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Understanding the physics of inflaton condensate fragmentation in the early Universe is crucial as the
existence of fragments in the form of nontopological solitons (oscillons or Q-balls) may potentially modify
the evolution of the postinflation Universe. Furthermore, such fragments may evolve into primordial black
holes and form dark matter, or emit gravitational waves. Due to the nonperturbative and nonlinear nature of
the dynamics, most of the studies rely on numerical lattice simulations. Numerical simulations of condensate
fragmentation are, however, challenging and,without knowingwhere to look in the parameter space, they are
likely to be time-consuming as well. In this paper, we provide generic analytical conditions for the
perturbations of an inflaton condensate to undergo growth to nonlinearity in the cases of both symmetric and
asymmetric inflaton potentials.We apply the conditions to various inflation models and demonstrate that our
results are in good agreement with explicit numerical simulations. Our analytical conditions are easy to use
and may be utilized in order to quickly identify models that may undergo fragmentation and determine the
conditions under which they do so, which can guide subsequent in-depth numerical analyses.
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I. INTRODUCTION

After inflation ends, a real scalar inflaton field starts to
oscillate around the minimum of its potential. An attractive
inflaton self-interaction may then result in growth of
perturbations of the inflaton to nonlinearity and, if non-
topological soliton (NTS) solutions exist, which will be the
case in the models we consider, subsequent fragmentation of
the inflaton condensate.1 The inflaton condensate fragments
correspond to oscillons, which are spherically symmetric
quasistable NTS [1]. The longevity of oscillons can be
understood by the conservation of adiabatic charge [2].
The study of inflaton condensate fragmentation has

gained much attention partly due to the interesting

consequences of the fragments. Examples include primor-
dial black hole formation due to the statistics of fragments
[3–5], gravitational wave signals associated with fragments
[6–10], and changes in reheating dynamics which lead to a
different cosmic evolution [11,12].
The evolution dynamics of the fragments often requires

numerical lattice simulations due to the nonperturbative and
nonlinear nature. Most of the existing literature adopts
numerical approaches and performs extensive lattice simu-
lations.Numerical simulations are, however, often technically
challenging and computationally demanding, and can
obscure the underlying physics. Furthermore, without know-
ing where to look in the model parameter space, or if
fragmentation is even possible in a given model, numerical
studies can be time-consuming. Having an analytical expres-
sion for the condition under which the condensate is likely to
undergo nonlinear growth and hence, if discrete NTS sol-
utions exist, fragmentation, would be greatly beneficial for
such in-depth numerical analyses. Such a condition could
serve as a startingpoint of extensive numerical analyses, and it
could also be used to quickly estimate the likelihood of
fragmentation in a givenmodel.We expect thatNTSwill exist
in themodels that we consider, therefore, in the following, we
will consider the growth of perturbations to nonlinearity and
fragmentation to be equivalent.
The aim of this paper is to provide general analytical

conditions for perturbations of an inflaton condensate to
grow to become nonlinear and hence for inflaton con-
densate fragmentation to be possible. In Ref. [13] we
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1It is important to distinguish between the growth of pertur-
bations of a scalar field to nonlinearity and condensate fragmen-
tation. The latter requires that discrete NTS solutions exist, so that
the condensate may break up into discrete NTS with vacuum
between them. The condition for NTS to be possible in models
that grow to nonlinearity is that the scalars are sufficiently
massive in the vacuum so that the energy per scalar in the
NTS can be less than the mass of the scalar in the vacuum. This
will be generally true of the potentials that we will consider.
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studied the stability of an inflaton condensate, based on
Ref. [1], for the case of a general symmetric potential. We
obtained analytical conditions on the self-interaction cou-
plings under which the condensate undergoes fragmenta-
tion. However, the method of Ref. [13] cannot be used
when the potential is asymmetric. In this work, we general-
ize the analysis of Ref. [13] to encompass asymmetric
potentials, thus allowing the condition for fragmentation to
be determined for a wide range of inflaton potentials.
In the next section, we develop an analytical framework

for studying the growth of inflaton field perturbations and
inflaton condensate fragmentation. We then provide the
analytical conditions under which the condensate pertur-
bations grow to nonlinearity and fragment for both sym-
metric and asymmetric potentials. The main results of the
paper are summarized in Sec. II D. In Sec. III, we apply our
analytical results to four examples for which numerical
results are available: the α-attractor T-model, the α-attractor
E-model, Starobinsky’s R2 model, and the Palatini R2

model with a quadratic potential. In addition, we apply our
results to a model which has not yet been studied numeri-
cally, Higgs inflation with a general symmetry-breaking
potential in both the metric and Palatini formulations, and
we perform lattice simulations to test our analytical results.
We show that our results are in good agreement with
numerical simulations in all cases, thus demonstrating their
general effectiveness. We conclude in Sec. IV.

II. GENERAL TREATMENT

A. Inflaton condensate

Consider a real scalar field Φ whose equation of motion2

is given by

Φ̈þ 3H _Φ −
∇2Φ
a2

þ VΦ ¼ 0; ð1Þ

where the dot denotes the cosmic time derivative
and VΦ ≡ dVðΦÞ=dΦ.
In our analysis, we will be considering a potential that is

close to a quadratic potential, so to a first approximation the
field will undergo coherent oscillations in a quadratic
potential. We expect that any potential that is capable of
supporting NTS solutions will be approximately quadratic

at the minimum of its potential, as it is necessary for the
scalars to have a nonzero mass in the vacuum in order for
the NTS solutions to have a lower energy per scalar and so
to be (meta)stable.
Defining Φ ¼ ða0=aÞ3=2ϕ, where we have assumed that

the coherent oscillations start at a ¼ a0, gives

ϕ̈ −
∇2ϕ

a2
¼ −

∂UðϕÞ
∂ϕ ; ð2Þ

where

∂U
∂ϕ ≡

�
a
a0

�
3=2

VΦ þ ΔHϕ; ð3Þ

with

ΔH ≡ −
3

2

�
_H þ 3

2
H2

�
: ð4Þ

In the case of a symmetric potential, VðΦÞ ¼ Vð−ΦÞ,
the oscillatory behavior of the scalar field can well be
described by ϕðt;xÞ ¼ R cosΩ, where R and Ω are both
functions of t and x. The inflaton condensate fragmentation
in symmetric potentials is studied in Ref. [13]. However,
for asymmetric potentials, VðΦÞ ≠ Vð−ΦÞ, the analysis of
Ref. [13] cannot be applied as the choice of ϕ ¼ R cosΩ
does not capture the asymmetric feature. In the case of an
asymmetric potential, we expect the amplitude of the
oscillating field to be different at Ω ¼ 0 and Ω ¼ π.
Assuming that the potential is dominated by a quadratic
term, one may model this by considering

ϕ ¼ Rð1þ ε cosΩÞ cosΩ; ð5Þ

where ε ≪ 1 parametrizes the asymmetry of the potential.
The form of ε can be determined once the potential is
specified. We explore the case of an asymmetric potential in
more detail in Sec. II C. Note that the symmetric potential
case corresponds to the ε → 0 limit. Thus, Eq. (5) may be
used to describe the inflaton condensate motion for a
generic form of potential.
The equation of motion (2) can be expressed in terms of

R ¼ Rðt;xÞ and Ω ¼ Ωðt;xÞ as

0 ¼ R̈ð1þ ε cosΩÞ cosΩ − 2 _R _Ωð1þ 2ε cosΩÞ sinΩ − RΩ̈ð1þ 2ε cosΩÞ sinΩ − R _Ω2ðcosΩþ 2ε cosð2ΩÞÞ

−
∇2R
a2

ð1þ ε cosΩÞ cosΩþ 2ð∇R ·∇ΩÞ
a2

ð1þ 2ε cosΩÞ sinΩþ Rð∇2ΩÞ
a2

ð1þ 2ε cosΩÞ sinΩ

þ Rð∇ΩÞ2
a2

ðcosΩþ 2ε cosð2ΩÞÞ þ ∂U
∂ϕ : ð6Þ

2Throughout the paper, we work in the Einstein frame with a canonically normalized kinetic term, unless otherwise stated.
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Multiplying the equation of motion (6) by sinΩ and
averaging over coherent oscillations, we obtain

Ω̈þ 2 _R _Ω =R − 2∇R ·∇Ω=ða2RÞ − ð∇2ΩÞ=a2 ¼ 0: ð7Þ

Similarly, multiplying the equation of motion by cosΩ and
averaging over oscillations, we obtain

R̈ − R _Ω2 −∇2R=a2 þ Rð∇ΩÞ2=a2 þU0
eff ¼ 0; ð8Þ

where U0
eff ≡ 2hcosΩ ∂U

∂ϕi. Here, we have assumed that R

and _Ω do not change much over the period of oscillations,
which is a good approximation when the potential is
dominated by the quadratic term. Furthermore, we can
assume that ΔH term is small enough to be ignored, which
is a good approximation if ω is large compared toH, where
ω is the oscillation frequency, because in Eq. (2) ΔH ∼H2

is effectively a contribution to the frequency squared of the
oscillations and so is negligible if ω2 ≫ H2. We note that
Eqs. (7) and (8) have the same form as those studied in
Ref. [13]. We can thus follow the same procedure as
Ref. [13]. For completeness, we repeat the procedure.
We expand R and Ω into their background parts and

perturbations parts as

Rðt;xÞ¼R0ðtÞþδRðt;xÞ; Ωðt;xÞ¼Ω0ðtÞþδΩðt;xÞ:
ð9Þ

with R0 and Ω0 being the solutions of Eqs. (7) and (8). It is
straightforward to show that the perturbations satisfy

δ̈R − 2R0
_Ω0

_δΩ − _Ω2
0δR −

∇2δR
a2

þU00
effδR ¼ 0; ð10Þ

δ̈Ω −
∇2δΩ
a2

−
2 _R0

_Ω0

R2
0

δRþ 2 _R0

R0

_δΩþ 2 _Ω0

R0

_δR ¼ 0; ð11Þ

where we assumed that the background solutionsR0 andΩ0

are homogeneous and we considered terms only up to the
first order in δR and δΩ. The solution for the growth modes
takes the form [1]

δR; δΩ ∝ eSðtÞ−ik·x; ð12Þ

where we may assume that s≡ _S ¼ constant on timescales
short compared to the expansion time since j_s=sj ∼H [1].
Thus, assuming the oscillation timescale is short compared
to the expansion time H−1, we obtain

0 ¼
�
s2 þ k2

a2
þ U00

eff − _Ω2
0

��
s2 þ k2

a2

�
þ 4s2 _Ω2

0: ð13Þ

One can solve the equation for s2,

s2 ¼ −
k2

a2
−
3 _Ω2

0 þ U00
eff

2

�
�j3 _Ω2

0 þU00
eff j

2

��
1þ 16ðk2=a2Þ _Ω2

0

ð3 _Ω2
0 þ U00

effÞ2
�1=2

: ð14Þ

For small k=a values,

s2 ≈ −
k2

a2
−
3 _Ω2

0 þ U00
eff

2
�
�j3 _Ω2

0 þU00
eff j

2

�

×

�
1þ 8ðk2=a2Þ _Ω2

0

ð3 _Ω2
0 þ U00

effÞ2
−

36ðk4=a4Þ _Ω4
0

ð3 _Ω2
0 þU00

effÞ4
�
: ð15Þ

For a growing mode, s2 > 0, and thus we take the þ sign,
provided that 3 _Ω2

0 þ U00
eff > 0, which gives

s2 ≈
k2

a2
1

3 _Ω2
0 þ U00

eff

�
_Ω2
0 − U00

eff − 16
k2

a2
_Ω4
0

ð3 _Ω2
0 þ U00

effÞ2
�
:

ð16Þ
The largest possible value for k2=a2 is then given by

k2max

a2
≈ _Ω2

0 −U00
eff : ð17Þ

Note that _Ω2
0 ¼ U0

eff=R from the background equation of
motion. We therefore obtain

s2 ≈
k2

a2

�
1 −

k2

k2max

�
U0

eff=R −U00
eff

3U0
eff=Rþ U00

eff
: ð18Þ

We now can integrate s to obtain the total growth factor,

Sðk; aðtÞÞ ¼
Z

t

t0

dt sðk; tÞ ¼
Z

aðtÞ

a0

da
sðk; aÞ
aH

: ð19Þ

As a condition for fragmentation, we require
S ∼ lnðR0=δR0Þ, which results in nonlinear perturbations,
i.e., δR=R ∼ 1. The primordial inflaton perturbation,
δR0=R0 ∼ 10−4, can be used as the initial perturbation.
Thus, the condition for growth to nonlinearity and so
fragmentation is given by

Sðk; aðtÞÞ > 10: ð20Þ

The discussion above is applicable for a general poten-
tial. The polynomial expansion of a general potential is
expected to have a leading-order quartic or cubic inter-
actions for a symmetric potential or an asymmetric poten-
tial, respectively. The fragmentation condition (20) can
then be converted into a bound on the model parameters. In
the following two subsections, we discuss the case of a
symmetric and an asymmetric potential respectively and
obtain the condition on the model parameters for fragmen-
tation to occur.
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B. Symmetric potentials

Let us consider

VðΦÞ ¼ 1

2
m2Φ2 − AΦ4; ð21Þ

where A > 0. The quadratic term is assumed to be
dominant. The leading-order quartic self-interaction is
expected to naturally arise in the polynomial expansion
of a general symmetric potential.3 The condition for
fragmentation to occur with the quartic self-interaction
was studied in detail in Ref. [13]. For completeness, we
repeat the calculation here.
As the potential is symmetric under Φ → −Φ, we may

set ε ¼ 0 in Eq. (5) and obtain the following effective
potential,

UeffðRÞ ¼
1

2
m2R2 −

3

4
A
�
a0
a

�
3

R4: ð22Þ

The upper limit of the comoving wave number, kmax, is then
given by Eq. (17),

kmax ≈
ffiffiffiffiffiffi
6A

p
Ra3=20 a−1=2: ð23Þ

We note that kmax ∝ a−1=2. For a mode k < kmax, the mode
is initially growing. Eventually, the mode k will become
larger than kmax since kmax decreases as a increases.
Therefore, the mode will stop growing.
The maximum possible growth of a mode can be found

by first considering perturbations with k < kmax;0 at an
initial scale factor a0. We then calculate the growth of the
perturbations from a0 to a later scale factor af, Sðk; afÞ,
noting that the perturbation growth for a given k will stop
once k > kmaxðafÞ. We maximize Sðk; afÞ with respect to k
for each af , corresponding to kðafÞ, and finally we
maximize SðkðafÞ; afÞ with respect to af . In this way we
determine the maximum possible growth of a mode starting
at a0.
Using Eq. (19), we obtain the growth factor from a0 to af

as follows:

Sðk;afÞ¼
ffiffiffiffiffiffiffiffiffiffiffi
3AR2

2m2

r
k

a0H0

Z
xf

1

x−2
�
1−

k2

k2max;0
x

�
1=2

dx; ð24Þ

where xf ≡ af=a0. A conservative analytical result for the
growth factor can be obtained by setting x ¼ xf in the
square root factor, as it overestimates the suppression of
the growth factor. Then we find, with kmax;f ≡ kmaxðafÞ,

Sðk; afÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
3AR2

2m2

r
k

a0H0

�
1 −

k2

k2max;f

�
1=2

�
1 −

a0
af

�
: ð25Þ

Maximizing the growth factor with respect to k gives a
maximum at kðafÞ, where

kðafÞ ¼
kmax;fffiffiffi

2
p ¼

�
a0
af

�
1=2 kmax;0ffiffiffi

2
p : ð26Þ

Thus,

SðkðafÞ; afÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
3AR2

2m2

r
kmax;0

2a0H0

�
a0
af

�
1=2

�
1 −

a0
af

�
: ð27Þ

Maximizing this with respect to af gives

af ¼ 3a0: ð28Þ

Therefore,

Smax ¼
1

3
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffi
3AR2

2m2

r
kmax;0

a0H0

¼
ffiffiffi
2

p
ARMP

m2
; ð29Þ

where we used the fact that the potential is dominated by
the quadratic term so that H0 ¼ mR=ð ffiffiffi

6
p

MPÞ. We should
choose R≡Φ0, where Φ0 is the amplitude of the field
oscillations at a0, to be as large as possible while being
consistent with the assumption that the potential is domi-
nated by the quadratic term. We define the ratio between the
quartic part and the quadratic part of the potential by rS,

rS ¼
AΦ4

0

m2Φ2
0=2

¼ 2AR2

m2
: ð30Þ

In terms of rS, we then obtain

Smax ¼ ðrSAÞ1=2
MP

m
: ð31Þ

Therefore, the fragmentation condition (20), Smax > 10,
will be satisfied if

A > 1000

�
0.1
rS

��
m
MP

�
2

: ð32Þ

We consider rS ≈ 0.1 in order to be consistent with our
assumption that the quadratic potential term is dominant
while still making rS sufficiently large to give the smallest
possible lower bound on the coefficient of the quartic
potential term for fragmentation to occur.4

3For the potential of the form VðΦÞ ¼ 1
2
m2Φ2 − AjΦj3, one

may refer to Ref. [13].

4This also assumes that rS > 0.1 at the end of inflation, which
is typically true.
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C. Asymmetric potentials

Next, we consider a typical asymmetric potential which,
in the small field region where inflaton starts to oscillate
around the minimum of the potential after inflation ends, can
generically be described by the leading-order cubic term,

VðΦÞ ¼ 1

2
m2Φ2 � AΦ3: ð33Þ

The quadratic term is assumed to be the dominant term in the
potential as before. The sign of the cubic term is chosen in
such a way that A takes a positive value.
In the case of asymmetric potentials, ε in Eq. (5) takes a

nonzero value. To find ε, let us assume that the field reaches
maximum at Φ ¼ Φ� with _Φ ¼ 0, where Φ� ¼ �ðΦ0 �
δΦÞ for the − sign in the potential (33) and Φ� ¼ �ðΦ0 ∓
δΦÞ for the þ sign in the potential (33). Here, Φ0; δΦ > 0.
Note that δΦ → 0 as A → 0. From VðΦþÞ ¼ VðΦ−Þ, we
find that δΦ ¼ AΦ2

0=m
2 ¼ AR2=m2, whereΦ0 is identified

with R. Thus, the parameter ε can be determined as

ε ¼ �AR
m2

; ð34Þ

with the þ (−) sign for the − (þ) sign in the potential (33),
representing the deviation from the quadratic term.
The effective potential now takes

Ueff ¼
1

2
m2R2 −

9A2

8m2

�
a0
a

�
3=2

R4: ð35Þ

The upper limit of the comoving wave number, kmax, in this
case is given by

kmax ≈
3AR
m

a3=40 a1=4: ð36Þ

We see that kmax ∝ a1=4. Thus, a wave number that is
initially larger than the maximum wave number, k > kmax,
will eventually become smaller than kmax, and the growth of
the mode starts. Therefore, the maximum growth corre-
sponds to a mode k ¼ kmax;0, for a given a0. The growth
factor is given by

Sðkmax;0; aÞ ¼
3AR
2m2

kmax;0

a0H0

Z
x

1

x−5=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x−1=2

p
dx; ð37Þ

where x≡ a=a0. We take the limit x → ∞. Then, the
maximum growth factor is given by

Smax ¼
9

ffiffiffi
6

p
πA2RMP

2m4
; ð38Þ

where we used the fact that the potential is dominated by
the quadratic term so that H0 ¼ mR=ð ffiffiffi

6
p

MPÞ.

Therefore, the fragmentation condition (20), Smax > 10,
will be satisfied if

A2RMP

m4
>

20

9
ffiffiffi
6

p
π
≈ 0.29: ð39Þ

We may take the value of R as large as possible while
keeping the cubic term in the potential smaller than the
quadratic term. We parametrize it as rA, similarly to the rS
in the symmetric case (30),

R ¼ rA
m2

2A
: ð40Þ

Thus, the condition for growth to nonlinearity and so
fragmentation (39) can be written as

A >
400

9
ffiffiffi
6

p
π

�
m2

MP

��
0.1
rA

�
≈ 5.78

�
m2

MP

��
0.1
rA

�
: ð41Þ

Similarly to the symmetric potential case, we take rA ≈ 0.1
in order to be consistent with our assumption that
the quadratic potential term is dominant while giving the
smallest possible lower bound on the coefficient of the
cubic potential term for fragmentation to occur.

D. Summary of analytical conditions

We summarize the general analytical fragmentation
conditions:

(i) Symmetric potentials V ¼ 1
2
m2Φ2 − AΦ4:

A > 1000

�
m
MP

�
2
�
0.1
rS

�
: ð42Þ

(ii) Asymmetric potentials V ¼ 1
2
m2Φ2 � AΦ3:

A >
400

9
ffiffiffi
6

p
π

�
m2

MP

��
0.1
rA

�
: ð43Þ

These are the main results of the paper.
Strictly speaking, these conditions are sufficient condi-

tions for fragmentation, as they show that if the condensate
forms it will fragments, hence fragmentation is guaranteed if
our conditions are satisfied. In our analysis, we are restrict-
ing the initial value of the field to be close enough to the
minimum of the potential that the potential is dominated by
the quadratic term. However, it is possible that fragmenta-
tion could occurmore rapidly and at larger field values due to
tachyonic preheating, in which case it is possible that
fragmentation could still occur even if our conditions are
not satisfied. In practice, as we will demonstrate via a range
of examples below, we find that quite generally our con-
ditions accurately predict the conditions under which
fragmentation occurs in numerical simulations.
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In the next section we will apply our analytical con-
ditions to various examples of inflation models and
compare them with the known numerical results in order
to demonstrate the effectiveness of our analytic fragmen-
tation conditions.

III. APPLICATIONS

A. α-attractor T-model

The α-attractor T-model [14–16] with n ¼ 1 has the
following potential in the Einstein frame:

V ¼ λ tanh2
�

Φffiffiffiffiffiffi
6α

p
MP

�
: ð44Þ

Around the minimum, the potential can be expanded as

V ≈
λ

6α

�
Φ
MP

�
2

−
λ

54α2

�
Φ
MP

�
4

: ð45Þ

We thus find, by comparing with Eq. (21),

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
λ

3αM2
P

s
; A ¼ λ

54α2M4
P
: ð46Þ

Therefore, by substituting m and A into Eq. (42), we see
that the fragmentation condition is satisfied if

α≲ 5.6 × 10−5
�
rS
0.1

�
: ð47Þ

Thus, in the α-attractor T-model, fragmentation of the
inflaton condensate will occur for α≲ 5 × 10−5. Our
analytical result is in agreement with the numerical analysis
of Ref. [12], which demonstrates fragmentation for an
explicit example with α ≈ 10−5, but finds no fragmentation
for larger values of α. A recent analytical and numerical
study of tachyonic preheating in plateau inflation models
has also obtained a similar bound [17,18].

B. α-attractor E-model

The Einstein-frame potential of the α-attractor E-model
[14–16] with n ¼ 1 is given by

V ¼ λ

�
1 − exp

�
−

ffiffiffiffiffiffi
2

3α

r
Φ
MP

��2
: ð48Þ

The potential can be expanded around the minimum as

V ≈
2λΦ2

3αM2
P
−
2

3

ffiffiffi
2

3

r
λ

α3=2
Φ3

M3
P
: ð49Þ

Comparing with Eq. (33), we find

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4λ

3αM2
P

s
; A ¼ 2

3

ffiffiffi
2

3

r
λ

α3=2M3
P

: ð50Þ

Therefore, by substituting m and A into Eq. (43), we see
that the fragmentation condition is satisfied if

α≲ 5 × 10−3
�
rA
0.1

�
2

: ð51Þ

Thus, in the α-attractor E-model, fragmentation of the
inflaton condensate will occur for α≲ 5 × 10−3. This
analytical result agrees with a numerical analysis per-
formed in Ref. [19], where it is concluded that fragmenta-
tion will occur for α≲ 10−3.

C. Starobinsky R2 model

Starobinsky’s R2 inflation model [20] has the following
potential in the Einstein frame,

V ¼ λ

�
1 − exp

�
−

ffiffiffi
2

3

r
Φ
MP

��2
: ð52Þ

We note that this potential can be obtained from the
α-attractor E-model potential (48) by setting α ¼ 1.
From Eq. (51), we see that α ¼ 1 does not satisfy the
fragmentation condition. Therefore, we conclude that the
fragmentation does not occur in the R2 model. This is
consistent with the results of Ref. [21].

D. Palatini R2 model with a quadratic potential

Let us consider the quadratic inflation model in the
Palatini formulation with an R2 term added [22,23]. The
action is given in the Jordan frame by

S ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p �
M2

P

2
gμνJ RJμν þ

α2

4
ðgμνJ RJμνÞ2

−
1

2
gμνJ ∂μφ∂νφ −

1

2
m2φ2

�
; ð53Þ

where we put the subscript J to denote the Jordan frame.
The action can be brought into the Einstein frame via Weyl
rescaling,5

S¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
M2

P

2
gμνE REμν−

1

2
gμνE ∂μΦ∂νΦ−V

�
; ð54Þ

where the subscript E stands for the Einstein frame,Φ is the
canonically normalized field, and V is the Einstein-frame
potential. Near φ ¼ 0, the canonically normalized field can

5As our aim is to apply our general analytical conditions to a
specific model, we do not discuss the detailed computational
steps. Readers may refer to Refs. [22,23].
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be approximated asΦ ≈ φ, and the Einstein-frame potential
is given by [24]

V ≈
1

2
m2Φ2 − α

�
m
MP

�
4

Φ4: ð55Þ

Thus, it belongs to the symmetric case (21) with

A ¼ α

�
m
MP

�
4

: ð56Þ

Substituting the expression of A into Eq. (42), we see that
the fragmentation condition is satisfied if

α

�
m
MP

�
2

> 1000

�
0.1
rS

�
: ð57Þ

To match the magnitude of the primordial curvature power
spectrum, 2 × 10−9, the inflaton mass needs to be
m ≃ 1.4 × 1013 GeV. The prediction for the fragmentation
condition is then [24]

α≳ 2.94 × 1013
�
0.1
rS

�
: ð58Þ

The same lower bound of 1013 was later found in Ref. [23]
by performing a numerical analysis of tachyonic preheating
in this model, and more recently by an analytical and
numerical study in Ref. [17].

E. Higgs Inflation

In the previous sections we considered models for which
a numerical analysis of fragmentation already exists, and
we demonstrated that our simple analytical conditions can
reproduce the conditions for fragmentation that were
previously obtained numerically. In this section, we con-
sider examples for which no numerical analysis at present
exists, namely Higgs inflation with a symmetry-breaking
potential in both the metric and Palatini formalisms, where
the inflaton is oscillating around the symmetry-breaking
minimum of its potential. We derive the analytical con-
ditions for fragmentation and then confirm numerically that
these conditions are correct.
Higgs inflation is described the following action in the

Jordan frame:

S¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p �
M2

P

2
FðφÞgμνJ RJμν−

1

2
gμνJ ∂μφ∂νφ−VJðφÞ

�
;

ð59Þ

where the subscript J denotes the Jordan frame, FðφÞ ¼
ðM2 þ ξφ2Þ=M2

P is the nonminimal coupling term with M
being a mass parameter, which reproduces the Planck mass
at today, i.e.,M2 þ ξv2 ≡M2

P, v is the vacuum expectation
value of the φ field, and VJðφÞ ¼ λðφ2 − v2Þ2=4 is the

Higgs potential in the Jordan frame. In the Einstein frame,
the action is given by

S ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
M2

P

2
gμνE REμν −

1

2
gμνE ∂μΦ∂νΦ − VEðφÞ

�
;

ð60Þ

where the subscript E denotes the Einstein frame, Φ is the
canonically normalized field, and VE is the scalar potential
in the Einstein frame. The Einstein-frame field and poten-
tial are related to the Jordan-frame field and potential as

dΦ
dφ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

F
þ σ

3M2
P

2F2

�
dF
dφ

�
2

s
; ð61Þ

VE ¼ VJ

F2
; ð62Þ

where σ parametrizes the metric (σ ¼ 1) and the Palatini
(σ ¼ 0) formulations. We shall omit the subscript E in the
following. For inflationary physics of the Higgs inflation in
the metric and the Palatini formulations, see, e.g.,
Refs. [25–27].
Assuming that jφ − vj ≪ v, we can expand VðφÞ as

VðφÞ ¼ λ

4F2
ðφþ vÞ2ðφ − vÞ2

¼ λ

4F2
½ðφ − vÞ þ 2v�2ðφ − vÞ2

≈
λv2

F2
ðφ − vÞ2

�
1þ φ − v

v

�
: ð63Þ

We can also expand F as

M2
PF ¼ M2

P þ ξðφþ vÞðφ − vÞ
¼ M2

P þ ξ½2vþ ðφ − vÞ�ðφ − vÞ; ð64Þ

and thus we find

1

F2
≈ 1 −

4ξv
M2

P
ðφ − vÞ − 2ξ

M2
P

�
1 −

6ξv2

M2
P

�
ðφ − vÞ2: ð65Þ

Thus, to leading order in (φ − v), the potential VðφÞ can be
expressed as

VðφÞ ≈ λv2ðφ − vÞ2
�
1 −

�
4ξv2

M2
P
− 1

�
φ − v
v

�
: ð66Þ

For jφ − vj ≪ v, the relation between φ and Φ becomes

Φ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6σξ2v2

M2
P

s
ðφ − vÞ; ð67Þ

GENERAL ANALYTICAL CONDITIONS FOR INFLATON … PHYS. REV. D 105, 063508 (2022)

063508-7



where we define Φ ¼ 0 at φ ¼ v. This follows since, to
leading order in ðφ − vÞ, we can set φ ¼ v on the right-
hand side of Eq. (61). Thus, in terms of Φ, the Einstein-
frame potential for jφ − vj ≪ v becomes

VðΦÞ ¼ λv2

1þ 6σξ2v2=M2
P
Φ2 ∓ λvj4ξv2=M2

P − 1j
ð1þ 6σξ2v2=M2

PÞ3=2
Φ3:

ð68Þ

This is of the form of Eq. (33) with

m2¼ 2λv2

1þ6σξ2v2=M2
P
; A¼ λvj4ξv2=M2

P−1j
ð1þ6σξ2v2=M2

PÞ3=2
: ð69Þ

Applying the fragmentation condition for an asymmetric
potential, (43), we obtain the general condition for frag-
mentation in Higgs inflation with a symmetric-breaking
potential as follows:

v
MP

≲ 9π

400

ffiffiffi
3

2

r �
rA
0.1

� j4ξv2=M2
P − 1j

ð1þ 6σξ2v2=M2
PÞ1=2

: ð70Þ

(i) Case M2 ≪ ξv2: In this case, M2
P ≈ ξv2, correspond-

ing to nonminimally coupled inflation in the induced
gravity limit. In this limit, the condition for fragmentation
becomes

ð1þ 6σξÞ1=2ffiffiffi
ξ

p ≲ 0.26

�
rA
0.1

�
: ð71Þ

For the metric case, σ ¼ 1, and, assuming that ξ ≫ 1, the
condition becomes

ffiffiffi
6

p ≲ 0.26

�
rA
0.1

�
; ð72Þ

which is not satisfied. Therefore, fragmentation does not
occur for metric Higgs inflation in the induced gravity
limit. For the Palatini case, σ ¼ 0, and the condition
becomes

ξ≳ 14.83

�
0.1
rA

�
2

: ð73Þ

This is easily satisfied since we expect that ξ ≫ 1.
Therefore, we expect that the inflaton condensate will
fragment in the case of Palatini Higgs inflation in the
induced gravity limit, but it will not fragment in the case of
metric Higgs inflation in this limit.
(ii) Case M2 ≫ ξv2: In this case, M2

P ≈M2, correspond-
ing to conventional Higgs inflation. In addition, since
jφ − vj ≪ v, we also have ξφ2 ≪ M2

P. In this limit, the
condition for fragmentation becomes

v
MP

≲ 0.087

�
0.1
rA

��
1þ 6σξ2v2

M2
P

�−1=2
: ð74Þ

For the metric case, σ ¼ 1, and the condition becomes

v
MP

�
1þ 6ξ2v2

M2
P

�
1=2

≲ 0.087

�
0.1
rA

�
: ð75Þ

There are two cases, corresponding to 6ξ2v2=M2
P ≪ 1 and

6ξ2v2=M2
P ≫ 1. In the case where 6ξ2v2=M2

P ≪ 1, the
condition for the fragmentation becomes

v
MP

≲ 0.087

�
0.1
rA

�
: ð76Þ

In this case, the nonminimal coupling plays no role and we
simply have the condition for fragmentation for a mini-
mally coupled scalar with a broken-symmetry potential.
This is satisfied as long as v is not very close to the
Planck scale.
In the case where 6ξ2v2=M2

P ≫ 1, the condition for
fragmentation becomes

ξv2

M2
P
≲ 0.035

�
0.1
rA

�
: ð77Þ

In this case, the nonminimal coupling plays a role, even
though ξφ2 ≪ M2

P. This is because once φ > MP=ð
ffiffiffi
6

p
ξÞ,

the inflaton kinetic term in the Einstein frame in the metric
case is modified. The allowed range of ξv2=M2

P is
1 ≫ ξv2=M2

P ≫ 1=ð6ξÞ. Therefore, the fragmentation con-
dition will be satisfied for most of the allowed range of
ξv2=M2

P except for when ξv2 approaches M2
P.

In the case of Palatini Higgs inflation, σ ¼ 0, and the
fragmentation condition becomes

v
MP

≲ 0.087

�
0.1
rA

�
: ð78Þ

This is simply the fragmentation condition for a minimally
coupled scalar with a broken-symmetry potential. This is
expected as in the limit ξv2 ≪ M2

P (and so ξφ2 ≪ M2
P), the

nonminimal coupling plays no role in Palatini inflation.
In summary, we find significantly new results for the

case of metric and Palatini Higgs inflation with a broken-
symmetry potential in the induced gravity limit, and for
metric Higgs inflation with a broken-symmetry potential in
the limit where v > MP=ð

ffiffiffi
6

p
ξÞ, with all other cases

reducing to a conventional minimally coupled scalar with
a symmetry-breaking potential. In particular, we find that
fragmentation will occur for Palatini Higgs inflation in the
induced gravity limit, but will not occur for metric Higgs
inflation in this limit.
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To our knowledge, there is no numerical study of this
particular setup. In order to verify our analytical study, we
perform numerical simulations in 1þ 3 dimensions by
using the public lattice simulation code LATTICEEASY [28].
We present results of numerical simulations for the follow-
ing two cases:

(i) Palatini Higgs inflation in the ξv2 ≫ M2 limit and
(ii) Metric and Palatini Higgs inflation with ξv2 ≪ M2,

together with the condition ξ2v2 ≪ M2.
In both cases, our analytical results predict that fragmen-
tation will occur. Note that, in the second case, the
fragmentation conditions are same in both formalisms as
in this limit both models reduce to a minimally coupled
scalar with a symmetry-breaking potential, and there is no
difference between the formalisms.
For the numerical simulation, we set Ngrid ¼ 1283,

L ¼ 50 m−1 (30 m−1), and δt ¼ 0.1 m−1 for the first
(second) case, where m≡ ffiffiffiffiffi

2λ
p

v. For both cases, we used
the field value at the end of inflation, Φend ¼
ðMP=2

ffiffiffi
ξ

p Þ sinh−1ð4 ffiffiffiffiffi
2ξ

p Þ [26], as the initial condition.
The result of the numerical simulation for the case of
ξv2=M2 ≫ 1 is shown in Fig. 1. We present the energy
density ρ=hρi ¼ 10, where hρi is the averaged energy
density over the lattice. In Fig. 2, we plotted the
energy density ρ=hρi ¼ 10 for the case of ξv2=M2 ≪ 1.
We see that the inflaton condensate fragments after

inflation ends in both cases. Our analytical results are thus
in agreement with the numerical analysis.

IV. CONCLUSION

In this paper, we have derived general analytical con-
ditions under which the inflaton condensate will fragment
for the case of both symmetric and asymmetric potentials.
The robustness of our results was demonstrated by apply-
ing our analytical fragmentation conditions to a range of
models for which the result is known numerically, includ-
ing the α-attractor T and E models, Starobinsky’s R2

model, and the Palatini R2 model with a quadratic potential.
In all cases, we find that the analytically predicted con-
dition on the model parameters for fragmentation to occur
are in complete agreement with the results of the numerical
analyses.
In addition, we have applied our results to Higgs

inflation with a broken-symmetry potential in both the
metric and Palatini formulations and derived a general
condition for fragmentation to occur in these models. We
then carried out numerical simulations of these models
using LATTICEEASYand found complete agreement between
our analytical predictions for fragmentation to occur and
the results of the numerical simulations.
The conditions we have derived provide a quick and

simple method to check whether any model which can

FIG. 1. Lattice simulation for the Palatini Higgs inflation
model. We present the quantity ρ=hρi ¼ 10 at t ¼ 500 m−1.
The choice of parameters are as follows: Ngrid ¼ 1283,
L ¼ 50 m−1, ξ ¼ 1.0 × 103, and

ffiffiffi
ξ

p
v=M ¼ 1.0 × 103. We

used the field value at the end of inflation, Φend ¼
ðMP=2

ffiffiffi
ξ

p Þ sinh−1ð4 ffiffiffiffiffi
2ξ

p Þ, as the initial condition.

FIG. 2. Lattice simulation for the Higgs inflation model.
We present the quantity ρ=hρi ¼ 10 at t ¼ 40 m−1. The choice
of parameters are as follows: Ngrid ¼ 1283, L ¼ 30 m−1,
ξ ¼ 1.0 × 104 and

ffiffiffi
ξ

p
v=M ¼ 0.1. We used the field value at

the end of inflation, Φend ¼ ðMP=2
ffiffiffi
ξ

p Þ sinh−1ð4 ffiffiffiffiffi
2ξ

p Þ, as the
initial condition.
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support nontopological soliton solutions (which requires
that the scalars have a mass at the potential minimum and
therefore that the potential is approximately quadratic at
the minimum) will undergo fragmentation and to deter-
mine the range of model parameters for which this is
possible.
The physics of the inflaton condensate fragmentation

has many interesting phenomenological consequences,
including the formation of primordial black holes and

gravitational wave signals. The evolution dynamics gen-
erally requires extensive numerical lattice simulations. We
believe that our findings may serve as a starting point for
such numerical analyses.
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