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Motivated by finding a way to construct the universal relations between the neutron star properties and
obtaining the application scope of the universal relations, the linear correlation properties between
several properties of neutron stars are analyzed. Based on this, several existing universal relations are
tested and several new universal relations are predicted. The results show that in the whole typical central
density range of neutron stars, the better the linear correlation properties between the combinations of
physical quantities are, the better the universality of the universal relations will be. It is shown that the
quantities possessing desired linear correlation properties are the compactness β, moment of inertia I,
gravitational redshift z and gravitational binding energy Eg, etc. Based on the linear correlation analysis
of the above acquired quantities, several existing universal relations about the dimensionless
gravitational binding energy and several new universal relations about the dimensionless moment
of inertia are tested and predicted respectively. Moreover, the moment of inertia of PSR
J0030þ 0451 can be constrained by the newly discovered universal relation. In conclusion, the linear
correlation analysis of the neutron star properties is an effective and feasible method to explore the
universal relations.
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I. INTRODUCTION

Neutron star is a kind of star with the ultrahigh density,
extreme pressure and temperature, and the super strong
magnetic field in the universe [1]. Such an environment
cannot be reproduced in the terrestrial laboratory at present,
so it naturally becomes an ideal laboratory for the research of
nuclear physics and astrophysics. In recent years, with the
discovery of the gravitational radiation event of binary
neutron stars merger (GW170817) [2–4], the study on
neutron stars has officially entered a new golden age. At
present, the research on neutron stars and theirmatter states is
a hotspot in the world and has attracted great attention
[1,5–9].
In the study on neutron stars, many neutron star proper-

ties significantly depend on the selection of the equation of
state (EOS) with an obvious uncertainty, which makes it
difficult to further understand the properties of neutron stars
and the constraint on the EOS [6–8]. One of the current
solutions is to construct a general relation between different
neutron star properties, i.e., the universal relation (inde-
pendent of the specific EOS), to indirectly determine the
specific properties and EOS of neutron stars [7,10–13]. For
some unobservable or hard to be observed quantities of

neutron stars, the universal relations provide a way to
constrain these quantities, and can be used to further
determine the EOS [7,9–15].
During the past decades, people have established a

mount of universal relations, for example, the universal
relations between different quasioscillation modes of neu-
tron stars [16–21], and the famous I-Love-Q relations
between the moment of inertia I, the love number and
the normalized quadrupole moment Q of neutron stars
established by Yagi et al.. in recent years [10,11].
Currently, the universal relations have been widely used
in many research fields of neutron stars, such as the general
isolated neutron star systems, including the static and
rotating cases [12,13,22–27]; the binary neutron star
system, including the general binary star system and the
binary neutron star merger [28,29]; the protoneutron star
and supernova explosion [30–33] and some physical
processes related to the internal structure of neutron stars,
such as the glitch phenomena [34]. The universal relation
can be applied to the fundamental physics, such as, the
I-Love-Q relations, which can be used to test the validity of
general relativity and other gravitational theories [10,11].
How to find and establish the universal relations is a

challenging work at present. The general practice way is to
use the experience to establish the universal relations
through repeated attempts, which has a large uncertainty
[7,12,13]. It is necessary to develop a reasonable method to
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predict and construct the universal relations. As the
universal relations generally reflect the relations between
two quantity combinations of neutron stars, actually there
exists a notable linear relation or strong correlation between
these two combinations [12,13,35]. Thus, it is conceivable
that analyzing the correlation properties between the
relevant quantity combinations may be of great help to
establish the universal relations. As we know, the linear
correlation coefficient (Pearson coefficient) is a very
effective method that can quantitatively reflect the strength
of the linear correlation between different quantities
[35,36]. Therefore, in this work, we try to start from
analysing the correlation properties between the funda-
mental global quantities of neutron stars, to find the right
quantity candidates, and further test and predict the
universal relations.
The paper is organized as follows. In Sec. II, the selected

EOSs and the corresponding neutron star properties are
briefly reviewed. In Sec. III, we will use the linear
correlation analysis of neutron star properties to test and
predict the universal relations, specifically including the
linear correlation properties of the universal relations in
Sec. III A, the linear correlation properties of the neutron
star properties in Sec. III B, testing the universal relations
with the linear correlation analysis of neutron star properties
in Sec. III C, and predicting new universal relations with the
linear correlation analysis of neutron star properties in
Sec. III D. Finally, a brief summary is given in Sec. IV.
In this work, we use the geometric unit (G ¼ c ¼ 1).

II. THE SELECTED EOS AND NEUTRON
STAR PROPERTIES

In this work, the main purpose is to use the correlation
properties of neutron star global quantities to explore the
universal relations. Therefore, for achieving this goal, we

need to choose a certain amount of representative EOSs of
neutron stars to calculate the linear correlation properties
of neutron star quantities. In this work, we selected 15 sets
of EOS from the microscopic and phenomenological
nuclear many-body theories, including one hybrid stars
EOS, i.e., ALF2 (nuclear þ quark matter) [37]; 12 nucle-
onic EOSs, i.e., APR3 [38], APR4 [38], ENG [39], MPA1
[40], SLy [41], DD-F [42], DD2 [43], DD-LZ1 [44], DD-
ME1 [45], DD-ME2 [46], PKA1 [47], PKO3 [48], as well
as the Soft-EOS and Stiff-EOS [49], which are the possible
stiffest and softest EOSs in the selected models of Hebeler
et al.. under the constraint of causality, respectively. Also,
for the crust region of neutron star at low density, the BPS
EOS [50] and the NV EOS [51] are adopted to describe the
outer crust and the inner crust respectively.
Figure 1 shows the curves of P-ρ and M-R relations of

neutron stars described by the above selected 15 EOSs. In
the left panel, the curves of P-ρ of different EOS display
distinctly different behaviors. Among the curves, the Stiff-
EOS gives the stiffest pressure curve and the ALF2 gives
the softest one. Correspondingly, for the curves of M-R
relations in the right panel attained by solving the TOV
equations [52,53] with the input of above P-ρ relations, the
results show significant difference. The Stiff-EOS gives
the highest maximum mass and the ALF2 EOS gives the
lowest one, which is consistent with the results of P-ρ
curves. Also, for verifying the rationality of the selected
EOSs, we have added the recent astronomical observational
constraints for neutron stars in the right panel of Fig. 1,
which are shown by different color areas, i.e., the M-R
constraints from the observations of GW170817 [4],
NICER [54] and PSR J0740þ 6620 (M ¼ 2.14þ0.20

−0.18 M⊙,
95% credibility level) [55]. It is shown that in the selected
15 EOSs, the curves of M-R relations given by most EOSs
can be in good agreement with the recent astronomical
observation constraints on neutron stars.

FIG. 1. Left panel: the pressure P of neutron stars as functions of the baryonic density in unit ρ=ρ0, where ρ0 means the nuclear
saturation density; right panel: the correspondingM-R relation of neutron stars. All of the results are given by the 15 selected EOSs. In
the right panel, the green, blue and gray areas represent the constraints from the GW170817 [4] with 90% credibility level, NICER [54]
and PSR J0740þ 6620 [55] with 95% credibility level respectively.
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III. TESTINGAND PREDICTING THEUNIVERSAL
RELATIONS WITH THE LINEAR CORRELATION
ANALYSIS OF NEUTRON STAR PROPERTIES

The universal relation is an effective method to study the
relations of global quantities of neutron stars [7,12,13]. It’s
easy to understand that the universal relations are asso-
ciated with the correlation properties between the global
quantities of neutron stars [12,13,35]. Therefore, using the
correlation properties between different global quantities to
explore the new universal relations is a possible way. The
linear correlation analysis is an effective method to study
the correlation properties between two quantities. Its
coefficient r, which reflects the strength of linear correla-
tion between two quantities, can be expressed as

rðX; YÞ ¼ CovðX; YÞffiffiffiffiffiffiffiffiffiffiffi
DðXÞp ffiffiffiffiffiffiffiffiffiffiffi

DðYÞp ; ð3:1Þ

where X, Y represent the object variables, CovðX; YÞ is the
covariance, and DðXÞ, DðYÞ represent the variance of X, Y
respectively [35,36]. The closer the absolute value of the
correlation coefficient jrj is to 1, the greater the correlation
strength between the two quantities will be and the closer it
is to linearity; conversely, the closer jrj is to 0, the smaller
the correlation strength between the two quantities will be.
Based on this, the linear correlation analysis of the neutron
stars global quantities will be used to explore the universal
relations in this section.

A. Linear correlation properties
of the universal relations

In this subsection, we will analyze the linear correlation
properties between different physical quantities or combi-
nations in universal relations of neutron stars. First, we
need to select some appropriate universal relations. At
present, there are a large number of universal relations.
For universal relations describing the static and spherical
symmetric neutron stars, the main property quantities
involved are the binding energy Eb, compactness param-
eter β, moment of inertia I, tidal deformability Λ,
gravitational redshift z and so on. In this work we mainly
focus on the dimensionless forms of these quantities. For
binding energy Eb, it can be divided into three forms: the
total binding energy Et, the gravitational binding energy
Eg and the nuclear binding energy En. It has been shown
that only Eg can provide information on the internal mass
distribution of neutron stars and has preferable universal
relations with other global properties [22,30]. Here we
mainly concern Et and Eg, and adopt their dimensionless
form, i.e., Et=M, Eg=M, where M represents the gravi-
tational mass of neutron stars [12]. For compactness
parameter β ¼ M=R and moment of inertia I, they can
also provide information about the global mass distribu-
tion of neutron stars [12,56,57]. Here we use the dimen-
sionless form of I, such as I=MR2, I=M3, I=R3. For tidal

deformability Λ, which reflects the deformation of neutron
stars under the gravitational field of companion stars, it
can be simply expressed as Λ ¼ 2

3
k2β−5, where k2 is the

tidal deformation polarization factor which reflects the
difficulty of neutron star deformation [56]. For gravita-
tional redshift z, it can reflect the magnitude of frequency
shift toward the red end of electromagnetic wave on the
surface of neutron star caused by the strong gravitational
field of neutron stars [13,58].
Figure 2 shows the selected four universal relations,

which were first established in Ref. [12] as β − jEgj=M,
ðjEgj=MÞ−2 − I=M3, ðjEgj=MÞ−5 − Λ and β − jEtj=M from
plots (a)-(d). It should be pointed out that the EOSs adopted
here is different from the previous work [12]. In Fig. 2, it can
be seen that according to the relative errors between the
respective fitting curves and numerical results, the first
three universal relations, namely β − jEgj=M, ðjEgj=MÞ−2 −
I=M3 and ðjEgj=MÞ−5 − Λ, show a notable universal behav-
ior. But for the fourth relation β − jEtj=M, the results show
that its universal behavior is poor. The same results are also
found in Ref. [12] for the above four universal relations.
The left panel of Fig. 3 shows the linear correlation

properties between the different physical quantity combi-
nations of the above four universal relations in Fig. 2,
which are respectively named A, B, C and D for simplicity.
The results of famous I-Love-C relations [59] are also
introduced for comparison. It is shown that among the
above selected universal relations, A, B, C, I-Love and I-C
all show a good linear correlation property in the whole
central density range of typical neutron stars (ρ0 ∼ 5ρ0),
while D has a very poor correlation. At very high central
density (ρC ≥ 5ρ0), there is a significant change for the
linear correlation behavior which shows that the correla-
tions of B, I-Love and I-C decrease obviously, A and C
remain unchanged. Actually, this is beyond the general
density range of typical neutron star, as shown in the right
panel of Fig. 3. When ρC > 5ρ0, the result of M − ρC
relation given by the Stiff-EOS has exceeded the maximum
mass point, and then the neutron star will enter the unstable
region. So we do not concern about it in this work. As a
result, it is found that the linear correlation behaviors of
A, B and C are very similar to those of I-Love and I-C,
except D. Therefore, the above analysis can show that the
better the universal relations of neutron stars are, the better
the linear correlation properties between the corresponding
physical quantity combinations will be and vice versa. We
also tested other universal relations in this work, such as the
universal relations established firstly in Ref. [13]. The
results also support their conclusion.

B. Linear correlation properties
of the neutron star properties

In this subsection, we will try to study the linear
correlation properties between the fundamental quantities
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of neutron stars to find the quantities with good correlation
properties and explore the universal relations. Here, we
mainly concern some important global quantities of neu-
tron stars, such as Et, Eg, β, I, Λ, z.

Figure 4 shows the linear correlation properties between
several global quantities and other global quantities of
neutron stars in a wide density range. From the results in
Fig. 4, it can be seen that the correlation properties of

FIG. 3. Left panel: the linear correlation coefficients rðX; YÞ between the different global quantities in the four known universal relations
in Fig. 2 (namedA, B, C andD) as functions of the central density of neutron stars in unit (ρC=ρ0). The results of relations of I-Love and I-C
[59] are also shown for comparison. Right panel: neutron starmass as functions of its central density. The results are given by the 15 selected
EOSs same as Fig. 1, the hollow black circles on each curve of M − ρC represent the maximum mass points of neutron stars.

(a) (b)

(c) (d)

FIG. 2. The universal relations of neutron stars and their relative error between the fitting curve and the numerical results, i.e.,
jQfit −Qj=jQfitj, where Qmeans the physical quantities in universal relations. Plot (a): relation between jEgj=M and β; plot (b): relation
between ðjEgj=MÞ−2 and I=M3; plot (c): relation between ðjEgj=MÞ−5 and Λ; plot (d): relation between jEtj=M and β. All the above four
relations are extracted from Ref. [12].
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different quantities are significantly different. Figure 4(a)
shows that in the density range of typical neutron stars
(ρ0 ∼ 5ρ0), the correlations between β and I, z, Eg are
preferable, but it is poor with other quantities, such as Et.
In Fig. 4(d), it is shown that the correlations of the tidal
deformabilityΛwith almost all other quantities are not very
notable. We also calculated the linear correlation properties
of other quantities one by one. Finally, it is found that in the
whole central density range of typical neutron stars, the
quantities which have good linear correlation properties
with each other are mainly β, I, z and Eg, while the rest are
generally poor. These quantities with good linear correla-
tion properties can be used to explore the universal relations
according to the conclusion in Sec. III A.

C. Testing the universal relations with the linear
correlation analysis of neutron star properties

In this subsection, we will use the neutron star global
quantities with preferable linear correlation properties to
test the existing universal relations and verify the validity of
this method. As the universal relations usually reflect the
relations between two quantity combinations, we first need
to construct some common combinations, such as the
dimensionless quantities Eg=M, I=M3, I=R3, etc. Here

we choose the dimensionless gravitational binding energy
Eg=M as the research object to study its correlation
properties with other quantities, and then test the universal
relations. It is worth noting that in general universal
relations, the exponent is generally introduced into the
quantity combinations for universality, such as Qn (Q
represents the neutron star quantity, n is the exponent). As
the exponentn generally needs to be determined separately, it
will bring additional difficulties to our next correlation
calculations. Therefore, in order to eliminate the influence
of exponent on linear correlation calculation, we will utilize
the logarithmic forms for the neutron star quantity combi-
nations. For example, the universal relation ðjEgj=MÞ−5 − Λ
[12], as mentioned earlier, can be expressed as

Λ ∝
�
Eg

M

�
−5
: ð3:2Þ

In logarithmic form, the Eq. (3.2) will be simplified as

log Λ ∝ −5 log

�
Eg

M

�
; ð3:3Þ

(a) (b)

(c) (d)

FIG. 4. The linear correlation coefficients rðX; YÞ between different neutron star global quantities as functions of the central density of
neutron stars. Plot (a): correlations with the compactness β; plot (b): correlations with the dimensionless moment of inertia I=MR2; plot
(c): correlations with the gravitational binding energy Eg; plot (d): correlations with the tidal deformability Λ.
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where the coefficient 00 − 500 in Eq. (3.3) does not affect the
strength of linear correlation between these two quantity
combinations, so it can be omitted. That is to say, in order to
study the correlation between ðjEgj=MÞ−5 and Λ, we only
need to study the correlation between logðEg=MÞ and logΛ.
Figure 5 shows the correlation properties between

logðEg=MÞ and other property combinations in logarithmic
form logQ. Similar to the analysis of Fig. 4, it can be seen
from Fig. 5 that in the whole density range of typical
neutron stars, logðEg=MÞ has a remarkable correlation with
log β, log I, logΛ and log z; for other quantities, i.e., log k2
and logðEt=MÞ, they are poorly correlated. According to
the conclusion of Fig. 3, the possible universal relations
with logðEg=MÞ are mainly the above four quantities with
the notable linear correlations. Therefore, we will list these
relations with good correlations. To simplify, we only
display some of them. Figure 6 shows the relations

logðEg=MÞ − logΛ and logðEg=MÞ − log β and the relative
errors between their corresponding fitting curves and
numerical results. For logðEg=MÞ − logΛ, it can be seen
that there is an almost strict linear relation between
logðEg=MÞ and logΛ, and the relative error is within a
reasonable range. This is an ideal universal relation. For
logðEg=MÞ − log β, there is an approximate quadratic curve
between two quantities, and the relative error is also within
the reasonable range. It is also a desired universal relation. In
fact, the above two universal relations were first established
in Ref. [12]. Our results in Fig. 6 are consistent with their
conclusion. According to our calculation, the other two
relations logðEg=MÞ − logðI=MR2Þ and logðEg=MÞ − log z
are also the notable universal relations, which is consistent
with the results inRefs. [12,13]. So it is an effectivemethod to
use the linear correlation analysis of neutron stars properties
to test the universal relations. Next, we will use it to predict
new universal relations of neutron stars in the next
subsection.

D. Predicting the new universal relations with the linear
correlation analysis of neutron star properties

In this subsection, we will try to use the linear correlation
analysis to predict the new universal relations. Since the
universal relations aboutEg=M have been tested in Sec. III C,
in this subsection, wemainly focus on the universal relations
about I=M3 and I=R3. Figure 7 shows the linear correlation
properties between logðI=M3Þ and other property quantities
logQ in logarithmic form.From the results, it can be seen that
in the whole typical central density range of neutron stars
(ρ0 ∼ 5ρ0), the quantities which have good linear correlation
properties with logðI=M3Þmainly include log β, logΛ, log z
and logðEg=MÞ, while for log k2, logðEt=MÞ, their correla-
tions are very poor. In fact, according to previous knowledge,
for the relation between I=M3 andΛ, it is the familiar I-Love
relation [10,11]; for relations I=M3 − z and I=M3 − Eg=M,
these two universal relations have also been confirmed, see

FIG. 5. The linear correlation coefficients rðX; YÞ of the
dimensionless gravitational binding energy in logarithmic form
logðEg=MÞ with other neutron stars properties in logarithmic
form logQ as functions of the central density of neutron stars.

FIG. 6. The universal relations and their corresponding relative error between the fitting curve and the numerical results. Left panel:
relation between logðEg=MÞ and logΛ; right panel: relation between logðEg=MÞ and log β.
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Refs. [12,13] for details. For the relation between I=M3 and
β, there is no work to discuss it so far. In Fig. 8, we show the
results of logðI=M3Þ − log β and the relative error between
their corresponding fitting curve and numerical results. As
shown in Fig. 8, there is a notable universal relation between
logðI=M3Þ and log β.
Similarly, Fig. 9 shows the linear correlation properties

between the dimensionless moment of inertia logðI=R3Þ
and other quantities in logarithmic form. From Fig. 9, it can
be seen that in the typical central density region of neutron
stars, the quantities that are notably correlated to logðI=R3Þ
mainly include log β, logΛ, log z and logðEg=MÞ. So we
will mainly focus on the relations with these four quantities
next. In fact, the universal relations between I=R3 and β, z
have been confirmed, see Refs. [13,60] for details. In

Fig. 10, we show the results of logðI=R3Þ − logðEg=MÞ.
The results show that there is a notable universal relation
between logðI=R3Þ and logðEg=MÞ. Similarly, we also test
the relation of logðI=R3Þ − logΛ, and it is also a desired
universal relation.
The newly discovered universal relations mentioned

above are all about the moment of inertia of neutron stars,
i.e., I=M3 − β, I=R3 − Λ and I=R3 − Eg=M. We can use
these relations to constrain the moment of inertia of some
observable neutron stars. The moment of inertia of PSR
J0030þ 0451 has been studied extensively [60–62]. For
example, Jiang et al. calculated the moment of inertia
for 1.4 M⊙ neutron stars I1.4 with the radius R1.4 of
PSR J0030þ 0451. Their results shown that when
R1.4 ¼ 12.1þ1.2

−0.8 km, the corresponding I1.4 ¼ 1.43þ0.30
−0.13 ×

1045 g cm2 [61]. Similarly, Li et al. used the bayesian

FIG. 7. Similar as Fig. 5, but for the results of dimensionless
moment of inertia logðI=M3Þ.

FIG. 8. Similar as Fig. 6, but for the relation between
logðI=M3Þ and log β.

FIG. 9. Similar as Fig. 5, but for the results of dimensionless
moment of inertia logðI=R3Þ.

FIG. 10. Similar as Fig. 6, but for the relation between
logðI=R3Þ and logðEg=MÞ.
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analysis to predict the moment of inertia of PSR J0030þ
0451 is I ¼ 1.95þ0.70

−0.50 × 1045 g cm2 at 68% credible level
with NICER constraints [54,60,63]. Here we also take the
pulsar PSR J0030þ 0451 as an example to constrain its
moment of inertia. Considering the R1.4 or β1.4 of PSR
J0030þ 0451 can bemeasured by NICER observation, here
we only employ the relation I=M3 − β to obtain the con-
straint. According to the results shown in Fig. 8, the relation
I=M3 − β can be expressed as

log I=M3 ¼ −1.261 log β þ 0.277: ð3:4Þ

If R1.4 ¼ 12.1þ1.2
−0.8 km [61], i.e., β1.4 ¼ 0.171þ0.012

−0.015 , the
corresponding I1.4 ¼ 2.09þ0.27

−0.17 × 1045 g cm2. Similarly, if
β1.4 ¼ 0.159þ0.025

−0.022 [62], namely R1.4 ¼ 13.00þ2.09
−1.77 km, the

corresponding I1.4 ¼ 2.29þ0.47
−0.39 × 1045 g cm2. It is shown

that our constraint on I1.4 for PSR J0030þ 0451 is relatively
higher than that in the Ref. [62].
In conclusion, combing the analysis of the above results

in Sec. III C and Sec. III D, it can be seen that it is an
effective and feasible method to use the linear correlation
analysis of neutron star properties to test and predict the
universal relations.

IV. SUMMARY

Universal relation is an effective method to study the
relations between the neutron star properties, but at present
there is no complete method to predict and establish it. It is
well known that the universal relations can be naturally
associated with the correlation properties between different
neutron star properties. So in this work, we use 15 EOSs
derived from different nuclear many-body theories to
calculate the linear correlation properties between different
neutron star global quantities, and screened out the appro-
priate quantities with preferable correlation properties to
explore the universal relations.
Firstly, we analyzed the linear correlation properties

between two quantity combinations in four existing uni-
versal relations. It is found that in the typical central density

range of neutron stars (ρ0 ∼ 5ρ0), the better the linear
correlation properties between the two quantity combina-
tions are, the better the universality of the universal
relations will be; otherwise, the worse. So we analyzed
the linear correlation properties between different neutron
star properties. The results show that the quantities with
preferable correlation properties are mainly the compact-
ness parameter β, moment of inertia I, gravitational redshift
z and gravitational binding energy Eg, which can be used to
explore the universal relations.
Thenwe take the selected neutron star properties as objects

to test and predict the universal relations. First we take the
dimensionless gravitational binding energy Eg=M as an
example to test the existing universal relations. It is shown
that our universal relations about Eg=M can be in good
agreement with the previous results. Next, we take the
dimensionless moment of inertia I=M3 and I=R3 as objects
to predict the new universal relations. It is found that
the quantities that are well correlated with I=M3 and I=R3

mainly are β, Λ, z and Eg=M. Finally, in addition to
testing several existing universal relations, we also
found several new universal relations, such as I=M3 − β
and I=R3 − Eg=M. Further, we use the relation I=M3 − β as
an application, to constrain the moment of inertia of PSR
J0030þ 0451. The results show that I1.4 ¼ 2.29þ0.47

−0.39 ×
1045 g cm2 when R1.4 ¼ 13.00þ2.09

−1.77 km for PSR J0030þ
0451. The above results show that it is an effective and
feasible method to use the linear correlation analysis of
neutron star properties to explore the universal relations.
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