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We introduce a unified spin-weighted formalism to describe both timing and astrometric perturbations
induced on astrophysical point sources by gravitational waves using a complex spin field on the sphere.
This allows the use of spin-weighted spherical harmonics to analyze “astrochronometric” observables.
This approach simplifies the interpretation and simulation of anisotropies induced in the observables by
gravitational waves. It also allows a simplified derivation of angular cross-spectra of the observables and
their relationship with generalized Hellings-Downs correlation functions. The spin-weighted formalism
also allows an explicit connection between correlation components and the spin of gravitational wave
polarizations and any presence of chirality. We also calculate expected signal-to-noise ratios for
observables to compare the utility of timing and deflection observables.
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I. INTRODUCTION

Direct observation of gravitational waves (GWs) at
10 Hz to 100 Hz is now a reality with ground-based
networks of interferometers [1] routinely observing the
signals emitted by the merger of massive objects at
cosmological distances [2]. Future space-based interferom-
eter missions will open a new window of GW observation
at lower frequencies, 10−5 Hz to 10−1 Hz, where many
different signals, both galactic and extragalactic in origin,
are expected to be detected [3]. The direct observation of
spacetime distortions offers an unprecedented opportunity
for testing the nature of gravity. The detailed form of the
merger signal is a direct observation of the behavior of
massive systems in the strong gravity regime and the
propagation of GWs over cosmological distances and
times. Current observations already give stringent con-
straints on the speed of propagation of GWs, modifications
to the standard dispersion relation, and other extensions to
the theory of general relativity (GR) [4]. Another important
test is the presence of so-called non-Einsteinian polar-
izations of GWs, i.e., beyond the two transverse, traceless
polarizations allowed in GR.
At even lower frequencies, around 10−7 Hz, another

window into GWs has traditionally been the measurement
of the correlated perturbations of timing pulses received
from pulsars across the sky [5]. The pulsar timing array
(PTA) technique is well established, and efforts monitoring
a network of pulsars have been ongoing for many years [6].
This technique provides useful upper bounds on stochastic
GW backgrounds [7,8] and, over the past year, tantalizing
evidence of a potential detection has emerged [9]. PTA

observations are sensitive to the effect of GWs passing
between the pulsars and observers. The GW distorts the
effective path length taken by the pulsar signal and induces
an apparent frequency shift. The shift, integrated over a
certain time frame, is observed as a perturbation of the time
of arrival (ToA) of the regular pulses. This observation is
most sensitive to the effect of GWs at the observer’s
location. A significant limitation of the PTA method is
that, although timing resolution is relatively good, there is
only a limited number of pulsars that we can observe and
only a handful of these are intrinsically stable enough to be
used for the purpose of GW monitoring. Although each
pulsar timing measurement yields a scalar quantity on the
sky the cross-correlation of different pulsars is sensitive to
the polarization properties of the underlying GWs [10].
Apparent distance or ToA measurements are not the only

direct observables in gravitational theories based on space-
time metrics. All observations involving time, distance, and
angular estimates are affected by the presence of spacetime
perturbations. As such, another effect due to GWs is the
perturbation of the apparent position of distant objects. The
technique is known as the astrometric method for GW
detection. This technique has so far been less prominent
than the PTA method because of the limited astrometric
precision of current surveys. Atmospheric effects provide
a limit to the quality of astrometric observations using
ground-based telescopes, which are also limited in survey-
ing speeds and coverage. However, astrometric techniques
also have some important advantages. As space-based
observations increase, the precision of astrometric surveys
will improve by orders of magnitude along with the speed
and frequency with which the sky is surveyed. Another
advantage is that any distant point source constitutes a
measurement point in this technique. There are vastly more*s.golat19@imperial.ac.uk
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point sources in the sky than well-behaved pulsars. It is also
important to note that astrometry provides an observation
that is inherently vectorial and is therefore sensitive to a
different projection of the polarization properties of the
underlying GWs. This makes timing and astrometry
observations complementary in a way that is similar to
temperature and polarization observations of the cosmic
microwave background (CMB).
A number of authors originally considered the effect of

random GWs on the apparent position of celestial objects
[11–14]. Early proposals envisaged the use of radio inter-
ferometers to monitor the relative proper motion of extra-
galactic objects, such as quasars, in an attempt to observe
the periodic proper motion that would be induced in the
presence of a random background of GWs [15–18]. There
are two contributions that drive the effect. The first dominant
contribution is due to the metric at the observer’s location
and is sensitive to GWs with frequencies up to ∼1=Tobs
where Tobs is the total duration of the observations [19]. The
second contribution arises from the integrated effect of
metric perturbations along the light path between the source
and observer. For distances that are much larger than the GW
wavelength, this effect will be subdominant [14].
Interesting constraints on GWs can be obtained once

astrometric precision reaches μas precision. If we consider
the root mean square (rms) in the correlated proper motion
of N sources observed with angular precision Δθ over a
time Tobs induced by a stochastic GW background (SGWB)
with spectral amplitude ΩgwðfÞ we have [13]

ΩgwðfÞ ≤
Δθ2

NT2
obsH

2
0

; ð1Þ

whereH0 is the Hubble rate andΩgw is the amplitude of the
gravitational wave background (see below). This suggests
that a survey of some 109 stars, over several years at angular
precision of a few μas, would achieve upper bounds on the
cosmological background of GWs comparable to limits
currently imposed by LIGO-VIRGO observations [20] at
higher frequencies. Today, the GAIA [21] satellite survey
is already operating within a few orders of magnitude of
this baseline, and similar missions in the future may go
well beyond this [22] although systematics may well be a
limiting factor.
The analysis of surveys of this scope would pose

significant challenges. The datasets would be the ones
with inherently low signal-to-noise ratio, sky coverage
would be incomplete, and resolution uncertainties would be
inhomogeneous with nontrivial correlations across the sky.
It is almost certain that a complete analysis would require a
compression step to “bin” the observations into a smoothed
sky map and tools for obtaining harmonic expansions of the
whole-sky signal. Fiducial simulations of the whole-sky
signal and noise would also be involved. The formalism we

introduce here provides a framework for developing future
analysis methods.
Different approaches have been adopted in defining the

formalism through which the signal of isotropic GWs is
imprinted in both timing residual and astrometric obser-
vations, including their induced anisotropies. The formal-
ism for PTAs is well understood with the signal encoded
in the correlation function known as the Hellings-Downs
curve [5]. The analysis of the full anisotropic signal, which
allows angular phase information to be preserved, is also
well-developed for PTAs (see e.g., [23–25]). A similar
approach has been taken with astrometric observations
[26,27] including the introduction of a joint, all-sky
analysis of anisotropies in both timing residuals and
deflections [28]. This work has defined the correlation
functions that are analogous to the Hellings-Downs curve
for astrometry, including the correlations sourced by non-
Einsteinian polarizations. The calculation of angular power
spectra (the harmonic domain expansion of the correlation
functions) has also been introduced.
This article extends the previous work on a joint

formalism for the analysis of anisotropies in timing
residuals (or redshift perturbations) and astrometric obser-
vations. We dub this formalism astrochronometry to
emphasize the joint aspect of the analysis. Our work fully
exploits the standard formalism for all-sky analysis of
polarized observables used in the field of CMB. This is
achieved by introducing spin-weighted spherical harmonics
to describe the vectorial observables. The advantage of this
is that the connection between correlation functions in
the angular domain and angular spectra in the harmonic
domain become easily generalized and entirely analogous
to the relationships in the CMB signal, albeit at a different
spin. The introduction of this formalism also allows us to
make use of the mapping and analysis infrastructure
already developed for the CMB and also allows us to
define all angular spectra arising from any polarization in
the most compact and intuitive way.
This paper is organized as follows. In Sec. II, we review

the signal induced by GWs in both timing residuals and
deflections and define cross-correlation statistics of astro-
chronometry. In Sec. III, we review the spin-weighted
spherical harmonic formalism and show how astrochrono-
metric observables can be recast into the language of
complex spin-1 fields on the sphere. In Sec. IV, we derive
compact forms for the angular spectra sourced by all
Einsteinian and non-Einsteinian polarizations. Our formal-
ism and connection to spin-weighted expansion clarify how
the spin of the GW polarizations translates into the multi-
poles of the timing residuals and astrometric deflections.
We do this separately for monochromatic coherent signals
and a stochastic background signal. We also demonstrate
how all-sky realizations of the anisotropic correctly corre-
lated observables can easily be obtained, having defined
the appropriate spin fields. In Sec. V we derive analytical
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expressions for signal-to-noise ratio statistics in astrometric
observables and compare them to those for timing residuals
showing the two approaches are complementary. We
summarize our results in Sec. VI.

II. ASTROCHRONOMETRY

In the far-field limit of any generating mechanism and in
the limit where the wavelength is much smaller than the
underlying curvature scale, GWs behave as free waves
perturbing the background metric. The perturbation, as
experienced at some coordinate position, for a general GW,
can be expressed as a sum of Fourier modes,

habðtÞ ¼
Z þ∞

−∞
df e−2πift

Z
S2
dΩk̂

X
P

hPðf; k̂ÞePabðk̂Þ; ð2Þ

where f is the frequency of each mode, k̂ is the direction
of the wave front, hPðf; k̂Þ are the amplitudes of each
polarization, and ePabðk̂Þ are polarization basis tensors for
each mode.1 The spatial indices a, b follow the Einstein
summation convention and we adopt units where c ¼ 1.
This perturbation will affect any line of sight in the sky.

For example, if we monitor the ToA of regular signals such
as in the case of PTAs, the signal will be periodically
redshifted. We can measure the integrated redshift expe-
rienced by a signal coming from the line of sight n̂I by
fitting a low-order timing model to a sequence of ToA
observations and subtracting it from the observations to
obtain a timing residual

rIðt; n̂IÞ ¼
Z

t

0

dt0zIðt0; n̂IÞ; ð3Þ

where zIðt; n̂IÞ is the time-dependent redshift of the under-
lying signal’s frequency along a particular line of sight. The
integral recovers the overall phase shift of the signal which
can be interpreted as a perturbation of the arrival time in the
case of discrete pulses.
Detecting GWs using astrometry relies on repeatedly

observing the apparent angular positions of many objects,
preferably point sources, in the sky. Each of these positions
n̂I will be periodically deflected by GW perturbations
present along the line of sight between the source and
observer. We can measure this astrometric deflection over
time, δnIðt; n̂IÞ, and unlike in the case of PTAs, it is a
quantity that is affected by the instantaneous GW pertur-
bation.2 It is also a vector and will therefore contain

inherently different projections of the underlying tensor
perturbations compared to the scalar redshifting effect.
In practice, both zIðtÞ and δnIðtÞ depend not only on

metric perturbations at the point of observation (usually the
Earth) but also on perturbations at the point that we are
observing (the star or pulsar) [26]. However, if we are only
interested in a distant star, i.e., the limit where the distance
to the star or pulsar is much greater than the wavelengths
of the GWs, the response simplifies significantly and
depends only on the perturbation at Earth [26].3 For
notational convenience, we introduce an observation vector
hIðtÞ ¼ ðrIðtÞ; δnIðtÞÞ⊺. While in practice we will not have
both timing and astrometric observations for every line of
sight, it will allow us to present a unified treatment of the
two effects.
The effect of each Fourier mode in Eq. (2) on the

observed vector is well-known (see e.g., [26]). We can
summarize this in terms of response functions.4 Starting
with the response for timing residuals

Rab
r ðf; k̂; n̂Þ≡ 1

2πif
Rab
z ðk̂; n̂Þ ¼ 1

4πif

�
n̂an̂b

1þ k̂ · n̂

�
; ð4Þ

where Rab
z ðk̂; n̂Þ is the redshift response function, the two

being related by the integral in Eq. (3). The astrometric
response function is

Rab
{̂ ðk̂; n̂Þ ¼ 1

2

�
n̂an̂b

1þ k̂ · n̂
ðn̂{̂ þ k̂{̂Þ − δa{̂ n̂

b

�
: ð5Þ

Notice that indices i and j run over the timing residual r
and components θ and ϕ of the astrometric deflection. To
emphasize when we are considering only astrometric
components, we will be using indices with hats that are
{̂ and |̂ that run only over θ and ϕ. We will sometimes also
use label z to denote the response of the redshift alone
without the additional frequency dependence. This allows
us to write the temporal Fourier transform of the response
vector as

h̃I;iðfÞ ¼
Z
S2
dΩk̂

X
P

hPðf; k̂ÞRab
I;iðf; k̂; n̂IÞePabðk̂Þ

≡
Z
S2
dΩk̂

X
P

hPðf; k̂ÞRP
I;iðf; k̂Þ: ð6Þ

Searches for GW signals in both timing and astrometry data
involve cross-correlations of observations since the signal
itself is mean-free. We consider the cross-correlation

1Here the polarization index P ∈ fþ;×; X; Y; S; Lg runs over
all polarizations being considered, potentially including non-
Einsteinian ones (see Appendix B).

2The two components represent the projection of the apparent
shift along with the orthogonal directions θ and ϕ in the plane
tangent to the unperturbed position and transverse to the line of
sight vector.

3For polarizations with longitudinal components, this limit will
introduce nonphysical divergence in correlation functions at
angular separations Θ ¼ 0 (for details see Mihaylov et al. [26]).

4Note that we write this in terms of vector k̂ rather than the
apparent position of the source of GW, q ¼ −k̂, as used by others
such as Mihaylov et al. [26,27].

ALL-SKY ANALYSIS OF ASTROCHRONOMETRIC SIGNALS … PHYS. REV. D 105, 063502 (2022)

063502-3



matrix, ðhI;i⋆hJ;jÞðτÞ ¼ hhI;iðtÞhJ;jðtþ τÞi. This includes
not only timing and angular correlations but also the
correlation between the two. Indices I and J label lines
of sight to sources.
For the case where the signal is an SGWB, we can

assume that the background is statistically isotropic and
that polarization modes are independent [29],

hhPðf; k̂Þh�P0 ðf0; k̂0Þi ¼ δðf − f0Þ
2

δ2ðk̂; k̂0Þ
4π

δPP0

g
ShðfÞ;

where ShðfÞ is the one-sided strain spectral density for
the individual polarization modes and g is the number of
possible polarizations.5 The one-sided spectral density is
related to the energy density of the SGWB through

ShðfÞ ¼
3H2

0

2π2
ΩgwðfÞ

f3
: ð7Þ

This leads to the following constraint on the cross-
correlation in the Fourier domain:

hh̃I;iðfÞh̃�J;jðf0Þi ¼
1

2
δðf − f0ÞShðfÞΓ̄IJ;ijðfÞ; ð8Þ

where we have introduced the overlap reduction matrix6

Γ̄IJ;ijðfÞ ¼
1

4πg

Z
S2
dΩk̂

X
P

RP
I;iðf; k̂ÞRP�

J;jðf; k̂Þ: ð9Þ

The overlap reduction functions will, in the case of an
isotropic background, depend only on n̂I · n̂J ¼ cosΘIJ.
In the following sections, we will examine the angular
dependence of the signal and, to that end, separate out the
frequency dependence introduced by the timing compo-
nents from the angular structure as follows:

Γ̄IJ;ijðfÞ ¼
ð−iÞκiðiÞκj
ð2πfÞκij ΓijðΘIJÞ; ð10Þ

where κi ¼ δir and κij ¼ κi þ κj are exponents coming
from the fact that the timing residual is an integrated
redshift. Notice that this means we are effectively consid-
ering the anisotropy of the redshift effect by separating out
the timing residual contribution.

III. SPIN-WEIGHTED SPHERICAL HARMONICS
IN ASTROMETRY

Having introduced directional dependence in the
signal, it is useful to consider its angular decomposition
onto spherical harmonics. The signal contains both a
scalar amplitude (redshift effect) and a vector field (deflec-
tion effect) on the sphere. The scalar contribution can be
decomposed onto spherical harmonics Ylmðθ;ϕÞ, the
Fourier basis of the unit sphere. For the vector contribution,
the conventional approach [17,27,30] is to expand onto the
basis of vector spherical harmonics [17]. These are defined
as the gradient (G) and curl (C) modes with respect to the
usual scalar spherical harmonics (see e.g., [31])

YG
lm ¼ YE

lm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
¼ ∇Ylm; ð11Þ

YC
lm ¼ YB

lm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
¼ n̂ × ∇Ylm: ð12Þ

Here θ and ϕ are spherical polar coordinates and n̂ is
the unit vector in the direction ðθ;ϕÞ. We have also
introduced E and B modes which are often used in analogy
to electromagnetic modes. The ∇ operator is defined
using covariant derivatives on the sphere with metric
ds2 ¼ dθ2 þ sin2 θdϕ2 and antisymmetric tensor

ϵij ¼
�

0 sin θ

− csc θ 0

�
: ð13Þ

A vector field Vðn̂Þ on the unit sphere is then decom-
posed as

aElm ¼ aGlm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
¼

Z
S2
dΩn̂

YG�
lmðn̂Þ · Vðn̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ; ð14Þ

aBlm ¼ aClm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
¼

Z
S2
dΩn̂

YC�
lmðn̂Þ · Vðn̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp : ð15Þ

It is convenient to relate this expansion to that of spin-
weighted spherical harmonics [32,33]. Spin-weighted
spherical harmonics are used to expand the spin-s fields
sFðn̂Þ on the sphere. Spin-s fields are defined as quantities
that transform as e−isψ under right-handed rotations about n̂
by an angle ψ .
Polarization of CMB radiation is a well-known appli-

cation of spin-weighted spherical harmonics. The linear
polarization of CMB radiation arriving along a line of
sight n̂ is described by Stokes parameters, Q and U [34].
These can be packaged into complex variables �2Fðn̂Þ≡
ðQ� iUÞðn̂Þ that transform as a spin-s field on the unit
sphere with s ¼ �2 [35]. This is possible because they
are quadratic in the underlying spin-1 electromagnetic
field. Similar quantities can be defined for tensor polar-
izations such as the transverse-traceless modes of GW
radiation. GW Q and U Stokes parameters transform as

5For GR polarizations g ¼ 2. In Sec. IV, we will also consider
vectorial polarizations with the same g and scalar polarizations
where g ¼ 1.

6This function has a different definition than the one used in
Mihaylov et al. [26,27]; in particular, it differs by a factor of 4πg.
These factors are implicit in their function Tðt; t0Þ, where they use
CðfÞ ¼ PðfÞ ¼ ShðfÞ=4π instead of spectral density.

SEBASTIAN GOLAT and CARLO R. CONTALDI PHYS. REV. D 105, 063502 (2022)

063502-4



spin-4 fields as they are quadratic in the underlying spin-2
tensor field. However, GW Stokes parameters can only be
observed by making direct measurements of the GWs (see
e.g., [36]). Astrochronometric measurements only depend on
the projected effect of the underlying polarization modes. In
order to avoid confusion with GW Stokes parameters, we do
not introduce Q andU in defining Stokes parameter analogs
for astrometry. However, the analogy is straightforward if we
introduce deflection components δñθ and δñϕ of the Fourier
decomposed observation vector hI defined above.
The advantage of introducing spin-weighted fields is that

raising and lowering operators, ð and ð̄, respectively, can be
defined. These can be used to raise or lower the spin of a
field to obtain spin-0 (scalar) quantities that are invariant
under rotations of the coordinate system. The raising and
lowering operators are defined through the operations

ð½sFðn̂Þ� ¼ −sinsθ
� ∂
∂θ þ

i
sin θ

∂
∂ϕ

�
½cscsθsFðn̂Þ�; ð16Þ

ð̄½sFðn̂Þ� ¼ −cscsθ
� ∂
∂θ −

i
sin θ

∂
∂ϕ

�
½sinsθsFðn̂Þ�: ð17Þ

The vector field Vðn̂Þ can be decomposed into spin-1 fields

�1Fðn̂Þ≡ δñθ � iδñϕ with δñθ ¼ δñ · êθ and δñϕ ¼ δñ · êϕ
and where êθ and êϕ are the orthogonal unit vectors
transverse to the radial direction n̂. The spin-1 combina-
tions can be lowered and raised to spin-0 quantities and
expanded onto spherical harmonics as a set of spin-1
coefficients �1alm,

ð̄ðδñθ þ iδñϕÞðn̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
þ1almYlmðn̂Þ; ð18Þ

ððδñθ − iδñϕÞðn̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
−1almYlmðn̂Þ: ð19Þ

The expansion can be inverted using

þ1alm ¼
Z
S2
dΩn̂

ð̄Y�
lmðn̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ðδñθ þ iδñϕÞðn̂Þ

≡
Z
S2
dΩn̂þ1Y

�
lmðn̂Þðδñθ þ iδñϕÞðn̂Þ; ð20Þ

−1alm ¼
Z
S2
dΩn̂

ðY�
lmðn̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ðδñθ − iδñϕÞðn̂Þ

≡
Z
S2
dΩn̂−1Y

�
lmðn̂Þðδñθ − iδñϕÞðn̂Þ; ð21Þ

where we have defined spin-1 spherical harmonics �1Ylm.
Comparing Eqs. (14) and (15) with Eqs. (20) and (21),
spin-weighted modes can be combined into E and B
modes as7

aElm ¼ 1

2
ð−1alm − 1almÞ; ð22Þ

aBlm ¼ i
2
ð−1alm þ 1almÞ: ð23Þ

Note that �1Ylm ¼ 0 for l ¼ 0. Using these definitions we
can directly expand the spin-1 field as

ðδñθ � iδñϕÞðn̂Þ ¼
X
lm

ð∓ aElm − iaBlmÞ�1Ylmðn̂Þ: ð24Þ

The advantage of introducing spin-weighted decompo-
sitions is that existing computational frameworks devel-
oped for CMB analysis can be adapted for studies in this
field. For example, the HEALPix package [37] implements
spherical harmonic transforms of spin-s fields using spin-
weighted basis functions and can be used to generate a
realization of the anisotropic sky with properly correlated
timing and astrometric signals, as we show below. This
formalism can also be used in the analysis of future
observations. In particular, the ability to rebin observations
and to apply smoothing and other angular filters to
astrochronometric data will aid the internal analysis and
the cross-correlation with other observables.
The use of complex spin-1 fields also simplifies the

interpretation of angular power spectra of the signal by
analogy with CMB spectra and clarifies the link between
the parity of underlying tensor polarization and the differ-
ent spin-1 cross-correlation spectra as we also show below.

IV. ANGULAR POWER SPECTRA AND
CORRELATION FUNCTIONS

A convenient way to study the angular behavior of
correlations in astrochronometry is to use the angular
power spectra. Angular spectra are particularly useful for
observations that cover large portions of the sky and can
help to understand the angular dependence of different
correlations. A well-known application is the prediction
of CMB spectra. In astrochronometry, angular spectra are
the Fourier domain conjugates of the Hellings-Downs
curve [5] (for timing residuals) and its analogs for astrom-
etry. Angular spectra have been previously introduced in
both PTA and astrometry analysis [24,27,28,30]. Here, we
review their application and extend the calculation to the
unified framework we have adopted in this work, empha-
sizing the relationship between different angular cross-
correlations and the underlying tensor polarizations.
Following Roebber and Holder [24], we identify the

redshift scalar field as the analog to the intensity or
temperature T. Here we can loosely relate T to “timing.”
The redshift field can be expanded as

z̃ðn̂Þ ¼
X
lm

aTlmYlmðn̂Þ; ð25Þ7The definition requires a choice of convention. We use the
same choice used in the HEALPix package [37].
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noting that, as usual, we have separated out the frequency
dependence, as discussed previously. We focus on the
redshift signal for now as additional considerations are
required when expanding timing residuals due to the
integration involved.
We can form several angular cross-correlation spectra

CQQ0
l ¼ 1

2lþ 1

Xl
m¼−l

aQlma
Q0�
lm ; ð26Þ

considering the full set of modes, aQlm ∈ faTlm; aElm; aBlmg.
Notice that, in the most general case, the cross-spectra are
complex valued but any imaginary component is generated
solely by chiral components in the underlying signals such
as circularly polarized GWs (see below). This, in turn,
induces specific patterns in the cross-correlation of scalar
and spin-1 observables.
The spectra contain the full statistical description of

anisotropies, assuming statistical isotropy and Gaussianity.
In particular, a compression to angular spectra assumes there
is no information in the angular phase of the modes in the
sky. The spectra also have the useful property of being
invariant under rotations. This is the most useful compres-
sion for the case where the underlying signal is due to a
stochastic background of GWs. However, it can also be
applied to the case of a signal due to a single monochromatic
wave. In this case, the signal is not invariant under rotations,
but it is still useful to compress to angular spectra if we are
not interested in the angular phase information.

A. Coherent monochromatic signals

We first consider the signal due to a monochromatic
wave. For convenience let us choose a wave aligned with
the north pole, i.e., k̂ ¼ −ẑ, with Einsteinian polarization
components hþ and h×, and a star at angular coordinates
ðθ;ϕÞ in direction n̂. The response will be

z̃ðn̂Þ ¼ 1

2
ð1þ cos θÞðhþ cos 2ϕ − h× sin 2ϕÞ ð27Þ

for redshift and

ðδñθ � iδñϕÞðn̂Þ ¼
1

2
e�2iϕ sin θðhþ � ih×Þ ð28Þ

for the deflection. For notational convenience, we introduce
the normalization of spin-s polarization

sN l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞ!
ðlþ sÞ!

s
; ð29Þ

which appears as general l-scaling of both alm and Cl.
Equations (25) and (24) can now be inverted to obtain the
harmonic coefficients

aTlm ¼ 2π2N l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
ðhþ � ih×Þδm�2; ð30Þ

aElm ¼ 2aTlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þ!
ðlþ 1Þ!

s
ðδm−2 þ δm2Þ; ð31Þ

aBlm ¼ 2aTlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þ!
ðlþ 1Þ!

s
iðδm−2 − δm2Þ: ð32Þ

Due to the spin-2 nature of the polarization, which is
manifest in Eqs. (27) and (28), the modes only contribute to
the m ¼ �2 pole at each scale l. This property is not
invariant under a general orientation of the coordinate
system. However, the consequence of this is invariant
under rotations, i.e., no monopole or dipole present in
the anisotropies. We can obtain angular power spectra using
Eq. (26) which will be proportional to I ¼ jhþj2 þ jh×j2.
The angular power spectrum of redshift-redshift correla-
tions is

CTT
l≥2 ¼ 2πI2N l

2: ð33Þ

In the case of the redshift-deflection cross-correlation, there
will be an additional l dependence coming from the vector
nature of one of the observables, which gives

CTE
l≥2 ¼

4πIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp 2N l

2: ð34Þ

Deflection-deflection E and B correlations will be equal,

CEE
l≥2 ¼ CBB

l≥2 ¼
8πI

lðlþ 1Þ 2N l
2; ð35Þ

and will have appropriate l-scaling coming from the
quantities being correlated. The parity-violating correla-
tions will instead depend on V ¼ −2Imfhþh�×g as

CTB
l≥2 ¼ −

4πiVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp 2N l

2; ð36Þ

CEB
l≥2 ¼ −

8πiV
lðlþ 1Þ 2N l

2: ð37Þ

We can also repeat these steps for any additional non-
Einsteinian polarizations. The six polarization basis tensors
are defined in Appendix B. We shall start with vector
polarizations for which

z̃ðn̂Þ ¼ 1

2

sin 2θ
1 − cos θ

ðhX cosϕþ hY sinϕÞ ð38Þ

and
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ðδñθ � iδñϕÞðn̂Þ ¼
1

2
½ð1þ 2μÞðhX cosϕ − hY sinϕÞ

� iμðhX sinϕþ hY cosϕÞ�; ð39Þ

where μ ¼ cos θ. This time, the θ integral will lead to a
different value for l ¼ 1 than for the other modes,

aTlm¼2π1N l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1

4π

r
ðihY�hXÞ

�
2

3
δl1−1

�
δm�1; ð40Þ

aElm ¼ aTlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þ!
ðlþ 1Þ!

s
ðδm−1 þ δm1Þ; ð41Þ

aBlm ¼ aTlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þ!
ðlþ 1Þ!

s
iðδm−1 − δm1Þ: ð42Þ

Again there are only coefficients with m ¼ �1 due to the
spin-1 nature of the vectorial polarization, which means
that this time we will also have dipole correlations that will
be different from the higher moments.
The angular power spectrum redshift-redshift correla-

tions will again be proportional to the intensity of the
vectorial GW, I ¼ jhXj2 þ jhY j2, giving

CTT
l≥1 ¼ 2πI

�
1 −

8

9
δl1

�
1N l

2: ð43Þ

The redshift cross-correlation with E mode will have no
factor of 2 this time, and the dipole will be anticorrelated,
which can be written as

CTE
l ¼ 2πIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp �
1 −

10

9
δl1

�
1N l

2: ð44Þ

The astrometric E and B correlations will be equal, but
there will not be the extra factor of 4, that is,

CEE
l ¼ CBB

l ¼ 2πI
lðlþ 1Þ

�
1 −

8

9
δl1

�
1N l

2: ð45Þ

For vectorial parity-violating modes, the Stokes param-
eter V ¼ −2ImfhXh�Yg and angular spectra are

CEB
l ¼ −

2πiV
lðlþ 1Þ

�
1 −

10

9
δl1

�
1N l

2; ð46Þ

CTB
l ¼ −

2πiVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp �

1 −
8

9
δl1

�
1N l

2: ð47Þ

The scalar transverse polarization (breathing mode)
redshifts signal as

z̃ðn̂Þ ¼ 1

2
hSð1þ cos θÞ; ð48Þ

and deflect apparent positions

ðδñθ � iδñϕÞðn̂Þ ¼
1

2
hS sin θ: ð49Þ

In this case, due to the even parity of any scalar modes,
there are no B modes in the deflection anisotropies (see
Appendix B), and we obtain

aTlm ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
hS

�
δl0 þ

δl1
3

�
δm0; ð50Þ

aElm ¼ 2aTlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þ!
ðlþ 1Þ!

s
δl1: ð51Þ

For this polarization, only monopole and dipole contribu-
tions are nonzero:

CTT
l ¼ πjhSj2

�
δl1
9

þ δl0

�
; ð52Þ

CTE
l ¼ 2πjhSj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp δl1
9

; ð53Þ

CEE
l ¼ 4πjhSj2

lðlþ 1Þ
δl1
9

: ð54Þ

Note that the monopole in redshift is not an interesting
observable as it is degenerate with the reference timing or
frequency standard.
The scalar longitudinal polarization gives redshift

z̃ðn̂Þ ¼ 1

2

ffiffiffi
2

p
cos2θ

1þ cos θ
hL ð55Þ

and astrometric deflections

ðδñθ � iδñϕÞðn̂Þ ¼
ffiffiffi
2

p
sin 2θ

1þ cos θ
hL: ð56Þ

Longitudinal polarization is different from the others. There
is no aTlm because the integral of Eq. (55) over θ diverges
thanks to the distant star limit. It can be removed by
considering finite distances to the sources but this is beyond
the scope of this work. Notwithstanding this, we can still
obtain an E-mode contribution to deflections,

aElm ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl − 1Þ!
ðlþ 1Þ!

s
hL

ffiffiffi
2

p �
1 −

2

3
δl1

�
δm0; ð57Þ
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which leads to the angular power spectrum

CEE
l ¼ 2πjhLj2

lðlþ 1Þ
�
1 −

8

9
δl1

�
: ð58Þ

B. Statistically isotropic backgrounds

In the case of stochastic backgrounds that are statistically
isotropic, we instead expand the responses RP

I;zðk̂Þ in

spherical harmonics and RP
I;�ðk̂Þ ¼ RP

I;θðk̂Þ � iRP
I;ϕðk̂Þ in

spin-1 weighted harmonics in order to obtain expansions
for the overlap reduction functions.8

Due to statistical isotropy, the correlations in the
expanded modes are diagonal, that is,

haP;Qlm ðk̂ÞaP0;Q0
l0m0

�ðk̂Þi ¼ δll0δmm0δPP0CQQ0
l : ð59Þ

Notice that in defining the (frequency-independent) overlap
reduction functions, we integrate over the wave vectors in
Eq. (9), which effectively adds an angular averaging to the
ensemble average, giving

Γijðn̂I; n̂JÞ ¼ hRP
I;iðk̂ÞRP�

J;jðk̂Þi

¼ 1

4πg

Z
S2
dΩk̂

X
P

RP
I;iðk̂ÞRP�

J;jðk̂Þ; ð60Þ

where n̂I · n̂J ¼ cosΘIJ, the average is over all directions k̂
and polarizations P in the ensemble considered, and g is the
number of these polarizations.9

The analogy with CMB spectra and correlation functions
is particularly useful in this case as we can define Legendre
transforms between the line of sight (pixel) and harmonic
domain using [38,39]

hRP
I;zR

P
J;z

�i ¼
X
l

2lþ 1

4π
CTT
l dl00ðΘIJÞ ¼ ΓzzðΘIJÞ; ð61aÞ

hRP
I;zR

P�
J;�i ¼

X
l

2lþ 1

4π
ðCTE

l � iCTB
l Þdl10ðΘIJÞ ¼ ðΓzθ � iΓzϕÞðΘIJÞ; ð61bÞ

hRP
I;�R

P�
J;�i ¼

X
l

2lþ 1

4π
ðCEE

l þ CBB
l Þdl11ðΘIJÞ ¼ ðΓθθ þ ΓϕϕÞðΘIJÞ; ð61cÞ

hRP
I;�R

P�
J;∓i ¼

X
l

2lþ 1

4π
ðCEE

l − CBB
l � 2iCEB

l Þdl1−1ðΘIJÞ ¼ ðΓθθ − Γϕϕ � iΓθϕ � iΓϕθÞðΘIJÞ; ð61dÞ

where dlmm0 are the small Wigner rotation operators [40].
These expressions give an intuitive understanding of how
the Hellings-Downs curve and its analogs for astrometry
for any polarization are related to even and odd parity
spectra. In turn, this gives an understanding of how the
different correlations are sourced by the parity of the
underlying GW polarizations which are analogous to their
CMB counterparts.
For example, using Eqs. (61a)–(61d), we can easily infer

which unique signatures in the overlap reduction functions
would be produced by a chiral GW background with parity-
violating modes CTB

l and CEB
l .

The spectra CEE
l and CBB

l were calculated in [27] for
tensorial, vectorial, and scalar polarizations using the
formalism introduced by OBeirne and Cornish [30]. In
fact, all spectra can be calculated as simple scaling laws in
multipole l a priori.

For tensorial polarizations, power spectra will be zero for
multipoles lower than a quadrupole, leaving

CTT
l≥2 ¼ 2π2N l

2; ð62Þ

CTE
l≥2 ¼

4πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp 2N l

2; ð63Þ

CEE
l≥2 ¼ CBB

l≥2 ¼
8π

lðlþ 1Þ 2N l
2: ð64Þ

Notice that the angular spectra do not contain any infor-
mation about the SGWB amplitude but only on the
anisotropic correlation induced by the observables. The
overall normalization of the correlation patterns is provided
by the spectral density ShðfÞ in Eq. (8) (see Appendix A).
It is easy to check (see Table I in Appendix C) that

Eq. (64) is the same as the Cl presented in Mihaylov et al.
[27] up to a factor of 2.10 They also possess the same l8Notice that the harmonic expansion is with respect to the line

or sight n̂I , not the wave vector k̂.
9This is equal to two for GR and vectorial polarizations and

equal to one for scalar polarizations.

10This factor is just a convention. In Mihaylov et al. [27] they
use Γij ¼ Γþ

ij þ Γ×
ij while we use average Γij ¼ ðΓþ

ij þ Γ×
ijÞ=2.
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scaling as in the case of monochromatic waves. As discussed
in Roebber and Holder [24] for PTAs, this is to be expected.
Also note that unlike in the case of monochromatic waves,
the parity-violating modes CTB

l and CEB
l vanish.

For completeness, we also include the remaining, non-
Einsteinian polarizations. For the vectorial longitudinal
polarizations, we have

CTT
l≥1 ¼ 2π

�
1 −

8

9
δl1

�
1N l

2; ð65Þ

CTE
l ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp �
1 −

10

9
δl1

�
1N l

2; ð66Þ

CEE
l ¼ CBB

l ¼ 2π

lðlþ 1Þ
�
1 −

8

9
δl1

�
1N l

2; ð67Þ

for the scalar transverse mode we have

CTT
l ¼ π

�
δl1
9

þ δl0

�
; ð68Þ

CTE
l ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp δl1
9

; ð69Þ

CEE
l ¼ 4π

lðlþ 1Þ
δl1
9

; ð70Þ

and for the scalar longitudinal mode we have

CEE
l ¼ 2π

lðlþ 1Þ
�
1 −

8

9
δl1

�
: ð71Þ

For the longitudinal polarization in the distant star limit,
closed forms of ΓzzðΘÞ and ΓzθðΘÞ do not exist [26,41].11

For this reason, there is noCTT
l or CTE

l . In the more physical
scenario of stars at finite distances, they will exist but must
be calculated numerically.
Having defined the angular spectra of all possible cross-

correlations sourced by all polarizations, we show how these
can beused to generate a realization of the signals in the sky in
Fig. 1.Themaps aregeneratedbymakinguseof existing spin-
weighted spherical harmonic routines in the HEALPix package
[37]. The package already includes the ability to generate
spin-1 observables, and we can make use of the existing
visualization tools.We generate maps of timing residuals that
are correctly correlated with past values of astrometric
deflections through the TE correlation. The realization only
includes contributions from transverse-traceless tensor
polarizations. Notice that the TE contribution, which defines
a correlation between the maps, is only present for the
case where the time lag between observables is nonzero
(see Appendix A), which would generally be the case. The
signal is normalized to a stochastic background amplitude
Ωgwðf0 ¼ 50 HzÞ ¼ 10−8 which is the current upper limit
for cosmological backgrounds fromLIGO (see e.g., [42,43]).
It is convenient to characterize the SGWBenergy density as a
power law in frequency normalized at a pivot f0,

ΩgwðfÞ ¼ Ωgwðf0Þ
�
f
f0

�
β

; ð72Þ

with spectral index β ¼ 0 for scale invariant or “cosmologi-
cal” backgrounds. For simplicity, we assume the signal in

FIG. 1. Realizations of astrometric deflection (at time t) and timing residual (at time tþ τ) responses to an SGWB of cosmological
origin (with spectral index β ¼ 0) and Ωgwðf0 ¼ 50 HzÞ ¼ 10−8 produced using the HEALPix package. The time lag τ ¼ 43 weeks
between the maps has been chosen to emphasize the cross-correlation.

11We believe this is why the method in Mihaylov et al. [27] and
OBeirne and Cornish [30] to obtain CEE

l for the longitudinal
polarization fails.
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both timing and deflection observables is bandwidth-limited
by a total integration time T and fixed observation cadence
of 1=Δt, such that the minimum and maximum frequencies
are fmin ¼ 1=T and fmax ¼ 1=Δt, respectively. We integrate
the spectral density over this frequency range to obtain the
normalization of the maps.
High resolution, full-sky realizations such as these

can be useful in simulating actual observation strategies
through inhomogeneous sampling and the addition of
correlated noise. As a simple example, we consider the
noise for an astrometric survey. We define a Fourier domain
white noise amplitude σf for the same bandwidth and
assume the deflection field is sampled by a homogeneous
distribution of N⋆ stars in the sky. We assume the sky is
pixelated into Npix pixels of equal area and that the source
count per pixel n⋆ ¼ N⋆=Npix is constant. The effective
resolution per pixel is determined by the integral of the
noise spectrum and can be related to an angular noise
spectrum via [44] Nl ¼ σ2pixΩpix, where the variance per
pixel σ2pix is given by σ2reso=n⋆, σreso defines the angular
resolution of the integrated observation at each star, and
Ωpix is the area of each sky pixel.
Figure 2 shows the input signal spectra for the deflection

realizations along with noise spectra. We consider two
headline values for the number of stars, N⋆ ¼ 106 and 109.
The white noise amplitude is set such that the effective
angular resolution for each star is 10 μas. A conservative
estimate for N⋆ lies within this range for state-of-the-art

surveys, such as the results expected by the final data
release for the GAIA mission [21]. We also show the
angular spectra obtained from the realizations which agree
with the input values. In Fig. 3, we show a similar set of
spectra but for a selection of non-Einsteinian polarizations.
We assume the same amplitude cosmological SGWB and
the same noise spectra for comparison.

V. SIGNAL-TO-NOISE RATIOS

Signal-to-noise ratio (SNR) estimates for PTAs have
been considered in the literature (see below). We carry out
an estimate for both stochastic backgrounds and mono-
chromatic sources for the astrometric case. We leave
estimates of the cross-correlation between timing residuals
and astrometry for further work.

A. Stochastic backgrounds

We calculate the SNR statistic, ρ, for the astrometric
components following the “frequentist” approach intro-
duced for timing residuals in Moore et al. [45]. We consider
the ρij for the cross-correlation signal ofN⋆ stars or pulsars,

ρ2ij ¼ 8T
�Z

fmax

fmin

df
XN⋆

I¼1

XN⋆

J>I

jΓ̄IJ;ijðfÞj2S2hðfÞ
PIðfÞPJðfÞ

�
; ð73Þ

where the frequency bounds are, once again, set by the total
integration time T and observation cadence 1=Δt; PIðfÞ are

FIG. 2. Angular power spectra Nl ¼ NEE
l ¼ NBB

l of noise
with angular resolution 10 μas assuming N⋆ ¼ 106 (blue solid
line) and 109 (orange dashed line) stars, and cosmological
stochastic signal with Ωgwðf0 ¼ 50 HzÞ ¼ 10−8 and β ¼ 0

(green dash-dotted line). The physical scaling is provided by
T{̂ {̂ð0Þ ¼ Tθθð0Þ ¼ Tϕϕð0Þ (see Appendix A). Markers represent
angular spectra calculated from the multipoles used to generate
the map in Fig. 1.

FIG. 3. Angular power spectra NEE
l ¼ NBB

l of noise with
angular resolution 10μ as assuming 106 (blue solid line) and
109 (orange dashed line) stars. Markers represent CEE

l ¼ CBB
l for

tensorial and vectorial polarizations and CEE
l for scalar polar-

izations (note that CBB
l ¼ 0) of a stochastic cosmological signal

with each of these polarizations assuming Ωgwðf0 ¼ 50 HzÞ ¼
10−8 and β ¼ 0. The physical scaling is provided by T{̂ {̂ð0Þ ¼
Tθθð0Þ ¼ Tϕϕð0Þ (see Appendix A).
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the noise power spectral densities for each star. The noise is
assumed to be stationary in obtaining this expression for
the SNR.
We next assume that the noise spectral density is white

and identical for every star [46],

PIðfÞ ¼ 2σ2f ¼ 2Δtσ2; ð74Þ

where σ is the noise standard deviation in appropriate units
of the variable being considered (time or angle).
The overlap function in the SNR expression has a

frequency dependence of

jΓ̄IJ;ijðfÞj2 ¼
1

ð2πfÞ2κij Γ
2
ijðΘIJÞ; ð75Þ

where κij is an exponent that depends on the correlated
observables [see Eq. (10) for definition of κij]. For simplicity,
we assume a uniform distribution of stars in the sky. This
simplifies the sampling of Γ2

ijðΘIJÞ, and in this limit, the
geometric factor in the expression reduces to an overall factor

χ2ij ¼
2

N2⋆ − N⋆

XN⋆

I¼1

XN⋆

J>I

Γ2
ijðΘIJÞ ≈

1

2

Z
1

−1
Γ2
ijðΘÞdðcosΘÞ;

which is the mean square of ΓijðΘIJÞ.12
In order to find the sensitivity to the characteristic

strain, we have to relate it to the one-sided spectral density,
hcðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fShðfÞ

p
. The SNR in terms of the characteristic

strain is then

ρ2ij ¼
χ2ijTðN2⋆ − N⋆Þ
4σ4Δt2ð2πÞ2κij

�Z
1=Δt

1=T
df

h4cðfÞ
f2þ2κij

�
: ð76Þ

We set a threshold value of SNR ρij ¼ 3 for detection
and assume a power law hcðf; αÞ ¼ Aαðf=f0Þα. Solving
Eq. (76) for Aα and substituting it back into the power law
gives us a family of parametric curves

hcðf;αÞ ¼ σ

ffiffiffiffiffiffiffiffiffiffiffi
ρijΔt
χij

s � ð2πÞ2κij
TðN2⋆ − N⋆Þ

λij
ðTλij − ΔtλijÞ

�
1=4

fα;

λij ≡ 1þ 2κij − 4α: ð77Þ
This represents a spectral boundary for detection of hcðfÞ
assuming a spectral index α that can be observed with SNR
ρij. The sensitivity curve is an envelope of this family of
parametric curves. This has been done for PTAs [45] where
κrr ¼ 2. In Fig. 4, we show the sensitivity curve for
astrometry (where κ {̂ {̂ ¼ 0) and compare it to the curve
for PTAs. It is immediately obvious that, due to the
different frequency dependence of the two observation

methods, the sensitivity curves have very different slopes in
frequency. In particular, the sensitivity for astrometric
observables is shallower. There is, therefore, a potential
to gain sensitivity in a frequency band that is currently
gapped between PTAs and space interferometers at
10−6 Hz to 10−4 Hz. The high-frequency limit is set by
the cadence of observations 1=Δt, but the flat frequency
dependence means there is much to gain by increasing the
speed at which the sky is surveyed. This option warrants
further investigation.

B. Monochromatic source

We can also apply the estimate of the analytic sensitivity
curve to the case of a monochromatic source [45]. The
derivation is similar to that developed for PTAs except that
we generalize the source frequency dependence to include
the astrometric case,

h̃I;iðfÞ ≈
�
χ
hc
fκi

�
δðf − f0Þ;

where again κr ¼ 1 for PTAs and κ {̂ ¼ 0 for astrometry.
The sky-averaged geometric factor is

χ2 ¼ 1

4π

Z
S2
dΩn̂

X
P

jRP
i ðf0; k̂0; n̂Þj2 ¼

1

3
; ð78Þ

and it is identical for both astrometry and PTA. Similarly,
we can write the SNR expression

FIG. 4. Frequentist analytic sensitivity curves for an astrometric
survey (AMS) and pulsar timing array (PTA). All curves assume
observations of 5 years measured fortnightly. The PTA sensitivity
curve is included for reference and is assumed to be made of 36
pulsars with the rms error in the timing residuals of 100 ns [45],
whereas the astrometry curve assumes 106 stars with measure-
ment noise of 10 μas.

12In our case we use a different normalization so the numerical
value of χij will be different from χ0 in Moore et al. [45].
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ρ2ij ¼
χ4h4cðN2⋆ − N⋆Þ

σ4Δt2T

�Z
1=Δt

1=T
df

δ4Tðf − f0Þ
f2κij

�
; ð79Þ

which can be inverted to find a sensitivity curve hcðfÞ.
As mentioned in [45], this curve will not account for the

loss of sensitivity due to fitting out the quadratic timing/
astrometric model. To account for this, we can use the same
approximation as [45] which allows us to change the
integral in Eq. (79) from frequency to time domain. We
then look at two limits; the high frequency limit ðft ≫ 1Þ,
which we use to find hHIGHc ðfÞ, and the low frequency limit
ðft ≪ 1Þ in which we expand the integrand [Eq. (15)
in Moore et al. [45] ] and take the contribution of order
Oðf3t3Þ to find hLOWc ðfÞ. We combine these two which are
equivalent to their Eqs. (14) and (16) to get

hcðfÞ ≈ hLOWc ðfÞ þ hHIGHc ðfÞ

≈
σ

χ

ffiffiffiffiffiffiffiffiffiffiffi
ρijΔt
T

r �
16f2κij

3ðN2⋆ − N⋆Þ
�
1=4

�
1þ f3p

f3

�
; ð80Þ

where fp is the frequency at which hLOWc ðfpÞ ¼ hHIGHc ðfpÞ
and it is also chosen to be 2=T. We show the mono-
chromatic sensitivity curves in Fig. 4 alongside those for an
SGWB. The frequency dependence for astrometric obser-
vations, in this case, is flat, and this increases the advantage
of astrometric observations even further. Our baseline
assumption of N⋆ ¼ 106 at 10 μas is a conservative one.
An ambitious goal of N⋆ ∼ 109 at a similar resolution at a
sampling rate of 10−5 Hz would offer an interesting level of
sensitivity in a frequency band that is complementary to
other detection methods.

VI. DISCUSSION

We have introduced a polarizationlike complex spin-s
field description of “astrochronometric” observables on the
sphere. This setup enables the analysis of the sphere using
the spin-weighted harmonics formalism in analogy with the
polarization of the CMB. This formalism can be used to
derive compact forms of the harmonic cross-spectra of
observables sourced by any polarization content of GWs.
The formalism also allows a simplified relationship
between the angular power spectra and coordinate domain
correlation functions as shown in Eqs. (61a)–(61d). These
relationships have proven to be very useful in the analysis
of CMB observations which necessitate robust estimation
of correlations in polarization patterns in both coordinate
and harmonic domains.
The introduction of a spin-s description enables us to

easily create realizations of the sky in both timing and
deflection observables. This will be of use in assessing the
feasibility of observational strategies and the development
of robust estimation tools for future datasets. This appli-
cation relies on a mature infrastructure developed over

several decades for analysis, simulation, and visualization
of polarized CMB observations.
A key advantage of our formalism is that it makes the

connectionbetween the spinofGWpolarizationand thenature
of the resulting anisotropies explicit. We see directly how
different Einsteinian and non-Einsteinian polarizations source
l ≤ 2 differently and how vectorial polarizations induce
specific correlations in the observables. If astrochronometric
observations were to become accurate enough, the search for
the telltale presence of GW-induced dipole components might
provide constraints on departure fromGR.Challenges remain,
however. The presence of a kinematic dipole due to the
observer’s motion relative to the cosmological rest frame,
alongwith highermultipoles due to acceleration,may prove to
be an insurmountable obstacle. We leave for future work a
calculation of SNR for individual multipoles to constrain
individual polarizations.
We have also presented an estimate of signal-to-noise ratio

statistics for astrometry. Our results show that astrometric
observations, and their correlations with timing observations,
may provide a complementary window in frequency to a
PTA-style analysis. The possibility here is that a fast scan
strategy at current levels of angular resolution may provide
interesting constraints at frequencies 10−6 Hz to 10−5 Hz
that are between the PTA and LISA windows.
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APPENDIX A: REALIZATIONS OF THE SKY

We summarize how the lagged cross-correlations between
deflection and timing residual signals are related to the
frequency domain spectra of the underlying gravitational
wave backgrounds.
Let us assumewe observe a set ofN⋆ stars. For every star

I at each epoch t we have a timing residual, rIðtÞ, and
astrometric deflection, δnI;{̂ðtÞ. We combine these to a
vector hI;iðtÞ ¼ ðrIðtÞ; δnI;{̂ðtÞÞ⊺ and cross-correlate

ðhI;i⋆hJ;jÞðτÞ ¼ hhI;iðtÞhJ;jðtþ τÞi
¼ TijðτÞΓijðΘIJÞ; ðA1Þ

where in the last line we have separated the correlation into
angular ΓijðΘIJÞ and temporal TijðτÞ parts. The correlation
structure that is normally considered in angular separation
is also reflected in the temporal correlations for different
lags τ. We show both correlations in Figs. 5 and 6. Notice
how the cross-correlation of timing residuals with deflec-
tions is odd with respect to the lag and that, in general, the
amplitude of the cross-correlation will depend on the lag
along with the total integration time which sets the effective
frequency high pass (see below).
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Thanks to the property of cross-correlation and Fourier
transform, Fff⋆gg ¼ FffgFfgg, we can find what the
temporal correlations are from correlations in Fourier space
that are

hh̃I;iðfÞh̃�J;jðf0Þi ¼
1

2
δðf − f0ÞShðfÞΓ̄IJ;ijðfÞ; ðA2Þ

Γ̄IJ;ijðfÞ ¼
ð−iÞκiðiÞκj
ð2πfÞκij ΓijðΘIJÞ; ðA3Þ

where κi ¼ δir and κij ¼ κi þ κj are exponents coming
from the fact that the timing residual is an integrated
redshift. We can use TijðτÞ as a physical scaling of our Cl,
which we can use to plot maps of realizations of rIðtÞ and
δnI{̂ðt − τÞ in the sky (see Fig. 1). This scaling is

TijðτÞ ¼ Re

�Z
1=Δt

1=T
dfe−2πifτShðfÞ

ð−iÞκiðiÞκj
ð2πfÞκij

�

¼ 6H2
0

ð2πÞ2þκij

Ωgwðf0Þ
fβ0

× Re

�
tκij−βþ2Eκij−βþ3

�
2πi

τ

t

�
ð−iÞκiðiÞκj

�				Δt
t¼T

;

ðA4Þ

where we have introduced the generalized exponential
integral

EnðzÞ ¼
Z

∞

1

e−zν

νn
dν: ðA5Þ

APPENDIX B: POLARIZATION BASIS

For completeness, we include a summary of the polari-
zation conventions used as there are a number of different
conventions adopted in the literature.
Given any orthonormal coordinate system x, y, z we can

find a frame associated with spherical coordinates at point
r ¼ ðr; θ;ϕÞ⊺ as follows:

êrðrÞ ¼ r̂; êϕðrÞ ¼ ẑ × r̂
jẑ × r̂j ; êθðrÞ ¼ êϕðrÞ × r̂: ðB1Þ

This vector frame can be used to define a complete set of
six polarization basis tensors for any general polarization.
We can sort them into tensorial modes

eþabðk̂Þ ¼ êθaêθb − êϕa ê
ϕ
b ; e×abðk̂Þ ¼ êθaê

ϕ
b þ êϕa êθb; ðB2Þ

vectorial modes

eXabðk̂Þ ¼ êθaêrb þ êraêθb; eYabðk̂Þ ¼ êϕa êrb þ êraê
ϕ
b ; ðB3Þ

and scalar modes

eSabðk̂Þ ¼ êθaêθb þ êϕa ê
ϕ
b ; eLabðk̂Þ ¼

ffiffiffi
2

p
êraêrb: ðB4Þ

APPENDIX C: FREQUENCY-INDEPENDENT
OVERLAP REDUCTION FUNCTIONS

In Sec. IV B, we calculate the angular power spectra of
the stochastic gravitational background. For that, we need
overlap reduction functions

ΓijðμÞ ¼
1

4πg

Z
S2
dΩk̂

X
P

RP
i ðn̂; k̂ÞRP

j
�ðn̂0; k̂Þ; ðC1Þ

which we present below in terms of μ ¼ n̂ · n̂0 ¼ cosΘ,
ignoring co-located pulsar terms. These functions are

FIG. 5. Tensorial normalized angular correlations Γzz (blue
solid line), Γzθ (orange dashed line), and Γθθ ¼ Γϕϕ (green dash-
dotted and red dotted lines). Markers represent the correlations
sampled in the realizations shown in Fig. 1.

FIG. 6. Normalized temporal correlations with β ¼ 0, T ¼
5 years, and Δt ¼ 14 days for residual-residual Trr (blue solid
line), residual-deflection Trθ (orange dashed line), and deflection-
deflection Tθθ ¼ Tϕϕ (green dash-dotted and red dotted lines).
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related to those in Mihaylov et al. [26] by a factor of 4πg.
For an isotropic background, the symmetries will ensure
that there will only be four overlap reduction functions (see
e.g., [19,26,30]) in the matrix,13

ΓðμÞ ¼

0
B@

ΓzzðμÞ ΓzθðμÞ 0

ΓzθðμÞ ΓθθðμÞ 0

0 0 ΓϕϕðμÞ

1
CA: ðC2Þ

These can be translated to a harmonic space representation
using Eqs. (61a)–(61d). Tables I–IV list the first few
coefficients of the harmonic space representation.

1. Tensorial polarizations

For tensorial polarizations, there are only three indepen-
dent functions, i.e., ΓθθðμÞ ¼ ΓϕϕðμÞ ¼ Γ{̂ {̂ðμÞ,

ΓzzðμÞ ¼
1

8
þ μ

24
þ 1 − μ

4
ln

�
1 − μ

2

�
; ðC3Þ

ΓzθðμÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
6

þ 1

4

ð1 − μÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p ln

�
1 − μ

2

�
; ðC4Þ

Γ{̂ {̂ðμÞ ¼ −
5

24
þ 7μ

24
−
1

4

ð1 − μÞ2
1þ μ

ln

�
1 − μ

2

�
: ðC5Þ

The redshift correlation comes from Hellings and Downs
[5] and the remaining functions from Mihaylov et al. [26].

2. Vectorial polarizations

For vectorial polarizations, there are only three inde-
pendent functions, i.e., ΓθθðμÞ ¼ ΓϕϕðμÞ ¼ Γ{̂ {̂ðμÞ,

ΓzzðμÞ ¼ −
1

2
−
2μ

3
−
1

2
ln

�
1 − μ

2

�
; ðC6Þ

ΓzθðμÞ ¼ −
5

12

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q
−
1

2

ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

1þ μ

s
ln

�
1 − μ

2

�
; ðC7Þ

Γ{̂ {̂ðμÞ ¼
1

3
−
μ

6
þ 1

2

1 − μ

1þ μ
ln

�
1 − μ

2

�
: ðC8Þ

All functions are from Mihaylov et al. [26] with an
appropriate scaling.

3. Scalar longitudinal polarization

In the distant star limit, the redshift and redshift-deflection
correlations are undefined [26,41]. Nonetheless, the remain-
ing functions are

ΓθθðμÞ ¼ −
1

2
−
μ

3
−
1

2

1

ð1þ μÞ ln
�
1 − μ

2

�
; ðC9Þ

ΓϕϕðμÞ ¼ −
1

3
−
1

2

1

ð1þ μÞ ln
�
1 − μ

2

�
: ðC10Þ

4. Scalar transverse polarization

For scalar polarizations, ΓθθðμÞ ≠ ΓϕϕðμÞ so we will
have four unique functions

ΓzzðμÞ ¼
1

4
þ μ

12
; ðC11Þ

ΓzθðμÞ ¼
1

12

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q
; ðC12Þ

ΓθθðμÞ ¼ μΓϕϕðμÞ ¼
μ

12
; ðC13Þ

where the Γzz is from OBeirne and Cornish [30].

TABLE II. First six Cl of vectorial polarizations CBB
l ¼ CEE

l .

l 1 2 3 4 5 6

CTT
l

π
9

π
3

π
6

π
10

π
15

π
21

CTE
l − π

9
ffiffi
2

p π
3
ffiffi
6

p π
12

ffiffi
3

p π
20

ffiffi
5

p π
15

ffiffiffiffi
30

p π
21

ffiffiffiffi
42

p

CEE
l

π
18

π
18

π
72

π
200

π
450

π
882

TABLE III. First six Cl of scalar longitudinal polarization.

l 1 2 3 4 5 6

CEE
l

π
9

π
3

π
6

π
10

π
15

π
21

TABLE I. First six Cl of tensorial polarizations CBB
l ¼ CEE

l .

l 2 3 4 5 6 7

CTT
l

π
12

π
60

π
180

π
420

π
840

π
1512

CTE
l

π
6
ffiffi
6

p π
60

ffiffi
3

p π
180

ffiffi
5

p π
210

ffiffiffiffi
30

p π
420

ffiffiffiffi
42

p π
1512

ffiffiffiffi
14

p

CEE
l

π
18

π
180

π
900

π
3150

π
8820

π
21168

TABLE IV. First six Cl of scalar transverse polarization.

l 0 1 2 3 4 5

CTT
l π π

9
0 0 0 0

CTE
l 0 π

ffiffi
2

p
9

0 0 0 0

CEE
l 0 2π

9
0 0 0 0

13Note that in OBeirne and Cornish [30], they use different
notation: σ ¼ gΓθθ and α ¼ gΓϕϕ. In Book and Flanagan [19],
they use similar notation but their σ has the opposite sign.
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