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The nature of the Fermi γ-ray Galactic Center excess (GCE) has remained a persistent mystery for over a
decade. Although the excess is broadly compatible with emission expected due to dark matter annihilation,
an explanation in terms of a population of unresolved astrophysical point sources, e.g., millisecond pulsars,
remains viable. The effort to uncover the origin of the GCE is hampered in particular by an incomplete
understanding of diffuse emission of Galactic origin. This can lead to spurious features that make it difficult
to robustly differentiate smooth emission, as expected for a dark matter origin, from more “clumpy”
emission expected from a population of relatively bright, unresolved point sources. We use recent
advancements in the field of simulation-based inference, in particular density estimation techniques using
normalizing flows, in order to characterize the contribution of modeled components, including unresolved
point source populations, to the GCE. Compared to traditional techniques based on the statistical
distribution of photon counts, our machine-learning-based method is able to utilize more of the information
contained in a given model of the Galactic Center emission and in particular can perform posterior
parameter estimation while accounting for pixel-to-pixel spatial correlations in the γ-ray map. This makes
the method demonstrably more resilient to certain forms of model misspecification. On application to
Fermi data, the method generically attributes a smaller fraction of the GCE flux to unresolved point sources
when compared to traditional approaches. We nevertheless infer such a contribution to make up a non-
negligible fraction of the GCE across all analysis variations considered, with at least 38þ9

−19% of the excess
attributed to unresolved point sources in our baseline analysis.
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I. INTRODUCTION

Dark matter (DM) represents one of the major unsolved
problems in particle physics and cosmology today. The
traditional weakly interacting massive particle paradigm
envisions production of dark matter in the early Universe
through freeze-out of dark sector particles weakly coupled
to the Standard Model (SM) sector. In this scenario, one of
the most promising avenues of detecting a dark matter
signal is through an observation of excess γ-ray photons at
∼GeV energies from DM-rich regions of the sky produced
through the cascade of SM particles resulting from DM
self-annihilation.

The Fermi γ-ray Galactic Center excess (GCE), first
identified over a decade ago using data from the Fermi
Large Area Telescope (LAT) [1], is an excess of photons in
the Galactic Center with properties—such as energy
spectrum and spatial morphology—broadly compatible
with the expectation due to annihilating DM [2–16]. The
nature of the GCE remains contentious, however, as
competing explanations in terms of a population of
unresolved astrophysical point sources (PSs), in particular
millisecond pulsars, remaining viable [9,17–25]. Analyses
of the morphology of the excess have shown it to prefer a
spatial distribution correlated with baryonic structures in
the Galactic Center region rather than a distribution
expected due to DM annihilation [15,26,27], although
these conclusions can depend on details of the modeling
[28,29]. Studies leveraging the statistical distribution of
photon counts in the Galactic Center have shown the γ-ray
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data to prefer a point source origin of the excess [30–33], a
conclusion corroborated using wavelet-based techniques
[31]. Recent studies have, however, pointed out the
potential of unknown systematics, such as the poorly
understood morphology of the diffuse foreground emis-
sion and the existence of unmodeled point source pop-
ulations, to affect the conclusions of these analyses [34].
Reference [32] showed that many of these issues can be
ameliorated through the use of better diffuse foreground
models, as well as by augmenting existing models with
additional degrees of freedom.
The complexity associated with analyzing high-

dimensional γ-ray maps—typically binned spatially using
a pixelization scheme—has motivated the use of approxi-
mate likelihoods based on, e.g., the statistics of photon
counts in individual pixels [30,35,36] or scale decompo-
sition of the photon map using wavelet techniques
[31,37–39], in order to enable computationally tractable
analyses. Under certain assumptions, using such approx-
imations can capture all of the information contained in a
given spatial model of the γ-ray data. This is the case, e.g.,

for a likelihood based on the expected probability distri-
bution of photon counts factorized across pixels when
pixel-to-pixel correlations can be assumed to be negligible.
When such correlations are present, however, the use of
such approximations necessarily involves loss of informa-
tion compared to that contained in the original γ-ray map.
Recent developments in machine learning have enabled

analysis techniques that can extract more information from
high-dimensional datasets and can therefore be used to
leverage more of the information contained in models of
γ-ray emission. Machine learning methods have recently
shown promise for analyzing γ-ray data [40] and specifi-
cally for understanding the nature of the Fermi GCE
[41–43]. In particular, Ref. [41] used a method based on
Bayesian neural networks in order to infer the flux fractions
associated with various modeled components in the
Galactic Center region, finding the GCE to be predomi-
nantly smooth in contrast to prior analyses depending the
statistics of photon counts. Reference [42] extended this
framework, using a novel nonparametric approach [44] to
extract the characteristics of the PS population associated

FIG. 1. A schematic overview of the inference framework used in this work. A normalizing flow is used to model posterior distribution
of the parameters of interest characterizing the contribution of point source populations as well as diffuse (smooth) components to the
γ-ray data. The flow transformation from the base distribution to the posterior is conditioned on learned summaries of the γ-ray map
extracted using a convolutional neural network. The normalizing flow and feature-extractor neural networks are trained simultaneously
using maps simulated from the forward model. Once trained, samples from the flow can be generated conditioned on a new dataset of
interest in order to obtain an estimate of the corresponding parameter posteriors, which can be used to infer physical quantities of interest
such as source-count distributions of modeled PS populations as well as fluxes associated with the diffuse components. See Sec. II for a
detailed description of the analysis pipeline.
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with the GCE, finding a non-negligible portion of the
emission to be attributable to a dim PS population. We will
show the results of our analysis on Fermi data to be
qualitatively consistent with those obtained in that work.
In this paper, we present a complementary approach that

leverages recent developments in the field of simulation-
based inference (SBI, also referred to as likelihood-free
inference; see, e.g., Ref. [45] for a recent review) in order to
weigh in on the nature of the GCE. In particular, we use
conditional density estimation techniques based on normal-
izing flows [46,47] to characterize the contributions of
various modeled components, including “clumpy” PS-like
and “smooth” DM-like emission spatially tracing the GCE,
to the γ-ray photon sky at ∼GeV energies in the Galactic
Center region. Rather than using hand-crafted summary
statistics, we employ a graph-based spherical convolutional
neural network architecture (previously utilized in
Refs. [41,42]) in order to extract summaries from γ-ray
maps optimized for the downstream task of estimating the
distribution of parameters characterizing the contribution of
modeled components to the GCE. Unlike traditional
approaches based on the statistics of photon counts, this
approach allows us to capture more of the information
contained in a model of the Galactic Center emission and in
particular implicitly uses the distribution of pixel-to-pixel
correlations as an additional discriminating handle. As we
will show, this makes our method more resilient to certain
systematic uncertainties compared to these approaches. A
schematic illustration of our method is presented in Fig. 1.
This paper is organized as follows. In Sec. II we describe

our forward model and analysis framework based on neural
simulation-based inference. In Sec. III we validate our
pipeline on mock observations of the Fermi GCE.
Section IV presents an application of the method to
Fermi γ-ray data, including systematic variations on the
analysis. In Sec. V we study the susceptibility of the
analysis to known mismodeling of the signal and back-
ground templates. We conclude in Sec. VI.

II. METHODOLOGY

We begin by describing the various ingredients of our
forward model and datasets used. After a brief summary of
established methods based on explicit likelihoods, we detail
our analysis methodology going over, in turn, the general
principles behind simulation-based inference, posterior
estimation using normalizing flows, and learning repre-
sentative summary statistics from high-dimensional γ-ray
maps with neural networks.

A. Datasets and the forward model

1. Datasets and region of interest

We use the datasets and spatial templates from
Refs. [48,49] to create simulated maps of Fermi-LAT data
in the Galactic Center region. The templates and data used

correspond to 413 weeks of Fermi-LAT pass 8 data taken
between August 4, 2008 and July 7, 2016. The top quartile
of photons as graded by quality of point-spread function
(PSF) reconstruction in the energy range 2–20 GeV and
event class ULTRACLEANVETO are used. The conven-
tional quality cuts are applied: zenith angle less than 90°,
LAT CONFIG ¼¼ 1, and DATA QUAL ¼¼ 1 [50]. The
maps are binned spatially using the HEALPix [51] pixeliza-
tion scheme with resolution parameter nside ¼ 128,
roughly corresponding to pixel area ∼0.5 deg2. This
dataset has been previously used in the literature for
analyses based on explicit likelihoods [32–34] as well as
machine-learning-based analyses [41] for characterizing
the GCE. All templates are normalized, per pixel, within a
region defined by r < 30°.
The inner region of theGalactic plane,where the observed

emission is especially difficult to model, is masked at
jbj < 2°, and a radial cut r < 25° defines the region of
interest (ROI) for our analysis. Even though the GCE is
spatially confined to the inner 10°–15° of theGalactic Center
[10,11], using a larger ROI improves the ability to constrain
other spatially extended templates and helps mitigate spatial
degeneracies that would otherwise crop up in a smaller ROI.
On the other hand, using a ROI that is too large can
exacerbate the effects of misspecified spatial templates
[52]. We mask resolved PSs from the 3FGL catalog [53]
at a radius of 0.8°, approximately corresponding to 99%PSF
containment for photons in the data type employed [53].

2. Diffuse emission forward model

The simulated data maps are a combination of diffuse
(alternatively referred to as smooth or Poissonian) and PS
contributions. The smooth contributions include (i) the
Galactic diffuse foreground emission, (ii) spatially isotropic
emission accounting for, e.g., uniform emission from
unresolved sources of extragalactic origin, (iii) emission
from resolved PSs included in the Fermi 3FGL catalog
[53], and (iv) lobelike emission associated with the Fermi
bubbles [54]. Finally, (v) Poissonian DM-like emission is
modeled using a line-of-sight integral of the (squared)
generalized Navarro-Frenk-White (NFW) [55,56] profile:

ρgNFWðrÞ ∝
1

ðr=rsÞγð1þ r=rsÞ3−γ
ð1Þ

with inner slope γ ¼ 1.2 motivated by previous GCE
analyses [8,10,57]. Here, r is the radial distance from
the Galactic Center, rs ¼ 20 kpc is the Milky Way scale
radius, and we take R⊙ ¼ 8.2 kpc as the distance to the
Galactic Center [58,59]. Templates for components (ii)–(iv)
are obtained from Ref. [49].
The Galactic foreground component accounts for γ rays

produced due to cosmic rays interacting with interstellar
gas and radiation, which makes up the majority of the
observed emission in the Galactic Center region. In
particular, bremsstrahlung emission from cosmic-ray
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electrons scattering off of gas as well as photons produced
as a result of the decay of pions produced through cosmic-
ray protons scattering elastically with the gas both trace the
Galactic gas distribution, modulated by the incoming
cosmic-ray density. These components exhibit structure
on smaller angular scales. Additionally, inverse Compton
(up)scattering (ICS) of the interstellar radiation field by
cosmic-ray electrons produces an important component
of the γ-ray Galactic diffuse emission which spatially traces
the Galactic charge carrier density and does not show
modulation on small scales. Normalizations of the gas-
tracing components, subscripted “brem=π0,” and the
ICS-tracing component, subscripted “ICS,” are included
separately in our forward model. Templates for these two
components are described in our baseline configuration by
Model O, introduced in Ref. [32]. There, it was found to be
better fit, as quantified by the likelihood of describing the
data up to Poisson noise, to the counts map in the Galactic
Center region compared to diffuse foreground templates
previously employed in GCE analyses. We explore the
effect of variations on the assumed Galactic diffuse model
in Sec. IV C.
The diffuse emission templates have been presmoothed

with the Fermi PSF at 2 GeV for the dataset employed,
modeled as a pair of King functions [60]. The total diffuse
emission in a given pixel p, xp, is modeled as a Poisson
realization of a linear combination of the diffuse templates
Tp
i , where i indexes the individual templates, with their

corresponding normalizations Ai regarded as parameters of
the forward model; xp ∼ PoisðxpjP iAiT

p
i Þ.

3. PS emission forward model

Assuming the locations of individual PSs are not known
a priori, the statistics of multiple PS populations can be
completely specified through (i) their spatial distribution,
described by templates Tp discretized over pixels p, (ii) the
distribution of expected photon counts S contributed by
each PS, pðSÞ, and (iii) the distribution of the number of
PSs for each population. Additionally, the modeled instru-
mental point-spread function quantifies the spatial distri-
bution of photon counts sourced by an individual PS
around its location due to the finite angular resolution of
the LAT instrument.
Here, we parametrize the distributions of photon counts

S contributed by each PS through a doubly broken power
law:

pðSjθPSÞ∝

8>>>>>>>><
>>>>>>>>:

�
S
Sb;1

�
−n1

; S≥ Sb;1
�

S
Sb;1

�
−n2

; Sb;1 >S≥ Sb;2
�
Sb;2
Sb;1

�
−n2

�
S
Sb;2

�
−n3

; Sb;2 >S

ð2Þ

specified by the break locations fSb;1; Sb;2g, spectral
indices (slopes) fn1; n2; n3g, and appropriately normalized
to unity. Higher subscript indices correspond to dimmer
parts of the source-count distribution. Together, we denote
these parameters by θPS.
The PS component of the simulated Fermimap is created

as follows, practically implemented using the code package
NPTFit-Sim [61]. The total number of PSs to be simulated is
drawn as n ∼ PoisðnjnpixλÞ, where npix is the number of
pixels in the ROI and λ is the mean number of PSs per pixel.
The sample of PS angular positions frng is drawn from a
photon distribution function (PDF) constructed by linearly
interpolating the relevant pixelwise spatial template Tp;
frng ∼ pðrÞ ∝ TðrÞ. The expected number of photons
emitted by each PS, indexed by i, is drawn by first sampling
from the mean PDF of expected photon counts in Eq. (2),
S ∼ pðSjθPSÞ, and scaling this as Si ¼ SϵðriÞ=hϵi to
account for variations in the Fermi exposure at the sampled
PS positions, ϵðriÞ, over the mean exposure hϵi in the ROI.
The actual sample of photon counts emitted by the
simulated PSs, fxng, is taken to be a Poisson realization
of this expectation; xi∼PoisðxijSiÞ. Given the angular
positions of and photon counts emitted by PSs frn; xng,
the radial coordinates of photons relative to the positions
of PSs are drawn following the modeled Fermi PSF, with
the azimuthal coordinates sampled uniformly assuming
a spherically symmetric PSF. This procedure is repeated
for each PS population, and the final simulated PS map
is constructed by binning the sampled photon positions
within the ROI according to the pixelization scheme used.
In practice, in order to avoid computational costs associated
with simulating a large number of low-flux PSs, the dim
component of the PS population below a specified thresh-
old is partially accounted for in the DM-like component, as
described in detail toward the end of this subsection.
In the NPTF literature, modeled PS populations are often

compactly described through the so-called source-count
distribution (SCD) d2N=dSdΩ, which quantifies the differ-
ential number density of sources per unit angular area
emitting S photons in expectation. The source-count dis-
tribution jointly describes the distribution of photon counts
from individual PSs pðSjθPSÞ and their mean per-pixel
abundance λ and is related to these as

d2N
dSdΩ

¼ λpðSjθPSÞ=Ωpix; ð3Þ

where the pixel area Ωpix is used to convert the per-pixel
source count to per area, rendering it agnostic to pixel size.
We will present our results in terms of the source fluxes
(d2N=dFdΩ) rather than expected counts (d2N=dSdΩ),
with the conversion S ¼ hϵiF, where hϵi is the mean
exposure in the region considered. In the analysis ROI
used here, the mean exposure is hϵi ≃ 7 × 1010 cm2 s. For
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brevity, we will denote the distribution as dN=dF, leaving
the per-area normalization implicit.
In this paper, we consider two independent PS popula-

tions: (i) those spatially correlated with the GCE, modeled
the same as the Poissonian counterpart using a line-of-sight
integral of the (squared) generalized NFW profile in Eq. (1)
with γ ¼ 1.2, and (ii) those spatially correlated with the
Galactic disk, modeled by a doubly exponential profile
motivated by studies of the spatial distribution of Galactic
millisecond pulsar populations [62,63]:

ρDiskðR; zÞ ∝ exp

�
−

R
Rd

�
exp

�
−
jzj
zs

�
; ð4Þ

where R and z are the radial and vertical Galactic
cylindrical coordinates, respectively, and the disk scale
height and radius are set to zs ¼ 0.3 kpc and Rd ¼ 5 kpc,
respectively, in the baseline scenario. The final maps are
obtained by combining the diffuse and PS emission
components of the forward model.

4. Prior specification

We use uniform priors for the normalization factors of
the Poissonian templates. For the PS components, we use
uniform priors on the parameters that characterize the
broken power-law distribution of photon counts within
the intervals defined below. The break associated with the
brighter end of the SCD, Sb;1 ∈ ½5; 40� photons, reflects a
“turn-on” associated with the source luminosity function,
above which sources are either individually resolved or not
inferred to exist. This turn-on is further enforced by
specifying a highest slope n1 ∈ ½10; 20� that is steeply
rising with decreasing S. The middle slope n2 ∈ ½1.1; 1.99�
is associated with the physical luminosity function of the
source population, typically expected to be in this specified
range for a Galactic pulsar population [25].
Emission from a PS population is nearly degenerate but

still statistically distinguishable from that following a
Poisson distribution when associated with sources emitting
∼0.1–1 counts in expectation [42]; in practice, however,
residual effects of model misspecification and degeneracies
between multiple PS populations can make characterizing
the source-count distribution in this low-photon regime
challenging [33]. The dimmer break, Sb;2 ∈ ½0.1; 4.99�
photons, therefore specifies a regime where we do not
attempt to explicitly characterize the PS population. This is
enforced by allowing for a lowest slope n3 ∈ ½−10; 1.99�
that is steeply falling with decreasing S, encouraging the
SCD to turn off in this regime. This gives preference to
the smooth component in absorbing flux close to and below
the single-photon regime, and our analysis therefore
conservatively aims to estimate a lower bound on the
contribution of PS emission to the GCE by primarily
considering the relatively bright regime of the source-count
distribution. In order to quantify the effect of the prior in the

low-photon regime, we also explore an alternative speci-
fication where the lower range of the upper break prior is
brought down to a single photon, Sb;1 ∈ ½1; 30� photons,
giving the PS component more overlap closer to the
degeneracy regime and thus allowing it to account for
more of the dim emission. In the Appendix A, we show
how the prior choices map onto the source-count distribu-
tion for the baseline and alternative configurations.
The overall abundance of PSs associated with a modeled

population is specified as follows. Rather than sampling
the expected number of PSs per pixel λ with a uniform
prior, we instead uniformly sample a related parameter
hSPSi ¼ R

dSSλpðSjθPSÞ, the expected number of photon
counts contributed by the PS population per pixel.
Similarly, for the Poissonian GCE component, the template
normalization AGCE is reparametrized through a constant
multiplicative factor into the mean per-pixel expected
counts hSPoissGCE i. This is done in order to place the flux
distribution of the PS-like component hS≳1 phi on the same
“footing” as that associated with smooth emission hS≲1 phi.
Since a uniform prior on λ would not correspond to a
uniform prior on hSPSi, these reparametrizations a priori
distribute photons approximately uniformly among the
regimes hS≲1 phi and hS≳1 phi. We note here the possibility
of using other prior prescription proposed in the literature,
e.g., in Ref. [64], where, in addition to enforcing an
equivalence between dim PSs and smooth emission (rather
than enforcing a distinction between relatively bright PSs
and smooth emission as done here), the SCD slopes are
specified in terms of the angles between adjacent parts of
the broken power law and the break positions are specified
as a fraction relative to the brightest break.
The forward model is thus specified by a total of 18

parameters—six for the overall normalizations of the
Poissonian templates fhSPoissGCE i, Abrem=π0 , AICS, Aiso, Abub,
A3FGLg and 6 × 2 parameters modeling the source-count
distributions associated with GCE-correlated and disk-
correlated PS populations fhSPSi; n1; n2; n3; Sb;1; Sb;2g.
The priors used in the forward model are summarized in
Table I. In order to improve sample efficiency, the priors are
motivated by posteriors obtained from a Poissonian tem-
plate fit to the real Fermi data.

B. Inference with likelihoods based on simplified
data representations

Before discussing the methodology used in this paper in
detail, we will provide a brief overview of an established
class of techniques—non-Poissonian template fitting—that
have been successfully deployed in order to characterize
the contribution of PSs to the GCE. We will focus on a
schematic description of the method without delving into
details of the implementation, aiming to highlight the
elements that introduce approximations and where our
machine-learning-based approach differs.
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A central object in statistical inference is the likelihood
pðxjθÞ, which quantifies the probability of an observation x
given parameters of interest θ. In the simplest incarnation of
astrophysical template-fitting methods dealing with count
data, the likelihood of the map x in the region of interest is
computed as a pixelwise product of Poisson likelihoods
with mean given by a linear combination of spatial
templates Tp

i , pðxjθÞ ¼
Q

p Poisðxpj
P

i AiT
p
i Þ, where nor-

malizations Ai of the respective spatial templates are the
parameters of interest. This captures the diffuse part of the
forward model described in Sec. II A, and inference here
can easily be performed within a frequentist or Bayesian
framework.
In practice, unobserved latent variables z are often

involved in the data-generation process, and computing
the likelihood involves marginalizing over the latent space,
pðxjθÞ ¼ R

dzpðxjθ; zÞ. In typical problems of interest, the
high dimensionality of the latent space often means that
this integral is intractable, necessitating simplifications in
statistical treatment as well as theoretical modeling. For the
forward model in Sec. II A, the presence of PS populations
introduces a large number of latent variables, specifically
the position of and counts emitted by each PS. Ignoring the
contribution from diffuse components for the moment and
considering only a single isotropically distributed PS
population, the likelihood for the map x in the region of
interest is given by

pðxjλ; θPSÞ ¼
X∞
n¼0

Z
dnzpðnjλÞpðzjθPSÞpðxjzÞ; ð5Þ

where θPS parametrize the distribution of photon counts
from individual PSs. n is the total number of PSs in the
ROI, with the sum running over all possible number of PSs.

This high-dimensional integral is, for all practical purposes,
computationally intractable. The presence of a finite
instrumental PSF introduces additional latent processes,
decoupling the positions of the photons and PSs. Given
these difficulties, a simplification of the problem setting is
typically required to make further progress.
The 1-point PDF (probability distribution function)

framework, first introduced in the context of γ-ray analyses
in Ref. [35] and extended to allow for nontrivial spatial
PS distributions in Refs. [30,36] under the name of non-
Poissonian template fitting (NPTF), considers a sim-
plification of the problem by computing the pixelwise
likelihood assuming each pixel to be statistically indepen-
dent (one-point then referring to values over individual,
independent spatial positions in the sky). This significantly
reduces the latent space dimensionality by eliminating
the positions of individual PSs as latent variables. Since
non-Poissonian template fitting has been widely used in
analyses of the GCE, we briefly outline the basic philoso-
phy behind this method, pointing the interested reader to a
more detailed discussion as well as numerical implemen-
tations in Refs. [30,49].
Since emission from each PS can be regarded as

independent conditioned on θPS, the probability of a given
PS, indexed i, emitting xpi photons in a pixel p is given by

pðxpi jθPSÞ ¼
Z

dSipðSijθPSÞpðxpi jSiÞ; ð6Þ

where Si are the expected photon counts from the PS
following some probability distribution parametrized by
θPS, in this case following a doubly broken power law with
parameters θPS ¼ fn1; n2; n3; Sb;1; Sb;2g, and pðxpi jSiÞ is
the distribution of actual counts given latent Si, assumed to
follow a Poisson distribution on Si. The probability of
having a total of xp counts in a pixel from multiple PSs is
then described by a multinomial distribution, subject to the
constraint that the total number of counts be equal to the
observed counts:

pðxpjλ; θPSÞ ¼
X∞
n¼0

pðnjλÞ
X
nj

δ

�X
j

njj − xp
�

× δ

�X
j

nj − n

�
n!Q
jnj

Yn
j¼1

pðxpi ¼ jjθPSÞnj ;

ð7Þ

where nj is the number of PSs contributing j counts. The
distribution of the number of PSs in a pixel is usually
assumed to follow a Poisson distribution on the mean
expected number of PSs λ, i.e., pðnjλÞ ¼ PoisðnjλÞ. In this
case, the sum over n can be eliminated and the distribution
of observed counts is given by

TABLE I. Parameter priors used for the components of the
forward model described in Sec. II A. All priors are uniform
within the ranges specified. Priors on the Poissonian components,
corresponding to overall normalization, are shown in the left table
column, while those of the GCE- and disk-correlated PS
components, parametrized according to Eq. (2), are shown in
the right table column. The overall normalizations of the
Poissonian GCE and PS-like components are parametrized
through the mean number of photon counts contributed by the
respective components in the ROI.

Poissonian PS-like (GCE and disk)

Parameter Prior range Parameter Prior range

hSPoissGCE i [0, 2.5] ph hSPSi [0, 2.5] ph
Abrem=π0 [6, 12] n1 [10, 20]
AICS [1, 6] n2 [1.1, 1.99]
Aiso [0, 1.5] n3 [−10, 1.99]
Abub [0, 1.5] Sb;1 [5, 40] ph
A3FGL [0, 1.5] Sb;2 [0.1, 4.99] ph
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pðxpjλ; θPSÞ ¼
X∞
nj¼0

δ

�X
j

njj − xp
�

×
Y
j

Poisðnjjλpðxpi ¼ jjθPSÞÞ; ð8Þ

where pðxpi ¼ jjθPSÞ is given by Eq. (6). While not
immediately obvious from this expression, eliminating
the positions of individual PSs as latent parameters as
well as the sum over the possible number of PSs n renders
the per-pixel likelihood tractable, and the total data like-
lihood can then be computed as a product over pix-
els, pðxjλ; θPSÞ ¼

Q
p pðxpjλ; θPSÞ.

We emphasize that we have only provided a brief
overview of the NPTF method here, with further analytic
simplifications, extensions to approximately incorporate
the effect of nontrivial instrumental point-spread function
and exposure, as well as a numerical recipe for evaluating
the likelihood described in detail in Ref. [49]. We note that
including the effect of a finite point-spread function in the
NPTF framework renders the per-pixel likelihood only
approximately correct, since this introduces correlations
across pixels over the scale of the PSF size. Previous
studies have shown this approximation to be accurate
enough for the present problem when using a pixel size
of the order of the PSF size itself [33]. Further general-
izations of the method that can account for more extreme
variations in the instrumental point-spread function and
exposure without resorting to an approximate treatment—
necessary for application to, e.g., x-ray data—were intro-
duced and studied in Ref. [64].
Probabilistic cataloging [65,66] is another method that

has been proposed for characterizing the subthreshold
contribution of PS populations in count data and found
application in γ-ray analyses [67]. This technique keeps the
latent variables in Eq. (5), i.e., the positions and expected
fluxes of individual PSs, as parameters of interest and uses
transdimensional sampling techniques to obtain the dis-
tribution over possible catalogs of unresolved PS popula-
tions. For computational reasons, probabilistic cataloging
techniques generally require a strong assumption on the
nature of the putative PS population and can thus produce
highly prior-dependent results.
In this paper, we show results on Fermi data using

the NPTF algorithm in order to establish a comparison
point to previous GCE studies employing the method. We
perform these analyses within a Bayesian framework,
obtaining an approximation to the posterior distribution
pðθjxÞ ¼ pðθÞpðxjθÞ=Z, where Z ≡ pðxÞ the Bayesian
evidence. We use the NPTF likelihood implemented in
NPTFit [49] and obtain representative posterior samples
over the parameters of interest described in Sec. II A using
nested sampling [68,69] implemented in DYNESTY [70].
The static variant of the nested sampling algorithm is run in
its default configuration with 1000 live points, stopping

when the estimated contribution of the remaining posterior
volume to the log-evidence falls below Δ logZ < 0.1.
Although it is possible to correct for nonuniform exposure
within the NPTF framework by considering independent
subregions with different exposure values, given the fairly
uniform Fermi exposure in the Galactic Center region we
use the mean exposure in our NPTF benchmarks for
simplicity.
1-point PDF-based techniques, and in particular NPTF,

have been widely applied for characterizing γ-ray PS
populations below the Fermi detection threshold, both in
relation to the GCE [30,32,71–73] and more generally, e.g.,
for characterizing the contribution of extragalactic PSs at
high latitudes [74–76] and for searching for a DM anni-
hilation signal from Galactic subhalos [77]. It has recently
been pointed out, however, that signal and foreground
mismodeling associated in particular with the emission
in the Galactic Center region can hamper the ability to
accurately characterize the contribution of PSs to the
GCE [34,71]. In particular, Refs. [30,33,34] pointed out
that spurious residuals associated with foreground mis-
modeling can lead to the mischaracterization of a purely
DM signal as a population of PSs. Reference [32] recently
showed that many of the issues associated with the
expression of such effects in Fermi data could be
mitigated through the use of better Galactic foreground
models along with affording them more degrees of free-
dom on large angular scales. References [71,72] further
showed and described analytically how mismodeling, in
particular an unmodeled asymmetry in a DM signal, could
lead to the spurious inference of PSs in NPTF analyses of
the GCE.
The fact that NPTF analyses rely on a simplified per-

pixel likelihood can make them especially susceptible to
the effects of model misspecification (alternatively referred
to as mismodeling)—systematic departures of the forward
model from the true data-generating process. This can be
intuited from the fact that, assuming a corresponding
permutation of template pixel labels, the NPTF likelihood
is invariant to a permutation of pixels within the analysis
ROI. This means that residuals associated with a misspe-
cified background model can mimic the effect of PSs
through the distribution of their photon counts, disregard-
ing the specific spatial structure associated with a PS
population. The full likelihood sketched out in Eq. (5)
and implicitly defined by the forward model described in
Sec. II A contains significantly more spatial structure than
is encoded in the distribution of photon counts and in
particular accounts for the distribution of pixel-to-pixel
correlations in the γ-ray map; see also Ref. [42] for an
extended discussion on this point. In the rest of this section,
we will describe the building blocks of our machine-
learning-based method that, in contrast to NPTF, aims
to estimate the likelihood implicitly associated with the
γ-ray forward model, leveraging pixel-to-pixel spatial
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correlations with the overall aim of more robustly charac-
terizing the PS contribution to the GCE.

C. Simulation-based inference

SBI refers to a class of methods for performing inference
when the data-generating process does not have a tractable
likelihood. This is the case for the model described in
Sec. II A, where the likelihood in Eq. (5) cannot be used
explicitly for practical purposes without further simplifi-
cations. The model is then defined through a simulator as
a probabilistic program, often known as a forward model.
Samples x from the simulator then implicitly define a
likelihood fxg ∼ pðxjθÞ. In the simplest existing realiza-
tions of SBI, simulated samples fxg can be compared
to a given dataset of interest x0, with the approximate
posterior defined by parameter values whose correspond-
ing samples most closely resemble x0 according to some
distance metric. Such methods—usually grouped under
the umbrella of approximate Bayesian computation
(ABC) [78]—are not uncommon in astrophysics and
cosmology. Nevertheless, they suffer from several down-
sides. The curse of dimensionality usually necessitates
reduction of data to representative, hand-crafted, lower-
dimensional summary statistics sðxÞ, resulting in loss of
information. A notion of distance in the lower-dimen-
sional summaries domain as well as a tolerance threshold,
ksðxÞ − sðx0Þk < ϵ, is necessary to trade off between
precision and sample efficiency, leading to inexact infer-
ence. Additionally, the ABC analysis must be performed
anew for each new target dataset.
Recent advances in machine learning, particularly the

proliferation of neural network architectures suited to a
variety of data structures and the development of algo-
rithms that can efficiently approximate functions and
distributions in high dimensions, have galvanized the field
of simulation-based inference, substantially increasing its
domain of applicability; see Ref. [45] for a review of recent
developments. In the following subsections, we will
describe the specific SBI methods employed in this work
for parameter estimation on the forward model described in
Sec. II A.

D. Conditional density estimation
with normalizing flows

We approximate the joint posterior pðθjxÞ over the
parameters of interest θ through a distribution p̂ϕðθjsÞ
conditioned on summaries s ¼ sðxÞ from simulated sam-
ples fxg, parametrized by ϕ and modeled by a neural
network. This class of simulation-based inference tech-
niques, known as conditional density estimation [79,80],
directly models the posterior distribution given a set of
samples fxg ∼ pðxjθÞ produced from the forward model,
where parameters θ are sampled according to some prior
proposal distribution fθg ∼ pðθÞ. We note that, given the
absence of explicit labels associated with the sampled

parameters of interest, estimating the probability density is
an example of an unsupervised learning problem.

1. Normalizing flows

In this paper we employ normalizing flows [46,47], a
class of models that provide an efficient way of construct-
ing flexible and expressive high-dimensional probability
distributions. Normalizing flows model the (conditional)
distribution over the parameters of interest p̂ϕðθjsÞ as a
series of transformations, denoted by f such that θ ¼ fðuÞ,
from a simple base distribution πðuÞ to the target distri-
bution. Suppressing the conditional dependence on s for
the moment for simplicity, we have

p̂ðθÞ ¼ πðuÞ
���� det

�∂u
∂θ

����� ¼ πðf−1ðθÞÞj det Jf−1ðθÞj; ð9Þ

where det Jf−1 is the Jacobian of the inverse transforma-
tion f−1.
The defining characteristic of transformations in flow-

based models is that they be diffeomorphic, i.e., f be
differentiable and invertible with a differentiable inverse.
This renders the Jacobian and inverse in Eq. (9) comput-
able, allowing for the evaluation of the probability density
of the target distribution p̂ðθÞ at a given parameter point θ
once the transformation is defined. In practice, the trans-
formation f (or f−1) is chosen such that det J can be
efficiently computed and is usually defined by a neural
network, and the base distribution πðuÞ is chosen to be a
standard Gaussian u ∼N ðu; 0; 1Þ, which we follow here.
A crucial property of diffeomorphic transformation

such as those that define normalizing flows is that
multiple transformations can be chained together
through composition. Given two transformations f1
and f2, their composition will also be differentiable and
invertible: det Jf1 ∘ f2ðθÞ ¼ det Jf2ðf1ðθÞÞ det Jf1ðθÞ and
ðf2 ∘ f1Þ−1 ¼ f−11 ∘ f−12 . This can be used to define more
expressive probability distributions by chaining together
several flow transformation. “Flow” thus refers to the
trajectory through which parameters in the simple base
distribution are transformed into the target parameter
space, and “normalizing” refers to the inverse trans-
formation into the base distribution. Flow-based models
are generative—given a new dataset x0, it is easy to sample
from the base distribution and then run the forward
transformation conditioned on x0, obtaining a set of
parameter samples representative of the posterior distri-
bution, fθg ∼ p̂ðθjx0Þ.
A number of methods have been proposed for defining

the flow transformation, e.g., based on affine transforma-
tions [81–84], spline-based transformations [85,86], and
continuous-time transformations [87]. We refer to Ref. [46]
for a recent review of normalizing flows, including details
of practical implementations as well as an overview of
proposed methods.
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2. Masked autoregressive flows for
(conditional) density estimation

In this paper we use masked autoregressive flows
(MAFs) [81] to define the flow transformation.
Autoregressive models can be used to learn a complex
joint probability density pðθÞ as a product of one-
dimensional conditional densities where each θi depends
only on the previous θ1∶i−1 in the parameter sequence:
pðθÞ ¼ Q

i pðθijθ1∶i−1Þ. The MAF is built using blocks
of affine transformations subject to the autoregressive
constraint; for a single block, the affine transformation
from u to θ is expressed as

θi ¼ ui · expαi þ μi; ð10Þ

where μi ¼ gμiðθ1∶i−1; sÞ and αi ¼ gαiðθ1∶i−1; sÞ are scaling
and shift factors, respectively, modeled by neural networks
and additionally parametrized by summaries s from the
forward model. The autoregressive property is enforced by
masking out connections between network layers using
the recipe introduced in Ref. [88]. The inverse trans-
formation is easily identified from Eq. (10). This allows
for an analytically tractable Jacobian determinant, for an
N-dimensional distribution given by

j det Jf−1ðθÞj ¼ exp

�
−
XN
i¼1

αi

�
ð11Þ

and a forward pass through the flow according to Eq. (10).
Multiple transformations fj can be composed together in
order to model more expressive posteriors:

p̂ðθjsÞ ¼ πðf−1ðθÞÞ
YK
j¼1

j det Jf−1j ðuj−1Þj; ð12Þ

where we have reinstated the conditional dependence on
data summaries s, keeping it implicit in the transformations
on the right-hand side. The log-probability of the posterior
can then be computed using Eq. (11):

log p̂ðθjsÞ ¼ log ½πðf−1ðθÞÞ� −
XK
j¼1

XN
i¼1

αji ; ð13Þ

which acts as the optimization objective during training.
Here, we use eight MAF transformations, each made up of
a two-layer masked neural network with 128 hidden units
and tanh activations. The ordering of parameters in the
autoregressive sequence is randomly permuted between
successive transformations in order to reduce dependence
on the specific ordering of input variables. Each trans-
formation is conditioned on summaries sðxÞ extracted
from the γ-ray maps x (described in the next section
below) by including these as additional inputs into the

transformation block; i.e., the scaling and shift factors in
Eq. (10) can be expressed as μi ¼ gμiðθ1∶i−1; sðxÞÞ and
αi ¼ gαiðθ1∶i−1; sðxÞÞ, respectively.

E. Learning summary statistics with neural networks

The curse of dimensionality makes it computationally
inefficient to condition the density estimation task on
the raw dataset x, i.e., the γ-ray pixel count map in the
ROI. Representative summaries s ¼ sφðxÞ of the data can
therefore be used in order to enable a tractable analysis,
where φ parametrizes the data-to-summary transformation.
Although many choices for data summaries are possible—
e.g., a principal component analysis or angular power
spectrum decomposition of the photon count map or simply
a histogram of the photon counts—in this paper, we use a
neural network to automatically learn low-dimensional
summaries that are optimized for the specific downstream
task at hand of estimating the posterior distributions of the
parameters associated with the forward model.

1. Graph construction and network architecture

The DeepSphere architecture [89–91], with a configu-
ration similar to and inspired by that employed in Ref. [41],
is used to extract representative summaries from γ-ray maps
and is briefly outlined here. DeepSphere is a graph-based
spherical convolutional neural network architecture tailored
to data sampled on a sphere and in particular is able to
leverage the hierarchical structure of data in the HEALPix
representation. This makes it well suited for our purposes.
The HEALPix sphere can be represented in terms of a

weighted undirected graph G ¼ ðV; E; AÞ, where V is the
set of Npix ¼ jVj vertices, E is the set of edges connecting
pixels, and A is the weighted adjacency matrix. Each
pixel i is represented by a vertex vi ∈ V and is connected
to the eight (or seven, depending on the pixel) vertices vj
which represent the neighboring pixels j of pixel i,
forming edges ðvi; vjÞ ∈ E. The weights of the adjacency
matrix over neighboring pixels ði; jÞ are given by
Aij ¼ exp ð−kri − rjk22=ρ2Þ, where ri specifies the three-
dimensional coordinates of pixel i. The kernel widths ρ at
a given HEALPix resolution are obtained from Ref. [89],
which used empirical measures of rotational equivariance
in order to optimize for this hyperparameter.
We use the combinatorial graph Laplacian, defined as

L ¼ D − A, where D is the diagonal degree matrix and
which can be used to define a Fourier basis on a graph. By
construction being symmetric and positive semidefinite, the
graph Laplacian can be decomposed as [92] L ¼ UΛUT ,
where U is an orthonormal eigenvector matrix and Λ is a
diagonal eigenvalue matrix. The Laplacian eigenvectors
then define the graph Fourier basis, with the Fourier
transform x̃ of a signal x on a graph being its projection
x̃ ¼ UTx. Given a convolutional kernel h, graph
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convolutions can be efficiently performed in the Fourier
basis as hðLÞx ¼ UhðΛÞUTx [92].
The isotropic DeepSphere convolutional kernel h

is defined as a linear combination of Chebyshev poly-
nomials, hðLÞ ¼ P

K
k¼0 ckTkðLÞ, where Tk are the order-k

Chebyshev polynomials and ck are the K þ 1 filter coef-
ficients which are the trainable parameters to be learned
during model optimization. The graph filtering operation
can then be expressed as

hðLÞx ¼ U

�XK
k¼0

ckTkðΛÞ
�
UTx ¼

XK
k¼0

ckTkðLÞx: ð14Þ

We set K ¼ 5, having checked that larger values do not
quantitatively affect the results of the analysis. TkðΛÞ acts
on the diagonal eigenvalue matrix, TkðΛiiÞ ¼ TkðΛÞii.
Following Refs. [41,90], the feature extraction architec-

ture is built out of graph convolutional layers which involve
progressively coarsening the pixel representation of the
γ-ray maps while increasing the number of filter channels at
each step. The input map corresponds to the 16,384 pixels
at HEALPix resolution nside ¼ 128 in the nested pixel
ordering within the single pixel corresponding to nside ¼ 1
covering the Galactic Center region, with the masked pixels
set to zero. Each graph convolution operation is followed
by a batch normalization, a ReLU nonlinearity, and a max
pooling operation which downsamples the representation
by a factor of 4 into the next coarser HEALPix resolution,
starting with input maps at nside ¼ 128 until a single pixel
channel at nside ¼ 1 remains after the final convolutional
layer. All together, seven layers of this kind are employed.
The number of filter channels is doubled at each convolu-
tional layer until a maximum of 256.
The output of the final convolutional layer is augmented

with two additional auxiliary variables—the log-mean and
log-standard deviation of the γ-ray map within the region of
interest—and passed, via a ReLU nonlinearity, through a
fully connected layer with 1024 hidden units outputting a
desired number of summary features, which we take as 128
in our baseline configuration. Pixels outside of the ROI as
well as masked PSs are set to zero in the input maps. All
input maps are standardized to zero mean and unit variance
across the training sample.
Using a convolutional neural network-based feature

extractor, we implicitly use an approximation to the full
data likelihood in Eq. (5) associated with our forward model
of emission in theGalacticCenter region. Themethod is thus
able to capture pixel-to-pixel correlations in the γ-ray map,
mitigating some of the limitations of approximate like-
lihood-based methods described in Sec. II B.

2. Optimization, training, and evaluation

The optimization objective in Eq. (13), log p̂ϕðθjsφðxÞÞ,
is used to train the graph convolutional and normalizing

flow neural networks simultaneously, optimizing their
respective parameters fφ;ϕg. 106 samples are generated
using the prior proposal distribution of parameters given in
Table I, and models are optimized with batch size 256 using
the AdamW [93,94] optimizer with initial learning rate
10−3 and weight decay 10−5, using cosine annealing to
decay the learning rate across epochs. Training proceeds for
up to 30 epochs with early stopping if the validation loss,
evaluated on 15% of samples held out, has not improved
after eight epochs.
After training, given a new dataset of either real or

simulated Fermi data in our ROI, the posterior is obtained
by drawing samples from the flow within the prior
distribution using rejection sampling, conditioning each
flow transformation on summaries extracted by the con-
volutional neural network with the new dataset as input.
The model is amortized, which means that after the upfront
cost of training the neural network, the required number of
posterior samples corresponding to a new dataset can be
obtained on a few-second timescale. This makes it efficient
to validate the performance of a trained model using mock
data, which we do in the following section before applying
the method to Fermi data.

III. TESTS ON SIMULATED DATA

We begin by validating our pipeline on simulated Fermi
data. We create simulated datasets with the parameters of
interest in the forward model fixed to posterior medians
obtained in a fit of the baseline model to real Fermi data and
test the ability of our model to infer the presence of either
DM-like or PS-like signals on top of the modeled astro-
physical background.
Figure 2 shows results of the analysis conditioning the

trained baseline model on five simulated maps where
the GCE consists of purely DM-like emission, drawing
20 000 representative samples in each case. The left column
shows the median (solid lines) as well as middle-68%
(95%) containment [dark (light) shaded regions] of the
posteriors on the source-count distributions F2dN=dF of
GCE-correlated (red) and disk-correlated (blue) PS emis-
sion, evaluated pointwise in flux F. The dashed gray
vertical lines correspond to the flux associated with a
single expected photon count per source (below which
Poissonian and PS-like emission is expected to be nearly
degenerate) and the approximate 1σ threshold for detecting
individual sources (below which the degeneracy is often
observed in practice [32,33]). The middle column shows
the posteriors on various modeled emission components,
excluding emission from resolved 3FGL PSs as the
posterior in that case is largely unconstrained owing to
the fact that resolved PSs are masked out in the analysis.
The right column shows the joint posterior on the fraction
of DM- and PS-like emission in proportion to the total
inferred flux in the ROI. The true underlying parameter
values from which the data were generated are represented
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by dotted lines in the left and middle columns and by star
markers in the right column. We see that, in all cases
shown, the pipeline successfully recovers the presence of
DM-like emission, with little flux—≲10% of the total
inferred GCE emission in all cases—attributed to PSs.
Figure 3 shows the corresponding results for simulated

data containing PS-like emission correlated with the GCE.
We see that PS-like emission is successfully inferred in
each case while at the same time exemplifying some

degeneracy with the Poissonian component. Furthermore,
as seen in the left column, the method is able to characterize
the contribution of the two modeled PS components
through the inferred source-count distribution. The inferred
posteriors for the contribution of the DM-like component
are seen to be compatible with zero. The overall flux of all
modeled components, both PS and diffuse, is seen to be
consistent with the true values used for the simulations in
both sets of tests.

FIG. 2. Results of the analysis on simulated Fermi data where the GCE consists of purely DM-like emission, with different rows
corresponding to five different simulated realizations. The left column shows the inferred source-count distribution posteriors for GCE-
correlated (red) and disk-correlated (blue) PSs. Dashed vertical lines corresponding to the flux associated with 1 expected photon per
source and the approximate 1σ threshold for detecting individual sources are shown for reference. Solid lines correspond to the inferred
posterior median, and the lighter and darker bands represent the middle-68% and 95% posterior containments, respectively, evaluated
pointwise in flux F. The middle column shows the posteriors for the Poissonian templates. The right column shows the joins posterior on
the flux fractions of DM-like and PS-like emission. The dotted lines (in the left two columns) and the stars (in the right column)
correspond to the true simulated quantities. DM-like emission is successfully inferred in each case, with the other parameter posteriors
corresponding faithfully to the true simulated values.
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IV. RESULTS ON FERMI DATA

We finally apply our neural simulation-based inference
pipeline to the real Fermi dataset. As a point of comparison,
we also run the NPTF method described in Sec. II B on the
data using the same spatial templates and prior assumptions
as those used in the corresponding SBI analyses. A
summary of the results for different analysis configurations,
obtained by retraining the model using different assump-
tions about spatial templates or parameter priors, is shown
in Table II, including the fraction of overall emission
attributed to the GCE, fraction of the GCE attributed to
PS-like emission, flux corresponding to the highest break in
the GCE broken power-law source count, fraction of the
overall emission attributed to disk-correlated PSs, and flux

corresponding to the highest break in the disk-correlated
broken power-law source count. Medians as well as
middle-68% ranges on the respective posteriors are pre-
sented. In these analyses, we draw a larger number (50 000)
of samples from the trained flow in order to reduce sample
variance when quoting summary quantities of the inferred
posteriors.

A. Baseline analysis on Fermi data

Figure 4 shows posterior distributions for the baseline
analysis on Fermi data, with the top panel showing results
for the SBI analysis and bottom panel corresponding
to the NPTF analysis. Consistent with previous studies
using a similar configuration, a significant fraction of the

FIG. 3. The same as Fig. 2, but for five simulated realization of Fermi data where the GCE consists of predominantly PS-like emission.
PS-like emission is inferred in each case, with the other posteriors corresponding faithfully to their true simulated quantities. The GCE-
correlated source-count distribution is also seen to be successfully recovered in the left panel. We note that, as detailed toward the end of
Sec. II A, PS flux below ∼5 photons is partially accounted for by the smooth DM-like component, which is responsible for the sharp
turn-off in the modeled as well as inferred GCE-correlated SCD with decreasing flux.
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GCE—55.0þ8.8
−22.9%—is attributed to PS-like emission

within the NPTF framework. For the SBI analysis, although
posteriors for the astrophysical background templates are
seen to be broadly consistent with those inferred in the
NPTF analysis, the preference for PSs is reduced, with
37.9þ8.9

−19.2% of the GCE emission being PS-like. We also
note that, in both cases, the inferred GCE-correlated
source-count distribution sits at lower values than those
inferred in previous NPTF analyses, which have generally
found the bulk of PSs to lie just below the 3FGL PS
detection threshold at ∼2–3 × 10−10 ph cm−2 s−1 [30].
Given our doubly broken power-law parametrization, the
actual peak of the SCD is not physically meaningful—it

can be driven simply by the position of the lowest break
which marks a soft boundary between PS-like and smooth
(but still possibly PS-driven) emission for accounting
purposes. Instead, we use the upper break as a proxy for
where the brightest unresolved sources are inferred to lie. In
this baseline configuration, the SCD upper break is con-
strained to be 1.3þ0.3

−0.4 × 10−10 ph cm−2 s−1, corresponding
to ∼8–10 photons. This “dimming” of the inferred SCD
compared to previous NPTF analyses was also observed in
Ref. [42], where it was found to be largely driven by the use
of more up-to-date diffuse models. We note that even
though the SBI analysis prefers a smaller GCE fraction in
point sources, there is significant posterior overlap in the

TABLE II. Inferred values for the inferred GCE flux as a fraction of the total flux, the GCE PS-like flux as a fraction of the total GCE
flux, the position of the upper source count flux break Fb;1 for the GCE and disk PS components, and the disk flux as a fraction of the
total flux. For the baseline configuration as well as the various systematic variations explored, the medians along with the 16th and 84th
posterior percentile values are shown for the simulation-based inference (SBI) and NPTF analyses.

Configuration Method GCE
Total [%] GCWPS

GCE [%] FGCE
b;1 [10−10 ph cm−2 s−1] Disk PS

Total [%] FDisk
b;1 [10−10 ph cm−2 s−1] Posteriors

Baseline SBI 7.8þ0.2
−0.6 37.9þ8.9

−19.2 1.3þ0.3
−0.4 5.0þ0.5

−1.1 2.2þ0.2
−0.5 Fig. 4

NPTF 7.7þ0.2
−0.6 55.0þ8.8

−22.9 1.1þ0.1
−0.2 5.4þ0.5

−1.1 2.0þ0.2
−0.5

Diffuse Model A SBI 6.4þ0.2
−0.6 57.3þ9.9

−25.6 1.2þ0.2
−0.3 4.9þ0.6

−1.3 2.3þ0.2
−0.5 Fig. 6

NPTF 6.7þ0.2
−0.6 74.9þ6.6

−22.5 1.1þ0.1
−0.2 5.1þ0.5

−1.3 2.2þ0.2
−0.5

Diffuse Model F SBI 5.0þ0.2
−0.6 59.4þ10.4

−26.3 1.4þ0.3
−0.4 4.5þ0.5

−1.1 3.3þ0.3
−0.8 Fig. 7

NPTF 5.2þ0.2
−0.5 67.5þ8.6

−26.7 1.1þ0.2
−0.3 6.4þ0.5

−1.1 2.0þ0.2
−0.4

Thick disk SBI 7.9þ0.2
−0.6 42.2þ9.6

−21.0 1.6þ0.4
−0.6 3.5þ0.6

−1.3 2.7þ0.4
−0.8 Fig. 8

NPTF 8.2þ0.3
−0.7 75.0þ7.1

−22.6 1.1þ0.1
−0.2 2.3þ0.7

−1.1 3.1þ0.6
−1.2

Alternative priors SBI 7.7þ0.2
−0.6 54.2þ11.9

−27.4 0.9þ0.2
−0.4 5.9þ0.5

−1.1 2.4þ0.2
−0.4 Fig. 12

NPTF 7.9þ0.2
−0.6 77.7þ6.5

−21.4 0.9þ0.1
−0.3 5.9þ0.5

−1.1 2.3þ0.2
−0.4

FIG. 4. Results of the baseline analysis on real Fermi data. (Top row) Analysis using neural simulation-based inference with
normalizing flows, and (bottom row) using the 1-point PDF likelihood implemented in the NPTF framework. While a moderate
preference for a PS-like origin of the GCE is seen in the case of the NPTF analysis (bottom), the simulation-based inference analysis
attributes a smaller fraction of the GCE to PS-like emission (top).
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inferred joint PS and DM flux fraction posteriors between
the SBI and NPTF analyses.
Besides the modeled GCE-correlated components, the

fluxes associated with the other Poissonian astrophysical
templates in our analysis are broadly consistent with
previous studies of the Galactic Center. We note, in
particular, that the relatively high ICS emission inferred
in our analysis is consistent with previous studies of the
Galactic Center region where this component was floated
separately [11,13,42,95].

B. Signal injection test on Fermi data

A crucial test of self-consistency is the ability of the
method to recover an artificial signal injected onto the real
γ-ray data. As shown in Ref. [34], initial applications of the
NPTF to the GCE would generally fail this closure test,

with implications for characterizing the nature of PSs in the
Galactic Center explored in Refs. [32,33]. In particular, it
was shown that this test can help diagnose underlying
issues associated with mismodeling of the diffuse fore-
ground emission, which have the potential to bias the
characterization of PS populations. Recent NPTF analyses
using improved descriptions of foreground modeling [32]
show consistent behavior under this closure test. We
perform a version of this test within our framework, testing
the ability of our method to recover different mock signals
injected onto the real Fermi data.
Figure 5 shows the results of this test, with the different

rows corresponding to different signal configurations—
purely DM, bright PSs, medium-bright PSs, and dim PSs.
Bright, medium-bright, and dim PS configurations are
taken have a maximum PS flux [given by the highest
break in Eq. (2)] at 20, ten, and five photon counts,

FIG. 5. Joint posterior for the flux fraction of PS-like and DM-like emission when an artificial DM signal is injected onto the real
Fermi data. The different rows correspond to different signal types, from top to bottom, purely DM, dim PSs (maximum of five expected
counts per PS), moderately bright PSs (maximum of ten expected counts per PS), and bright PSs (maximum of 20 expected counts per
PS). The leftmost panels shows the baseline analysis on Fermi data, with subsequent panels showing results with progressively larger
signals injected onto the data. The dotted lines show the expected total emissions including the injected signal and the median fluxes.
The additional injected DM and PS signals are seen to correctly reconstructed within the respective posterior bounds in all cases.
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respectively, with other parameters set to median values
inferred on real Fermi data, except the lower break, which
was set to two photon counts. The leftmost columns show
the baseline analysis on Fermi data, with subsequent
columns showing signals of progressively larger sizes
injected onto the data, up to approximately the size of
the original GCE signal. The dotted horizontal and vertical
lines show the total emissions including the injected signal
and the median fluxes for the PS and DM components of
the GCE inferred without any additional injected signal,
respectively.
The additional injected signal is seen to be reconstructed

correctly within the inferred 95% confidence interval in all
four cases. For the DM signal (top row), the brighter
inferred DM signals tend to be slightly overestimated. The
injected PS signals (rows 2–4) are correctly reconstructed
in all cases, with the dimmer PS signals showing a more
prominent flat direction with Poissonian emission, as
expected.

C. Systematic variations on the analysis

We test the robustness of our results by exploring several
systematic variations on the baseline analysis, using alter-
native descriptions for the diffuse foreground emission
template, the spatial distribution of disk-correlated sources,
and prior configuration. Here, the neural network is
retrained on a new set of simulations obtained using the
alternative forward model before applying it to Fermi data.
Results of these analysis variations are summarized in
Table II.

1. Variation on the diffuse foreground model

In addition to diffuse Model O considered in the baseline
analysis, we consider the alternative models A and F from

Ref. [11] to model the diffuse foreground emission, again
including separate templates for gas-correlated emission
and inverse Compton scattering. While shown to be a worse
fit to the present dataset [32], these models have been
previously used in the GCE literature [32,71,72] and
provide a useful comparison point.
Results for these variations are shown in Figs. 6 and 7,

respectively. In each case, results using the SBI pipeline are
shown in the top row, with corresponding results using the
NPTF pipeline in the bottom row. A somewhat larger
fraction of the GCE, 57.3þ9.9

−25.6, is attributed to PSs when
using diffuse Model A (Fig. 6) compared to the baseline
analysis using Model O. The corresponding NPTF analysis
finds a still larger fraction of 74.9þ6.6

−22.5%. Using Model F, a
similar 59.4þ10.4

−26.3 of the GCE is attributed to PSs, with
qualitatively similar results found by the NPTF analysis.
The total emission absorbed by the GCE in this case is
about ∼60% of that found in the baseline scenario. This is
consistent with the results of Ref. [32], which found that the
total GCE flux could vary by up to a factor of ∼2 between
analyses using different diffuse models.

2. Variation on the disk template

The baseline scenario considered a disk-correlated PS
population with a spatial distribution given by Eq. (4),
setting the scale height zs ¼ 0.3 kpc corresponding to the
“thin-disk” scenario. Given uncertainties in the spatial
distribution of the point source population (in particular,
that of millisecond pulsars) associated with the Galactic
disk, a “thick-disk” spatial distribution has been employed
in the literature as an alternative model [30,32,34], where
the scale height is typically set to zs ¼ 1 kpc.
Results using a thick-disk template for the disk-

correlated PS population are shown in Fig. 8. For the

FIG. 6. The same as Fig. 4, but with the diffuse foreground emission modeled using the alternative Model A.
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SBI analysis, a slightly larger fraction 42.2þ9.6
−21.0 of the GCE

flux is attributed to a PS population in this case compared to
the baseline scenario. Once again, the NPTF analysis esti-
mates a higher relative fraction 75.0þ7.1

−22.6% of the GCE in
point sources. The emission attributed to disk-correlated PSs
is reduced in this case compared to the baseline scenario,
possibly indicating a redistribution of PS-like emission
between the GCE- and disk-correlated components.

3. Alternative prior specification

In the baseline analysis, we have chosen to enforce a soft
distinction between relatively bright PSs emitting ≳5
photons in expectation and a combination of dimmer

PSs and smooth emission following Poisson statistics taken
together. This is done by placing a prior on the source-
count slope below this chosen counts threshold that
encourages a steeply falling distribution with decreasing
PS flux, allowing for a conservative interpretation of our
results as a lower bound on the amount of PS emission. We
also explore an alternative configuration where the lower
break on the SCD is allowed to go down to a single photon,
giving the PS component more overlap with the dim
emission and thus accounting for more emission in the
PS-like component. The results of this analysis on data are
summarized in the last row of Table II.
Reassuringly, the total flux attributed to the GCE is

consistent between the alternative and baseline prior

FIG. 8. The same as Fig. 4, but with the spatial distribution of disk-correlated PSs modeled using a thick-disk template [scale factor
zs ¼ 1 kpc in Eq. (4)] rather than the default thin-disk template (zs ¼ 0.3 kpc).

FIG. 7. The same as Fig. 4, but with the diffuse foreground emission modeled using the alternative Model F.
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choices. As expected, allowing the lower SCD break to go
down to smaller expected counts increases the fraction of
the GCE flux attributable to PS-like emission, for the SBI
case increasing the median fraction by ∼16% relative to
the baseline case. The NPTF analysis sees a larger
increase in PS flux, with the median increasing by
∼23%. The fact that the NPTF analysis is relatively more
sensitive to the details of modeling close to the single-
photon limit is not surprising—since mismodeling is most
likely to affect this dimmer regime in the source-count
distribution, this is also where the two methods can be
expected to diverge more significantly. The position of the
upper flux break, quantifying the inferred fluxes of the
brightest sources in the PS population, is slightly reduced
to 0.9þ0.2

−0.4 × 10−10 ph cm−2 s−1, corresponding to 5–7 pho-
tons. The posterior distributions for these cases, as well as
the prior distribution on the source-count distribution
corresponding to the two prior choices, are shown in
Appendix A. There, we also check that the inferred
emission below five photons is consistently redistributed
between the PS-like and DM-like components when using
the two different prior configurations.

V. SUSCEPTIBILITY TO MODEL
MISSPECIFICATION

Given the complex astrophysical environment in the
Galactic Center, a key challenge in γ-ray analyses of the
GCE is that associated with effects of mismodeled signal
and background templates. As explored in detail in
Refs. [30,32,33,71,72] within the NPTF framework, mis-
modeling can hamper the characterization of an inner
galaxy PS population and, if sufficiently severe, can result
in the attribution of mismodeled residuals to a spurious PS
population when the underlying emission is actually
smooth in nature.
In this section we assess the susceptibility of our

simulation-based inference pipeline to several known
sources of mismodeling. We do so by creating mock data
with a smooth GCE signal and a background model that
was perturbed compared to the model that was used to train
the SBI pipeline and analyzing it with our baseline neural
network, i.e., the one trained on the forward model
described in Sec. II A and used in the baseline analysis
on data in Sec. IV. The ability of our method to correctly
characterize the injected signal is then indicative of the
level of robustness that can be expected in the real data
under corresponding circumstances. Results for the various
tests performed are shown in Fig. 9 and will be described
below. In each case, we show posteriors obtained by
combining 50 000 samples from analyses of ten different
mock datasets (thinned by a corresponding factor of 10) in
order to characterize the “average” mismodeling associated
with a given configuration. The first row of Fig. 9 shows the
aggregate analysis without mismodeling, i.e., conditioned
on mock data created with the same forward model as that

used for training the neural posterior estimator, as a point of
comparison.

A. Test of diffuse mismodeling using an alternative
diffuse emission template

We create mock data using diffuse Model A and analyze
it using our baseline analysis pipeline trained with Model
O. The aggregated results over ten different maps are
shown in the second row of Fig. 9. We see that even though
some of the other diffuse component posteriors are shifted
relative to their true values, the DM-like emission is
faithfully recovered, and no additional PS-like flux is
inferred.

B. A data-driven test of large-scale mismodeling

We construct a data-driven model of foreground
mismodeling on large spatial scales (specifically, well
above the scale of the instrumental PSF) and assess
the ability of our method to recover a smooth DM-like
signal in this case. Following Ref. [96], we perform a
Poissonian template analysis on the Fermi dataset x,
modulating the diffuse model template Tdif , which
describes the bremsstrahlung and neutral pion decay
components of diffuse Model O, by an (exponentiated)
Gaussian process (GP) f:

x ∼ Pois
�X

i≠dif
AiTi þ expðfÞAdifTdif

�
: ð15Þ

The other Poissonian templates Ti, including a GCE DM
template and the inverse Compton component of the
diffuse foreground model, are treated as before using
an overall normalization factor Ai. f ∼N ðm;KÞ is the GP
component with prior mean m set to zero, and the
covariance K described using the Matérn kernel with
smoothness parameter ν ¼ 5=2. We refer to Ref. [96] for
further details of the analysis, as well as validation of the
GP-augmented template fitting pipeline on simulated data.
Five random samples from the Gaussian process describ-

ing multiplicative mismodeling relative to the real Fermi
data when using our baseline diffuse Model O are shown in
Fig. 10. The largest mismodeling by magnitude in this case
is inferred to be concentrated in the southern regions of the
baseline ROI. We note that, when analyzing the real Fermi
data, the recovered GCE flux tends to be lower by up to
40% when using the GP-modulated diffuse model com-
pared to that obtain in a Poissonian fit without the GP, with
the missing emission absorbed by the GP-modulated
template. This is indicative of the fact that a component
of the centrally concentrated emission could be better
described by the modulated template rather than the
generalized NFW template modeling DM annihilation.
We leave a detailed study of implications of this fact for
the morphology of the excess to future work. When
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creating simulated data containing DM-like emission in
association with this modulated template, the fraction of
DM-like flux in the simulation was correspondingly
reduced by 40%.

In order to test the effect of such mismodeling on
recovery of a DM signal we modulate the bremsstrahlung
and neutral pion decay-tracing components of Model O
using samples drawn from the inferred Gaussian process.

FIG. 9. Effect of mismodeling on a smooth GCE within our analysis framework. Each row shows aggregate posteriors collected over
ten simulated samples; row-wise from top to bottom: (i) no mismodeling; simulated data is constructed with the same templates as those
used in the forward model for training. (ii) Mock data created with diffuse Model A, showing a possible effect of diffuse mismodeling.
(iii) Mock data where the diffuse template, described by Model O, is modulated by draws from a Gaussian process modeling large-scale
mismodeling inferred from the real Fermi data. (iv) Mock data where the thick-disk template is used in lieu of the thin-disk template.
(v) Mock data where the GCE signal in the Northern hemisphere is twice as large as that in the Southern hemisphere. While some PS-
like emission is inferred, it is consistent with zero in all cases, and evidence for a smooth GCE is robust.
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These simulated samples are used as mock data that are
then analyzed with our baseline model, where the unmodu-
lated Model O was used to create training samples. The
results of this test are shown in the third row of Fig. 9. It can
be seen that while large-scale mismodeling can distort the
total flux attributed to individual modeled components, in
particular causing the disk-correlated PS emission to be
significantly overestimated, preference for a smooth origin
of the signal remains robust.

C. Effect of mismodeling the disk spatial template

We replace the thin-disk template, described by a scale
height zs ¼ 0.3 kpc in Eq. (4), with a thick-disk template
with zs ¼ 1 kpc in the simulated data. Results of then
analyzing ten mock maps using the thin-disk template used
in the baseline configuration are shown in the fourth row
of Fig. 9. We see that the disk-correlated PS emission
is underestimated, and a small amount of GCE PS-like
emission is inferred while the marginal DM-like posterior
is not significantly affected. This could be indicative of a
reshuffling of the emission between disk- and GCE-
correlated components.

D. Effect of an unmodeled asymmetry in the signal

Besides mismodeling associated with astrophysical
background templates, another concern is that associated
with mismodeling of the signal emission itself. In particu-
lar, as pointed out in Refs. [71,72], a North-South asym-
metry in a putative dark matter signal, if unaccounted
for, could lead to spurious inference of a PS population
associated with the purely smooth, asymmetric signal in the
NPTF framework. References [71,72] found preference for
such a scenario in real Fermi data, with the GCE signal in
the Northern hemisphere a factor of ∼2 larger than that in
the Southern hemisphere when the GCE template in the two
regions is floated separately in a ROI defined by r < 10°. In
this case, for certain diffuse models, no preference for a PS-
like GCE was found in contrast to the case when a single
template was used to model the GCE.
We test the impact of a North-South-asymmetric dark

matter signal within our framework by running our baseline

pipeline on simulated datasets where the dark-matter-like
signal in the Northern hemisphere of the ROI is 2 times
larger than that in the Southern hemisphere, mimicking the
preference in real data found in Refs. [71,72]. The result of
this test over ten such simulated realizations is shown in
the last row of Fig. 9. We see that even with the presence
of a substantially asymmetric DM-like signal we retain a
preference for a predominantly smooth GCE. While some
additional PS-like emission is inferred, the effect is small
compared to that exhibited within the NPTF framework in
analogous tests [71,72]. We attribute this to the fact that the
DeepSphere-based convolutional neural network feature
extractor can account for pixel-to-pixel correlations in the
γ-ray count map and can thus be sensitive to local PS-like
structures. In contrast, the 1-point PDF-based NPTF
framework, being agnostic to the ordering of the pixels,
can notice spurious PS-like structures in the distribution of
“residuals” associated with an asymmetric signal when
analyzed with a symmetric template. As done in Ref. [32],
we emphasize that the presence of a substantial asymmetry
in the GCE signal, if not attributed to diffuse mismodeling,
would point toward astrophysical explanations of the GCE
since a true dark matter signal would not be expected to be
significantly asymmetric.
In all cases tested, while posteriors for certain templates

can show systematic biases, preference for a smooth origin
of the GCE remains robust and the fraction of inferred
PS-like emission is compatible with zero. Finally, it is also
interesting to similarly consider the effect of mismodeling
on a PS-like GCE signal. We perform a subset of the
tests described above on simulated GCE PS signals in
Appendix B, showing successful recovery of an over-
whelmingly PS-like GCE in the face of mismodeling.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have leveraged recent advances in
neural simulation-based inference in order to jointly char-
acterize a putative DM-like signal and PS-like population
associated with the observed Fermi Galactic Center excess.
Consistent with Ref. [41], which used a Bayesian neural
network and first leveraged a DeepSphere-based feature

FIG. 10. Five random samples from the Gaussian process description of large-scale multiplicative mismodeling associated with the
gas-correlated component of diffuse foreground Model O when applied to the real Fermi data.
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extraction architecture for analyzing γ-ray data in the
Galactic Center region, our analysis based on conditional
posterior density estimation with normalizing flows finds a
reduced contribution associated with a potential population
of unresolved PSs to the GCE compared to previous
analyses based on the photon statistics of the γ-ray map.
In particular, depending on the analysis configuration, we
find a median value of ∼40%–60% as the fraction of GCE
emission that can be attributed to a PS population, with the
brightest unresolved sources inferred to be at somewhat
smaller fluxes ∼10−10 ph cm−2 s−1 compared to values
found in previous analyses based on the NPTF framework
[30]. The NPTF analyses performed in this work find a
similarly dimmer source-count distribution, in all cases
however attributing a larger fraction ∼50%–80% of the
GCE to a PS population as compared to the corresponding
SBI analyses. Even though the SBI analyses presented here
generically attributed a smaller fraction of the GCE flux to
PSs, we note that there is significant overlap within
posterior uncertainties between results returned by the
two methods, as can be seen from Table II. We note that,
as detailed in Sec. II, modulo details associated with the
respective inference procedures (i.e., the posterior sampling
algorithm in the NPTF case and architecture specification
and training in the SBI case), we expect differences in
results between the two methods to be primarily driven by
the distinct ways they respond to model misspecification
and the existence of a finite point spread function.
It is interesting to ask whether the fraction of PS

emission inferred in our analysis is consistent with physi-
cally motivated models of astrophysical PS emission, e.g.,
from a millisecond pulsar population, in the Galactic
Center. While a detailed study is beyond the scope of this
paper, Ref. [97] recently estimated this fraction for several
models in the literature. They generally find an Oð1Þ
fraction of point sources to be resolvable (although with
a wide range of variation given the uncertainties associated
with modeling the astrophysical PS population), consistent
with the results of our analysis. However, given the inherent
degeneracy between a population of dim PSs and diffuse
emission, a definitive statement about the origin of the
smooth component cannot be made and more exotic
contributors like dark matter annihilation cannot be
ruled out.
The results of this paper are broadly consistent with and

complementary to those obtained in Ref. [42], which used
a DeepSphere-based architecture which was, in contrast to
our parametric approach, combined with a novel neural
network-based nonparametric approach to infer the counts
distributions associated to PS populations using histo-
grams with modeled uncertainties [44]. Their approach
does not explicitly distinguish between Poissonian and
PS-like components, treating emission associated with the
inferred counts PDF below some threshold as effectively
Poissonian. While this makes a direct comparison to the

results of their analysis challenging, the overall conclu-
sions regarding the fraction of emission that can be
attributed to PSs and the characteristics of the GCE and
disk source-count distributions are qualitatively similar
between the two studies. In particular, both papers find a
dimmer GCE-correlated source-count distribution, with a
smaller lower bound ≳Oð40%Þ on the fraction of the total
GCE emission associated to PSs compared to previous
studies based on the NPTF.
Our qualitative conclusions are robust to the systematic

variations we have explored, including different models
for the diffuse foreground and spatial distribution of
disk-correlated PS emission. We used a novel Gaussian
process-based method to construct a data-driven model of
large-scale spatial mismodeling, finding our method to be
resilient to such effects when it comes to inferring the
presence of DM-like emission. As in any Galactic Center
γ-ray analysis, we caution of the potential of unknown
systematics, such as mismodeling on the scale of the size
of the Fermi-LAT point-spread function, to bias the results
and conclusions of our analysis. Although machine-
learning-based analyses can utilize more of the information
encoded in the forward model, and in particular in the
present case can take advantage of pixel-to-pixel correla-
tions, this can also make them more susceptible to specific
modeled features compared to traditional techniques based
on data reduction to hand-crafted data summaries. We leave
a more detailed investigation of the potential impact of
these effects on our analysis to future work.
Several improvements to the framework presented

here are possible. Although we have used a dataset
restricted to the top quartile of photons by quality of
PSF reconstruction, as shown in Ref. [71] the use of a larger
data sample can provide improved sensitivity to a PS
population while acting as a consistency check with results
obtained on the smaller sample. Since our method does not
rely on an approximate treatment of the PSF and can exploit
pixel-to-pixel correlations in inferring the presence of PS
populations, we expect that it should be able to better
handle the presence of a larger PSF compared to the NPTF
approach. For the same reason, widening the energy range
employed below 2 GeV may provide improved sensitivity
since the GCE signal extends to lower energies. The
inclusion of energy-binning information in the analysis
can be implemented in a straightforward manner by
splitting up the data and template maps into individual
energy bins and feeding these as separate channels in the
graph-convolutional feature extraction network. The use of
more complex feature extraction architectures can addi-
tionally improve the robustness of our results. While we
have considered a simulated-based inference framework
based on posterior density estimation with normalizing
flows, alternative frameworks based on likelihood-ratio
estimation [98–104] or flow-based likelihood estimation
[105,106] can provide complementary ways to characterize
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the γ-ray PS population in the Galactic Center.
Additionally, the use of sequential active-learning methods
[106] and methods that make use of additional latent
information from the simulator [98–100,107,108] can
significantly improve the simulation sample efficiency
and allow for extensions to more complex forward models,
which can be important in particular for an energy-binned
analysis and if including additional degrees of freedom for
the astrophysical background models.
Since diffuse mismodeling is the largest source of

uncertainty in any analysis that aims to characterize the
GCE, we also note the possibility of using adversarial
learning methods [109] or distance correlations [110]
to account for systematic differences between the
modeled and real Fermi data. Alternatively, generative
modeling of the diffuse foreground either in a Gaussian
process-based data-driven framework or using, e.g.,
autoencoders trained on an ensemble of plausible diffuse
models, can provide a principled way to account for the
large latent space associated with diffuse emission mod-
eling. Motivated by quantitative variations in our results
on Fermi data when using different disk templates, self-
consistently accounting for plausible variations in the
spatial distribution of disk-correlated PSs can strengthen
the results of our analysis when it comes to characterizing
the PS population in the Galactic Center. These extensions
can lead to a more robust characterization of an unre-
solved PS population in the Galactic Center region
associated with the GCE, and we leave their study to
future work.
The code used to obtain the results in this paper as well

as a pretrained neural network model associated with the
baseline analysis presented here is available [111].
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APPENDIX A: PRIOR-PREDICTIVE
DISTRIBUTIONS AND RESULTS FOR

ALTERNATIVE PRIORS

Figure 11 shows the prior distribution induced
on the source-count distribution for the baseline PS
model with upper SCD break priors uniform in the interval
Sb;1 ∈ ½5; 40� photons (left) and the alternative prior
specification with Sb;1 ∈ ½1; 30� photons (right). The latter
prescription gives the PS-like component more overlap
with emission just above one photon, since the slope
below the second break encourages the SCD to steeply
drop. It can be seen that both prior choices still allow for
significant PS-like emission below their respective count
soft thresholds.
Figure 12 shows posterior distributions for the

analysis using the alternative prior set. These results
are summarized in the bottom row of Table II. As
expected, both the SBI (top row) and NPTF (bottom
row) analyses show a larger inferred PS flux compared to
the analysis using the baseline prior choice. Reassuringly,
the total flux absorbed by both GCE components taken
together remains consistent between the analyses with
different prior choices.
Finally, Fig. 13 shows a check of how the partitioning of

flux between PS-like and DM-like components varies
between the two prior choices. The excess dark matter
flux (shown as inferred counts per pixel hSi) in the baseline
prior configuration (topmost data point) is seen to be
consistent with the cumulative excess flux below five
photons in the alternative prior configuration compared
to the baseline one (second data point from the top). When
this excess flux is added to the total PS flux in the baseline
configuration (middle data point), the combination (second
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data point from the bottom) is additionally seen to be
consistent with the total PS flux in the alternative prior
configuration (bottommost data point). We note that this
test is merely heuristic—in particular, since the posteriors
for baseline and alternative prior analyses are described by
independent samples, the component counts were com-
bined or subtracted assuming uncorrelated errors (com-
puted as standard deviations over the respective posteriors),
which is certain to not be the case. However, this test is
indicative of the fact that the inferred flux below the
threshold we set for accounting purposes is redistributed
between the PS and DM components, as would be expected
if the two analyses were self-consistent.

APPENDIX B: MISMODELING EFFECTS ON A
SIMULATED GCE PS SIGNAL

Figure 14 shows the analog of Fig. 9 where we test the
effect of mismodeling on a PS-like rather than smooth
GCE. As in the test on simulated maps with a smooth GCE
described in Sec. V, the data containing GCE-correlated
PSs are created using a forward model that is different in a
specific way from that used to train the neural network
model: (i) No mismodeling; simulated data are constructed
with the same templates as those in the forward model used
for training the posterior estimator (top row). (ii) Mock
data created with diffuse Model A, showing the effect of
diffuse mismodeling (middle row). (iii) Mock data where

FIG. 11. Prior-predictive distribution on the source-count distribution for the baseline PS model priors (left) and alternative prior
specification giving the PS component more overlap with emission close to the single-photon limit (right). The median (lines), middle-
68% containment (darker bands), and middle-95% containment (lighter bands) regions are shown.

FIG. 12. The same as Fig. 4, but using the alternative prior specification for the PS model, with the break on the lower SCD break
uniform within Sb;1 ∈ ½1; 30� photons rather than Sb;1 ∈ ½5; 40� photons. This configuration gives the PS model more overlap with the
dim PS-like emission.
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the thick-disk template is used in lieu of the thin-disk
template (bottom row).
In each case, the aggregate posterior described by 50 000

samples obtained over ten simulations and then thinned by
a factor of 10 is shown. Since the GP-modulated (smooth)
diffuse template tends to absorb a substantial fraction of the
GCE flux when applied to real Fermi data, a test using this
modulated template was not performed here as it would not
yield self-consistent results. It can be seen from the right-
most column of Fig. 14 that a substantially PS-like GCE is
recovered in both cases tested, although a small fraction of
flux is attributed to DM-like emission when mismodeling
of the diffuse emission template is considered.

APPENDIX C: EFFECT OF ALLOWING A
NEGATIVE NORMALIZATION FOR THE DM

TEMPLATE

Reference [34] showed that systematic mismodeling in
GCE analyses can be manifest in terms of unphysical
negative values of the normalizations of spatial templates
and in particular that a significantly negative Poissonian
DM template normalization can be symptomatic of

FIG. 13. A heuristic check of the distribution of PS-like flux
below five photons in the analyses with baseline and alternative
priors. The excess dark matter flux (shown as counts per pixel
hSi) in the baseline prior configuration (topmost data point) is
seen to be consistent with the cumulative excess flux below five
photons in the alternative prior configuration compared to the
baseline one (second data point from the top). When this excess
flux is added to the total PS flux in the baseline configuration
(middle data point), the combination (second data point from the
bottom) is additionally seen to be consistent with the total PS flux
in the alternative prior configuration (bottommost data point).

FIG. 14. Effect of mismodeling on a PS-like GCE within our analysis framework. Each row shows aggregate posteriors collected over
ten simulated samples; row-wise from top to bottom: (i) No mismodeling; simulated data are constructed with the same templates as
those used in the forward model. (ii) Mock data created with diffuse foreground Model A, showing a possible effect of diffuse
mismodeling. (iii) Mock data where the thick-disk template is used in lieu of the thin-disk template. A substantially PS-like GCE is
inferred, although a subdominant fraction of DM-like flux is inferred as well when considering diffuse foreground mismodeling.
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FIG. 15. The same as Fig. 3 (SBI analysis on simulated Fermi data with PSs only), but with the normalization of the DM-like template
allowed to go negative. The posteriors for the DM-like flux now contain zero, as expected for a consistent analysis.

FIG. 16. The same as Fig. 4 (SBI analysis on real Fermi data), but with the normalization of the DM-like template allowed to take on
negative values. Results consistent with the baseline analysis are seen, and the DM-like flux does not take on unphysical negative values.
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oversubstraction due to diffuse mismodeling. We perform a
version of this test by retraining our model using simulated
samples where the prior on the normalization of a DM-like
signal was allowed be negative—specifically, it wasmodified
from hSPoissGCEi ∈ ½0; 2.5� ph=pix in the baseline case to
hSPoissGCEi ∈ ½−1; 2.5� ph=pix.We note that since the amplitude
of the GCE signal is much smaller than that of the Galactic
diffuse emission, which is restricted to be positive, the total
expected counts in a pixel are never negative even when
allowing for a negative normalization for the DM template.
Results with this model on simulations containing

purely PS-like emission, in analogy with those shown

in Fig. 3 for the baseline case, are shown in Fig. 15. The
posterior on the contribution of DM-like emission now
contains zero and, over the simulation ensemble, is
roughly centered on it. This is as expected for a con-
sistency when purely PS-like emission is present, further
validating the analysis.
We apply this model to Fermi data, showing results in

Fig. 16. We see that the inferred posteriors are consistent
with those obtained in the baseline analysis in Fig. 4 where
the DM-like flux is restricted to positive values; in
particular the DM-like flux does not tend to unphysical
negative values.
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