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We present a multiple test for the targeted search of continuous gravitational waves from an ensemble of
known pulsars, combining multidetector single pulsar statistics defined through the 5n-vector method. In
order to maximize the detection probability, we describe a rank truncation method to select the most
promising sources within the ensemble, based on the p-values computed for single pulsar analysis. To test
the efficiency of our method, we use a Monte Carlo procedure and define a p-value for the ensemble that is
an overall p-value for the hypothesis of continuous wave emissions from a set of known pulsars. We also
perform a pilot search on real data from the O3A dataset of the two LIGO detectors.
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I. INTRODUCTION

Continuous gravitational waves (CWs) are promising
targets for the interferometric gravitational waves detectors.
CWs are persistent and quasimonochromatic signals that
can be originated from nonaxisymmetric spinning neutron
stars, and/or potentially from other exotic sources [1].
The standard definition for the gravitational wave

amplitude for a nonprecessing triaxial star rotating around
a principal axis with rotation frequency frot is [2]

h0 ¼
16π2G
c4

Iϵf2rot
d

; ð1Þ

where I is the star moment of inertia with respect to the
rotation axis, d is the distance from the Earth and ϵ, the stars
ellipticity.
So far, no CW signal has been detected in the analysis of

interferometric detectors data. Recent searches from the
three observing runs (O1, O2, and O3A) for the LIGO and
Virgo observatories [3–7] set stringent constraints on
neutron star ellipticity.
In the latest results for targeted search [7], where the

source parameters (sky position, frequency, and frequency
derivatives) are assumed to be known with high accuracy,
the LIGO and Virgo Collaborations set direct observational
limits on the amplitude that are, for the first time, two
millisecond pulsars-close (for J0437-4715) or below (for
J0711-6830) the theoretical spin-down limit. This allows us

to constrain the fraction of rotational energy which may be
lost due to the gravitational-wave emissions.
Our work tries to improve the detection probability for

the targeted search of CWs, considering an ensemble of
individually undetectable pulsars. Specifically, in this paper
we describe a procedure to test the hypothesis that CWs are
emitted from a selected set of pulsars.
Traditional multiple tests consider either each hypothesis

separately, as in the Bonferroni-like procedures [8], or all
hypotheses simultaneously as in the case of the Fisher test
[9] (or other p-value combinations [10]). In order to
improve the detection probability, since only few signals
are expected to dominate over the majority, it may be more
desirable to consider the combined evidence for subsets of
the hypotheses, as in the case of [11,12].
In CW analysis, the first method to detect CWs from an

ensemble of known pulsars was proposed by Giazotto et al.
in [13]. Recently, other methods have been presented by
Cutler and Schutz [14] and by Fan et al. [15] combining
F-statistic values, by Pitkin et al. using a Hierarchical
Bayesian method [16], and by Buono et al. in [17]
combining 5-vector statistics values [18].
In this paper, we generalize the method described in [17],

defining a multidetector ensemble statistic using the 5n-
vector method (the extension of the 5-vector to a network of
detectors [19]). Since we expect that only a small number of
signals could be detectable with the current detectors’ sen-
sitivity, we propose a rank truncation method that improves
the detection probability controlling the look-elsewhere effect
[20].We test the sensitivity of themethodusingaMonteCarlo
procedure and considering different prior assumptions on the*ldonofrio@na.infn.it
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strength of the expected signals. We also test the method
considering real data and a set of simulated pulsars.
The paper is organized as follows. In Sec. II we study the

ensemble statistic as the linear combination of single pulsar
statistics, considering different choices for the coefficients
of the combination. In Sec. III we describe the rank-
truncation method that allows us to select the top ranking
sources according to the significance of the corresponding
individual test. In Sec. IV, using a Monte Carlo algorithm,
we infer the noise distribution of the proposed statistic as a
function of the number of pulsars considered in the
ensemble. In Sec. V we describe a Monte Carlo procedure
to estimate the sensitivity of the method and a possible
strategy for determining upper limits. In Sec. VI, we
generalize the pipeline considering real data from the
O3A dataset of the two LIGO detectors. Conclusions are
presented in Sec. VII. In the Appendixes, we describe some
mathematical aspects of the proposed method.

II. THE DETECTION STATISTIC

The ensemble statistic can be defined as theweighted linear
combination of the N multidetector single pulsar statistics,

t ¼
XN
i¼1

ðbþ;iSþ;i þ b×;iS×;iÞ; ð2Þ

where the Sþ=×;i are defined through the 5n-vector method
(with n the number of considered detectors, seeAppendixA).
A theoretical choice for the coefficientsbþ=×;i canbe obtained
by maximizing the critical ratio (see Appendix B),

b̄þ=×;i ¼
jHþ=×;ij2jAþ=×

i j8H2
0;i

ðPn
j¼1 σ

2
j · Tj · jAþ=×

j;i j2Þ2
; ð3Þ

where σ2j ,Tj are the variance of theGaussian data distribution
around the signal frequency (usually one tenth of a Hz wide)
and the observation time in the jth detector, respectively.
jAþ=×

i j2 ¼ P
n
j¼1 jAþ=×

j;i j2 where jAþ=×
j;i j2 is the 5-vector

signal plus/cross template for the ith pulsar in the jth detector.
The coefficients in (3) depend also on the polarization
functionsHþ=×;i and on the amplitudeH0;i that are unknown
in a real analysis.
The ensemble statistic with coefficients in Eq. (3) is the

theoretical limit that we want to approach with an appro-
priate choice for the coefficients. In [17] a joint ensemble
statistic using 5-vectors and combining multidetector
statistics for single pulsar was proposed, defined as the
weighted sum of the detection statistics in each detector.
We propose a new ensemble statistic, based on the

5n-vectors, with coefficients,

bþ=×;i ¼
jAþ=×

i j4P
n
j¼1 σ

2
j · Tj · jAþ=×

j;i j2
: ð4Þ

As described in Appendix C, the coefficients in Eq. (4)
normalize the single-pulsar statistic with respect to the
detectors’ sensitivity and observation time. In this way, the
noise distribution of this normalized single pulsar statistic
is the same for each pulsar, while the signal distribution
also has an analytic expression in contrast to [17,19].
Figure 1 compares the different definitions considering a

set of simulated signals (see Appendix D). We ranked these
signals by decreasing values of α, defined as the ratio
between the injected amplitude H and the minimum
detectable amplitude hmin [21]

H ¼ α · hmin ≈ α · 11

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SðfgwÞ
Tobs

s
; ð5Þ

where SðfgwÞ is the one-sided power spectral density at the
expected signal frequency fgw, and Tobs is the observa-
tion time.
In Fig. 1, we considered two ideal detectors with

sensitivity and observation time equal to the LIGO
Livingston (LLO) design case for the O3A run. As α prior
distribution with 0.01 < α < 0.6, we chose an exponential
distribution with mean value equal to 0.09.
The continuous line, obtained with coefficients in

Eq. (4), approaches the t definition with coefficients in
Eq. (3) and outperforms the t definition in [17]. In Fig. 1,
the detection probability increases twofold compared to
single detector case and is 20% better compared to [17].
For each definition (except for the dashed line where

the coefficients are amplitude-weighted), the detection
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FIG. 1. Detection probability for a fixed false alarm probability
of 1% increasing the number of simulated pulsars in the ensemble
and considering Gaussian noise in two detectors equal to LLO in
O3A run. The injected signals are ranked by decreasing values of
α [see Eq. (5)]. The dashed line is obtained considering the t
definition with coefficients in (3), the continuous line with
coefficients in (4), the ‘+’ and ‘·’ line with the t definition using
5-vectors as in [17]. The ‘·’ line is obtained considering only one
detector.
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probability increases with an increasing number of signals
in the ensemble up to a maximum and then starts to
decrease. This is linked to the prior exponential distribution
that fixes the signals’ strength; by adding smaller and
smaller signals we do not contribute to the ensemble signal
but, rather, to the noise.

III. THE RANK TRUNCATION METHOD

As shown in Fig. 1, in order to improve the detection
probability for the ensemble method, we need to rank
pulsars trying to estimate each signal strength. Indeed, in a
real analysis we do not know the α parameter that ranks the
sources in Fig. 1.
In [17], we used the single pulsar p-value as a statistical

parameter to rank the sources in the ensemble.
Nevertheless, by increasing the number of pulsars, a series
of nonsignificant results may together suggest significance.
This is the well-known look-elsewhere effect.
Moreover, ranking pulsars for increasing p-values means

ranking pulsars for decreasing values of the normalized
single pulsar statistic [defined in brackets in Eq. (2) with
coefficients in Eq. (4),

S̄ð1Þ < S̄ð2Þ < … < S̄ðNÞ: ð6Þ

By considering the measured values S̄ðiÞ as order statistics
(see Appendix E), we can control the look-elsewhere effect
since the S̄ðiÞ distribution depends on N, the number of
measured statistics (i.e., the number of analyzed pulsars).
We propose the partial sum TðkÞ of the ordered statistics

values,

TðkÞ ¼
XN

i¼N−kþ1

S̄ðiÞ ð7Þ

as the ensemble detection statistic for our rank truncation
method. Indeed, the TðkÞ distribution depends on N for
each k; in this way we combine pulsars with the smallest
p-values that are assumed near the detection threshold
controlling the look-elsewhere effect.
If we knew that among the N pulsars there is at most one

signal, the optimal procedure to control the look-elsewhere
effect would be the Šidák correction, as used in CWs
narrow-band analysis [4,22].
For k ¼ N, the distribution of TðNÞ coincides with the

distribution of t.
For k ¼ 1, Tð1Þ is the largest order statistic since

Tð1Þ ¼ S̄ðNÞ, with known analytic distribution (see
Appendix E and Fig. 2 for the noise case).
In the general case 1 < k < N, the convolution of order

statistics has no simple expression. The complexity of the
analytic form of TðkÞ is due to the dependency introduced
by ordering the p-values; when the (kþ 1)th p-value, that is
a random variable, happens to be relatively small, the k

smallest p-values have to squeeze into a relatively tiny
interval from zero to that value. As shown in Sec. IV and
Sec. V, we use a Monte Carlo algorithm to recover the TðkÞ
distributions as a function of k.

IV. SUM OF ORDER STATISTICS
DISTRIBUTION

In this section we describe the Monte Carlo algorithm
used to determine the TðkÞ noise distribution. We fixed
N ¼ 100; that is, an ensemble of 100 pulsars.
First, we have considered the case of Gaussian noise with

zero mean value. Therefore, the normalized single pulsar
statistic, with coefficients given in Eq. (4), have a common
Erlangðx; 2; 1Þ distribution, that is a Gamma distribution
with positive integer shape and scale parameters (see
Appendix C).
To infer the TðkÞ noise distribution, we have used the

following Monte Carlo algorithm.
(1) Generate an Erlangðx; 2; 1Þ distribution with

200,000 points to simulate single-pulsar noise
distribution.

(2) Select randomly N points to simulate an ensemble
detection.

(3) Rank theseN points for decreasing values (that is for
increasing p-values).

(4) Repeat steps 1–3, 10,000 times.
The variable TðkÞ is the sum of the k largest points selected
each times. Empirically, we have found that a gamma
function can fit the distribution to a good approximation for
all values of k. As shown in Fig. 3, the distribution of TðNÞ
coincides with the distribution of t, since the shape
parameter approaches 2N ¼ 200 and the scale parameter
tends towards 1, as expected. Indeed, the sum of Erlang
random variables with the same scale parameter follows an

FIG. 2. Noise distribution (blue histogram) for Tð1Þ defined in
Eq. (7) for k ¼ 1 and inferred using the Monte Carlo algorithm
described in Sec. IV. The dashed line is the single pulsar noise
distribution using the normalized statistic. The continuous line is
the theoretical probability distribution function for the largest
order statistic for N ¼ 100.
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Erlang distribution with shape parameter equal to the sum
of the shape parameters [i.e., Erlangðx; 2N; 1Þ].
The fitting parameters in Fig. 3 depend only on N, the

number of considered pulsars, and on the assumption of
Gaussian noise for the detectors’ data.

V. P-VALUE FOR THE ENSEMBLE

In this section we test our method for different choices of
the prior assumption on the expected signals’ strength. By
considering a set of N sources, we compute a p-value for
the overall hypothesis that all single hypotheses—or part of
them—are true using the statistic TðkÞ. The signal distri-
bution for the normalized single-pulsar statistic is linked to
a noncentral χ2 distribution with noncentrality parameter Λ
defined in Eq. (C5) forN ¼ 1. To fix the signal strength, we
have used different prior distributions for the Λ parameter.
Specifically, we have considered an exponential distribu-
tion with different mean values Λ̄ and a flat distribution
with only ten signals, fixing the Λ value to have a given Pd,
i.e., the detection probability for single pulsar at a fixed
false alarm probability of 1%.
To test our method, and also to study the sensitivity of

the ensemble analysis, we have applied the following
Monte Carlo procedure.
(1) Fix the prior distribution for Λ.
(2) Generate N noncentral χ2 distributions with 200,000

points with the appropriate Λ to simulate individual
signal distributions.

(3) Select randomly N points, one from each distribu-
tion to simulate an ensemble detection.

(4) Rank these N points for decreasing values (that is,
for increasing p-values).

(5) Compute the p-value for the ensemble, as a function
of k, by using the parameters from the gamma fit to
the TðkÞ noise distribution.

(6) Repeat steps 2–5, 10,000 times.

(7) For each k, compute the median value for the 10,000
p-values of ensemble.

As shown in Fig. 4, if Λ ¼ 0 for each pulsar, the median
of the p-value for TðkÞ is almost 50% since in the noise
hypothesis, the p-value follows a uniform distribution for
each k. As expected, the median of the p-value decreases by
increasing the mean value Λ̄.
The set of median p-values is an indication of the

sensitivity of the method since you have 50% of probability
to obtain a set of p-values below the considered curve for
the fixed Λ̄.
Figure 5 shows that using TðkÞ, we improved the

detection probability even if there are few signals in the
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FIG. 3. Shape and scale parameters as a function of k, inferred
from the fit to the TðkÞ noise distributions using a Gamma
distribution.
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FIG. 4. Median for the p-value distribution computed using the
Monte Carlo algorithm described in Sec. Vas a function of k and
for different mean values Λ̄ of the Λ prior exponential distribu-
tion. In any case, the detection probability for single pulsar is at
most 40%. For Λ̄ ¼ 0, Λ is fixed to zero for all pulsars.
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FIG. 5. Median for the p-value distribution computed using the
Monte Carlo algorithm described in Sec. Vas a function of k. Λ is
different from zero for ten pulsars and is fixed considering Pd, the
detection probability for single pulsar at the fixed false alarm
probability of 1%.
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ensemble. If in the analyzed ensemble there are ten signals
with Pd ¼ 25%, there is almost a 50% probability of
obtaining a p-value for the ensemble below the 1% false
alarm threshold.
It is clear that fixing the number of signals and Pd for

each signal, you can improve the detection probability for
decreasing N. In a real analysis, however, we cannot
optimize N and we need a criteria to select the most
promising sources. This criteria should be based on the data
introducing an order in the set of pulsars. This is, for
example, the case of the coherence, an independent
parameter that measures the resemblance between the
shape of the expected signal and the data [18].
The coherence is not strictly related to the value of the

measured statistic but it can happen that the highest values
for the coherence correspond to the smallest p-values, also
in the hypothesis of no signal.
We suggest to fix N according to physical observations,

for example considering pulsars with upper limit on the
strain amplitude below the spin-down limit or considering
the set of millisecond pulsars.

A. Upper limit

In the case of no evidence for CW signals from the
ensemble, we can consider all the selected pulsars to
compute the analytic signal distribution for the TðkÞ
statistic. Indeed, the TðNÞ distribution coincides with the
t distribution obtained in Appendix C.
The aim is to provide an upper limit on the set of

amplitudes by using the t signal distribution.
According to Eq. (C5), Λ is a function of the unknown

N-squared amplitudes and of the unknown pulsar polari-
zation parameters, η and ψ . It can be rewritten as

Λ ¼
XN
i¼1

H2
0;i · fiðη;ψÞ: ð8Þ

fi depends also on the sky position and on the detector
sensitivity at the expected frequency for the ith pulsar, that
are known parameters for a targeted search.
Marginalizing over the unknown polarization parameters,

assuming a uniform distribution, we can define an approxi-
mated value fi for each fiðη;ψÞ. We have verified that, with
this approximation, the error for each fi is below 5%.
It follows that,

Λ ∼
XN
i¼1

H2
0;i · fi: ð9Þ

From the measured value of the ensemble statistic, we can
estimate the value Λ95% that entails a detection probability
of 95% according to the analytic signal distribution.
Considering Eq. (9) and Λ95%, we can obtain an upper
limit on the sum of the squared amplitudes.

VI. APPLICATION TO O3A DATA

In this section we describe the application of the
ensemble search method to real data, considering LIGO
Livingston and LIGO Hanford O3A run datasets [23]. To
test the method, we injected fake signals into the O3A data
considering the set of pulsars in Appendix D, and fixed
appropriate amplitudes that matched the desired Λ.
For single pulsar analysis, we used the Band Sample

Data (BSD) framework, as in [7]. The BSD framework [24]
is based on the construction of BSD files, i.e., complex time
series, each covering 10 Hz and 1 month of the original
dataset. Using the BSD files, the computational cost of the
full-coherent analysis is reduced to a few CPU-minutes per
source per detector.
Since noise in real data does not necessarily follow a

Gaussian distribution, we constructed the experimental
distributions for the normalized single pulsar statistic con-
sidering a range of off-source frequencies as in [22]. Figure 6
shows the fitted Gamma parameters to the experimental
distributions of the normalized statistic for each pulsar. For
several pulsars, the fitted shape and scale parameters tend
towards 2 and 1, respectively, as expected for Gaussian noise
distribution.
To generalize the Monte Carlo algorithm described in

Sec. IV, we replaced the Erlang distribution in step one with
the N different experimental noise distributions inferred
from the data. We constructed the TðkÞ statistics, and for
each k the fitted shape and scale parameters are shown in
Fig. 7 and compared with the parameters in Fig. 3 for the
Gaussian noise case.
As shown in Sec. V, the sensitivity of the method depends

mainly on the fixed distribution ofΛ and on the numberN of
pulsars in the ensemble. Considering real data, the sensitivity
depends also on the GW frequencies that determine the
frequency bands where the signals are expected.
Figure 8 shows that the results obtained in Sec. Vare also

valid in the case of real data. Indeed, as also shown in
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FIG. 6. Gamma parameters inferred from the Gamma fit to the
experimental distributions of the normalized single pulsar sta-
tistics for each pulsar.
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Fig. 6, the Gaussian distribution for the noise is a good
approximation for the O3A dataset.
Since when the noise distribution is not perfectly

Gaussian the tails of the statistic distributions may be
heavier, the sensitivity of the ensemble method slightly
decreases compared to Fig. 4. For the set of analyzed
pulsars and O3A data, we have more than a 50% proba-
bility to obtain a p-value of the ensemble below the 1%
detection threshold for an exponential Λ distribution with
mean value of 0.8.

VII. CONCLUSION

In this work, we propose a multidetector ensemble
method for detecting CWs signals from a set of individually
undetectable pulsars.

Since few signals are expected near the detection thresh-
old, we optimize the detection probability for the ensemble
by considering a subset of the total number of analyzed
pulsars. The procedure is based on a rank truncation
method, since we consider the top ranked statistics to
detect the combined effects of a few individually undetect-
able signals.
The proposed ensemble statistic TðkÞ combines the k top

ranked statistics for single pulsar p-value, defined through
the 5n-vector method. The procedure can be easily
generalized to different pipelines, for example using the
F-statistics.
To study the performances of the method, we constructed

the distribution for the TðkÞ p-value as a function of k,
considering different signal strengths for the combined
individual tests. As shown in Sec. V, the ensemble method
improves the detection probability for CW signals. In case
of no detection, we can also provide an upper limits on the
sum of the squared amplitudes for the analyzed pulsars.
The results, described in Fig. 3 and in Fig. 4, depend on

the number N of the analyzed pulsars, and on the power of
the combined individual tests and on the Gaussian noise
assumption.
To apply the ensemble procedure to real data, we

generalize the results in Fig. 2 for the TðkÞ noise distri-
butions, combining the experimental noise distributions for
each pulsar statistic inferred from the data.
In Fig. 8, we show that using the O3A dataset for the two

LIGO detectors the sensitivity of the method slightly
decreases compared to the Gaussian noise case.
We plan to apply the ensemble method to the most recent

LIGO and Virgo observation runs and to the set of pulsars
analyzed in targeted searches. The potential detection of a
gravitational wave emission from an ensemble cannot
provide information on the single-pulsar parameters, but
it would give clear evidence of the presence of CW sources
in the Galaxy.
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APPENDIX A: 5n-VECTOR METHOD

The 5n-vectors [19],

X ¼ ½X1;…;Xn�; Aþ ¼ ½Aþ
1 ;…;Aþ

n �;
A× ¼ ½A×

1 ;…;A×
n � ðA1Þ

combine the data 5-vectors Xj and the template 5-vectors

Aþ=x
j ([18], with j ¼ 1;…; n) for the considered pulsar in

the n detectors.
Using the 5n-vectors, the multidetector single pulsar

statistic S is defined as

S ¼ jAþj4jĤþj2 þ jA×j4jĤ×j2; ðA2Þ
where (the same for Ĥ×)

Ĥþ ¼ X ·Aþ

jAþj2 ¼
P

n
j¼1Xj · ðAþ

j Þ�P
n
k¼1 A

þ
k · ðAþ

k Þ�

¼ 1

jAþj2 ðjA
þ
1 j2 · Ĥþ;1 þ � � � þ jAþ

n j2 · Ĥþ;nÞ: ðA3Þ

Each data 5-vector interacts only with the corresponding
template.
In the hypothesis of Gaussian noise with zero mean and

variance σ2j in each detector, the components of the data
5-vector are also distributed according to a complex
Gaussian distribution with mean value zero and variance
σ2j · Tj where Tj is the observation time for the jth detector.

The two complex estimators Ĥþ=× have also Gaussian
distributions,

Ĥþ=× ∼ Gaussðx; 0; σ2þ=×Þ ðA4Þ
with

σ2þ=× ¼
Xn
j¼1

σ2j · Tj · jAþ=×
j j2

jAþ=×j4 : ðA5Þ

Since jĤþ=×j2 ¼ Re½Ĥþ=×�2 þ Im½Ĥþ=×�2, it follows that

jĤþ=×j2 ∼ Expðx; σ2þ=×Þ ¼
1

σ2þ=×

e
− x
σ2þ=× : ðA6Þ

We can compute the noise S distribution considering the
weighted linear combination in (A2).
If a CW signal is present in the analyzed data, the

distributions of the two complex estimators Ĥþ=× are

Ĥþ=× ∼ Gaussðx;H0 · ejγ ·Hþ=×; σ2þ=×Þ; ðA7Þ

where Hþ=× are the polarization functions, H0 is the
amplitude and γ the phase.
jĤþ=×j2 have a noncentral-χ2 distribution (apart from the

factor kþ=×)

jĤþ=×j2 ∼
kþ=×

2
e−

kþ=×xþλþ=×
2 I0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ=×λþ=×x

q
Þ; ðA8Þ

where I0 is the modified Bessel function of the first kind,
and

kþ=× ¼ 2

σ2þ=×

; λþ=× ¼ kþ=× · jHþ=×j2 ·H2
0: ðA9Þ

Compared to the single-detector case, the distributions
are the same. The difference is the expression for the
variances σ2þ=×.

APPENDIX B: THEORETICAL COEFFICIENTS

Let us consider a random variable Y ¼ P
N
i¼1 aiXi that is

the linear combination of N random variables Xi with
unknown coefficients ai. The critical ratio (CR) is defined as

CR ¼ ðμsig − μnÞ2
Θ2

n
; ðB1Þ

whereμsig is themean of the signal distribution ofY, while μn
and Θ2

n are, respectively, the mean and variance of Y when
there is noise only. If the signal distributions of Xi are
noncentral-χ2 distributions with K degrees of freedom and
noncentrality parameter Λi, the CR is

CR ¼ ðPN
i¼1 aiΛiÞ2

2K
P

N
k¼1 a

2
k

: ðB2Þ

The coefficients that maximize the CR are

āi ¼ Λi: ðB3Þ

In the case of the F-statistic, the distribution is a 4D χ2

distribution with a noncentrality parameter equal to the
squared optimal signal to noise ratio ρ2 in the case of signal
[2]. Linearly combining F-statistic values from different
pulsars, the coefficients that maximize the CR are āi ¼ ρ2i ,
in agreement with [15].
In [17], the 5-vector ensemble statistic t can be written as

t ¼
XN
i¼1

aiSi ¼
XN
i¼1

ðbþ;iSþ;i þ b×;iS×;iÞ; ðB4Þ

where N is the pulsars number in the ensemble and Sþ=×

have 2-D χ2 distributions [apart from the factor kþ=×; see
Eqs. (A6) and (A8)]. Therefore, the coefficients that
maximize the CR are
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b̄þ=×;i ¼ λþ=×;i · kþ=×;i ¼
jHþ=×;ij2jAþ=×

i j4H2
0;i

σ4i · T
2
obs

: ðB5Þ

These results are in agreement with [17], since the
coefficients that maximize the CR for the single-pulsar
(N ¼ 1) statistic S are bþ=× ¼ jHþ=×j2jAþ=×j4.
If S is defined using the 5n-vector method, the coef-

ficients of t that maximize the CR are

b̄þ=×;i ¼ λþ=×;i · kþ=×;i ¼
jHþ=×;ij2jAþ=×

i j8H2
0;i

ðPn
j¼1 σ

2
j ·Tj · jAþ=×

j;i j2Þ2
; ðB6Þ

where jAþ=×
i j2 ¼ P

n
j¼1 jAþ=×

j;i j2 and Tj is the observation
time in the jth detector. To check this, if n ¼ 1 the
expression in (B6) is equal to (B5).

APPENDIX C: ENSEMBLE STATISTIC
DISTRIBUTIONS

The coefficients in (4) are equal to the inverse of the
variance in (A4)

bþ=×;i ¼
jAþ=×

i j4P
n
j¼1 σ

2
j · Tj · jAþ=×

j;i j2
≡ 1

σ2þ=×;i

: ðC1Þ

In the case of Gaussian noise and considering (A6), the
distribution of bþ=×;i · Sþ=×;i is

bþ=×;i ·Sþ=×;i≡bþ=×;i · jĤþ=×;ij2 ∼Expðx;1Þ ¼ e−x ðC2Þ

The ensemble statistic t in (2) is the sum of 2N exponential
random variables with mean values equal to one. It follows
that

t ∼ Erlangðx; 2N; 1Þ ¼ xð2N−1Þe−x

ð2N − 1Þ! ; ðC3Þ

which is the Erlang distribution with the scale parameter
equal to one and the shape parameter equal to twice the
number of pulsars N.
If a signal is present into the data, bþ=×;i · Sþ=×;i

distribution is proportional to noncentral-χ2 distribution,

bþ=×;i · Sþ=×;i ∼ 2 · Chið2x; 2; λþ=×Þ
¼ e−xþ

λþ=×
2 I0ð

ffiffiffiffiffiffiffiffiffiffiffiffi
λþ=×x

q
Þ: ðC4Þ

Therefore, t is the sum of 2N noncentral-χ2 random
variables. The signal distribution is the noncentral-χ2

distribution with 4N degrees of freedom and noncentrality
parameter Λ,

Λ ¼
XN
i¼1

ðλþ;i þ λ×;iÞ ¼
XN
i¼1

H2
0;iðkþ;i · jHþ;ij2 þ k×;i · jH×;ij2Þ

¼
XN
i¼1

2 ·H2
0;i

� jAþ
i j4 · jHþ;ij2P

n
j¼1 σ

2
j · Tj · jAþ

j;ij2
þ jA×

i j4 · jH×;ij2P
n
k¼1 σ

2
k · Tk · jA×

k;ij2
�
: ðC5Þ

APPENDIX D: SIMULATED PULSARS

To test the pipeline, we used a set of simulated pulsars.
For each pulsar, we randomly fixed the sky position.

We chose a uniform distribution for the polarization

parameters, an exponential distribution for the GW fre-
quency between 20 Hz and 120 Hz (see Fig. 9), and a
uniform distribution for the first derivative of the GW
frequency. We fixed the sensitivity and the observation
time considering the O3A design sensitivity for LIGO
Livingston and LIGO Hanford.

APPENDIX E: ORDER STATISTICS

Let X1; X2;…; XN be a set of independent and identi-
cally distributed random variables. Let FðxÞ and fðxÞ be
the cumulative distribution function (cdf) and the proba-
bility distribution function (pdf), respectively. Consider a
realization/measurement for these N random variables: the
k-th order statistic XðkÞ is defined as the kth smallest value
of the obtained sample [26],

Xð1Þ < Xð2Þ < … < XðkÞ < … < XðNÞ; ðE1Þ

20 40 60 80 100 120
0

5

10

15

20

25

30

FIG. 9. Histogram of the GW frequencies in Hz for the set of
simulated pulsars used to test the ensemble method.
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XðkÞ takes the value of Xk if Xk is the kth random variable
when the realizations are ranked in ascending order. It is
straightforward to infer the cumulative distribution function
FNðxÞ for XðNÞ

FNðxÞ ¼ PðXðNÞ < xÞ ¼ PðX1 < x ∪ … ∪ XN < xÞ
¼ PðX1 < xÞ ∪ … ∪ PðXN < xÞ ¼ ½FðxÞ�N: ðE2Þ

It follows that the probability distribution function
fNðxÞ is

fNðxÞ ¼
dFNðxÞ

dx
¼ N · ½FðxÞ�ðN−1Þ · fðxÞ ðE3Þ

With similar considerations we can infer that the cumu-
lative distribution function and the probability distribution
function for Xð1Þ are

F1ðxÞ ¼ PðXð1Þ < xÞ ¼ 1 − PðXð1Þ > xÞ
¼ 1 − ½PðX1 > xÞ ∪ … ∪ PðXN > xÞ�
¼ 1 − ½1 − FðxÞ�N; ðE4Þ

f1ðxÞ ¼
dF1ðxÞ
dx

¼ N · ½1 − FðxÞ�ðN−1Þ · fðxÞ: ðE5Þ

The smallest- and largest order statistic /pdf are special
cases of the kth order statistic cdf/pdf,

FkðxÞ ¼ PðXðkÞ < xÞ ¼
XN
i¼k

�
N
i

�
½FðxÞ�i½FðxÞ�N−i; ðE6Þ

fkðxÞ ¼
N!

ðk − 1Þ!ðN − KÞ! ½FðxÞ�
k−1½1 − FðxÞ�N−kfðxÞ:

ðE7Þ
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