
T

¼ −
Z

neσTe−τ½vðχr̂; aÞ · r̂�adχ; ð1Þ

where χ is the comoving distance along the line of sight, ne
is the electron density, σT is the Thomson cross section, τ is
the optical depth to χ, and vðχ ; aÞ is the bulk electron
velocity field. The unit vector r̂ points along the line
of sight.
On the other hand, it can be shown from the continuity

equation (e.g., Refs. [20,158]) that on subhorizon scales the
bulk electron velocity with Fourier wave vector k (and
magnitude k ¼ jkj) is given to linear order by [41]

ṽðk; tÞ ¼ ia
k2

HðaÞGðk; aÞ
G0ðkÞ

d lnG
d ln a

kδ0ðkÞ; ð2Þ

where the growth factor Gðk; aÞ describes the time depend-
ence of density perturbations,

Gðk; aÞ≡ δðk; aÞ
δðk; a ¼ 1Þ ; ð3Þ

and the 0 subscript stands for the present day (a ¼ 1).
As a result, the ULA-induced contribution to cosmic

structure formation will modify observations affected by
the kSZ effect. To assess this effect quantitatively, we must
first determine the evolution of linear perturbations in
ULA models. We begin with a summary of the changes
to linear cosmological perturbation theory induced by
ULAs, following closely the treatment in Ref. [91].
The background ULA field ϕ0 obeys the Klein-Gordon

(KG) equation in an expanding homogeneous Friedmann-
Robertson-Walker spacetime, which is

ϕ00
0 þ 2Hϕ0

0 þm2
aa2ϕ0 ¼ 0; ð4Þ

where ma is the ULA mass in natural units, a is the
cosmological scale factor, H ¼ a0=a is the conformal
Hubble parameter, and 0 denotes a derivative with respect
to conformal time η, defined by dη ¼ dt=a. ULAs make a
contribution

ρa ¼
ϕ0
0
2

2a2
þm2

aϕ
2
0

2a2
ð5Þ

to the total energy density and

Pa ¼
ϕ0
0
2

2a2
−
m2

aϕ
2
0

2a2
ð6Þ

to the total pressure, working in the quadratic approximation
to the full ULA potential [VðϕÞ ∝ ð1 − cosϕ=faÞ�≃
ϕ2=ð2f2aÞ, which is valid through most of the parameter
space of observational interest [91].2

Early on, ϕ0 rolls slowly with equation-of-state param-
eter (EOS) wa ≡ Pa=ρa ≃ −1. Once the Hubble parameter
H has fallen sufficiently for the condition 3H ≪ ma to be
satisfied, the field coherently oscillates with a period
Δt ∼ 1=ma, and so the cycle-averaged energy dilutes as
matter. In other words, hρai ∝ a−3 and hwai ≃ 0, where the
brackets hi denote a cycle average [160]. The transition
between these regimes occurs when a ¼ aosc, defined
by m ¼ 3HðaoscÞ.
If this transition occurs prior to matter-radiation equality

(after which most modes responsible for galaxy formation
enter the horizon); that is, if aosc ≤ aeq (matter-radiation
equality), we may think of ULAs as “DM-like” because
they begin to dilute as DM prior to the horizon entry of the
modes relevant for large-scale structure formation.

2See Refs. [97,159] for a discussion of interesting phenomena
in halo cores and linear-theory mode growth in the strongly
anharmonic portion of the potential.
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On the other hand, if this transition occurs after equality
(if aosc ≥ aeq), standard galaxy formation is altered if
ULAs are considered as a component of dark matter. In
this case, we can think of ULAs as “DE-like.” The
boundary between these two regimes occurs for a value
ma ∼ 10−27 eV. When using a halo-model approach with
ma ≲ 10−27 eV, there are subtle complications that arise
in determining if (and for which scales) ULAs should
be treated as a clustering component of the cosmological
density field [91,139,161]. Here, we restrict our attention to
DM-like ULAs and defer these lower-ma complications for
future investigation.
Perturbations to the ULA fluid (denoted ϕ1) obey the

perturbed version of Eq. (4), with additional terms due to
metric perturbations, which are sourced by ULAs and SM
fields through the Einstein equations. For a ULA field
fluctuation with Fourier wave vector k⃗, ULA contributions
to the metric are determined by their energy density
perturbation δρa, pressure perturbation δPa, and momen-
tum flux ua,

δρa ¼ a−2ϕ0
0ϕ

0
1 þm2

aϕ0ϕ1 − a2 _ϕ2
0A; ð7Þ

δPa ¼ a−2ϕ0
0ϕ

0
1 −m2

aϕ0ϕ1 − a2 _ϕ2
0A; ð8Þ

ua − ð1þ waÞB ¼ k
ϕ0
0ϕ1

ρaa2
; ð9Þ

where A is the scalar metric perturbation and B is the
longitudinal vector perturbation (in any chosen gauge). The
first term in both of Eqs. (7) and (8) is the perturbative
expansion of the canonical kinetic term for small field
fluctuation, while the second term comes from perturba-
tions to a quadratic potential. Equation (9) expresses the
velocity perturbation in terms of conformal-time derivative
of the background field and fluctuations ϕ1.
For our purposes, these perturbations are conveniently

(and exactly) described using the generalized dark matter
(GDM) equations of motion (EOM) [162], with Fourier-
space continuity and Euler equations that may be derived
directly from the perturbed KG equation. They are given in
synchronous gauge by

δ0a ¼ −kua − ð1þ waÞh0L=2 − 3Hð1 − waÞδa
− 9H2ð1 − c2adÞua=k; ð10Þ

u0a ¼ 2Hua þ kδa −
w0
a

kð1þ waÞ
ua; ð11Þ

where k is the Fourier wave mode number of the fractional
ULA density perturbation δa ¼ δρa=ρa and its correspond-
ing value of ua.
The term proportional to ua in the continuity equation,

Eq. (10), is present due to mass flux out of infinitesimal

volumes. The remaining terms in Eq. (10) are gauge-
dependent terms of relevance for superhorizon modes. The
synchronous gauge time-time metric perturbation is hL,
following the conventions of Ref. [158], which we use
throughout this discussion. The term proportional to h0L is
present due to redshift in the presence of a local gravita-
tional field.
The sole term on the left-hand side and last term on the

right-hand side of Eq. (11) arise from terms of the form
dp=dη in the standard Euler momentum-conservation
equation. The first term on the right-hand side of
Eq. (11) corresponds to the redshifting of nonrelativistic
momentum in an expanding Friedmann-Robertson-Walker
background. The second term on the right-hand side of
Eq. (11) represents the impact of pressure gradients on fluid
velocities.
In addition to the EOS parameter wa, fluid perturbation

evolution is governed by the adiabatic sound speed

c2ad ≡ P0
a

ρ0a
¼ w −

w0
a

3Hð1þ waÞ
: ð12Þ

In terms of GDM variables, the ULA contributions to the
00 and trace of the ii Einstein equations are

δρa ¼ ρaδa; ð13Þ

δPa ¼ ρa

�
δa þ 3Hð1 − c2adÞ

ua
kð1þ waÞ

�
: ð14Þ

The GDM EOMs [Eqs. (10) and (11)] are an exact
restatement of the perturbed KG equation. They become
prohibitively expensive to solve with sufficient accuracy for
cosmological observables when a ≫ aosc, however,
because coherent oscillations occur much faster than the
Hubble expansion, resulting in rapid oscillation of Einstein-
equation terms that couple background pressure oscilla-
tions, metric fluctuations, and field perturbations [163].
To ease this difficulty, we follow past work

[63,91,92,126,160,163–168] and use an effective fluid
approximation (EFA). This approximation is obtained by
taking a cycle average of perturbed fluid variables and
restating the perturbed KG equation into a gauge in which
the cycle average huai ¼ 0. Recasting the perturbed KG
equation in terms of perturbed fluid variables [applying
Eqs. (13) and (14) and transforming back into synchronous
gauge], the following continuity and Euler equations are
obtained [91,126,160,164]3:

3In the limit that wa ¼ w0
a ¼ c2ad ¼ 0 for the exact equations

and c2s ¼ 1 for the EFA, the two sets of EOMs agree, but we stress
that, while Eqs. (10) and (11) are exact, Eqs. (15) and (16) apply
(and are used) deep in the rapidly oscillating regime.
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δ0a ¼ −kua −
h0L
2
− 3Hc2sδa − 9H2c2sua=k; ð15Þ

u0a ¼ −Hua þ c2skδa þ 3c2sHua: ð16Þ

The EFA is essentially an implementation of the Wentzel–
Kramers–Brillouin (WKB) approximation, averaging over
the ULA field’s rapid oscillations and encoding the
structure growth suppression of the model with a scale-
dependent effective sound speed [126,164]:

c2s ≡ hδPai
hδρai

¼ k2=ð4m2
aa2Þ

1þ k2=ð4m2
aa2Þ

: ð17Þ

Deep in the horizon and for ULA-dominated gravita-
tional potentials, an approximate second-order EOM can be
obtained for perturbations [56,63,86,92,160,169]:

δ̈a þ 2H _δa þ
�
k2c2s
a2

− 4πGρa

�
δa ¼ 0: ð18Þ

Here, dots represent derivatives with respect to coordinate
time. In Eq. (18), we can clearly see the competition
between ULA pressure and self-gravity. If k ≪ kJ [where
the ULA Jeans scale is kJ ¼ ð16πGa4ρaÞ1=4], we expect
DM-like perturbation growth, whereas if k ≫ kJ, we expect
oscillation rather than growth. The numerical solution to
the full EOMs for individual modes (with arbitrary ampli-
tudes) is shown in Fig. 2 and bears out these expectations.
To obtain the time-dependent matter power-spectrum

Pðk; aÞ needed to compute kSZ signatures, we use the

AxionCAMB code [137]. For a ≤ aosc, Eq. (4) is solved
numerically, with Eqs. (5) and (6) applied to determine the
ULA contribution to the Friedmann equation

ΔðH2Þ ¼ 8πGa2ρa
3

: ð19Þ

The initial value of ϕ0 is chosen (as described in Ref. [91])
to yield the desired relic density of ULAs.
Initially, perturbations are evolved using Eqs. (10) and

(11), with appropriate contributions to the metric function
hL given by Eqs. (13) and (14). Once a > aosc, the scaling
ρa ∝ a−3 is used (along with Pa ≃ 0), matching ρa to its
value at a ¼ aosc. In this regime, the EFA equations
[Eqs. (15) and (16)] are used to evolve perturbations (using
δPa ≃ c2sδρa), with fluid variables continuously matched at
the transition.
Of course, the definition of aosc is somewhat arbitrary,

and a more general choice m ¼ nH could be used (the
prescriptions of Ref. [92] are formally equivalent to the
EFA, as shown in Ref. [160]). Ultimately, there is a trade
off between improving the accuracy of the WKB approxi-
mation and decreasing the integration time available for
numerical transients to dissipate. This issue is discussed
extensively in Ref. [91].

AxionCAMB may be used to compute the power spectra
of CMB anisotropies and the matter power spectrum,
defined by

hδðk; aÞδ�ðk0; aÞi ¼ ð2πÞ3δð3Þðk − k0ÞPmðk; aÞ; ð20Þ

where matter includes baryons, CDM, and ULAs in the
range of ma values considered here.

III. kSZ SIGNATURES IN ULA MODELS

There are in principle two approaches to observing the
kSZ signature. The first is to directly search for the
additional small-scale anisotropies produced by the kSZ
effect using only CMB data. The second is to cross-
correlate CMB maps with tracers of foreground structure.
The linear theory power spectrum of the additional small

scale anisotropies induced in the CMB by the kSZ effect
is given by the OV power spectrum (see Ref. [39]). In
Sec. III A, we derive the OV power spectrum in the
presence of ULAs, computing it numerically in Sec. IVA.
Pursuing the second approach, pairwise velocities of

galaxy clusters can be estimated using kSZ-induced shifts to
theCMB temperature along cluster sight lines. This approach
was used in the first detection of the kSZ effect (see
Refs. [34,35]). Using CMB observations from the
Atacama Cosmology Telescope and galaxy clusters identi-
fied in the SDSS III Baryon Oscillation Spectroscopic
Survey, the kSZ effect was detected at 2.9σ signifi-
cance, and subsequently with significance as high as
5.4σ by subsequent observational efforts, using various

FIG. 2. The growth of perturbations on small scales is sup-
pressed in ULA models as can be seen for the k ¼ 0.2h Mpc−1

mode shown. On larger scales, perturbation growth locks on to
the ΛCDM solution at late times. The evolution shown here is for
ma ¼ 10−26 eV ULAs.
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combinations of data from the Baryon Oscillation
Spectroscopic Survey (BOSS), the SPT, the Dark Energy
Survey, the Planck satellite, and others [26,36–38,170–172].
It has been shown that using pairwise velocities inferred
using such kSZ observations, next-generationLSS andCMB
observations will be sensitive to a number of beyondΛCDM
scenarios (see Refs. [52,53] for the effect of dark energy/
modified gravity or Ref. [50] for probes of massive neu-
trinos). Indeed, kSZ detections of 20 → 50σ could be be
possible using DESI and Advanced ACT/S4 data [173]. We
derive the relevant expressions for the kSZ signature of ULA
models in Sec. III B.

A. Ostriker-Vishniac effect in ULA models

Our derivation of the Ostriker-Vishniac power spectrum
for cosmological models with scale-dependent growth
closely follows the formalism presented in Ref. [41] for
a CDM cosmology but is valid in a more general context,
including ULA DM, as well as for neutrinos or novel dark-
energy components (whose clustering is highly sup-
pressed). We begin with Eq. (1) and introduce the visibility
function

gðχÞ ¼ neðχÞσTaðχÞe−τðχÞ; ð21Þ

in order to write

ΔT
T

¼ −
Z

dχgðχÞqðχr̂; aÞ · r̂; ð22Þ

where qðχ ; aÞ ¼ ½1þ δðχ ; aÞ�vðχ ; aÞ is the momentum den-
sity expressed in terms of the density contrast δðχ ; aÞ. From
now on, we continue in Fourier space. A derivation of the
Fourier transform of q is given in Appendix A. The bulk
velocity depends directly on _Gðk; aÞ, the derivative ofGðk; aÞ
with respect to physical time.
When projecting along the line of sight, any contribution

of Fourier modes k along the line of sight must approx-
imately cancel for small-scale modes, due to the presence
of many peaks and troughs along the line of sight [41]. The
contribution of the lowest-order expression qðχ ; aÞ ≃
ṽðχ; aÞ to Eq. (22) thus integrates to 0, because
ṽðk; aÞ ∝ k. At second order, however, we have contribu-
tions of the form

R
dχgðχÞ R d3k0δ̃ðk0Þṽðk0 − kÞ · r̂, as a

result of the convolution theorem. Since the modes include
wave vectors k0 with significant components orthogonal to
the line of sight r̂, the second-order OV effect does not
vanish. A lengthy but straightforward calculation then
yields

q̃⊥ðk; aÞ ¼
iaHðaÞ

2

Z
d3k0

ð2πÞ3 δ̃0ðk
0Þδ̃0ðk − k0ÞGðjk − k0j; aÞ

G0ðjk − k0jÞ
Gðk0; aÞ
G0ðk0Þ

×

�
d lnG
d ln a

����
k0;a

�
k0

k02
−
kðk · k0Þ
k2k02

�
þ d lnG

d ln a

����
jk−k0j;a

�
−k0

jk − k0j2 þ
kðk · k0Þ
k2jk − k0j2

��
; ð23Þ

as shown in Appendix A. We have used the fact that
GdG=dt ¼ G2HðaÞd lnG=d ln a to obtain expressions in
terms of scale factor a rather than physical time.
It follows from the Limber approximation (see, e.g.,

Ref. [174]) that the power spectrum of the induced
anisotropies is approximately given by

Cl ¼
Z

dχ
χ2

P⊥
�
lþ 1

2

χ
; a

�
g2ðχÞ: ð24Þ

In this expression, P⊥ðk; aÞ is the power spectrum of the
projection of q̃ onto the line of sight. By expanding
hq̃⊥ðk1;aÞ · q̃�⊥ðk2;aÞi, we show in Appendix A that

P⊥ðk; aÞ ¼
a2H2ðaÞ

8π2
Sðk; aÞ ð25Þ

[where Sðk; aÞ is referred to as the Vishniac power
spectrum in the literature], which in contrast to ΛCDM
has a time dependence

Sðk; aÞ ¼ k
Z

∞

0

dy
Z

1

−1
dxP0ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2xyþ y2

q
ÞP0ðkyÞ

G2ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2xyþ y2

p
; aÞ

G2
0ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2xyþ y2

p
Þ

G2ðky; aÞ
G2
0ðkyÞ

×
1 − x2

1 − 2xyþ y2

�
d lnG
d ln a

����
ky;a

ð1 − 2xyþ y2Þ − d lnG
d ln a

����
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2xyþy2

p
;a
y2
�
2

: ð26Þ

This expression gives the power spectrum of secondary CMB anisotropies in the presence of ULAs and other species that
induce scale-dependent growth beyond ΛCDM, and could thus be applied to determine how neutrinos and other light relics
affect OV observables.
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In the limit of late-time scale-independent growth, the
scale-dependent function Gðk; aÞ → DðaÞ (the standard
ΛCDM growth function, which captures late-time structure
formation) and all time-dependent terms may be factored
out of the integral in Eq. (26). The Vishniac power
spectrum SðkÞ then approaches the standard expression
in Ref. [41]. This can be simply understood by examining
Eq. (2), because if Gðk; aÞ → DðaÞ, the scale and time
dependence of ṽ becomes significantly simpler. We assess
in Sec. IVAwhether these departures from the pure ΛCDM
case are detectable using present and planned CMB experi-
ments and LSS surveys.

B. Mean pairwise-velocity spectra in ULA models

For collisionless particles (e.g., DM particles or gal-
axies), pair conservation implies that (see Refs. [144,148])4

dð1þ ξÞ
d ln a

¼ −
3v12
Hr

½1þ ξ�: ð27Þ

Here, ξ and ξ̄≡ 3=ð4πr3Þ R r
0 4πr

02dr0ξðr0Þ are the real-
space correlation function and its volume average, respec-
tively; v12 is the average pairwise velocity of particles;H and
a are theHubble parameter and the scale factor, respectively;
and r is the interparticle separation. ThroughEq. (27),v12 can
be predicted using perturbation theory and the halo model
[50,52,53]. ULAs would alter the growth of structure (as
discussed in Sec. II), thus modifying the velocity statistics
predicted by Eq. (27).
Observationally, we are interested in the pairwise veloc-

ities of galaxy clusters, which are identified observationally
in galaxy surveys. These may be estimated by rewriting
Eq. (22), taking the small optical depth limit (τ ∼ 10−5 ≪ 1,
valid for galaxy clusters) and applying it to a single cluster
sight line. The minimum variance estimator over multiple
cluster sight lines in a survey is then [34,36,38,171,175,176]

v̂12ðr; aÞ ¼
cp̂kSZðr; aÞ
τTCMB

; ð28Þ

where τ is the mean optical depth to a galaxy cluster and
assumed not to vary significantly between clusters and
p̂kSZðr; aÞ is the mean-pairwise momentum estimator,
given by

p̂kSZ ¼ −
P

i<jðδTi − δTjÞcijP
i<jc

2
ij

: ð29Þ

Here, δTi is the kSZ-induced CMB temperature anisotropy,
while cij is a geometric factor given by [29]

cij ≡ ðri − rjÞð1þ cos θÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i þ r2j − 2rirj cos θ

q
; ð30Þ

where ri and rj are the comoving distances to the relevant
clusters and θ is their angular separation on the sky. If
multifrequency data are available, internal linear combina-
tion techniques may be used to remove the tSZ effect from
data and generate maps that contain the primary CMB and
kSZ effect only, as in Refs. [32,176]. Spatial filtering
techniques (e.g., aperture photometry [176,177]) leveraging
the known l dependence of the primary CMB power
spectrumcanbeused to remove the primaryCMBanisotropy
contribution to δTi [176]. Also, individual cluster contribu-
tions are suppressed due to the averaging in Eq. (29)
[38,171]. Once v12 is extracted from the data, it can be
compared with theoretical predictions to test hypotheses like
ULA DM, among others [50,53].
We now summarize the theoretical prediction for the

cluster mass-averaged pairwise velocity vðrÞ obtained from
the predicted halo-correlation function. Each cluster rep-
resents a dark matter halo with some mass M. We will thus
work in terms of the halo correlation function ξh. The
cluster samples are typically selected for halo masses in
some range Mmin to Mmax. Averaging over halos of
different masses in the sample, we can write the predicted
mean pairwise velocity as

vðrÞ≡ hv12im ¼ −Hr
hdξ̄h=d ln aim
3½1þ hξhim�

: ð31Þ

We derive this result in more detail in Appendix B.
The mass-averaged halo correlation function is given by

hξhim ¼ 1

2π2

Z
k2dkj0ðkrÞ

G2ðk; aÞ
G2
0ðkÞ

Plin
0 ðkÞB2ðk; aÞ; ð32Þ

while the mass-averaged derivative of the volume-averaged
correlation function is given by

h dξ̄h
d lna

i
m
¼ 3

π2r3

Z
r

0

dr0r02
Z

k2dkj0ðkr0Þ

×

�
d lnG
d lna

G2ðk;aÞ
G2
0ðkÞ

Plin
0 ðkÞBðk;aÞN ðk;aÞ

�
: ð33Þ

The functions Bðk; aÞ and N ðk; aÞ are given in terms of
the halo bias bðM; aÞ, the halo mass function nðM; aÞ, and
the Fourier transform of the real-space window function
W̃ðxÞ by

4Strictly speaking, Eq. (27) is derived from the collisionless
Boltzmann equation, which must be modified for wave DM.
However, Eq. (27) holds for halos once they form, and our key
results, Eqs. (31)–(33), are still valid, as the halo model can still
be used to relate halo density-correlation functions ξh to Plin

0 ðk; aÞ
and Gðk; aÞ. We note, however, that Eq. (27) should not be
interpreted as directly describing the evolution of the pairwise
velocity of density fluctuations in the ULA field. Rather, the
equation describes the velocity field of a limiting construct, a
population of unbiased, low halo-mass tracers, as well as biased,
heavy tracers of a single mass.
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Bðk;aÞ¼ 1

n̄ðaÞ
Z

Mmax

Mmin

dMnðM;aÞbðM;aÞW̃½kRðMÞ�; ð34Þ

and

N ðk; aÞ ¼ 1

n̄ðaÞ
Z

Mmax

Mmin

dMnðM; aÞW̃½kRðMÞ�; ð35Þ

where the total halo number density is given by

n̄ ¼
Z

Mmax

Mmin

nðM; aÞdM ð36Þ

It should be noted that, while Eqs. (33) and (35) are
similar to relevant expressions in Refs. [50,52,53], they
differ in detail. We point out in Appendix B that the
expressions presented in those references exhibit unphys-
ical behavior on small scales, biasing velocities dramati-
cally on those scales and by as much as 16% even on scales
larger than about 20 h−1 Mpc, possibly modifying fore-
casts for neutrino mass sensitivity using the kSZ effect. Our
results are in agreement with Ref. [148] for the case of
scale-independent growth and in the absence of a window
function.
We obtain the halo mass function and bias using the

semianalytic excursion set formalism [also known as the
extended Press-Schechter (EPS) formalism] [178]. In this
model, dark matter halos are assumed to form in regions
where linear growth crosses the threshold for self-similar
spherical collapse. Using the statistics of Gaussian random
fields and cosmological power spectra, the halo mass
function is obtained. Rare peaks in the density field
typically form on top of long-wavelength perturbations,
and are thus more clustered (and thus biased) than the
underlying density field. The EPS model may be used to
compute this bias.
The EPS halo bias is given approximately by [53,178]

bðM; aÞ ¼ 1þ δ2c − σ2Mða ¼ 1Þ
σMða ¼ 1ÞσMðaÞδc

; ð37Þ

where δc ≈ 1.686 is the critical fractional overdensity for
self-similar spherical collapse [179] and σ2MðaÞ is the
variance of the matter density field smoothed on the
characteristic scale associated with a cluster of mass M
at a scale factor a,

σ2MðaÞ ¼
1

2π2

Z
dkk2W̃2ðkRÞPðk; aÞ: ð38Þ

Here, Pðk; aÞ is the power spectrum at scale factor a.
For the halo mass function nðM; aÞ, we employ the

analytic Press-Schechter approximation [180], which pre-
dicts that the halo mass function is given by

nðM; aÞ ¼
ffiffiffi
2

π

r
ρ̄DMδc
MσM

���� dðln σMÞdM

����e−
δ2c
2σ2

M ; ð39Þ

where nðM; aÞdM is the number density of halos with
masses in the interval M → M þ dM and ρ̄DM is the
average DM mass density.5

It has been shown that nonlinear structure in models with
suppressed small-scale growth is most accurately captured
by sharp k-space filters [188]. We thus choose the window
function W̃ðxÞ such that W̃ðxÞ ¼ 1 if x ≤ 1 and W̃ðxÞ ¼ 0
if x > 1. We map from the halo massM to the filter length-
scale R using the expression M ¼ 4πðαRÞ3ρ̄DM=3 where
ρ̄DM is the mean DM density, and α ≃ 2.5 is a factor fit to
simulations [188]. This factor is required because sharp-k
filters do not correspond uniquely to a well-defined M
value (due to broad support at many radii).
ULAs affect these theoretical predictions in a number of

ways. They suppress the present-day linear power spectrum
Plin
0 ðkÞ as well as the growth function Gðk; aÞ for scales

k > kJ within the ULA Jeans scale [56,63,86,90,160].
Additionally, by suppressing small-scale structure, they
increase the bias of nonlinear structures [see, e.g., Eq. (37)],
while decreasing the number counts of smaller mass halos,
as indicated by Eqs. (38) and (39).

IV. IS THE ULA kSZ SIGNATURE DETECTABLE?

A. Using the Ostriker-Vishniac power spectrum

In order to numerically obtain the Ostriker-Vishniac
power spectrum, we output the present-day power spectrum
P0ðkÞ and the scale-dependent growth function Gðk; aÞ
using AxionCAMB [91], a version of the standard cosmo-
logical Boltzmann code CAMB [156] that has been modified
to include the impact of ULAs and output the mode
evolution and d lnG=d ln a.
We then numerically evaluate the integral in Eq. (24) to

obtain predictions for the CTT
l contributions from the kSZ

effect in the presence of ULAs. We precompute and
interpolate Eq. (26) using 128-point Gaussian quadrature
on a regular grid in lnðkÞ and a, using again Gaussian
quadrature to evaluate the projection integral in Eq. (24).
Some details of the numerical methods used are discussed
in Appendix C.
The results of our computations are shown in Fig. 3. We

observe that the suppression of small-scale structure in the
presence of axions translates into a suppression of the OV
signal relative to ΛCDM. The suppression scale is set by

5The mass function used here includes scale-dependent linear
growth self-consistently but does not include ellipsoidal collapse
[178], the impact of scale-dependent growth on excursion-set
barrier crossing (e.g., Refs. [181]), or the impact of quantum
pressure on self-similar spherical collapse itself [182,183]. Such
issues are discussed in Refs. [155,184] or for warm dark matter in
Refs. [185–187] but are unlikely to affect our results beyond a
factor of order unity, as, e.g., in Ref. [181].
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the axion mass. Figure 3 also shows the primary CMB
signal and the expected uncertainty for a CMB-S4-like
survey. Our estimates for the S4 uncertainties are based on
Refs. [189,190]. We see that the typical fractional kSZ
fluctuation ΔT ≈ TCMB × 10−2, justifying a perturbative
treatment of the OV effect on the scales of interest.
For l≲ 3000, the OV signal will be inaccessible due to

cosmic variance, and for l≳ 5000, even a S4-like survey
will not provide the instrumental sensitivity to observe the
OV signal directly. This leaves a range around l ≃ 4000 in
which the signal may be observed. We compute the χ2

between the OV-induced Cls and standard ΛCDM pre-
dictions, showing the result as a heat map in Fig. 4. We see
that values ηaxion ≃ 10−3 are detectable in the range
10−27 eV≲ma ≲ 10−25 eV. We see that the data are
sensitive to ηa ≃ 1 up to ma ≃ 10−22 eV, and so it is
possible that the OV effect is sensitive to ULAs in the
true FDM window, where they could compose all of the
DM. Of course, this requires extremely accurate subtra-
ction of the primary CMB, using TT measurements at
low-l or E-mode polarization anisotropies over a broad
range of l.
Additionally, we note that the curves in Fig. 3 were

obtained using our second-order perturbative results
Eqs. (24)–(26) and were computed in the approximation
of instantaneous reionization. Additionally, the detailed
shape of the ULA-induced modifications to the OV
signature will have degeneracies with ΛCDM parameters.

FIG. 3. Ostriker-Vishniac power spectrum for cosmologies in
which the total dark matter is made up of ma ¼ 10−25 eV,
ma ¼ 10−24 eV, or ma ¼ 10−23 eV axions. For comparison,
the signal expected from ΛCDM model is shown. We also show
the power spectrum of primary CMB fluctuations and the one-
sigma uncertainty expected from a CMB-S4-like survey. The
uncertainty is dominated by cosmic variance at low l and by
instrument sensitivity at large l.

FIG. 4. Rough forecast of Ostriker-Vishniac sensitivity to ULA dark matter. We show the χ2 with which any deviation from theΛCDM
prediction would be detected. The 1σ (or 2σ) detection thresholds shown as solid (dashed) lines are estimated by requiring χ2=df ¼ 1

(22). We assume df ¼ 7 (6 ΛCDM parameters as well as the ULA abundance, ηa). The features visible in the high mass-low abundance
region, well below the detection threshold, are a consequence of numerical noise.
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Our sensitivity estimate from ULA-induced changes to the
OV effect is thus likely to be overly optimistic.
A more realistic treatment would include the impact of

the topology of reionization (the “patchy reionization”
signature, quantified by a bubble power spectrum for
ionized regions), as described in Ref. [49]. Such a compu-
tation would also include the impact of ULAs in delaying
reionization (see Ref. [191] for a discussion) and their
effect on the bubble power spectrum (see Ref. [192] for an
example of how neutrinos alter the nature of patchy
reionization and the resulting OV/kSZ observables). Our
results for the magnitude and future sensitivity of OV
signatures in ULA models should be taken as a provisional
indication that they might be experimentally detectable,
motivating more elaborate modeling in future work.

B. Using mean pairwise-velocity spectra

We now turn to the mean pairwise-velocity approach. As
in the previous section, we obtain present-day density
fluctuation variables and their time evolution using
AxionCAMB. We then compute the expected mean pair-
wise-velocity spectra according to the expressions pre-
sented in Sec. III B. We employ Convolutional Fast Integral
Transforms as implemented in MCFIT

6 to evaluate the

relevant integrals presented in Sec. III B and Gaussian
quadrature for the bias integrals involving finite limits
[Eqs. (34) and (35)]. The results are shown in Fig. 5. A
simpler summary is depicted in Fig. 1.
For small comoving separations r, mean pairwise veloc-

ities are suppressed in the presence of axions relative to a
ΛCDM model. The suppression scale increases with
decreasing axion mass and increasing axion abundance.
At large separations, axions lead to an enhancement of
observed pairwise velocities. This is due to the fact that the
same massive clusters are higher-σ peaks of the cosmo-
logical density field than in ΛCDM models. They are thus
rarer and exhibit stronger clustering (larger bias), causing
an enhancement at large r. This effect is visualized in
Fig. 6. We observe that if galaxy bias is neglected (i.e.,
computing the mean pairwise velocity of the matter density
field), velocities in the presence of axions are suppressed on
small scales and approach the ΛCDM prediction on large
scales. Using the same cosmological model but now
including halo bias (i.e., computing the galaxy pairwise
velocities) then leads to the enhancement on large separa-
tions (as also noted in Refs. [136,139]).

C. Forecast for ULA abundance sensitivity
of pairwise-velocity spectra

As the impact of ULA dark matter on mean pairwise
velocities is comparable to the error bars (e.g., Fig. 5) of

FIG. 5. Predicted mean pairwise velocities at z ¼ 0.15 for three different axion masses and different abundances. Predictions for a
ΛCDM model are shown for comparison. The gray bands show the velocity uncertainty, computed using the diagonal elements of the
covariance expected for an S4-like survey. We adopt the covariance expression presented in Ref. [50] with minor adjustments to include
our modifications to the mean pairwise-velocity [see Eqs. (41) and (45)].

6https://github.com/eelregit/mcfit/.
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forthcoming experiments (determined from their experi-
mental covariance matrix, modeled as discussed in
Sec. IV C), it is plausible that ULA DM is detectable
using the kSZ effect.
We thus proceed with a standard Fisher-matrix forecast

(following the formalism developed in Refs. [193–195]), in
which the likelihood of a model (specified by a set of
parameters) is obtained in the limit of small deviations from
the fiducial model, yielding an approximately Gaussian
model-parameter posterior.
Given some axion mass ma, we consider ΛCDM as a

model specified by a parameter-space vector Θ consisting
of five of the six ΛCDM parameters as well as the axion
abundance ηa ¼ Ωaxion=ΩDM,

Θ ¼ ðΩDMh2;Ωbh2; h; ns; As; ηaÞ:

For the fiducial cosmology Θfid, we assume that all
ΛCDM parameters take the fiducial values obtained by
the Planck Collaboration [196] in their final full-mission
analysis (2018) [2], that is, total (including ULAs) dark-
matter density, ΩDMh2 ¼ 0.120, baryon density Ωbh2 ¼
0.0224 scalar spectral index ns¼ 0.965, h¼ 0.674, and
lnð1010AsÞ¼ 3.04.
Mean pairwise velocities are insensitive to the optical

depth to reionization, andwe hence choose to fix it to its best-
fit value fromRef. [2], τreion ¼ 0.054. In addition to these six
cosmological parameters, we follow Refs. [197,198] and
consider a set of nuisance parameters bi that scale the bias
B → biB independently in the ith redshift bin. This accounts
for the uncertainty (due to a variety of baryonic effects) in the
mapping from observed galaxy masses to dark-matter halo
masses, as a function of z. Unless otherwise noted, we
marginalize over these these parameters to obtain all the
results below.
The kSZ Fisher matrix is then given by a sum over

redshifts and comoving radii,

Fij ¼
XNz

k

XNr

m;n

∂vðrm; zkÞ
∂θi C−1

rm;rn;zk;zk

∂vðrn; zkÞ
∂θj : ð40Þ

Here, Nz and Nr are the number of redshift and radial bins,
respectively. Here, C−1

rm;rn;zk;zk is the appropriate element of
the inverse-covariance matrix given by Eqs. (41) and (45).
Forecast uncertainties on individual parameters (labeled by
the index i) after marginalization over the others are then
given by σi ¼

ffiffiffiffiffiffiffiffi
F−1
ii

p
, where F−1 denotes the inverse of the

Fisher matrix.
In order to determine the minimum axion fraction which

could be detected given some axion massma, we consider a
range of fiducial axion abundances ηa between 10−4 and
0.95. Twenty values are chosen to span this range logarithmi-
cally, with 20 more values chosen to make sure 1 and 2-σ
detection thresholds are well resolved in sensitivity plots.7

For the axion mass ma, 41 values are chosen, distributed
logarithmically to cover the domain from 10−27 eV →
10−23 eV. As noted in Refs. [91,124,125,137], the posterior
probability of ma is highly non-Gaussian, and so Fisher
analysis is of limited use for ma itself. It is thus easiest to
follow Refs. [91,124,125,137] and consider ma as a fixed
parameter. At each value of ma, we conduct a Fisher
sensitivity forecast with respect to ηa. The detection

FIG. 6. Top panel: mean pairwise velocities of the matter
density field (dashed) and galaxy field (solid) in comparison.
We compare a model withma ¼ 5 × 10−26 eV and ηa ¼ 0.5 (red)
to a ΛCDM model (black). The velocities of the matter density
field (dashed lines) are suppressed by axions on small scales and
approach ΛCDM on larger scales, while galaxy pairwise veloc-
ities exhibit enhancement at large separations due to large bias.
Bottom panel: fractional differences between ULA and ΛCDM
pairwise velocity signatures, for an unbiased tracer of the DM
density field (dashed) and halos (solid), respectively.

7We find that the derivatives obtained via finite difference rule
are contaminated by numerical noise for step sizes smaller than
about 5%. The use of one sided difference rules also introduces
spurious signatures for all sufficiently large step sizes. Conse-
quently, we are unable to properly probe ηa ¼ 1.
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threshold is obtained as the minimum axion abundance for
which the forecast 1σ (or 2σ) uncertainties on ηa are smaller
than ηa itself.
Similarly to Ref. [50], we consider three different

CMB survey stages. SII represents currently available
data, SIII-like surveys will become available in the near
future, and SIV represents long-term prospects. The
survey specifications and expected uncertainties on the
measured pairwise velocities are summarized in Tables I
and II, respectively. We consider a DESI-type galaxy
survey [13]. A spectroscopic galaxy sample can of course
be arbitrarily divided into z bins without changing the
fundamental information content of the sample. For
consistency with Refs. [50,53], however, we choose
Nz ¼ 5 z-bins. We note that we could have considered
a different number of bins, making z-evolution of the
velocity field more manifest, but with smaller numbers of
pairs in each bin such that total signal-to-noise (and ULA
sensitivity) is unchanged.
We adopt the covariance prescription presented in the

Appendix of Ref. [53], modifying the expressions there

with our expressions for vðrÞ and neglecting the subdomi-
nant, non-Gaussian contribution. The covariance matrix for
the mean pairwise-velocity spectra has three dominant
components: one from the measurement uncertainty, one
due to cosmic variance, and one due to sampling noise. We
assume that the measurement uncertainty is uncorrelated
between different radial separation (r) and redshift (z) bins
and only contributes to the diagonal elements of the
covariance matrix [50,52,53]

Cmeasurementjrn;rm;zj;zk ¼
2σ2v
Npair

δmnδjk: ð41Þ

Here, σv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2instr þ σ2τ

p
is the uncertainty on the veloc-

ity measurement, including both the direct measurement
error σinstr and the variance in v, σ2τ , induced by the variance
in the optical depth, through the scaling τ ∝ v−1, shown in
Eq. (28). We thus have στ ¼ vΔτ=τ. Both contributions are
estimated in Table II.
The number of cluster pairs, denoted Npair, is given by

Npair ¼
n̄ðzÞVsðzÞ

2

�
4π

Z
rþΔr

r
n̄ðzÞ½1þ ξhðr; zÞ�r2dr

�
:

ð42Þ

The average number density of clusters at a given redshift
z is

n̄ðzÞ ¼
Z

Mmax

Mmin

dmnðm; zÞ; ð43Þ

where VsðzÞ is the survey volume as a function of scale
factor. The halo sample is taken to have lower and upper
mass limits Mmin and Mmax. We can see that n̄ðzÞVsðzÞ is
the total number of clusters in the survey at a given z. The
number of clusters in a spherical shell of inner radius r and
outer radius rþ Δr (where Δr is the radial bin width)
around a given cluster is 4π

R
rþΔr
r n̄ðzÞ½1þ ξhðr; zÞ�r2dr.

Thus, the product of these two factors gives the number of
pairs, and in order to avoid double counting, we divide
by 2, which gives the expression above. Assuming that ξh is
approximately constant over the interval from r to rþ Δr,
we have

Npair ¼
n̄2ðzÞVsðzÞVΔðrÞ

2
½1þ ξhðr; zÞ�; ð44Þ

where VΔ is the volume of the radial bin.
The contribution from cosmic variance and shot noise is

given by

TABLE I. Reference survey specifications used to model SII,
SIII, and SIV (reproduced from Ref. [53]).

Survey stage

Survey Parameters SIIa SIIIb SIVc

CMB ΔT instr (μKarcmin) 20 7 1
Galaxy zmin 0.1 0.1 0.1

zmax 0.4 0.4 0.6
Number of z bins, Nz 3 3 5
Mmin (1014 M⊙) 1 1 0.6

Overlap Area (1000 deg2) 4 6 10
aCurrently available CMB/LSS surveys such as ACTPol and

SDSS BOSS.
bNear-term survey generations (e.g., AdvACTPol) and SDSS

BOSS dataset.
cLong-term survey prospects such as CMB-S4 combined with

a LSS dataset such as DESI.

TABLE II. Uncertainties for different survey stages. The table
is reproduced from Ref. [53].

Redshift bin

Parameter Survey stagea 0.15 0.25 0.35 0.45 0.55

ðΔτ=τÞ2 0.15
στ (km=s) 120
σinstr (km=s) SII 290 440 540 � � � � � �

SIII 100 150 190 � � � � � �
SIV 15 22 27 34 42

σv (km=s) SII 310 460 560 � � � � � �
SIII 160 200 230 � � � � � �
SIV 120 120 120 120 130

aSurvey parameters for different stages are provided in Table I.
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½Ccosmic þ Cshot�rm;rn;zj;zk ¼
4δjkz2k

π2VsðzjÞ
�

H2ðzjÞ
½1þ ξhðrmÞ�½1þ ξhðrnÞ�

��
d lnD

d ln ½1þ z�
����zj

�
2

×
Z

dk

��
Pðk; zjÞBðk; zjÞN ðk; zjÞ þ

1

nðzjÞ
�

2

×WΔðk; rmÞWΔðk; rnÞ
�
; ð45Þ

where WΔ is

WΔðk;rÞ¼ 2

�
r3WðkrÞ− ðrþΔrÞ3W½kðrþΔrÞ�

ðrþΔrÞ3−r3

	
; ð46Þ

and

WðxÞ ¼ 2 cos xþ x sin x
x3

:

The factors ofWΔ andW arise from Fourier transforms and
integrals over real-space covariance expressions for pairs of
clusters with radial separations within a fixed bin with width
Δr (and the resulting Bessel functions). The usual ΛCDM
growth functionDðaÞ is defined by the relation Plinðk; aÞ ¼
Plin
0 ðkÞD2ðaÞ=D2ða ¼ 1Þ and captures late-time scale-inde-

pendent growth, as is the case for the fiducial model.
The resulting covariance matrix in the lowest redshift bin

centered on z ¼ 0.15 for a SIV survey is shown in Fig. 7.
Additionally, the different contributions to the covariance
are detailed in Fig. 8. We see there that cosmic variance
dominates along the diagonal at all scales, with secondary
contributions from shot noise. The contribution due to
scatter in the cluster optical depth is negligible compared to
other contributions.
The approximate error bars shown in Fig. 5 are obtained

by fixing z and then taking
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Crm;rm;zk;zk

p
. At large r, the

covariance flattens due to the fact that the measurement
error drops off with the increasing number of pairs in a

volume, while the window function WΔ asymptotes to a
constant. The signal vðrÞ itself falls off at very large
separations. As a result, there is a rise in the fractional
error at large r.
We obtain numerical derivatives with respect to our six

cosmological parameters by finite differencing using a five-
point rule and adopting the step sizes suggested by
Ref. [195] for the five ΛCDM parameters. We test different
step sizes between 1% and 40% in ηa and find excellent
convergence across the entire axion mass range within the
few percent level for all step sizes ≳5%.
The minimum axion abundance that may be detected at

1σ (2σ) significance via mean pairwise velocities alone is
shown in Fig. 9, obtained by evaluating Eq. (40). We can
see that for axion masses well below ma ≃ 10−25 eV the
axion abundance could be strongly constrained by kSZ
observations alone (to the ∼10% level with SII or III and at
the percent level with SIV). The sensitivity worsens rapidly
with increasingma. The maximum mass that can be probed
with a SII and SIII survey is around 3 × 10−26 and
6 × 10−26 eV, respectively. With SIV, this increases to
about 2 × 10−25 eV. We also show that there is a slight

FIG. 7. Full covariance for mean pairwise-velocity spectra
constructed from a SIV-like survey at redshift z ¼ 0.15 [see
Eqs. (41) and (45)]. The individual components contribution to
the covariance are shown in Fig. 8.

FIG. 8. Contributions to the total mean-pairwise velocity
covariance in the lowest redshift bin centered on z ¼ 0.15 [see
Eqs. (41) and (45)]. Top left: cosmic varaiance; top right: shot
noise (×10); bottom left: shot noise/cosmic variance cross-term
(×3); and bottom right: measurement uncertainty mostly due to
scatter in cluster optical depth (×80).
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dependence of forecasted detection limits on our knowl-
edge of the expected halo bias. Neglecting the bias nuisance
parameters bi tightens the constraints for axion masses
ma ≲ 3 × 10−26 eV.
In Figs. 16–19, we show the degeneracies between ηa,

the standard cosmological parameters, and the bias param-
eters b1, b2, b3, b4, and b5, for several fiducial parameter
sets of ma and ηa. These figures are generated using a
methodology described in Appendix D. We note that there
are strong degeneracies within the bias model. There are
also strong degeneracies within the pairs fns; bjg and the
pairs fAs; bjg. This level of degeneracy is responsible for
the difference between the constraints obtained when
marginalizing over vs neglecting bias nuisance parameters.
We additionally also tested the impact of varying

assumptions on the scatter in the cluster optical depth,
which arises due to the variance in the cluster population,
not measurement error. In our fiducial analysis, we adopt
ðΔτ=τÞ2 ¼ 0.15, similarly to Ref. [50], leading to a optical-
depth induced uncertainty in the mean pairwise velocity of
στ ¼ 120 km=s (see Table II). We tested ðΔτ=τÞ2 values
between 0.001 and 0.8 without major impact on detection
limits, as shown in Fig. 10.
We also explored the promise of future survey efforts

with much lower minimum halo masses. We recomputed
Fisher matrices with a number of Mmin values. We found
that the sensitivity of pairwise velocity estimators alone

could improve by a factor of ∼3 in ηa if Mmin ≃ 1013 M⊙,
as shown in Fig. 11.
To verify our results, we conduct a χ2-analysis of the ηa

sensitivity of the kSZ effect. In this approach, the likelihood
for the observables is treated as Gaussian, but the full
(nonlinear) dependence of observables on model parame-
ters is used. In other words, we went beyond the Fisher
approximation to critically assess its validity.
We fixed all parameters except the axion abundance to

their fiducial values. For a single varying parameter (ηa),
this approach is in principle exact, and the predicted 1σ
uncertainty should agree approximately with the inverse
square root of the ηa diagonal element of the Fisher matrix.
The results are shown in Fig. 12, and indeed if only ηa is
varied, the χ2 and Fisher-level sensitivities agree, up to a
nearly mass-independent factor of ∼2. This difference
results from the assumption of Gaussian posteriors and
the linear expansion of vðrÞ around fiducial ΛCDM values.
The overall trend is that our forecasts are likely more
conservative than a complete future data analysis.

D. Combining results from mean pairwise-velocity
spectra with primary CMB observations

We combine and compare our results with primary CMB
observations and CMB lensing measurements as they are
expected from a CMB-S4-like survey. In addition to the six

FIG. 9. Forecasted detection sensitivity in ηa ¼ Ωa=ΩDM as a function of the ULA mass ma for SII, SIII, and SIV surveys as defined
by Ref. [53]. Regions above the dotted lines (or shaded areas) would be detectable at 2σ (or 1σ). The maximum mass that can be probed
at the 2σ level with SII and SIII surveys is of the order ma ≃ 10−25 eV and up to ma ≃ 5 × 10−25 eV with SIV. When we do not
marginalize over the bias nuisance parameters bi, the constraints are tightened in the mass region below about ma ≃ 3 × 10−26 eV.

FARREN, GRIN, JAFFE, HLOŽEK, and MARSH PHYS. REV. D 105, 063513 (2022)

063513-14



FIG. 10. Forecasted detection sensitivity in ηa ¼ Ωa=ΩDM as a function ofma for an SIV survey as defined by Ref. [53], for a number
of different priors on the mean cluster optical depth τ. Regions above the dotted lines (or shaded areas) would be detectable at 2σ (or 1σ).

FIG. 11. Forecasted detection sensitivity in ηa ¼ Ωa=ΩDM as a function of ma for an SIV survey as defined by Ref. [53], for different
minimum cluster masses. As above, regions above the dotted lines (or shaded areas) would be detectable at 2σ (or 1σ). Here, we do not
marginalize over uncertainties in the bias. Doing so degrades the constraints obtained with lower minimum masses more strongly,
partially eliminating any gains made by including lower mass clusters. The main improvement is the ability to probe higher axion
masses.
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cosmological parameters we vary in our kSZ analysis, we
also include the optical depth to the CMB in the forecast for
the primary CMB observations and CMB lensing. We
compute the CMB Fisher matrix using the OXFISH code
[199], by varying the axion parameters in combination with
the other five primary parameters.
As described above and in Ref. [137], for fixed axion

mass ma, we assume a range of fiducial axion fractions,
given that the current constraints from cosmology are only
upper limits. The step size assumed in a Fisher matrix
forecast is a key factor in determining the balance between
the accuracy of the derivatives and numerical noise. To
account for this, we vary the step size assumed in a range
from δΘ=Θ� ¼ 0.2, 0.1, 0.05, 0.01 for a given fiducial value
Θ�, to check for the stability of the final Fisher error σΘ.
We make the following assumptions about the analysis

of future CMB-S4 data combined with Planck. For the
lowest multipoles 2 < l < 30, we use a modified Planck
configuration that mimics a prior of σðτÞ ¼ 0.01 on the
optical depth. For the range 30 < l < 2500, we model the
Planck HFI instrument but only on 20% of the sky to
remove “double counting” of CMB-S4 numbers on the
same sky area. Finally, we include the CMB-S4 noise
modeled as a Gaussian component with a beam of 1 arc min
and a noise level of 1 μKarc min, included via the Knox
formula [189],

Nαα ¼ ðΔαÞ2 exp
�
lðlþ 1Þ2θ2FWHM

8 ln 2

�
: ð47Þ

The polarization noise is a factor of
ffiffiffi
2

p
larger than the

temperature noise. Both are included between 30 < l <
4000. In addition, we include the lensing deflection power
spectrum from 30 < l < 3000. We compare the runs with
and without adding information from the lensing deflection
reconstruction in Fig. 13. The lensing deflection, which
couples the modes in temperature and polarization to
reconstruct the lensing potential, is computed using the
Hu and Okamoto quadratic-estimator formalism [200].
We find that combining kSZ and CMB observations

allows sensitivity to an abundance of ∼0.5% below
ma ¼ 10−26 eV. This is an improvement over observations
of the primary CMB alone as shown in Fig. 13. When
marginalization over bias nuisance parameters is taken into
account, the improvement over CMB-only constraints
diminishes with increasing axion mass.
This sensitivity level is competitive with the combination

of primary CMB and CMB lensing to within a factor of
order unity, roughly consistent with the comparative
sensitivity of the same observables to the neutrino mass,
as discussed in Ref. [50]. Further improvements are likely
possible using large, photometric samples, higher n-point
functions of the reconstructed velocity field, lower Mmin
values, or foreground tracers, like field galaxies or neutral
gas line-intensity maps [201]. Additionally, the combina-
tion of kSZ observations with the primary CMB can
provide a valuable cross-check on CMB and CMB lensing
results.

FIG. 13. Primary CMB and kSZ observations will be sensitive
to axion fractions down to about ∼0.5% at 2σ significance for
masses below 10−26 eV. We show the 2σ detection limits for a
combination of DESI and CMB-S4.

FIG. 12. Comparison of χ2-derived sensitivity level with
Fisher-matrix result. We would expect the χ2-derived sensitivity
to agree approximately with the inverse square root of the
diagonal element of the Fisher matrix corresponding to the axion
abundance. We find this to be the case up to a approximately
mass-independent factor of ∼2. Our Fisher forecast is a
conservative estimate of the detection limits. This is likely due
to the linear expansion of vðrÞ around ΛCDM values.
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It is interesting to consider these forecasts in the context of
the sensitivity of LSS observables at the level of two-point
correlations, perhaps as measured using a photometric
galaxy survey such as that planned for the Large Synoptic
Survey Telescope (LSST) [12,202]. Preliminary forecasts by
some of us and others [203] indicate that in the mass window
10−27 eV≲ma ≲ 10−25 eV LSST’s galaxy survey alone
should be sensitive to 5 × 10−2 ≲ ηaxion ≲ 10−1 comparable
to pairwise measurements of the kSZ alone. LSST would
manifest largely mass-independent sensitivity to ηaxion as
high asma ∼ 10−23 eV, so theprimary strengthof kSZdata is
to offer comparable sensitivity for a subdominant but non-
negligible component of the dark sector.
If limits to neutrino abundances are a reliable guide, the

inclusion of priors to the LSST projections from CMB
acoustic-scale anisotropy measurements could improve
sensitivity to ηaxion by a factor of ∼0.2 reduction in error
bar [204]. In parallel, the same priors would also improve
kSZ sensitivity by another order of magnitude, though both
of these statements are crude estimates that await a proper
future forecast. Galaxy power spectrum and kSZ observ-
ables are thus on their own comparably sensitive to ULAs.
Galaxy power spectra and pairwise velocity signatures

have different dependencies on unknown bias factors, b,
specifically scaling as ∼b2 and ∼b, respectively, and it is
thus likely that these distinct datasets will prove comple-
mentary by breaking each others’ degeneracies. Weak
lensing is likely to be comparably sensitive to this new
physics but manifests distinct systematics (e.g., galaxy
alignment, image point-spread function measurement
errors) [205], making combined probes necessary to
robustly detect new physics.
At the moment, there are constraints to ULA DM from

the absorption spectra of high-z quasars, known as the
Lyman-α forest [206–210], imposing a limit of ηaxion ≲ 0.2
for ma ≲ 10−21 eV. Future Lyman-α measurements could
reach an order of magnitude lower sensitivity to the
absorption optical depth [13], and while a ULA-specific
forecast does not yet exist, it could be that this offers an
additional factor of ∼10 improvement in sensitivity ηaxion ≲
0.2 for ma ≲ 10−21 eV, competitive with the pairwise kSZ
sensitivity level forecast in our work.
Thinking further ahead into the future, intensity mapping

efforts with the cosmological 21 cm and other lines could
offer novel probes of the linear density field. Efforts like
HIRAX [211] and the Square Kilometer Array [212] could
offer a full additional order-of-magnitude improvement in
sensitivity ηaxion for masses as high asma ∼ 10−24 eV [139],
but must progress to a robust 21 cm fluctuation detection
before being useful as a fundamental physics probe.

V. CONCLUSIONS

The next decade of cosmological observations will yield
nearly cosmic-variance limited measurements of CMB

polarization, as well as deep spectroscopic surveys of
∼107 galaxies that facilitate ever more precise maps of
cosmological large-scale structure. These measurements
will improve our understanding of reionization, cluster
thermodynamics, radio point sources, galaxy formation,
and fundamental physics [11]. Increasingly, cosmological
data will be used not only to probe the dark-sector energy
budget but also its particle content.
Ultralight axions could exist over many decades in mass

and are a well-motivated candidate to compose some or all
of the dark matter. Going beyond WMAP and Planck
measurements, much of the sensitivity of upcoming CMB
experiments to dark-sector particle physics will be driven
by secondary anisotropies, such as gravitational lensing and
the kinetic Sunyaev-Zel’dovich effect [11].
In this work, we have computed the ULA signature on

Ostriker-Vishniac CMB anisotropies imprinted after reio-
nization, and on the pairwise cluster velocity dispersion
(measured using the CMB and cluster surveys), including
scale-dependent growth in a self-consistent manner. In
future work, we will explore the impact of our analytic
results on predictions for kSZ signatures of neutrinos. The
OV signature of ULAs was found to be detectable if ηa ≳
10−3 at S4 sensitivity levels with fairly simple assumptions.
Future work will examine the robustness of this signature to
degeneracies with a number of reionization-related param-
eters and realistic subtraction of the primary CMB, as well
as other relatively featureless foregrounds. Proposed futur-
istic small-scale efforts like CMB-HD could offer even
more promising opportunities to detect this signature
[213,214]. This signature seems competitive with all the
LSS probes considered above, but in future efforts, we must
carefully consider foregrounds and marginalization over
our ignorance of the true model of reionization (which
could itself be inhomogeneous) [215].
Using ULA linear perturbation theory and the halo

model of structure formation [145–150,152,178], we found
that if 10−27 eV ≤ ma ≤ 2 × 10−25 eV CMB-S4 and DESI
could together reveal ULA mass fractions in the range
0.002 ≤ Ωa=Ωd ≤ 0.02, offering comparable sensitivity to
CMB lensing [137]. In future work, it will be valuable to
jointly assess lensing and kSZ observables for ULA
sensitivity, in order to fully account for degeneracy break-
ing from these multiple observables.
Our forecast assumed a spectroscopic redshift survey

(e.g., DESI). Future photometric LSS experiments like
LSST, however, will produce surveys with 103 → 104 times
as many galaxies, while sacrificing accuracy in redshift
[12,202]. Although such surveys will suffer from lower
signal-to-noise than comparably voluminous redshift sur-
veys (due to washout of modes with large projections along
the line of sight) [142], they have already been used for kSZ
pairwise velocity detections [170]; in the future, we will
assess the kSZ-driven sensitivity of LSST and other photo-
metric surveys (combined with CMB data) to ULA
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signatures, as well as the complementary nature of more
direct measurements of the matter two-point function.
Going forward, we could build upon the halo-model

techniques employed here, for example, using more accu-
rate halo mass functions and the accompanying Sheth-
Tormen bias functions [178], extending our model to
properly include the effect of scale-dependent barrier
crossing (as in Ref. [181]). We somewhat arbitrarily
included ULAs in the definition of DM used to calculate
fractional density contrasts. In future efforts, we can follow
the lead of Ref. [216] for massive neutrinos and account for
the fact that some fraction of the ULA mass density will be
bound and some will be unbound. Given the tremendous
recent progress in numerical simulations of ULA structure
formation using hydrodynamic, Schrödinger-Poisson, and
modified N-body solvers [96,217–219], it would be inter-
esting to directly apply simulation outputs (including
baryon physics where possible) in order to more realisti-
cally model kSZ observables in the presence of ULAs.
As shown in Ref. [142], a variety of statistical methods

for analyzing kSZ data are equivalent to the pairwise
velocity dispersion used here, as they are all fundamentally
tied to the δδv bispectrum [142]. One such method uses the
peculiar velocity field-estimator v̂, obtained using off-
diagonal correlations of the CMB temperature field and
galaxy density [220]. An advantage of this language is that
it furnishes another useful kSZ statistic, the correlation
function hv̂ðr⃗þ x⃗Þv̂ðr⃗Þi evaluated at comoving separation
x̂, leveraging four-point correlations (the trispectrum) to
provide additional statistical power, potentially breaking
degeneracies of cosmological parameters with bias param-
eters and the mean kSZ optical depth [142].
Past work on using the kSZ effect as a probe of novel

physics explored its sensitivity to neutrino mass and novel
(beyond general relativity) anisotropic stress in the gravi-
tational sector. Here, we have gone further and demon-
strated the utility of the kSZ effect as a probe of the nature
of dark matter. There are a variety of other theoretical
possibilities related to dark matter that would also suppress
structure formation, with changes in power spectra similar
to ULAs, such as nonstandard baryon-DM scattering
[16,221], neutrino-DM scattering [222], or sterile neutrino
DM (see Ref. [223] and references therein). Future efforts
should thus establish the full sensitivity of the kSZ effect to
a broad range of theoretical dark-sector models.
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APPENDIX A: DETAILED DERIVATION OF
OSTRIKER-VISHNIAC POWER SPECTRUM

For this paper, we adopt the following Fourier
conventions:

f̃ðkÞ ¼
Z

d3xe−ik·xfðxÞ; ðA1Þ

fðxÞ ¼
Z

d3k
ð2πÞ3 e

ik·xf̃ðkÞ: ðA2Þ

We will start with our expression for the projected temper-
ature anisotropies [Eq. (22)],

δT ¼ ΔT
T

¼ −
Z

dχgðχÞqðχr̂; aÞ · r̂; ðA3Þ

where we have defined the momentum density
qðχ ; aÞ ¼ ½1þ δðχ ; aÞ�vðχ ; aÞ. Here, the visibility function
gðχÞ is the projection kernel for the field Qðχ ; aÞ ¼
qðχr̂; aÞ · r̂. The Fourier transform of qðχ ; aÞ is given by

q̃ðk; aÞ ¼
Z

d3χe−ik·χqðχ ; aÞ ¼ ṽðk; aÞ

þ
Z

d3k0

ð2πÞ3 δ̃ðk
0; aÞṽðk − k0; aÞ; ðA4Þ

which we obtained by substituting for δðχ ; aÞ in terms of its
Fourier transform.We could have just as easily substituted in
for vðχ ; aÞ and obtained

q̃ðk; aÞ ¼ ṽðk; aÞ þ
Z

d3k0

ð2πÞ3 ṽðk
0; aÞδ̃ðk − k0; aÞ: ðA5Þ
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For symmetry reasons, we will thus use

q̃ðk; aÞ ¼ ṽðk; aÞ þ 1

2

Z
d3k0

ð2πÞ3 ½δ̃ðk − k0; aÞṽðk0; aÞ þ δ̃ðk0; aÞṽðk − k0; aÞ�: ðA6Þ

Using Eq. (2), we can write this expression solely in terms of the density contrast and the growth factor

q̃ðk; aÞ ¼ iaHðaÞ
k2

Gðk; aÞ
G0ðkÞ

d lnG
d lna

kδ̃0ðkÞ þ
iaHðaÞ

2

Z
d3k0

ð2πÞ3 δ̃0ðk
0Þδ̃0ðk − k0ÞGðjk − k0j; aÞ

G0ðjk − k0jÞ
Gðk0; aÞ
G0ðk0Þ

×

�
d lnG
d lna

����
k0;a

k0

k02
þ d lnG

d ln a

����
jk−k0j;a

k − k0

jk − k0j2
�
: ðA7Þ

As argued in themain body of this work andmore rigorously shown byRef. [41], onlymodes perpendicular to the line of sight
contribute appreciably to the line of sight integral, and thus the projection ofqðk; aÞ onto the line of sight is approximately given
by q⊥ðk; aÞ, the projection onto the direction perpendicular to k. We can obtain this projection by

q̃⊥ðk; aÞ ¼
�
I −

K
k2

�
· q̃ðk; aÞ; ðA8Þ

where I is the identity matrix and K is a matrix, such that Kij ¼ kikj. This yields

q̃⊥ðk; aÞ ¼
iaHðaÞ

2

Z
d3k0

ð2πÞ3 δ̃0ðk
0Þδ̃0ðk − k0ÞGðjk − k0j; aÞ

G0ðjk − k0jÞ
Gðk0; aÞ
G0ðk0Þ

×

�
d lnG
d lna

����
k0;a

�
k0

k02
−
kðk · k0Þ
k2k02

�
þ d lnG

d lna

����
jk−k0j;a

�
−k0

jk − k0j2 þ
kðk · k0Þ
k2jk − k0j2

��
: ðA9Þ

The power spectrum P⊥ðkÞ is defined by

hq̃⊥ðk1; aÞ · q̃�⊥ðk2; aÞi ¼ ð2πÞ3δDðk1 − k2ÞP⊥ðk1; aÞ: ðA10Þ

From Wick’s theorem, it follows that

hδ̃0ðk1 − k01Þδ̃0ðk01Þδ̃�0ðk2 − k02Þδ̃�0ðk02Þi
¼ ð2πÞ6P0ðjk1 − k01jÞP0ðk01Þ½δDðk1 − k2ÞδDðk01 − k02Þ þ δDðk1 − k2ÞδDðk1 − k01 − k02Þ�; ðA11Þ

where Plin
0 ðkÞ is the linear mass power spectrum at the present time. Therefore, we obtain

hq̃⊥ðk1; aÞ · q̃�⊥ðk2; aÞi ¼ δDðk1 − k2Þ
a2H2ðaÞ

2

Z
d3k01P0ðjk1 − k01jÞP0ðk01Þ

G2ðjk1 − k01j; aÞ
G2
0ðjk1 − k01jÞ

G2ðk01; tÞ
G2
0ðk01Þ

×

�
d lnG
d ln a

����
k0
1
;a

�
k01
k021

−
k1ðk1 · k01Þ

k21k
02
1

�
þ d lnG

d lna

����
jk1−k01j;a

�
−k01

jk1 − k01j2
þ k1ðk1 · k01Þ
k21jk1 − k01j2

��
2

: ðA12Þ

In order to integrate over all space, we change to spherical coordinates defined such that k ¼ ðk; θ ¼ 0;ϕ ¼ 0Þ. Furthermore,
we substitute θ ¼ cos−1 x and k0 ¼ ky. With these substitutions, we have k · k0 ¼ k2xy and jk − k0j ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2xyþ y2

p
. We

finally find

hq̃⊥ðk; aÞ · q̃�⊥ðk2; aÞi ¼ ð2πÞ3δDðk− k2Þ
a2H2ðaÞ

8π2
k
Z

∞

0

dy
Z

1

−1
dxP0ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2xyþ y2

q
ÞP0ðkyÞ

1− x2

1− 2xyþ y2

×
G2ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2xyþ y2

p
; aÞ

G2
0ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2xyþ y2

p
Þ

G2ðky; aÞ
G2
0ðkyÞ

�
d lnG
d lna

����
ky;a

ð1− 2xyþ y2Þ− d lnG
d lna

����
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2xyþy2

p
;a
y2
�
2

: ðA13Þ
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Our expression is in agreement with Ref. [41] when the scale
dependence of G is dropped.8We thus write the analog of the
Vishniac Sðk; aÞ power spectrum as in Eq. (26), including
additional time dependence as expressed there.

APPENDIX B: MEAN PAIRWISE-VELOCITY
SPECTRA

As discussed in the body of this paper, we start with the
pair conservation equation as given by Ref. [144] and cited
by Ref. [148]:

dð1þ ξÞ
d ln a

¼ −
3v12
Hr

½1þ ξ�: ðB1Þ

Here, ξ and ξ̄ are the correlation function and its volume
average, respectively; v12 is the average pairwise velocity
of any two particles in the field; H and a are the Hubble

parameter and the scale factor, respectively; and r is the
separation between particles.
Consider now halos of mass m, a biased tracer of the

matter field δðxÞ smoothed with a spherically symmetric
window function on some characteristic scale R that
depends on m. If the bias b is linear and a function of
m and the scale factor only, we have

δðmÞ
h ðxÞ ¼ bðm; aÞ

Z
δðxÞWRðjx − yjÞd3x:

Now, by the Fourier convolution theorem, we can write the
transform of this as

δ̃ðmÞ
h ðkÞ ¼ bðm; aÞδ̃ðkÞW̃RðjkjÞ;

where the tilde shall denote Fourier transformed quantities.
We can define a function W̃ðxÞ such that W̃ðkRÞ ¼ W̃RðkÞ.

Consider now halos with masses m1 and m2. The cross power spectrum at equal time is given by

hδ̃ðm1Þ
h ðkÞδ̃ðm2Þ�

h ðk0Þi ¼ bðm1; aÞbðm2; aÞhδ̃hðkÞδ̃�hðk0ÞiW̃ðkR1ÞW̃ðk0R2Þ
¼ ð2πÞ3δð3ÞD ðk − k0Þbðm1; aÞbðm2; aÞPlinðk; aÞW̃ðkR1ÞW̃ðk0R2Þ: ðB2Þ

In the above, we have written the characteristic size of halos of mass m1 and m2 as R1 and R2, respectively.
We assume that the linear power spectrum can be written in terms of the present day power spectrum Plin

0 and a growth
function Gðk; aÞ, which in our case depends on scale. Plinðk; aÞ ¼ Plin

0 ðkÞG2ðk; aÞ=G2
0ðkÞ. The correlation function of halos

of masses m1 and m2 is therefore given by

ξðm1;m2Þ
h ¼ 1

2π2

Z
k2dkj0ðkrÞ

G2ðk; aÞ
G2
0ðkÞ

Plin
0 ðkÞbðm1; aÞbðm2; aÞW̃ðkR1ÞW̃ðkR2Þ: ðB3Þ

The halo bias bðm; aÞ is given to good approximation by (see Ref. [148])

bðm; aÞ ¼ 1þ δ2c − σ2mða ¼ 1Þ
σmða ¼ 1ÞσmðaÞδc

; ðB4Þ

where σ2m is the variance of the matter density field
smoothed on some scale RðmÞ and δc ≈ 1.686 is the
critical collapse overdensity for self-similar spherical
collapse [179].
If the growth of structure is scale independent, the

derivative of the bias with respect to ln a is given by
(see, e.g., Ref. [148])

db
d ln a

¼ d lnD
d ln a

½1 − bðm; aÞ�: ðB5Þ

We argue below that, even in the case of scale-dependent
growth, this derivative is well approximated on all scales of
interest by

db
d ln a

¼ d lnG
d ln a

½1 − bðm; aÞ�: ðB6Þ

Taking the derivative dξðm1;m2Þ
h =d ln a yields

dξðm1;m2Þ
h

d ln a
¼ 1

2π2

Z
k2dkj0ðkrÞPlin

0 ðkÞW̃ðkR1ÞW̃ðkR2Þ

×

�
d

d ln a

�
G2ðk; aÞ
G2
0ðkÞ

�
bðm1; aÞbðm2; aÞ

þ G2ðk; aÞ
G2
0ðkÞ

d b
d ln a

����
m1;a

bðm2; aÞ

þ G2ðk; aÞ
G2
0ðkÞ

bðm1; aÞ
d b
d ln a

����
m2;a

�
; ðB7Þ

8There is, however, a difference of a factor of 2 between the
two derivations. The same difference was found in Ref. [41],
when comparing to other published results. Our expression is in
agreement with the other published results.

FARREN, GRIN, JAFFE, HLOŽEK, and MARSH PHYS. REV. D 105, 063513 (2022)

063513-20



which simplifies with the help of Eq. (B6) to

dξðm1;m2Þ
h

d ln a
¼ 1

2π2

Z
k2dkj0ðkrÞ

d lnG
d ln a

G2ðk; aÞ
G2
0ðkÞ

Plin
0 ðkÞW̃ðkR1ÞW̃ðkR2Þ

× ½2bðm1; aÞbðm2; aÞ þ ½1 − bðm1; aÞ�bðm2; aÞ þ bðm1; aÞ½1 − bðm2; aÞ��

¼ 1

2π2

Z
k2dkj0ðkrÞ

d lnG
d ln a

G2ðk; aÞ
G2
0ðkÞ

Plin
0 ðkÞ½bðm1; aÞ þ bðm2; aÞ�W̃ðkR1ÞW̃ðkR2Þ: ðB8Þ

Lastly, we still need to take the volume average of Eq. (B8) as follows:

dξ̄ðm1;m2Þ
h

d ln a
¼ 3

r3

Z
r

0

ðr0Þ2dr0 dξ
ðm1;m2Þ
h

d ln a
: ðB9Þ

Following Eq. (B1), the average pairwise velocity of
pairs of halos of masses m1 and m2 is then

vðm2;m2Þ
12 ¼ −

Hr

3½1þ ξðm1;m2Þ
h �

dξ̄ðm1;m2Þ
h

d ln a
ðB10Þ

with ξðm1;m2Þ
h and dξ̄ðm1;m2Þ

h =d ln a given by Eqs. (B3) and
(B9), respectively.
To obtain the pairwise velocity averaged over pairs of

different masses in the halo sample used, we weight this by

the product of the number density per unit mass of clusters
of massm1 and the number density per unit mass of clusters
of massm2 a distance r from the former, relative to the total
number density of cluster pairs in our sample separated by a
distance r,

wðr; a;m1; m2Þ ¼
nðm1; aÞnðm2; aÞ½1þ ξðm1;m2Þ

h �
n̄2ðaÞ½1þ hξhim�

: ðB11Þ

Here, n̄ðaÞ ¼ RMmax
Mmin

dmnðm; aÞ is the total number density
of clusters with lower and upper mass limitsMmin andMmax
for the halo sample and hξhim indicating the sample-
averaged halo correlation function defined by

hξhim ¼ 1

n̄2ðaÞ
Z

Mmax

Mmin

dm1

Z
Mmax

Mmin

dm2nðm1; aÞnðm2; aÞξðm1;m2Þ
h

¼ 1

2π2

Z
k2dkj0ðkrÞ

G2ðk; aÞ
G2
0ðkÞ

Plin
0 ðkÞB2ðk; aÞ: ðB12Þ

Here, Bðk; aÞ is defined as

Bðk; aÞ ¼ 1

n̄ðaÞ
Z

Mmax

Mmin

dmnðm; aÞbðm; aÞW̃½kRðmÞ�: ðB13Þ

There is no window function in the denominator in the definition of n̄ðaÞ here, in contrast with the expressions in
Refs. [52,53].
Combining now the weighting from Eq. (B11) with Eq. (B10) and integrating over m1 and m2, we have the mean

pairwise velocity

Vh ¼ hv12im ¼ −
Hr

3½1þ hξhim�
1

n̄2

Z
dm1

Z
dm2nðm1; aÞnðm2; aÞ

dξ̄ðm1;m2Þ
h

d ln a
: ðB14Þ

We notice that the integral appearing here gives the sample average over the ln a derivative of the volume averaged halo
correlation function



dξ̄h
d ln a

�
m
¼ 1

n̄2

Z
dm1

Z
dm2nðm1; aÞnðm2; aÞ

dξ̄ðm1;m2Þ
h

d ln a

¼ 3

π2r3

Z
r

0

dr0r02
Z

k2dkj0ðkr0Þ
d lnG
d ln a

G2ðk; aÞ
G2
0ðkÞ

Plin
0 ðkÞBðk; aÞN ðk; aÞ; ðB15Þ
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where we have additionally defined

N ðk; aÞ ¼ 1

n̄ðaÞ
Z

Mmax

Mmin

dmnðm; aÞW̃½kRðmÞ�: ðB16Þ

This factor arises from the integral over the window
function without matching factor in the bias which was
introduced when we took derivatives of the bias
in Eq. (B8).
The mean pairwise velocity then becomes

Vh ¼ hv12im ¼ −Hr
h dξ̄h
d ln aim

3½1þ hξhim�
: ðB17Þ

If W̃ðxÞ ¼ 1 and Gðk; aÞ ¼ DðaÞ, Eqs. (B15) and (B17)
reduce to the expressions presented in Ref. [148]. They do
not, however, agree with the expressions presented in
Refs. [52,53]. In particular, the halo bias term differs
between these two models. Instead of the term B2ðk; aÞ
that appears in Eq. (32), Refs. [52,53] define

bðqÞh ðk; aÞ ¼
RMmax
Mmin

dmmnðm; aÞbqðm; aÞW̃2½kRðmÞ�RMmax
Mmin

dmmnðm; aÞW̃2½kRðmÞ� :

ðB18Þ

This is manifestly not equivalent to the expression above.
Similarly, in Eq. (B15), our term Bðk; aÞN ðk; aÞ is

replaced by bð1Þh ðk; aÞ. Equation (B18) does also not reduce
to the bias expected in Ref. [148] because setting W̃ðxÞ ¼ 1

does not yield ξh ¼ b̄2ðaÞξlin where b̄ðaÞ would be the
averaged halo bias as specified in Ref. [148]. Instead,
Eq. (B18) leads to

ξh ¼
R
dmmnðm; aÞb2ðm; aÞR

dmmnðm; aÞ ξlin;

i.e., the sample average (modulus some mass weighting) of
the squared halo bias rather than the square of the averaged
halo bias.
The bias term as given in Eq. (B18) exhibits some

unexpected behavior at large k. When choosing a top-hat or
Gaussian filter for W̃ðxÞ, the bias asymptotically
approaches a finite, nonzero value at large k (as seen in
Fig. 14). That appears counterintuitive since it implies that
the sample traces even scales smaller than RðMminÞ. We
would expect to see the bias approach zero for
k ≫ 1=RðMminÞ. This problem does not arise with the bias
expression from Eq. (B13). Furthermore, Eq. (B18)
becomes undefined for large k when using a sharp filter
in k-space W̃ðxÞ ¼ 1 for x ≤ 1 and 0 otherwise, as the
denominator will evaluate to zero for k > 1=RðMminÞ
making the bias undefined. As discussed above, we use
sharp-k filters because they yield more accurate halo
formation histories than other filters in structure sup-
pressing models.
The impact of our modifications is shown in Fig. 15,

where we adopt a Gaussian filter as in Ref. [53]. Not
unexpectedly, the difference is largest at very small scales
which are not usually used in the analysis because of
observational uncertainties. Even on large scales, however,
there remains an overall normalization difference.
Lastly, it remains to justify our approximation for

Eq. (B6),

db
d ln a

≃
d lnG
d ln a

½1 − bðm; aÞ�: ðB19Þ

For this purpose, we can rewrite the ln a derivative of b in
terms of derivatives with respect to σmðaÞ as

db
dlna

¼ dσmðaÞ
dlna

db
dσmðaÞ

¼ dlnσmðaÞ
dlna

½1−bðm;aÞ�: ðB20Þ

We can compute d ln σmðaÞ
d ln a as

FIG. 14. Comparing different bias prescriptions at z ¼ 0.0 for our fiducial ΛCDMmodel. Left: bias as presented by Refs. [52,53]. The
dashed lines indicated the analytically computed asymptotic limit. Right: bias as computed using Eq. (B13).

FARREN, GRIN, JAFFE, HLOŽEK, and MARSH PHYS. REV. D 105, 063513 (2022)

063513-22



d ln σmðaÞ
d ln a

¼ 1

2

d ln σ2mðaÞ
d ln a

¼ 1

2π2σ2mðaÞ
Z

k2dk
d lnG
d ln a

G2ðk; aÞ
G2
0ðkÞ

× Plin
0 ðkÞW̃½kRðmÞ�: ðB21Þ

After mass averaging, if we use Eq. (B21) instead of the
right hand side of Eq. (B19), we obtain the following
instead of the factor d lnG

d ln aN ðk; aÞ in Eq. (B15):

d lnG
d ln a

Bðk; aÞ þ 1

n̄

Z
dmnðmÞ d ln σmðaÞ

d ln a

× ½1 − bðm; aÞ�W̃½kRðmÞ�: ðB22Þ

As mentioned in the body of the paper, if the scale
dependence is weak, our approximation is exact. For small
axion masses, the axion abundance is strongly constrained,
and thus we expect only relatively weak scale dependence
in the late time growth rate. For large axion masses on the
other hand, while their abundance is relatively uncon-
strained, they act increasingly like cold dark matter and
introduce only weak scale dependence as well. We compare
the numerical value for Eq. (B22) to d lnG

d ln aN ðk; aÞ and find
that within the range of masses and abundances allowed at
least by a SIV-like survey the difference is never larger than
∼4% even for the most strongly scale-dependent cases
allowed by our forecast (ma ¼ 10−27 eV and ηa ¼ 0.1).
This increases to about 20% for axion masses of ma ¼
10−27 eV and ηa ¼ 0.25. For any masses larger than
ma ¼ 10−26 eV, the inaccuracies due to this approximation
are at the subpercent level for all axion abundances. We

thus expect the use of Eq. (B19) to induce deviations no
worse than 1%–20% induced deviations in halo mass-
function averaged predictions for vðrÞ. We reran our Fisher
forecasts for a subset of our mass range (below 10−26 eV)
and found that our approximation has a negligible impact
on the predicted detection limits (≲4%).

APPENDIX C: NUMERICAL TREATMENT OF
OSTRIKER-VISHNIAC INTEGRALS

We note that the integral to be evaluated to obtain SðkÞ
[Eq. (26)] appears singular at x ¼ y ¼ 1. We argue here
that this singularity behaves as ϵ−n for 0 < n < 1 and is
thus integrable. For the purposes of this argument, we will
assume that the growth function is approximately scale
independent, i.e., Gðk; aÞ ≈DðaÞ, which is true on large
scales. With this approximation, the integrand becomes

Iðx; yÞ ¼ PðkyÞPðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2 − 2xy

q
Þ ð1 − x2Þð1 − 2xyÞ2

ð1þ y2 − 2xyÞ2 :

ðC1Þ

The power spectrum PðkÞ falls off quickly at large k, and so
the contribution from such modes is small. At sufficiently
small k, PðkÞ ∝ kn where n is the tilt of the power
spectrum. Therefore, the integrand goes as

Iðx; yÞ ∝ k2nyn
ð1 − x2Þð1 − 2xyÞ2
ð1þ y2 − 2xyÞ2−0.5n : ðC2Þ

Expanding to first order around x ¼ y ¼ 1, we find

Ið1 − ϵ; 1þ δÞ ∝ k2n

22−0.5n
ð1þ nδÞð2ϵÞð1þ 4δ − 4ϵÞ

ϵ2−0.5n

≈
k2n

22−0.5n
2ϵ

ϵ2−0.5n

¼ k2n

21−0.5n
1

ϵ1−0.5n
: ðC3Þ

In the expression above, we have made use of the fact that n
is observationally constrained to be close to unity. We can
now see that for any physically reasonable value of n the
singularity should be integrable.
In order to numerically evaluate the integral, we perform

a coordinate transform x → t. Since the singularity has the
form 1=ð1 − xÞ1−0.5n, one can require dx

dt ∝ ð1 − xÞ1−0.5n. If
we then redefine the integrand in terms of t, we will have
multiplied out the divergent factor. This implies (up to
scalar factors) t ¼ ð1 − xÞn=2. With this transformation,

Z
1

−1
Iðx; yÞdx ¼ 2

n

Z
2n=2

0

t2=n−1Ið1 − t2=n; yÞdt: ðC4Þ

FIG. 15. Comparing the mean pairwise-velocity obtained with
these two prescriptions for our fiducial ΛCDM model. As in
Ref. [53], we adopt a Gaussian filter here. While the difference is
large on small scales, it approaches a constant factor of ∼1.15
over the range of scales used in the analysis [52,53].
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APPENDIX D: MEAN-PAIRWISE VELOCITY PARAMETER DEGENERACIES

In order to inspect degeneracies between different parameters in our analysis, we draw 106 random samples from a
multidimensional Gaussian distribution with covariance given by the inverse of the Fisher matrix computed as described in
Eq. (40). The samples drawn are then analyzed using GETDIST.9 Degeneracies between the ΛCDM cosmological parameters
and the ULA fraction, the bias parameters and the ULA fraction, and the ΛCDM cosmological parameters and the bias
parameters are shown in Figs. 16, 17, and 18, respectively. We also show the degeneracies obtained when neglecting the
marginalization over the bias parameters (Fig. 19).

FIG. 16. Parameter degeneracy forecasts from our Fisher-matrix analysis. This figure shows degeneracies between the ULA fraction
ηa and the standard ΛCDM cosmological parameters. The symbol ωi ¼ Ωih2 for species i ∈ fDM; bg.

9https://github.com/cmbant/getdist.
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FIG. 17. Parameter degeneracy forecasts from our Fisher-matrix analysis. This figure shows degeneracies between the bias nuisance
parameters b1, b2, b3, b4, and b5 as well as the ULA fraction ηa.
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FIG. 18. Parameter degeneracy forecasts from our Fisher-matrix analysis. This figure shows degeneracies between the bias nuisance
parameters b1, b2, b3, b4, and b5 with the standard cosmological parameters. The symbol ωi ¼ Ωih2 for species i ∈ fDM; bg.
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