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We introduce and study a new scheme to construct relativistic observables from postprocessing light
cone data. This construction is based on a novel approach, LC-METRIC, which takes general light cone or
snapshot output generated by arbitrary N-body simulations or emulations and solves the linearized Einstein
equations to determine the spacetime metric on the light cone. We find that this scheme is able to determine
the metric to high precision, and subsequently generate accurate mock cosmological observations sensitive
to effects such as post-Born lensing and nonlinear integrated Sachs-Wolfe contributions. By comparing to
conventional methods in quantifying those general relativistic effects, we show that this scheme is able to
accurately construct the lensing convergence signal. We also find that the accuracy of this method in
quantifying the integrated Sachs-Wolfe effects in the highly nonlinear regime outperforms conventional
methods by an order of magnitude. This scheme opens a new path for exploring and modeling higher-order
and nonlinear general relativistic contributions to cosmological observables, including mock observations
of gravitational lensing and the moving lens and Rees-Sciama effects.
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I. INTRODUCTION

Observations of our Universe across cosmological dis-
tances offer us an ideal grounds for testing the behavior of
long-standing physical theories, alongside new ones, rang-
ing from signatures of new primordial phenomena [1–5], to
models of dark energy [6–10], to general relativity (GR)
itself [11,12]. On the other hand, it is often on small scales
—the distances considerably smaller than our cosmological
horizon on which nonlinear growth of structure occurs—
that we have been able to perform our most precise
measurements. Upcoming experiments, such as CMB-S4
[13] and the Vera Rubin Observatory (formerly LSST) [14]
will begin to provide us with a view of the Universe that
encompasses both of these regimes. Together, maps of the
cosmic microwave background (CMB), of the large-scale
galaxy distribution, and of other tracers of matter in the
Universe are expected to be of sufficient sensitivity and
volume that we can measure or constrain a variety of the
subtle effects that leave an imprint on ultralarge scales [15].
Sophisticated, accurate theoretical predictions are essen-

tial for optimal analysis of observations at this level of
precision, and large suites of simulations are often required
to make statistically meaningful predictions. To this end, a
variety of procedures designed to generate accurate mock
observations without running more expensive simulations

of structure formation have been proposed and explored,
with varying degrees of success [16–22]. These emulators
can efficiently incorporate nonlinear physics in cosmologi-
cal models, and can further be used to generate a variety of
observations consistently in order to study e.g. cross-
correlations or to test procedures such as tomographic
reconstruction. However, methods for incorporating light
cone projection effects in mock observations are underde-
veloped, especially at a nonlinear level. For unbiased
extraction of cosmological parameters, especially arising
from information contained within cross-correlations and
higher-order statistics, it will be necessary to simultane-
ously model non-Newtonian, horizon-scale effects along-
side subtle yet still important small-scale nonlinear physics.
Addressing this has been a focus of a number of studies,
which have found different statistics and inferred cosmo-
logical parameters to be sensitive to such effects to various
degrees [23–28].
Accurately predicting observable properties of our

Universe requires accurate knowledge of the spacetime
metric through which information has propagated to us—in
particular, knowledge of this metric on our past light cone.
The idea of determining the metric on the past light cone
from observations has been explored in a large-scale setting
in several works [29–31]. In this work we introduce a novel
method LC-METRIC (light cone metric restoration) for
extracting the metric on our past light cone from either a
mock density field on the light cone, or a series of constant-*chit@wustl.edu
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time “snapshots” from simulations, and subsequently
computing observable quantities. We focus on the ability
of this method to act as a postprocessing procedure for the
output of both standard NewtonianN-body simulations and
cosmic emulators, especially those for which a small
number of time steps may have been taken and so recovery
of the metric and its time derivative is less straightforward.
Once recovered, we can use the metric to subsequently
account for gravitational effects in generated mock obser-
vations, including post-Born corrections to gravitational
lensing and nonlinear contributions to the integrated Sachs-
Wolfe (ISW) effect.
Nonlinear corrections to lensing and the ISW effects

have been examined in literature using a variety of schemes
in which approximations are employed to circumvent the
need to determine the metric and its derivatives. However,
as accurately modeling observables will be important both
at low and high redshift, on small and large scales, and for a
number of observables including the CMB temperature and
polarization, and galaxy power spectra, it will be important
to consistently and correctly incorporate both nonlinear and
large-scale light-cone-projection corrections [32–34]. The
nonlinear ISW effect itself can be decomposed into several
contributions, including the Rees-Sciama and moving-lens
effects [35], which are expected to be detectable by future
experiments with high signal-to-noise [13]. Gravitational
lensing itself is perhaps better studied in literature, includ-
ing nonlinear contributions [36–46]. Our approach in
modeling these effects will be to first validate our approach,
and then to produce lensing and ISW maps that are both
consistent with other observables and also include non-
linear contributions.
For weak-lensing simulations, previous studies have

employed an approximate thin-lens scheme using multiple
planes or spheres of mass [31,37,39–41,43,44,47–49]. (See
also [50] for a comprehensive review and code comparison
of some existing weak-lensing simulations.) While some of
these studies rely on the Born approximation, assuming
unperturbed photon geodesics, other studies beyond the
Born approximation find good agreement depending on the
statistic and scales in question ([39,43,51–53]). In contrast
to lensing, modeling the ISW effect requires knowledge of
the time derivative of the metric potential, which makes its
calculation more computationally challenging. This is
especially true when computing the ISW signal in the
highly nonlinear regime, and when postprocessing simu-
lation data. Various techniques have been studied in past
literature to this end [54–59]. These all require either output
from a large number of snapshots or on-the-fly ray tracing,
and so are not directly applicable as a postprocessing step,
which is especially important for fast emulators.
Here, we work to establish a numerical framework in

which we can robustly compute nonlinear ISW and post-
Born lensing contributions from Newtonian light cone
simulation or emulator output. Rather than considering

specific effects or terms in such a calculation, we will aim
to extract the full nonlinear ISW and lensing contributions.
We attempt to remain agnostic as to the simulation output;
our method can be applied to a variety of sources, ranging
from N-body codes such as GADGET [60] to emulators
that provide light cone output such as L-PICOLA [17].
We will primarily rely upon the latter of these codes in this
work, especially as output from COLA methods will
converge to that of a standard N-body simulation in the
limit of a large number of time steps. We compare our
approach to conventional approximate approaches based on
simulation snapshots or light cones, and compare the
requirements for numerical convergence between our
method and other approaches. We find that our approach
to modeling the weak-lensing power spectrum agrees well
with other approaches that utilize the Born approximation,
although we do note some differences. Importantly, we find
that our scheme significantly outperforms conventional
schemes when modeling the ISW effect in the highly
nonlinear regime.
We expect our results and framework to be relevant for

modeling of higher-order and relativistic effects in cosmo-
logicalobservablessuchas themoving-lensandRees-Sciama
(nonlinear ISW) effects [35], higher-order contributions to
observationsof theCMBincludinge.g.post-Borncorrections
or lensing of the Sunyaev Zeldovich (SZ) signal itself.While
some of these corrections have been studied and may be
detectable by upcoming experiments [13,61,62], various
higher-order effects have yet to be examined in detail—
oneofourgoals is to initiate a study in this direction.Our code
has been made public and can be found at [63].
This paper is structured as follows. In Sec. II, we review

linearized GR theory, and describe our scheme to recast the
linearized GR equations into a hyperbolic form on the past
light cone. We then introduce our numerical method for
solving these equations, which employs a multigrid tech-
nique to relax these equations and determine the Newtonian
potential and its derivatives. In Sec. III, we calculate
cosmological observables, including the weak-lensing and
the (nonlinear) ISWeffects, from the metric on the past light
cone, and compare them with some conventional approxi-
mate methods. We summarize and conclude in Sec. IV.

II. METHODOLOGY

A. Linearized GR equations

The scheme we present here is based on a linearized
treatment of the spacetime metric in Newtonian gauge (see
e.g. [64]). In this work, we will assume there is no
anisotropic stress so the two Newtonian potentials are
equal, although this assumption may be relaxed in a more
general setting. We further do not study the impact of vector
or tensor perturbations, although these may be treated by a
similar procedure. Given these approximations, the per-
turbed metric in Newtonian gauge can be written as
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ds2 ¼ a2½ð1þ 2ΦÞdτ2 − ð1 − 2ΦÞδijðdxidxjÞ�; ð1Þ

with Φ as the Newtonian potential. The comoving Hubble
parameter H is proportional to the Hubble parameter H as
H ¼ aH, and, in a universe containing just dust and
vacuum energy, it evolves according to the Friedmann
equation

H2 ¼ H2
0a

2ðΩma−3 þ ΩΛÞ; ð2Þ

where H0 represents the current expansion rate. The
background homogeneous stress tensor can be written

T̄μ
ν ¼ ðρ̄þ P̄ÞŪμŪv − P̄δμν ; ð3Þ

where Ūμ ¼ aδ0μ and Ūμ ¼ a−1δμ0. The perturbation to the
matter content δTμ

ν is

δT0
0 ¼ ρ̄δ; ð4Þ

δTi
0 ¼ ðρ̄þ P̄Þvi; ð5Þ

δT0
j ¼ −ðρ̄þ P̄Þvj; ð6Þ

δTi
j ¼ −δPδij þ Πi

j; ð7Þ

where δ is defined δ≡ ðρ − ρ̄Þ=ρ̄ and vi donates the
peculiar velocity field. Ignoring the anisotropic stress
tensor Πi

j and keeping the linear terms in the metric
and the matter field, the linearized Einstein equations can
be written as

∇2Φ − 3HðΦ0 þHΦÞ ¼ 4πGa2ρ̄δ; ð8Þ

∂iðΦ0 þHΦÞ ¼ −4πGa2ðρ̄þ P̄Þvi; ð9Þ

Φ00 þ 3HΦ0 þ ð2H0 þH2ÞΦ ¼ 4πGa2δP: ð10Þ

The prime symbol denotes a time derivative with respect to
the conformal time τ. We set the pressure perturbation, δP,
to zero under the collisionless-particle approximation in the
remainder of the paper.

B. Connecting Newtonian N-body simulations to GR

The vast majority of simulations of large-scale structure
formations are performed within a Newtonian gravity
framework, rather than a general relativistic setting.
While there are exceptions [65–71], in general this neces-
sitates a translation between Newtonian simulation output
and the corresponding general-relativistic quantities in the
appropriate gauge. One promising approach to reconciling
this discrepancy involves reinterpreting the input and
output to standard Newtonian codes in gauges specially
developed for this purpose [66]. Another straightforward

option, which we employ here, is to transform the output of
Newtonian codes to approximately agree with a relativistic
interpretation as proposed in [72]. The following dictionary
maps output from Newtonian simulations to output in
Newtonian gauge,

Φ ¼ Φsim; ð11Þ

v⃗ ¼ v⃗sim; ð12Þ

x⃗ ¼ x⃗sim þ δx⃗in: ð13Þ

To find the value of corrections δx⃗in to particle positions, we
can simply solve the equation [72]

∇ · δx⃗in ¼ 5Φin; ð14Þ

where Φin is the gravitational potential determined when
setting initial conditions. Our postprocessing scheme uses
this dictionary to correct particle positions given byN-body
simulations. We also note that the (Newtonian) density
contrast δ is subject to a GR correction

δ ¼ ð1þ 3ΦÞδsim ¼ ð1þ 3ΦÞn̄
X
i

δð3ÞD ðr − riÞ − 1; ð15Þ

where n̄ is the average particle density, and δð3ÞD ðrÞ is the 3D
Dirac delta function. In the test cases we present in this
paper, the GR corrections are only appreciable at the largest
scales.

C. Solving Einstein’s equations on the light cone

Our past light cone can be thought of as a sequence of
nested spherical shells. We will therefore work in a
spherical polar coordinate system ðr; θ;ϕÞ, where r is
the comoving distance and θ and ϕ are the azimuthal
and polar angles, respectively. We further employ the
coordinate transformations.

τ → η; ð16Þ

rþ τ → w; ð17Þ

under which varying η corresponds to considering future/
past null coordinate cones, while w ¼ const corresponds to
the surface of a specific null coordinate cone. We also
manually set w ¼ 0 for past light cone of the observer at
z ¼ 0. The coordinate system after this transformation is
equivalent to “geodesic light cone coordinates” to leading
order [73–75]. To transform the equations of motion
(EOM) Eqs. (8) to (10) into the coordinate system
ðη; w; θ;ϕÞ, we can rewrite the EOM Eqs. (8) to (10) in
standard spherical coordinates ðτ; r; θ;ϕÞ and use the
following transformation relations for partial derivatives
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∂τ → ∂η þ ∂w; ð18Þ

∂r → ∂w; ð19Þ

∂2
τ → ∂2

η þ 2∂η∂w þ ∂2
w; ð20Þ

∂2
r → ∂2

w: ð21Þ

These are derived directly from the coordinate transforma-
tions relations, and can be used to rewrite the EOMs in the
new coordinate system,

Φ̈ ¼ −
2

r
Πþ 2HΠ − 2ð _H −H2ÞΦþ 4πGa2ρ̄δ

þ 3 × ð4πGa2ρ̄ΦÞ −∇ð2ÞΦ
r2

þ 2 × 4πGa2ρ̄vr; ð22Þ

_Ξ ¼ −2HΞ −HΩ − ð2 _HþH2ÞΦþ 4πGa2ρ̄vr: ð23Þ

Here, we have defined some shorthands for partial deriv-
atives in the new coordinates,

_X ≡ ∂X
∂η ; X0 ≡ ∂X

∂r ¼ ∂X
∂w ð24Þ

for a field X, and also shorthands for several new variables,

Ω≡ _Φ; Π≡Φ0; Ξ≡ ∂τΦ ¼ Πþ Ω: ð25Þ

Equations (22) and (23) comprise a second-order linear
partial differential equation (PDE) coupled to a first order
PDE. We discretize the solution onto a spherical mesh by
discretizing the comoving time direction ηðτÞ uniformly,
and discretizing angular directions ðθ;ϕÞ according to the
HEALPix convention (see Appendix A 2 for more detail).
Under this discretization, the density contrast δ and the
radial velocity fields vr can be extracted from particle data
using any preferred deposition scheme, such as nearest-
grid-point (NGP) or cloud-in-cell (CIC) deposition. The
weights we use for radial grids correspond to standard CIC
weights, while the angular weights are given by the
HEALPix get_interpol function. To calculate the
angular Laplacian term ∇ð2ÞΦ in Eq. (22), we also employ
HEALPix to perform spherical harmonics transformations
to compute the spherical harmonic coefficients alm for all
terms in the Eqs. (22) and (23) under the convention

alm ¼ 4π

Npix

XNpix−1

p¼0

Y�
lmðθpÞfðθpÞ: ð26Þ

In harmonic space, ∇ð2ÞΦ can be simply represented by
lðlþ 1ÞΦlm, where Φlm are the spherical harmonic
coefficients of Φ. For radial derivatives in Eqs. (22) and

(23), we employ a second-order finite-differencing method
to calculate them.
The strategy employed to solve this boundary value

problem is to use a relaxation scheme to solve Eq. (22) and
direct time integration to solve Eq. (23) (see Appendix A 2
for more detail). To this end, two boundary conditions forΦ
and one boundary condition for Ξ are required. These data
can be estimated from two snapshots at boundaries. For
example, theΦ field on the boundaries can be quantified by
combining the Friedmann equation Eq. (2) with the Poisson
equation for gravity. The resulting Φ field on boundary
snapshots in Fourier space can be calculated from

Φðk; τÞ ¼ −
3

2

�
H0

k

�
2

Ωm
δðk; τÞ

a
: ð27Þ

Also, by plugging in the continuity equation _δðk; τÞ þ ik ·
pðk; τÞ ¼ 0 in Fourier space, we have the value for Ξ on
boundary snapshots

Ξ≡ ∂Φ
∂τ ðk; τÞ ¼ −

3

2

�
H0

k

�
2

Ωm

�
H
a
δðk; τÞ þ ik · pðk; τÞ

a

�
;

ð28Þ

where pðk; τÞ is the Fourier transform of
½1þ δðx; τÞ�vðx; τÞ, and the velocity field vðx; τÞ is again
extracted from the CIC or NGP schemes on the boundary
snapshot. After collecting the Φ and Ξ fields on boundary
snapshots, we project the data onto a HEALPix sphere
through linear interpolations. Replications of the snapshots
are necessary for setting the boundary data at higher
redshift.
After imposing boundary conditions at higher and lower

redshifts [76], we use a relaxation scheme to solve for each
spherical harmonic coefficient in each radial bin. When the
size of voxels on spherical grids approximately matches the
voxels from Cartesian grids of N-body simulations, using
too many spherical grids will prevent an ordinary relaxation
technique (e.g. Newton’s method) from converging to the
true solutions of Eqs. (22) and (23) in a practical amount of
time. We therefore employ a multigrid method [77], which
builds a hierarchy of the computational grids to accelerate
the relaxation procedure. We find that employing the
multigrid method will result in approximately a 10x
speedup compared to the conventional Newton relaxation
method. The relaxation process is accomplished by repeat-
ing V-cycle iterations (see Appendix A 2 for more details
about the relaxation scheme, the multigrid method, and the
V-cycle), and an example for the relaxation procedure for
the reconstructed potential ΦLC at z ¼ 0.3 is shown in
Fig. 1. The ΦLC quickly converges to the potential on
the snapshots Φsnap at the same redshift as more and more
V-cycle iterations are performed. Further details about the
convergence of the solver can be found in Appendix B 1.
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D. Simulation data and light cone construction

To validate our metric reconstruction procedure, we will
focus on postprocessing simulated light cone data, which is
most accurately constructed through on-the-fly interpola-
tion during N-body simulations. However, as the most
common output format of N-body simulations is snapshots,

our scheme is also designed to be able to work with
light cone data restored from snapshots. To validate the
LC-METRIC reconstruction scheme, we run a suite of dark-
matter-only N-body simulations using the L-PICOLA code
[78], and subsequently use LC-METRIC to postprocess its
output. L-PICOLA implements the COLA method, a
reference formulation using second-order Lagrangian per-
turbation theory to quickly solve the Newton-Vlasov
system [79]. A significant speed-up compared to conven-
tional particle-mesh method is typically found, especially
on large scales; further, this method will produce equivalent
results to standard N-body codes for sufficiently small time
steps [78].
Our simulations are carried out with 10243 dark-

matter particles in a periodic box with side length
L ¼ 1024h−1 Mpc, corresponding to a particle mass of
approximately 1011 M⊙. The density field of dark-matter
particles is CIC deposited onto 10243 Cartesian grids, and
forces are computed using fast Fourier transforms. The
background cosmology is chosen to be a flat ΛCDMmodel
with parameters Ωm ¼ 0.31, ΩΛ ¼ 0.69, h ¼ 0.69,
σ8 ¼ 0.83, and ns ¼ 0.96. Initial conditions for the simu-
lations are generated based on a linear transfer function
computed using CLASS with matching cosmological
parameter values [80] at z ¼ 9.
As the LC-METRIC scheme supports both light cone

N-body data and snapshots data, we run the L-PICOLA
code twice under light cone mode and normal (snapshot)
mode to generate corresponding outputs with the same
random seed. When snapshots data is given, we construct
the light cone data from the snapshots by extrapolating
particle positions according to their velocities and calcu-
lating their intersections with the light cone. We also
replicate our computational box to cover the entire light
cone. Although this replication procedure will result in
artifacts on large scales, as a proof of concept for our
metric-recovery scheme, we will primarily focus on
whether the mock light cone metric can be correctly
computed from a given density field. Further details of
our scheme for constructing light cone data from snapshots
is described in Appendix C. By choosing the two bounda-
ries slices to be at redshifts z ≈ 0.03 and z ≈ 0.52, we
construct our light cone metric extending between these
redshifts. Note that even though we test our code by
postprocessing L-PICOLA N-body output, our scheme
will work with generic light cone or snapshot data that
contains particle positions and peculiar velocities.
When constructing a light cone from snapshots, a useful

technique supported by LC-METRIC is the “thick” light cones
scheme. As shown in Fig. 2, by shifting the original light cone
in the time direction, we construct two auxiliary light cones.
The amount bywhich the light cone is shifted is set to be equal
to the radial resolution of light cones, so that the voxels both
have the same conformal radius r, and are aligned in the time
direction. Under this configuration, the partial derivativewith

FIG. 1. Comparison of a Φ snapshot at z ¼ 0.3 between the
direct snapshot output Φsnap and the restored ΦLC after 1, 10, and
100 iterations (No. of V-cycles).
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respect to conformal time of any field can be calculated
directly using the second-order finite-differencing scheme.
The “thick” light cones scheme will also facilitate the
calculation when light rays deviate from the “thin” light cone
when tracing the null geodesics precisely.
After reading in light cone data, we deposit particle

masses and radial peculiar velocities onto our spherical
grids, which have radial resolution Nη ¼ 1024 and angular
resolution corresponding to Nside ¼ 512. The number of
radial grids is chosen to ensure the radial resolution of the
light cone Δη ¼ Δr approximately matches the Cartesian
resolutionΔx; the angular resolution is set to make sure that
most of the spherical-coordinate voxels are larger than the
Cartesian voxels to avoid oversampling. Appendix B dis-
cusses how the cosmological observables vary with the
choice of resolution.
We will further need to account for power suppression

due to the implicit convolution associated with depositing
particle masses onto grids (either through CIC or NGP). We
deconvolve the grids using corresponding window func-
tions to restore a true representation of the density field. For
N-body simulation data from L-PICOLA, we use a window
function [81]

WðkÞ ¼
�
sinc

�
πkx
2kN

�
sinc

�
πky
2kN

�
sinc

�
πkz
2kN

��
; ð29Þ

where kN is the Nyquist frequency, and the underlying
density field δmðkÞ is calculated from

δmðkÞ ¼ WðkÞ−pδðkÞ; ð30Þ

where δðkÞ is the density field obtained from mass
depositing scheme directly, and p is 1 and 2 for the
NGP and CIC schemes, respectively.
Similar to the NGP or the CIC particle-deposition

procedures on Cartesian grids, when depositing
particle masses onto the HEALPix grids, a similar window
function Wl ≈ sincðlΔθ=2πÞ should be considered, and
the density fields on the HEALPix grids also need to be
corrected by

δml ¼ W−p
l δl; ð31Þ

where p is similarly 1 and 2 for the NGP and CIC
depositing schemes. In this study, we choose to scale all
the spherical-harmonics coefficients in the density and
velocity fields according to the approximate window
function available through HEALPix.
A smoothing procedure is also introduced for the density

fields on HEALPix grids through the size of individual
HEALPix pixels possibly being significantly smaller than
the resolution of an N-body simulation at low comoving
radius. Unless specified, we convolve the density and
velocity fields on HEALPix grids with a Gaussian smooth-
ing kernel with half-max width

θs ¼ Δx=2r; ð32Þ

FIG. 2. Illustration of the construction of “thick” light cones, which are the light cones containing information between the dotted lines
in the figure. They are computed by obtaining additional light cone data for observers separated positively and negatively in time by a
conformal time Δτ, which is also equal to the radial resolution of the light cone mesh. The snapshots are represented by horizontal
dashed lines, and the top and bottom blue lines are boundary snapshots. The three dots vertically aligned on snapshots representing three
mesh grids on each light cone, as an example, have equal spatial coordinates.
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where Δx is the resolution of the N-body simulation and r
is the comoving radius at each specific spherical shell. The
inner shell (at lower redshift) will have a larger smoothing
angle due to the limited Cartesian resolution of the N-body
simulations.

E. Theory of lensing and ISW effects

To verify our metric-reconstruction strategy, we generate
and examine cosmic observables, including the lensing-
convergence and (nonlinear) ISW effects.
Weak gravitational lensing by large-scale structure is due

to the gravitational deflection of light by intervening matter
as it travels to us. In this paper, wewill focus on quantifying
the weak-lensing convergence

κ ≡DA − D̄A

D̄A
; ð33Þ

where D̄A is the unperturbed angular-diameter distance in
an Friedmann Lemaître Robertson Walker (FLRW) back-
ground. Under the assumption of unperturbed photon
trajectories, the so-called Born approximation, the lensing
potential ψðrs; θÞ depending on the gravitational potential
ϕ for sources at comoving distance rs (from us observers)
can be defined as

ψðrs; θÞ≡ −
Z

rs

0

dr0
rs − r0

rsr0
× 2Φðr0; θÞ; ð34Þ

and the lensing convergence is then

κ ¼ −
1

2
∇ð2Þψ : ð35Þ

To avoid the need of exactly estimating the lensing
potential in Eq. (34), many studies choose to introduce the
radial modes and replace the angular Laplacian in Eq. (33)
with the 3D Laplacian∇2Φ. Then following the Newtonian
Poisson equation

∇2Φ ¼ 4πGa2ρ̄δ; ð36Þ

Eq. (33) can be cast into an integration of the density
field as

κ ¼
Z

rs

0

dr0
rs − r0

rsr0
× 4πGa2ρ̄δðr0; θÞ: ð37Þ

In practice, a more widely used scheme—the “thin-lens
approximation”—relies on summing over light cone
particles along lines of sight within each sky pixel. This
scheme is based on Eq. (37), but it does not require radial
binning or extracting the gravitational potential, and it
has been employed in a number of contexts in the literature
[82–86],

κ ¼ 2

3
H2

0Ωm;0
Vsim=Nsim

Ωpix

X
particles

1

rpaðrpÞ
rs − rp

rs
: ð38Þ

Here, rp is the comoving distance of the light cone particles
and Ωpix is the size of the solid angle of sky pixels. Note
that even though the approximation of introducing the
radial modes holds accurately on small angular scale [37],
its validity is not guaranteed on largest scales.
Photons traveling through large-scale structure also

encounter a time-varying potential—the ISW effect. For
CMB photons, this effect alters their frequency, and hence
the CMB temperature T, according to

ΔTISWðr; θÞ
TCMB

¼ 2

Z ∂Φðr; θ; τÞ
∂τ dτ: ð39Þ

One could employ Eq. (28) to estimate this ISW signal as
suggested in [54]. If no knowledge of velocity fields in
Eq. (28) is given, one could assume the linear growth of δ
then the ∂Φðr; θ; τÞ=∂τ field. However, the linear approach
fails to capture all nonlinear effects, which soon become
significant on angular scales corresponding to the multipole
mode around l ∼ 60, and will dominate the ISW contri-
bution beyond l ∼ 100 [54,56].

III. RESULTS

In this section, we demonstrate this new scheme’s ability
to reconstruct the spacetime metric as well as the accuracy
with which we can compute lensing and ISW observables.
We provide a comparison of our scheme both to the output
of Einstein-Boltzmann solvers (CLASS [80]) and to con-
ventional methods found in past literature. We explore the
requirements for each of these different techniques and
show that for the weak-lensing and (nonlinear) ISW
observables, a better than 5% accuracy for l≲ Nside is
achieved.

A. Direct potential comparison

We first evaluate the accuracy of our scheme by directly
comparing the light-cone-reconstructed gravitational
potential Φ with the potential obtained from snapshot data.
For the first such comparison, we adopt the same configu-
ration as in Fig. 1. The potential Φsnap is computed and
interpolated to HEALPix grids from a snapshot at z ¼ 0.3,
while the reconstructed ΦLC is computed using the
LC-METRIC scheme under CIC deposition, using light cone
data in addition to two spatial boundary slices at z ≈ 0.03
and z ≈ 0.52. No snapshot information at any redshift in
between is used. In Fig. 3, we calculate the angular power
spectra for Φsnap and ΦLC. We also show their normalized
cross-correlation coefficients defined as

rXX
0

l ¼ CXX0
l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CXX
l CX0X0

l

q
ð40Þ
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in Fig. 4, where CXX0
l is the cross-power spectrum for

arbitrary fields X and X0.
According to Figs. 3 and 4, highly correlated signals are

in percent-level agreement for 5≲ l≲ Nside, with an
accuracy better than 0.5% for 20≲ l≲ 200. The 5%
discrepancy for l≲ 5, much less than the sample variance
for this range of multipoles, is likely due to the approxi-
mation used by the L-PCOLA code to generate the light
cone data, and to noise arising from depositing particles
masses and velocities to a spherical grid. The accuracy at
larger multipoles l > Nside is limited by the precision of the

interpolation operations (see Appendix B 2 for further
discussion). The convergence test (see Appendix B 3) also
suggests that we can expect an improved reliability when
the angular resolution Nside is increased.

B. Weak lensing

The weak-lensing convergence κ can be estimated in a
number of different ways for sources at the high-redshift
end of the light cone (z ≈ 0.48). The thin-lens scheme
[Eq. (38)] provides one option that avoids the need to
decompose the lensing (mass) distribution into radial bins
at the cost of ignoring the radial modes. Another option is
to compute the lensing convergence explicitly once the
metric is known [Eqs. (34) and (35)] on the light cone.
We compare the probability density functions (PDF) of

the lensing convergence computed using both the thin-lens
approximation and explicit calculation from light-cone-
reconstructed metric potential, shown in Fig. 5. The PDFs
agree to 0.5% in the range of κ where the PDFs are
appreciably different than zero. The reconstructed ΦLC in
this comparison is obtained from light cone data with the
NGP mass deposition scheme in order to match the thin-
lens scheme Eq. (38), which effectively employs a NGP
method. Similar to the LC-METRIC scheme, the correspond-
ing window function Wl [see Eq. (31)] is also applied to
correct the power suppression after the depositing scheme
is applied in the thin-lens procedure.
In addition, the lensing power spectra calculated for each

of these two methods are also shown in Fig. 6, alongside a

FIG. 3. Upper panel: comparison of the angular power spec-
trum at of Φ at z ¼ 0.3 between snapshot output Φsnap and the
reconstructed potential ΦLC from the LC-METRIC based on the
light cone. Lower panel: percent difference between Φsnap and
ΦLC. Convergence between the two methods is found as
numerical resolution is increased.

FIG. 4. Normalized cross-correlation coefficients [Eq. (40)]
between the restored potential ΦLC and the potential on the
snapshot Φsnap at z ¼ 0.3.

FIG. 5. Upper panel: PDFs of the lensing convergence from
z ¼ 0.03–0.48 calculated using the thin-lens approximation
[Eq. (38)] and the lensing potential [Eq. (35)] based on the
reconstructed metric. The mean value has been subtracted. Lower
Panel: percent difference in the PDF between the thin-lens and the
LC-METRIC schemes.
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baseline power spectrum given by Halofit [87]. They are
both consistent with the Halofit prediction over a wide
range of scales. The discrepancy at higher l is due to
insufficient resolution in the N-body simulation and light
cone grids, and is also observed in similar weak-lensing
investigations [45,88]. Only a subpercent discrepancy is
found for l > 20 between the thin lens and the LC-METRIC

based scheme, suggesting the LC-METRIC reconstruction
scheme is able to reproduce results that are fully consistent
with the conventional thin lens approximation. The dis-
crepancy at lower l is revealing the errors of ignoring the
radial modes in Eq. (37) and subsequently, Eq. (38). These
radial modes turn out to have a few percent effects for the
convergence at very low multipoles.
The normalized cross-correlations coefficients (Fig. 7)

confirm the strong agreement between the two methods.
The LC-METRIC scheme, however, can take advantage of the
full metric information on the past light cone, allowing for
the study of higher order effects beyond the Born approxi-
mation through a post-Born ray tracing. We leave the
exploration of such effects to a future study.

C. Nonlinear ISW

The ISW effect involves the integration of the time
derivative of Φ (Ξ field), which can be decomposed into
∂η þ ∂w in our coordinate system, see Eq. (23). However,
because the power of the nonlinear ISW effect (including
moving lens and Rees-Sciama effects) decays quickly at
higher l, high-frequency noise due to the imperfect
estimation of the velocity field in this regime can easily

surpass the signal. We therefore employ “thick” light cones
introduced in Sec. II D, relying on the light cone data
constructed from snapshots to calculate the ∂Φ=∂τ term
using a finite differencing scheme. We truncate the ∂Φ=∂τ
field near the boundaries (at initial and final redshift) of the
light cone to avoid boundary effects. The redshift range of
the ISW effect we model in this work, following the
truncation, ranges from z ≈ 0.07–0.47. The snapshots used
in our constructions are uniformly distributed in the space
of comoving distance.
To accurately compute the ISW contributions in the

highly nonlinear regime, we also implement and examine
an “on-the-fly” prescription. We rerun our N-body simu-
lations with the same parameters and a much finer time step
(1024 steps). We again calculate the ∂Φ=∂τ using a finite
differencing scheme by subtracting snapshot data on
current step from the previous one. We then interpolate
the ∂Φ=∂τ data from the Cartesian grids to our HEALPix
grids, and finally, we integrate all the ∂Φ=∂τ data at each
HEALPix pixel to evaluate the term Eq. (39). Because of
the number of time steps required to ensure integration
convergence (see Appendix B 5), this scheme can be taken
as an accurate reference of the nonlinear ISW, though it is
not an especially efficient technique for processing simu-
lation data due to the resolution and time stepping
requirements.
We have also implemented the method described in [54],

which estimates ∂Φ=∂τ using Eq. (28) on every output
snapshot. After obtaining all the ∂Φ=∂τ data, similar to
[54], we perform 1024 interpolations between snapshots
and finally integrate these to estimate Eq. (39).
Comparisons of the ISW power spectrum calculated

using these different schemes are shown in Fig. 8. All of the
schemes show agreement with the linear ISW power
spectrum at low l and begin to deviate from the linear
result at l > 60, consistent with previous studies

FIG. 6. Upper panel: power spectrum of the lensing conver-
gence κ calculated with the thin-lens scheme [Eq. (38)] and the
lensing potential [Eq. (35)] based on the reconstructed light cone
metric ΦLC from the LC-METRIC. Lower panel: percent difference
between the thin-lens and the LC-METRIC schemes.

FIG. 7. Normalized cross correlation coefficients [Eq. (40)] of
the lensing convergence κ between the thin-lens scheme
[Eq. (38)] and the lensing potential [Eq. (35)] based on the
reconstructed light cone metric ΦLC.
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[54,56,59]. The interpolation scheme based on 16 snap-
shots significantly overestimates the power compared to the
on-the-fly reference spectrum. Increasing the number of
snapshots to 64 improves the accuracy but still gives an
order of magnitude overestimation. Even though the
“thick” light cones scheme shown here is based on the
light cone constructed from only 16 snapshots, it coincides
with the reference spectrum with an accuracy better than
5% for l < Nside. We also note that at the nonlinear scale,
the ISW spectra highly depends on the manually applied
smoothing scale we used as in Eq. (32), whereas the on-the-
fly reference scheme includes an intrinsic smoothing scale,
whose correspondence to the angular smoothing scale in
the LC-METRIC is unknown. Instead of looking for the
manually applied smoothing angle that best fits the refer-
ence on-the-fly scheme, we look for the range of smoothing
scale which gives good estimation to the ISW power to the
highly nonlinear scale. In the lower panel in Fig. 8, we
show the ratio between the on-the-fly reference and the
LC-METRIC scheme under two different angular smoothing
scales: θs ¼ Δx=r and θs ¼ Δx=2r, where the later one
with a smaller angle naturally produces higher power.
Within this range of smoothing scale, an accuracy better
than 5% for l < Nside and 15% for l < 2Nside can be
achieved. On the other hand, as shown in Fig. 9, the
normalized cross correlation between the LC-METRIC

scheme and the on-on-fly scheme is almost independent
of the smoothing scale. The minor power suppression
(lower panel in Fig. 8) and lack of correlation is again
due to the insufficient angular resolution and also the
systematics in our construction scheme of light cones from
snapshots. See Appendices B 5 and C for more details on
the light cone construction scheme.

IV. SUMMARY

In this work, we have presented a novel scheme LC-

METRIC, which is able to quantify cosmic observerbles by
postprocessing simulated large-scale structure data. This
reconstruction procedure is based on obtaining solutions to
the linearized Einstein’s equations on light cone grids with
a relaxation scheme; it is also a flexible scheme that is able
to process ordinary snapshots or light cone outputs.
We have also generated mock cosmic observables

including the weak-lensing convergence field and the
(nonlinear) ISW effect based on the reconstructed metric
potential provided by LC-METRIC. For the weak-lensing
calculation, under the Born approximation, the lensing
power spectrum calculated explicitly from the recon-
structed metric agrees, typically at a subpercent level, with
the equivalent spectrum calculated via the traditional thin-
lens approach, although percent-level disagreement is
found on large scales. Both results are in general agreement
with the prediction given by the Halofit prescription over a
wide range of scales. For the estimation of the ISW
and Rees-Sciama effects, as a postprocessing method,
the LC-METRIC-based “thick” light cone scheme is able
to model the ISW signal in a highly nonlinear regime and
maintain a better than 5% precision for l < Nside with a
proper smoothing angle when compared to a high-precision
reference on-the-fly calculation. When compared to other
postprocessing schemes such as the one introduced in [54],

FIG. 8. Upper panel: power spectrum of the ISW field calcu-
lated by integrating snapshots from Eq. (28) and the reconstructed
“thick” light cones scheme using LC-METRIC based on 16 snap-
shots with smoothing angle θs ¼ Δx=2r. Lower panel: percent
difference between on-the-fly reference and “thick” light cones
LC-METRIC scheme with different smoothing angles θs.

FIG. 9. Normalized cross correlation coefficients [Eq. (40)] of
the ISW fields between the on-the-fly scheme based on Eq. (28)
and the reconstructing “thick” light cones scheme based on LC-
METRIC with different smoothing angle θs.
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LC-METRIC is able to provide a much more precise
prediction of nonlinear ISW contributions, which include
the Rees-Sciama and moving-lens effects, based on data
from considerably fewer N-body simulation snapshots.
Since weak-lensing observables mostly depend on the
angular gradient (Laplacian) of the gravitational fields,
whereas the ISW effect depends on the time (radial)
gradient, being able to predict these two effects precisely
demonstrates the utility of the LC-METRIC prescription.
Therefore, we conclude that LC-METRIC is able to recon-
struct the metric accurately in both linear and highly
nonlinear regimes, and hence it is suitable for simulating
data relevant to current and future large-scale surveys.
There are still several improvements that could be made

to the LC-METRIC in the future. First, even though our
current implementation for the LC-METRIC only supports
running on a shared memory node, the algorithm can be
easily implemented to support distributed memory, which
will relieve the relatively stringent memory requirements
[currently OðN logNÞ, where N is the number of spherical
grids]. Second, the overall accuracy of the fields, especially
the accuracy of Ξ term in Eq. (23), can be potentially
improved by a more accurate deposition technique of
the radial velocity field, e.g. Delaunay tessellation field
interpolation [89,90]. Finally, a general-relativistic
ray-tracing component has been implemented, which is
necessary in order to quantify higher-order and post-
Born effects. We will investigate those effects in a
future study.
Upcoming large-area and high-precision galaxy and

CMB surveys will deepen our understanding of the
Universe as well as bring unprecedented challenges for
modeling general-relativistic cosmic observables such as
weak-lensing, the Rees-Sciama effect, moving-lens effect,
kSZ effect, etc. The LC-METRIC scheme provides a universal
way to model these effects while maintaining a high level of
precision even in the highly nonlinear regime, making it
well-suited to testing and analyzing catalogs for these
surveys in the future. Knowledge of the spacetime metric
will also facilitate the estimation of other relativistic or light
cone projections effects that have not been properly
quantified and measured, as listed in [33]. Furthermore,
the postprocessing-based feature of LC-METRIC will allow
for consistent analysis ofN-body simulations or emulations
running with different physics. We expect that this new
scheme will provide us with some insight into reconstruct-
ing metric information from observations while simulta-
neously accounting for different relativistic and projection
effects. The reconstructed cosmic density and velocity
fields are needed for such reconstruction; while the former
may be estimated from galaxy or halo catalogs [91,92], the
later may be restored from e.g. kinetic Sunyaev Zeldovich
(kSZ) [93] or observations of the moving lens effect.
Finally, we note a recent study [94] that points out the

value of determining the “boosted potential” in order to

improve our understanding of several aspects of structure
formation. This scheme relies on quantifying the gravita-
tional potential in a boosted frame. Our new approach for
constructing the gravitational potential on the light cone is
suitable for extracting the boosted potential based on light
cone data. We reserve further investigation in this direction
for future work.
To summarize, we have introduced the LC-METRIC

scheme for constructing the spacetime metric from general
N-body-code outputs. We have demonstrated its accuracy
by comparing it to conventional methods in quantifying the
weak-lensing convergence and the nonlinear-ISW effects.
Therefore, it is possible to incorporate LC-METRIC with
generalN-body catalogs and facilitate estimation of higher-
order and post-Born relativistic effects on cosmological
observables.

ACKNOWLEDGMENTS

We thank Stefano Anselmi and Selim Hotinli for useful
discussions and feedback. J. B. M. is partly supported by a
Department of Energy Grant No. DE-SC0017987 to the
particle astrophysics theory group at WUSTL. G. D. S. is
partly supported by a Department of Energy Grant No. DE-
SC0009946 to the particle astrophysics theory group at
CWRU. The simulations and analyses in this work used the
Data Storage Platform and Scientific Compute Platform
operated by the Research Infrastructure Services (RIS) of
Washington University in St. Louis.

APPENDIX A: SOLVING THE HYPERBOLIC
FORM OF THE LINEARIZED EINSTEIN

EQUATIONS

1. Derivations

In this appendix, we show in detail how to derive the
hyperbolic form of the linearized Einstein equations
[Eqs. (22) and (23)].
With the shorthands introduced in Eq. (24), by combing

the coordinate transformations in Eqs. (18) to (21) for
pressureless fluid, Eq. (10) in the linearized Einstein
equations can be written as

Φ00 þ2 _Φ0 þΦ̈þ3Hð _ΦþΦ0Þþð2 _HþH2ÞΦ¼0; ðA1Þ

and Eq. (9) can be rewritten as

Φ00 þ _Φ0 þHΦ0 ¼ −4πGa2vr: ðA2Þ

We combine Eqs. (A1) and (A2) to remove the Φ00 term,
obtaining

_Φ0 ¼ −2 _Φ0 þ Φ̈þ 3Hð _ΦþΦ0Þ
þ ð2 _HþH2ÞΦ −HΦ0 þ 4πGa2ρvr: ðA3Þ
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The Laplacian operator applied to Φ can also be written as

∇2Φ≡ 1

r
ð2Φ0 þ rΦ00Þ þ∇ð2ÞΦ=r2; ðA4Þ

where ∇ð2ÞΦ≡ 1
sin θ ðsin θ ∂Φ

∂θÞ þ 1
sin2 θ

∂2Φ
∂2ϕ. By combining

Eqs. (A1), (A4), and (8), and again removing the Φ00 term,
we find that

Φ̈ ¼ 2

r
Φ0 − 2 _Φ0 − 6H _Φ − 6HΦ0

− ð2 _Hþ 4H2ÞΦ − 4πGa2ρδþ∇ð2ÞΦ
r2

: ðA5Þ

Considering the redefinition of the variables Eq. (25), and
the relativistic corrections to the density contrast Eqs. (15),
(A5), and (A3) can be cast into Eqs. (22) and (23).

2. Discretization scheme and multigrid solver

We discretized all variables in Eqs. (22) and (23)
with multiple HEALPix maps at discretized comoving

distances. For example, the gravitational potential Φ is
discritized as Φðrj; θpixÞ, where j is the radial index and
θpix is a HEALPix pixel. The radial sampling points
are chosen so that the comoving radial direction
of the light cone is evenly sampled with a constant
spacing Δr.
With this discretization scheme, once the boundary data

represented by two HEALPix maps at the smallest and the
largest comoving radius, ri and rf, are given, Eqs. (22) and
(23) becomes a 1D boundary value problem. Newtonian
relaxation, boosted by a multigrid method, is employed to
solve this problem. The initial guess for the relaxation
scheme is provided by trivially linearly interpolating
all the radial grids between the boundary conditions at
ri and rf.
The relaxation is performed on the gravitational potential

Φ in Eq. (22), with a second-order finite-difference
scheme: at relaxation step s and grid index j (omitting
the θ dependence), Φ, Π, and Ξ have the old values
Φold

j ,Πold
j , and Ξold

j . The new value forΦj after one iteration
step is

Φnew
j ¼ ð−2=rþ 2HÞΠold

j þ 4πGa2j ρ̄jðδj þ 2vr;jÞ − ðΦold
jþ1 þΦold

j−1Þ=Δr2
−2=Δr2 þ∇ð2Þ=r2 þ 2ð _H −H2 − 4πGa2j ρ̄jÞ

; ðA6Þ

where ∇ð2Þ can be simply replaced by lðlþ 1Þ when
solving this equation in the spherical harmonic basis.
During the relaxation, the Ξ field, defined as Ξ≡
_ΦþΦ0 in Eq. (23), is solved by a second-order Runge-
Kutta scheme, which means the value of Ξ will be updated
at every iteration. By definition [Eq. (25)], the Π field can
also be calculated from the Ξ field.
The multigrid method is a widely used method to

accelerate the convergence rate of a standard relaxation
scheme by constructing a hierarchy of grids where levels in
the hierarchy from top to bottom have resolutions ranging
from coarsest to finest. One is seeking for the solution on
the finest grids.
The essence of the multigrid method is that instead of

performing a large number of relaxations on the finest level
until it converges, it performs only several relaxations on
each level, then “restricts” the current solution and errors to a
coarser grid and solve the residual equations on the coarser
level where the corrections to the resolutions on finer level
are calculated through another several relaxations. Finally,
those corrections at the coarser level are “prolonged” to the
finer level to correct the current approximate solution and
significantly speed-up the convergence rate. We refer to
[95,96] for more details about the multigrid method.
Performing the above procedure recursively from the

finest to coarsest level, and back to the finest level is called

a V-cycle. In this study, we build a multigrid hierarchy with
five levels and repeatedly perform V-cycles until the desired
precision is achieved.

APPENDIX B: NUMERICAL VALIDATION

In this appendix, we will show several convergence tests
we have performed to validate our results.

1. Convergence of the multigrid solver

We estimate the convergence of our LC-METRIC solver
from the L2 norm of the relative error kEk=kΦ̈k and show
the result in Fig. 10, where E is the error of Eq. (22) and
kΦ̈k represents the L2 norm of its left-hand side. The
radial and angular resolution of the light cone grids
are Nη ¼ 1024 and Nside ¼ 512, respectively, and the
number of levels of the multigrid hierarchy is five.
Our multigrid scheme will reduce the relative error very
efficiently until reaching a plateau. The final plateau in
Fig. 10 is limited by the machine precision of 32-bit
float used in the solver. The total memory consumption is
about 10 times the memory consumption of the
light cone grids, and the time consumption for 100
iterations is about 20 hours on a computer node with
28 CPUs.
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2. Numerical convergence of the interpolations
to HEALPix grids

When calculating a reference power spectrum of the
gravitational potential or ISW (see Secs. III A and III C), or
when setting initial conditions for the solver, interpolations
of fields from Cartesian grids to HEALPix grids are
performed. We test the accuracy of such operations by
linearly interpolating the same potential fields on Cartesian
grids with different angular resolutions. As shown in
Fig. 11, by comparing the ratio of angular power between
different Nsides, we can estimate the accuracy of such
interpolations from Cartesian grids to HEALPix grids,
which is better than 5% for l < Nside, and better than
20% for l < 2Nside. This limits the numerical precision of
both reference power spectra and the LC-METRIC scheme.

3. Numerical convergence of the gravitational potential

Even though the precision of power spectra at higher l is
primarily limited by linear interpolation accuracy as
described in the previous subsection, as suggested by
Fig. 12, improving the angular resolution Nside can poten-
tially improve the precision at higher l, since the cross
correlation at the same l is significantly larger when
comparing the result of Nside ¼ 512 with Nside ¼ 256.

4. Numerical convergence of weak lensing

The weak-lensing observables extracted from recon-
structed metric from light cone data are independent of
the radial resolution chosen for our coordinate system. The
test of the convergence against different radial resolutions is
shown in Fig. 13. No noticeable differences are identified
for reasonable resolutions from 256 to 1024, suggesting the

FIG. 10. Evolution of L2 norm of relative error of Eq. (22) with
respect to the number of V-cycles performed.

FIG. 11. The ratio of the angular power spectrum of Φ
interpolated from Cartesian grids with different HEALPix res-
olutions Nside. The radius for such interpolations is set according
to r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiðA=ΩÞp

, where A is the Cartesian resolution square dx2

and Ω is the HEALPix solid angle for Nside ¼ 512.

FIG. 12. The same as Fig. 4. Normalized cross correlation
coefficients between the reconstructed ΦLC and the Φsnap under
different Nside.

FIG. 13. Ratio of the thin-lens approach to the scheme based on
the LC-METRIC reconstruction with different radial resolution Nη,
same as lower panel in Fig. 6.
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robustness of the numerical value of weak-lensing con-
vergence calculated by the LC-METRIC scheme.

5. Numerical convergence of the ISW
and Rees-Sciama effects

The reference ISW power spectrum calculated through
the on-the-fly scheme in Fig. 8 is extracted from a N-body
simulation performing Nsteps ¼ 1024 time steps. Figure 14
validates this choice of number of time steps by comparing
the ISW power with different number of time steps since
the results of Nsteps ¼ 512 and Nsteps ¼ 1024 overlap. We
also calculate the convergence rate Rconv, defined as

Rconv ¼
jfNm

− fNc
j

jfNc
− fNf

j ; ðB1Þ

where fNc
, fNm

, fNf
are values calculated at resolutionsNc,

Nm, Nf, which are from coarsest to finest, and shown in the
lower panel in Fig. 14 that the rate is beyond the linear
convergence for the l > 200 region.
The minor lack of correlation between the reference ISW

power and the reconstructed one through “thick” light
cones (Fig. 9) is likely due to the systematic bias when
creating light cone data from snapshots (see Appendix C
for more detail). This can be confirmed by comparing the
blue and green curve in Fig. 15, where employing more
snapshots to construct “thick” light cones will improve the
correlation. The suppression of power at higher l is again
due to the limited precision of the linear interpolations,

which can be improved by employing a higher angular
resolution according to Fig. 15.

APPENDIX C: LIGHT CONE CONSTRUCTION
FROM SNAPSHOTS

The scheme integrated in the LC-METRIC to construct
light cone data from snapshots is similar to the particle
extrapolations scheme mentioned in [97]. Several improve-
ments have been implemented to enhance the construction
accuracy. Here, we will give our full algorithm on con-
structing light cones from snapshots.
For each particle inside the light cone, which has

comoving position ri, peculiar velocity vi, and acceleration
ai on the snapshot at conformal time τi, the time it crosses
the light cone is τ þ δτ, and the corresponding comoving
radii after the time δτ is

jrj ¼
����ri þ viδτ þ

ai
2
τ2
����;

≈ jrij þ δτ
ri · vi
jrij

− δτ2
�ðri · viÞ2

2jrij3
þ vi · vi

2jrij
þ ai · ri

2jrij
�
; ðC1Þ

note we have kept up to second-order terms, and the
acceleration ai can be estimated from difference between
peculiar velocities between two adjacent snapshots from

ai ¼ ðviþ1 − viÞ=Δτ; ðC2Þ

where Δτ is the difference in the conformal time τ between
these two snapshots. Additionally, since the background
light cone satisfies τ ¼ −jrj, we can write down the
following relation

FIG. 14. Upper panel: ISW and Rees-Sciama effects calculated
through on-the-fly method against number of time steps. Con-
vergent result is achieved when Nsteps ¼ 1024. Lower panel:
convergence rate Rconv. defined in Eq. (B1), the result is higher
than the linear convergence rate (dotted line) for l > 200.

FIG. 15. Same as Fig. 9. Variations of normalized cross
correlation coefficients of the ISW fields between the snapshots
scheme and the reconstructing “thick” light cones against differ-
ent numbers of snapshots and different angular resolutions Nside.
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jrj ¼ τi − δτ: ðC3Þ

After plugging in Eq. (C1) to Eq. (C3), we can solve δτ from
the quadratic equation. However, the following optimiza-
tions are necessary to construct the light cone accurately:

(i) For particle pj outside the light cone on a snapshot
si, we do not extrapolate this particle since it will
never enter the light cone in the future.

(ii) For particle pj inside the light cone on a snapshot si,
if pj inside the next snapshot (snapshot sjþ1) is still
inside the light cone,wedonot extrapolate this particle.

(iii) We use the second-order quadratic approximation to
solve Eq. (C1) instead of the exact solution to avoid
possible numerical instabilities.

(iv) If the solution of δτ satisfies δτ > Δτ, no extra-
polation will be performed.

Note that this scheme will tend to omit some particles
crossing the light cone because of the limited accuracy of
the quadratic interpolation, and therefore it will introduce
some systematic bias to the reconstructed light cone.
Investigating an improved scheme to reduce this bias is
left for future study.
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