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The scattering of cosmic microwave background (CMB) radiation in galaxy clusters induces
polarization signals according to the quadrupole anisotropy in the photon distribution at the cluster
location. This “remote quadrupole” derived from the measurements of the induced polarization
provides an opportunity for reconstructing primordial fluctuations on large scales. We discuss that
comparing the local CMB quadrupoles predicted by these reconstructed primordial fluctuations and the
direct measurements done by CMB satellites may enable us to test the dark energy beyond cosmic
variance limits.
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I. INTRODUCTION

After the firm discovery of the accelerating expansion of
the Universe from observations of distant Type Ia super-
novae [1,2], dark energy, which is responsible for the
cosmic acceleration, has been one of the biggest mysteries
in cosmology. In the last 20 years, detailed observations of
cosmic microwave background (CMB) anisotropies have
provided us with much information about the Universe, and
the cosmological parameters in the standard cold dark
matter model with a cosmological constant Λ (ΛCDM)
have been precisely determined [3,4]. The CMB is sensitive
to dark energy through the integrated Sachs-Wolfe (ISW)
effect, where the decay of the gravitational potentials due to
the accelerating expansion of the Universe generates energy
fluctuations in the CMB photons passing through these
potentials. However, the CMB constraint on dark energy–
related parameters is weak because the ISW effect appears
only on large scales in the CMB temperature anisotropy
spectrum and suffers from sizable cosmic variance errors.
An interesting idea of reducing the cosmic variance

errors associated with large-scale fluctuations was pro-
posed by Kamionkowski and Loeb [5]. They argued that
the polarization of the CMB photons scattered off the free
electrons in a cluster of galaxies could be used to reduce the
cosmic variance because the polarization is sensitive to the
quadrupole anisotropy of the CMB’s last scattering surface
viewed by the cluster [6]. However, as Portsmouth pointed
out [7], the quadrupoles viewed by distant clusters are

largely correlated with the local quadrupole viewed by us.
Therefore, the cosmic variance associated with the local
quadrupole is not reducible by the Kamionkowski
and Loeb method. However, cluster polarization measure-
ments can still provide information on large-scale
fluctuations [8,9], which can be useful for studying the
ISW effects [10–12], the power asymmetry of CMB
polarization and density field [13], and the reionization
optical depth [14].
In our previous paper [15], we showed that cluster CMB

polarization measurements could be used to estimate the
initial density fluctuations on large scales and reconstruct
the local quadrupole of the CMB from our viewpoint. We
can reconstruct our quadrupole with a few hundred clusters
at 0 < z < 1 if we know the quadrupole transfer function,
that is, if we know the correct cosmological model. In other
words, if we assume a wrong cosmological model to
reconstruct the CMB quadrupole from distant clusters,
the reconstructed CMB quadrupole will be different from
that observed by the CMB satellites (e.g., WMAP and
Planck). In this way, we can test our cosmological models
using the CMB quadrupole.
Note that the proposed test directly compares the CMB

quadrupole transfer functions that depend on the
Universe’s expansion history after the initial density field,
which is the origin of the cosmic variance, has been
estimated and fixed. Therefore, we do not suffer from the
cosmic variance uncertainty that is large for the CMB
quadrupole measurement compared with the instrumental
noise. Using simple simulations, this study aims to show
that one can test for dark energy models in this way
beyond the cosmic variance.*ichiki@a.phys.nagoya-u.ac.jp
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II. METHODOLOGY

We start with the Stokes parameters Qðx⃗Þ and Uðx⃗Þ of
the CMB photons induced by the primordial CMB quadru-
pole at a cluster position x⃗ [13]:

Qðx⃗Þ � iUðx⃗Þ ¼ −
ffiffiffi
6

p

10
τ
X
m

�2Y2mðx̂Þa2mðx⃗Þ: ð1Þ

Here, τ is the optical depth of the cluster, and almðx⃗Þ are the
coefficients of the spherical harmonic expansion of the
CMB temperature field at position x⃗,

δT
T

ðx⃗; n̂; ηÞ ¼
X
lm

almðx⃗ÞYlmðn̂Þ; ð2Þ

with η ¼ η0 − jx⃗j being the conformal time of the scattering
events. The coefficients of the spherical harmonic expan-
sion are expressed using the Fourier modes as

almðx⃗Þ ¼ ð−iÞlð4πÞ
Z

d3keik⃗·x⃗Δlðk⃗; ηÞY�
lmðk̂Þ; ð3Þ

where Δlðk⃗; ηÞ is the Legendre expansion coefficients of
the CMB photon distribution. We may further expand
Δlðk⃗; ηÞ as

Δlðk⃗; ηÞ ¼ Δlðk; ηÞRiniðk⃗Þ; ð4Þ

where Δlðk; ηÞ are the linear transfer functions that depend
on a cosmological model and Riniðk⃗Þ is the initial curvature
perturbation with the PðkÞ variance.
In our simulation, we generated the transfer functions in

Eq. (4) using CAMB a publicly available code [16].
Figure 1 shows the transfer functions at z ¼ 0 and z ¼ 4
with different equation-of-state parameters of dark energy,

w≡ PDE=ρDE. Comparing the transfer functions at z ¼ 0
and z ¼ 4, the ISW contribution was apparent at wave
numbers k ≈ 10−3 Mpc−1. As also shown in the figure, the
larger w parameter (w ¼ −0.7) induced the larger ISW
effect at z ¼ 0.
We generated the initial curvature perturbation Riniðk⃗Þ as

a random Gaussian variable with a dimensionless power
spectrum,

PðkÞ ¼ k3

2π2
PðkÞ ¼ As

�
k
k�

�
ns−1

; ð5Þ

where k� ¼ 0.05 Mpc−1, As ¼ 2.1 × 10−9, and ns ¼ 0.96.
For the other cosmological parameters, we fixed them to
the standard ΛCDM values, i.e., Ωbh2 ¼ 0.0226, Ωch2 ¼
0.112, and Ωνh2 ¼ 0.00064, h ¼ 0.7, where Ωbh2, Ωch2,
and Ωνh2 are the baryon density, cold dark matter density,
and neutrino density, respectively, and h is the normalized
Hubble parameter.
The procedure of our methodology is as follows:
(1) We generated RiniðkiÞ according to the power spec-

trum given by Eq. (5). Following our previous paper
[15], we sampled the Fourier mode in angular
directions on the Healpix grid with Nside ¼ 8 and
60modes uniformly in a logarithmic space in a radial
direction from k ¼ 10−6 to 10−1 Mpc−1. Thus, the
total number of the Fourier mode is nk ¼ 46, 080.

(2) Using the generated RiniðkiÞ, we simulated QfidðxiÞ
and UfidðxiÞ at the cluster positions on our past light
cone assuming a true cosmological model (in our
case, w ¼ −1, the ΛCDM model). We then added
Gaussian noises to QfidðxiÞ and UfidðxiÞ with a
variance σpol. Figure 2 shows a realization of the
Q and U maps. We considered 6000 randomly
distributed clusters Ncluster ¼ 6000 from z ¼ 0 to
z ¼ 2. We also calculated the CMB quadrupole at
the origin atrue2m ð0Þ.
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FIG. 1. Transfer function of the CMB quadrupole, Δl¼2ðz; kÞ
for ðz; wÞ ¼ ð0;−1Þ, ð0;−0.7Þ, and ð4;−1Þ as indicated in the
figure.

FIG. 2. Example realization for the Stokes Q (left) and U (right)
maps from the CMB quadrupole defined in Eq. (1) at z ¼ 0. The
signals are correlated on very large scales [7]. We assume τ ¼ 1
in Eq. (1) for simplicity.
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(3) As a backward problem, we estimated the initial
curvature perturbation, RiniðkiÞ, by fitting to the Q
and U map minimizing [15]

f¼
XNcluster

i

�ðQðxiÞ−QfidðxiÞÞ2
2σ2pol

þðUðxiÞ−UfidðxiÞÞ2
2σ2pol

�

þ
Xnk
j

R2
iniðkjÞ

2PðkjÞ
;

where σpol describes the uncertainty in observing Q
and U at the cluster position. Here, the first two
terms are for the chi-square minimization for QðxiÞ
and UðxiÞ, which depend on the initial curvature
perturbation RiniðkiÞ, using a fiducial mock data
QfidðxiÞ and UfidðxiÞ. In a real application, QfidðxiÞ
and UfidðxiÞ will be the observables, and we search
or tune RiniðkiÞ to find QðxiÞ and UðxiÞ that
minimize the function f. The third term represents
the Gaussian prior on the initial curvature perturba-
tion RiniðkiÞ with a variance PðkiÞ. We repeated this
process for various equation of state parameters w.

(4) After obtaining the estimated initial curvature per-
turbation Rest

iniðkiÞ, we calculated the CMB quadru-
pole at the origin, aest2mð0Þ, using Rest

iniðkiÞ and
compared it to atrue2m ð0Þ calculated in the second step.

(5) Go back to step 1 with different initial perturbations
and cluster positions, and repeat the procedure a
hundred times.

The true and estimated CMB quadrupoles, atrue2m ð0Þ and
aest2mð0Þ, should coincide within the methodological stat-
istical uncertainty if we use the correct transfer function in
step 3 above. In other words, we can constrain cosmologi-
cal models if atrue2m ð0Þ and aest2mð0Þ differ beyond the
methodological statistical uncertainty.

III. RESULT

A. Instrumental error in the CMB quadrupole
measurement and methodological

statistical uncertainity

The reconstruction of the local CMB quadrupole using
the remote quadrupole information is not perfect due to the
limited number of galaxy clusters available and the
polarization measurement errors. We only show herein
the results for the case where 6000 galaxy clusters were
used with σpol=τ ¼ 10−2, 3 × 10−2 and 10−1 μK. Although
we argued in our previous paper that 300 clusters would be
sufficient to estimate the local quadrupole, we found that
the number is not enough for the investigation of dark
energy. A detailed study will be presented in our future
work [17].
We first defined the statistical uncertainty in our meth-

odology σmethod by an evaluation similar with Cl,

σ2method ¼
1

N

XN
i¼1

1

5
½jΔa20j2 þ 2jΔa21j2 þ 2jΔa22j2�; ð6Þ

where Δa2m ¼ aest2mðw ¼ −1Þ − atrue2m ðw ¼ −1Þ and N is the
number of simulations.
The variance σmethod may depend on the simulation

setup. It directly depends on σpol, and at the same time,
it also depends on the detailed distribution of the cluster,
such as their positions, number density, redshift range, and
so on. Thus, it is difficult to find the dependency analyti-
cally. Therefore, we numerically evaluate σmethod for some
σpol values. In our fiducial setup with Ncluster ¼ 6000,
σpol=τ ¼ 10−2 μK, Nside ¼ 8, and nkmode ¼ 60, we found

σmethod ≃ 2.4 × 10−8; ð7Þ

and we had σmethod ≃ 5.9 × 10−8 for σpol=τ ¼ 3 × 10−2 μK.
The next-generation CMB satellite, namely, LiteBIRD,

will reach ∼2.0 μKarcmin sensitivity [18]. The angular
scale of the CMB quadrupole is ∼90° ¼ 5400 arc min. We
may expect that, in an ideal case, the CMB quadrupole
viewed from us can be measured at the following level:

σLiteBIRDl¼2 ≃
2.0
5400

≃ 3.7 × 10−4 μK: ð8Þ

In the dimensionless units normalized by the mean CMB
temperature, we had σl¼2 ≃ σLiteBIRDl¼2 =ð2.725 × 106 μKÞ ¼
1.4 × 10−10. Variance σl¼2 is 2 orders of magnitude smaller
than the error associated with our methodology; thus, we
may neglect it. The conclusion here is that the uncertainty
in measurements of local quadrupoles will not limit the
precision of this method but the methodological, statistical
uncertainty associated with measurements of remote
quadrupoles.

B. Constraints on the dark energy parameter w

To make a simple statistical inference, we define the chi-
squared statistics as

χ2ðwÞ ¼ 1

σ2method

ðjΔa20j2 þ 2jΔa21j2 þ 2jΔa22j2Þ; ð9Þ

where, Δa2m ¼ aest2mðwÞ − atrue2m ðw ¼ −1Þ. We had real and
imaginary parts in each Δa2m. Accordingly, we assigned
the variance σ2=2 for m ¼ 1 and m ¼ 2 components and
σ2 for the m ¼ 0 component because it had only the
real part.
The chi-square defined in Eq. (9) is a measure of the

difference in the goodness of fit between different
models. For example, if we use the correct dark
energy parameter w that coincides with the input value,
i.e., Δa2m ¼ aest2mðw ¼ −1Þ − atrue2m ðw ¼ −1Þ, χ2ðw ¼ −1Þ
should follow the chi-square distribution with a degree
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of freedom of five. If we use incorrect dark energy
parameters (w ≠ −1), we have larger χ2 values, and thereby
we may constrain the dark energy parameter. Following the
standard χ2 method, we expect 1σ and 2σ constraints for
Δχ2 ¼ 1 and 4, respectively.
Compared with the w ¼ −1 model in the hundred

simulations, we found that hΔχ2i ≈ 1.56, 9.86, and 47.0
for the w ¼ −0.99, −0.95 and w ¼ −0.90 models, respec-
tively. Figure 3 illustrates the Δχ2 distribution in our
simulation. The statistical test significance strongly
depends on σpol. If we assume less sensitivity in the
polarization measurement as σpol=τ ¼ 3 × 10−2 μK, the
delta chi–squared reduces to hΔχ2i ≈ 0.74, 4.0 and 13.1
for w ¼ −0.99, 0.95, and −0.90, respectively. We
will present a more detailed analysis in our future
work [17].

IV. CONCLUSION

In this study, we proposed a new method for use in
observational cosmology using CMB observations. The
conventional way in observational cosmology has been to
obtain summary statistics, such as the variance of cos-
mological density fluctuations, from observations at
various times in the history of the Universe and compare
them with theory. However, this method cannot escape the
cosmic variance arising from the fact that there is only one
observable Universe. Instead of using summary statistics,
we estimated and fixed the initial density fluctuations
realized in our Universe using the polarization of distant
galaxy clusters in the past and determined the time
evolution of the density fluctuations by considering
how the density fluctuations look today using the local

quadrupole of the CMB. This process corresponds, in
effect, to multiple density fluctuation observations in the
Universe, hence the title of the paper.
As a working example, we considered wCDM cosmol-

ogy and investigated how sensitive this method is to the
equation-of-state parameter w, assuming that the ΛCDM
cosmology is the correct cosmological model. In Sec. III,
we found that the expected Δχ2 value compared to the
w ¼ −1model is as large as 9.86 for w ¼ −0.95. Therefore,
we concluded that one may be able to achieve 5% precision
for constraint on w if the CMB polarization, which is
caused by the remote quadrupole at 6000 galaxy cluster
positions up to redshift z ¼ 2, is accurately and precisely
measured below the noise level of σpol ≲ 10−2τ μK, where
τ is the optical depth of the cluster.
The expected signal of the typical cluster polarization

contributions caused by the quadrupole ranges from 0.02 to
0.1 μK [10]. Therefore, detecting signals from individual
galaxy clusters would require a detector with this level of
sensitivity at arc minute angular scales. In reality, however,
this is not necessary [19]. As we have already discussed, the
polarization signals from galaxy clusters are correlated on
large scales; hence, rather than detecting the signals of
individual galaxy clusters, we only need to catch the signals
aligned on large scales [20] (Fig. 2). As shown herein, 6000
locations between redshifts z ¼ 0 and z ¼ 2 are sufficient.
As a rough estimate, the volume of the Universe up to
redshift z ¼ 2 is approximately 600 Gpc3, which means
that we can average the signals from the clusters of the
galaxies over a volume of 0.1 Gpc3. At z≲ 1, we may
expect approximately 103 clusters in that volume with
∼1014 M⊙ halo mass.
The simulations we performed are idealized in many

aspects. In our simulation, the magnitude of the galaxy
cluster polarization was assumed to be known, and the noise
in the polarization observations was supposed to be very
small. Except for the CMB quadrupole, we also ignored the
polarization sources, such as those caused by the kinematic
Sunyaev-Zeldovich effect and the primordial polarization of
the backgroundCMB [21,22], although separationwould be
possible based on their different frequency spectra [10,23].
In addition, the instrumental noise-limited quadrupole
measurement of the CMB and the signal separation from
other contaminants would be an experimental challenge due
to the correlated noise in the time-ordered CMBdata and the
galactic foregrounds.
Although our work is preliminary, we have shown that

future cluster polarization measurements combined with
the local CMB quadrupole measurement would offer a
powerful probe for the nature of dark energy. More
importantly, this method is qualitatively distinct from
conventional methods based on summary statistics, which
always suffer from cosmic variance errors. A more detailed
study in a more realistic setting is necessary.

FIG. 3. Distribution of Δχ2 ¼ χ2ðwÞ− χ2ðw¼−1Þ where χ2 is
defined in Eq. (9). We assumed that σpol=τ¼ 10−2 μK. The
simulation setup was Ncluster ¼ 6000, Nside ¼ 8, and nradialkmode ¼ 60.
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