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We derive the empirical formulas for the neutron star mass and gravitational redshift as a function of the
central density and specific combination of the nuclear saturation parameters, which are applicable to the
stellar models constructed with the central density up to threefold nuclear saturation density. Combining
both empirical formulas, one also estimates the neutron star radius. In practice, we find that the neutron star
mass (radius) can be estimated within ∼10% (a few percent) accuracy by comparing the mass and radius
evaluated with our empirical formulas to those determined with the specific equation of state. Since our
empirical formulas directly connect the neutron star mass and radius to the nuclear saturation parameters,
one can discuss the neutron star properties with the specific values of nuclear saturation parameters
constrained via nuclear experiments.
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I. INTRODUCTION

A neutron star is produced as a compact remnant through
a supernova explosion, which occurs at the last moment of
a massive star’s life. The neutron stars are in extreme states,
which is hard to be realized in terrestrial laboratories. In
particular, due to the nature of the nuclear saturation
properties, it is quite difficult to obtain the nuclear
information in a higher density region through the terres-
trial experiments. This is a reason why the equation of state
(EOS) for neutron star matter has not been fixed yet.
Namely, the structure of the neutron star and its maximum
mass are not exactly determined. Thus, the observations of
the neutron stars and/or the phenomena associated with the
neutron stars are quite important for understanding the
physics in such extreme states.
For example, the discovery of the 2M⊙ neutron stars [1–4]

has ruled out some of the soft EOSs as the EOS for neutron
star matter. That is, the EOS, with which the maximum mass
does not reach the observed mass, can be ruled out. In
addition, the light bending induced by the strong gravitational
field, which is one of the important relativistic effects,
modifies the pulsar light curve, which principally tells us
the stellar compactness, i.e., the ratio of the stellar mass to its
radius (e.g., [5–10]). In practice, through the observations
with the Neutron Star Interior Composition Explorer operat-
ing on the International Space Station, the mass and radius of
PSR J0030þ 0451 [11,12] and PSR J0740þ 6620 [13,14]
are constrained.Owing to thegravitational wave observations

in the event of GW170817 [15], the tidal deformability of the
neutron star just before the merger of the binary neutron stars
is also constrained, which tells us that the 1.4M⊙ neutron star
radius should be less than 13.6 km [16]. Furthermore, it is
proposed that the neutron star mass and radius may be
determined with the technique of asteroseismology through
the future gravitational wave observations (e.g., [17–25]).
These astronomical constraints on the neutron star mass and
radius indirectly constrain the EOS for neutron star matter,
especially for a higher density region.
On the other hand, terrestrial experiments are obviously

important for extracting the nuclear information, which also
constrains the EOS for neutron star matter, even though the
resultant constraint may be mainly around the nuclear
saturation density. Up to now a lot of experiments world-
wide have been done to fix the nuclear saturation param-
eters. Owing to these attempts, some of the saturation
parameters have been constrained well, but many param-
eters, especially for higher order terms, still remain uncer-
tain (see Sec. II for more detail). For instance, even the
constraint on the density dependence of the nuclear
symmetry energy, which was recently reported from two
large facilities in Japan and the U.S., still has large
uncertainties [26,27]. Additionally, since the EOS for
neutron star matter can be characterized by the nuclear
saturation parameters, the neutron star properties may be
also associated with the saturation parameters. Thus, to
improve our understanding of the nuclear properties, the
constraint on the neutron star mass and radius from the
astronomical observations are quite important as well as*sotani@yukawa.kyoto-u.ac.jp
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constraints on the nuclear properties from the terrestrial
experiments.
Nevertheless, even if one would accurately observe the

neutron star mass and/or radius, it is difficult to directly
discuss the nuclear saturation parameters. This is because
the neutron star properties are associated with the EOSs,
which can be characterized by the nuclear saturation
parameters, but direct connection between the neutron star
properties and nuclear saturation parameters is still unclear.
To partially solve this difficulty, we have already found a
suitable combination of the nuclear saturation parameters,
with which the low-mass neutron star models can be
expressed well [28]. In this study, we extend the previous
work and try to derive the empirical formulas for the mass
and gravitational redshift of neutron star models con-
structed with the central density up to threefold nuclear
saturation density, which helps us to directly discuss the
association between the neutron star properties and nuclear
saturation parameters.
This manuscript is organized as follows. In Sec. II, we

brieflymention the EOSs considered in this study. In Sec. III,
we systematically examine the neutron star models and
derive the empirical formulas for the neutron starmass and its
gravitational redshift as a function of the nuclear saturation
parameters. Finally, in Sec. IV, we conclude this study.
Unless otherwisementioned, we adopt geometric units in the
following, c ¼ G ¼ 1, where c and G denote the speed of
light and the gravitational constant, respectively.

II. EOS FOR NEUTRON STAR MATTER

To construct the neutron star models by solving the
Tolman-Oppenheimer-Volkoff (TOV) equation, one has to
assume an EOS for neutron star matter. In this study, we
mainly adopt the phenomenological nuclear EOS models,
focusing only on the unified EOS, i.e., the neutron star crust
EOS is constructed with the same nuclear model as in the
neutron star core EOS. As a phenomenological macro-
scopic model, we adopt the EOSs proposed by Oyamatsu
and Iida (hereafter referred to as the OI-EOS) [29,30]. The
OI-EOSs are constructed with the Padé-type potential
energies in such a way as to reproduce empirical masses
and radii of stable nuclei, using a simplified version of the
extended Thomas-Fermi theory. On the other hand, as a
phenomenological Skyrme-type model, we adopt KDE0v,
KDE0v1 [31], SLy2, SLy4, SLy9 [32,33], SKa [34], SkI3
[35], and SkMp [36]. In addition, we also adopt the Shen
EOS [37], which is based on the relativistic mean field
theory, and the Togashi EOS [38], which is derived by the
variational many-body calculation with AV18 two-body
and UIX three-body potentials. In Fig. 1, we show the mass
and radius relation for the neutron star models constructed
with the EOSs adopted in this study, where the stellar
models with nc=n0 ¼ 1, 2, and 3 are shown with the marks.
We note that some of the stellar models with nc=n0 ¼ 1 are
out of the panel due to the large radius. One can observe

that some of EOSs are obviously ruled out from the 2M⊙
observations [1–4] or the radius constraint from the
GW170817 [16], but in order to examine with the wide
parameter space, we adopt even such EOSs in this study.
In any case, the bulk energy per nucleon for the uniform

nuclear matter at zero temperature can generally be
expressed as a function of the baryon number density nb ¼
nn þ np and an asymmetry parameter α ¼ ðnn − npÞ=nb,
with the neutron number density nn and the proton number
density np,

E
A
¼ wsðnbÞ þ α2SðnbÞ þOðα3Þ; ð1Þ

where ws corresponds to the energy per nucleon of
symmetric nuclear matter, while S denotes the density-
dependent symmetry energy. Additionally, ws and S can be
expanded around the saturation density n0 of the symmetric
nuclear matter as a function of u ¼ ðnb − n0Þ=ð3n0Þ,

wsðnbÞ ¼ w0 þ
K0

2
u2 þQ

6
u3 þOðu4Þ; ð2Þ

SðnbÞ ¼ S0 þ Luþ Ksym

2
u2 þQsym

6
u3 þOðu4Þ: ð3Þ
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FIG. 1. Mass and radius relation for the neutron star models
constructed with the EOSs listed in Table I, where the top and
bottom panels correspond to the result with OI-EOSs and the
others, respectively. The OI-EOSs are named with the value of
K0, e.g., OI200 for the OI-EOSs with K0 ¼ 200 MeV. Top: the
solid and dashed lines, respectively, denote the OI-EOSs with
larger and smaller values of L for each value of K0 (see Table I).
In each panel, the neutron star models with nc=n0 ¼ 1, 2, and 3
are shown with the marks.
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The coefficients in these expressions are the nuclear
saturation parameters, with which each EOS is character-
ized. The parameters for the adopted EOSs are concretely
listed in Table I, where η, ξ, ηsy, and ξsy are the specific
combination of the nuclear saturation parameters (see the
following sections for details), defined by

η ¼ ðK0L2Þ1=3; ð4Þ

ξ ¼
�
�
�
�

Q6Ksym

Qsym

�
�
�
�

1=6

; ð5Þ

ηsy ¼ ½ðK0 þ KsymÞL2�1=3; ð6Þ

ξsy ¼
�
�
�
�

Q11Ksym

Qsym

�
�
�
�

1=11

: ð7Þ

Among the nuclear saturation parameters, n0, w0,
and S0 are well constrained as n0 ≈ 0.15–0.16 fm−3, w0≈
−15.8MeV[39], andS0≈31.6�2.7MeV[40].Meanwhile,
K0 and L are more difficult to be determined from the
terrestrial experiments, because these parameters are the
density derivative at the saturation point; i.e., one needs to
know the information not only at the saturation point but
also in a wider range around the saturation point. The
constraints on these parameters are gradually improved
and the current fiducial values are K0 ¼ 230� 40 [41]

and L ¼ 58.9� 16 MeV [40], even though the constraints
on L recently reported from two large facilities still have a
large uncertainty, i.e.,42 ≤ L ≤ 117 MeVwithSπRITby the
Radioactive Isotope Beam Factory at RIKEN in Japan [26]
and L ¼ 106� 37 MeV with PREX-II by the Thomas
Jefferson National Accelerator Facility in Newport News,
Virginia, U.S. [27]. Moreover, the saturation parameters in
higher order terms, such as Q, Ksym, and Qsym, are almost
unconstrained from the experiments, but they are theoretically
predicted as −800 ≤ Q ≤ 400, −400 ≤ Ksym ≤ 100, and
−200 ≤ Qsym ≤ 800 MeV [40].
It is known that S0 is strongly associated with L as

S0 ≈ 28þ 0.075L [29,42]. In a similar way, we find that
K0 þ Ksym is also strongly associated with L, adopting 118
models for the Skyrme-type EOSs listed in Ref. [43] and
304 models for OI-EOSs. We plot K0 þ Ksym as a function
of L in Fig. 2, where the thick solid line denotes the fitting
formula given by

K0 þ Ksym ¼ −75.86þ 371.8

�
L

100 MeV

�

: ð8Þ

The similar correlation has been reported in Ref. [44],
which is shown in Fig. 2 with the dotted line. This type of
correlation may be very useful for constraining the value of
Ksym with using the constraints on K0 and L, because the
uncertainty in Ksym is still very large. In practice, by

TABLE I. EOS parameters adopted in this study, K0, n0, L, Q, Ksym, and Qsym are listed, while η, ξ, ηsy, and ξsy are specific
combinations with them given by η ¼ ðK0L2Þ1=3, ξ ¼ jQ6Ksym=Qsymj1=6, ηsy ¼ ½ðK0 þ KsymÞL2�1=3, and ξsy ¼ jQ11Ksym=Qsymj1=11. In
addition, we also list the TOV mass of the neutron stars constructed with the EOSs listed here with the central density nc ¼ 3n0.

EOS K0 (MeV) n0 (fm−3) L (MeV) Q (MeV) Ksym (MeV) Qsym (MeV) η (MeV) ξ (MeV) ηsy (MeV) ξsy (MeV) Mnc=n0¼3 (M⊙)

OI-EOSs 200 0.165 35.6 −759 −142 801 63.3 569 41.8 649 0.68
0.165 67.8 −761 −27.6 589 97.2 457 92.5 576 1.17

220 0.161 40.2 −720 −144 731 70.9 549 49.7 621 0.81
0.161 77.6 −722 −9.83 486 110 377 108 506 1.32

240 0.159 45.0 −663 −146 642 78.6 518 57.6 579 0.95
0.158 88.2 −664 10.5 363 123 368 125 482 1.47

260 0.156 49.8 −589 −146 535 86.4 474 65.6 523 1.09
0.155 99.2 −590 32.6 219 137 429 142 496 1.61

280 0.154 54.9 −496 −146 410 94.5 418 73.8 452 1.23
0.153 111 −498 57.4 54.4 151 502 161 500 1.76

300 0.152 60.0 −386 −146 266 103 349 82.2 366 1.38
0.151 124 −387 86.1 −133 167 360 181 372 1.90

KDE0v 229 0.161 45.2 −373 −145 523 77.6 301 55.6 332 1.11
KDE0v1 228 0.165 54.7 −385 −127 484 88.0 308 67.0 341 1.19
SLy2 230 0.161 47.5 −364 −115 507 80.3 285 63.7 318 1.26
SLy4 230 0.160 45.9 −363 −120 522 78.7 284 61.6 318 1.22
SLy9 230 0.151 54.9 −350 −81.4 462 88.4 262 76.4 299 1.41
SKa 263 0.155 74.6 −300 −78.5 175 114 263 101 279 1.57
SkI3 258 0.158 101 −304 73.0 212 138 254 150 276 1.77
SkMp 231 0.157 70.3 −338 −49.8 159 105 278 96.4 304 1.45
Shen 281 0.145 111 … 33.5 … 151 … 157 … 1.82
Togashi 245 0.160 38.7 … … … 71.6 … … … 1.27
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assigning the fiducial values of K0 and L mentioned above
in Eq. (8), one can find that −186 ≤ Ksym ≤ 13 MeV.

III. NEUTRON STAR MASS FORMULA

The neutron star structure is determined by solving the
TOV equations together with the appropriate EOS. The
neutron star may sometimes be considered as a huge
nucleus, but its structure is quite dense, compered to atomic
nuclei. Nevertheless, since the density inside low-mass
neutron stars is definitely low, their mass seems to be
strongly associated with the nuclear saturation properties.
In practice, it has been found that the mass M and
gravitational redshift z≡ ð1 − 2GM=Rc2Þ−1=2 − 1, for
the low-mass neutron stars, whose central density is less
than twice the nuclear saturation density, are well expressed
as a function of η defined by Eq. (4) and uc ¼ ρc=ρ0, where
ρc and ρ0 are the central energy density and the energy
density corresponding to the nuclear saturation density, i.e.,
ρ0 ¼ 2.68 × 1014 g=cm3 [28]. That is, one can estimate
neutron star mass and radius by combining the empirical
formulas M ¼ Mðuc; ηÞ and z ¼ zðuc; ηÞ. In practice,
assuming the recent experimental constraints obtained with
SπRIT and PREX-II [26,27], one can show the allowed
region in the neutron star mass and radius relation [45].
Using this new parameter η, one can also discuss the
rotational properties of the low-mass neutron stars [46] and
the possible maximummass of neutron stars [47,48]. In this
study, we try to extend this type of empirical formulas even
for higher central density up to 3 times saturation density.
This is because, as the central density becomes larger, the
empirical formulas discussed in more detail below lose
accuracy. This may come from the additional EOS depend-
ence, such as higher order coefficients in Eqs. (2) and (3).
In addition, for reference, we show the mass of neutron
stars with nc ¼ 3n0 constructed with the EOSs considered
in this study in Table I, with which one may be able to adopt
our empirical relations discussed below if the stellar mass is
less than ≃0.68–1.90M=M⊙ (average value is 1.34M⊙).

A. Function of η

Since the saturation density n0 also depends on the EOS
models, as shown in Table I, it may be better to consider
the mass and redshift for the low-mass neutron star as a
function of nc=n0 instead of ρc=ρ0 with the fixed value of
ρ0, where nc is the baryon number density at the stellar
center. In fact, as shown in Fig. 3, one can observe that the
neutron star mass M and gravitational redshift z with the
fixed central baryon number density, e.g., nc=n0 ¼ 1, 2, 3,
are strongly correlated with η. We note thatM and z have a
quite similar dependence on η, even though each value is
completely different, as shown in Ref. [28]. With this result,
we can derive the fitting formulas as

Mη

M⊙
¼ am0 þ am1 lnðη100Þ þ am2 η100 þ am3 η

2
100; ð9Þ

zη ¼ az0 þ az1 lnðη100Þ þ az2η100 þ az3η
2
100; ð10Þ

where η100 ≡ η=ð100 MeVÞ, while ami and azi for i ¼ 0–3
are the coefficients in the fitting formulas, depending on
the normalized central density, Rc ≡ nc=n0. Here, in
order to distinguish the mass and radius determined by
integrating TOV equations with each EOS, the mass and
redshift estimated with the fitting formulas given by
Eqs. (9) and (10) are referred to as Mη and zη. In addition,
as shown in Fig. 4, we find that the coefficients ami and azi
are well expressed as a function of Rc as
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FIG. 2. The relation between K0 þ Ksym and L for the OI-EOSs
and Skyrme-type EOSs. The solid line denotes the fitting given
by Eq. (8), while the dotted line denotes the fitting proposed in
the previous study [44].
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lines denote the fitting lines given by Eqs. (9) and (10).
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ami ðRcÞ ¼ ami0 þ ami1Rc þ ami2R
3
c þ ami3R

5
c; ð11Þ

azi ðRcÞ ¼ azi0 þ azi1Rc þ azi2R
3
c þ azi3R

5
c; ð12Þ

where the exact values ofamij and a
z
ij for i ¼ 0–3 and j ¼ 0–3

are listed in Table II. Now, we can get the empirical formulas
for the neutron star mass and redshift as Mη ¼ MηðRc; ηÞ
and zη ¼ zηðRc; ηÞ given by Eqs. (9)–(12).
Next, in order to improve the resultant empirical for-

mulas, we try to characterize the deviation of the neutron
star mass and redshift determined with each EOS
from those estimated with the fitting formulas given by
Eqs. (9)–(12), using a specific combination of the nuclear

saturation parameters in the higher order terms. That is, the
deviation of the mass and redshift are given by

ΔMη ¼ MTOV −MηðRc; ηÞ; ð13Þ

Δzη ¼ zTOV − zηðRc; ηÞ; ð14Þ

where MTOV and zTOV are the neutron star mass and
redshift determined by integrating the TOV equations
together with each EOS. Through a trial and error process,
we find a good combination of Ksym,Q, andQsym, which is
ξ defined by Eq. (5), for characterizing ΔMη and Δzη, even
though it may be a not so tight correlation. We note that it
may be necessary to modify the definition of ξ, if ξ is out of
the range considered in this study, i.e., 250≲ ξ≲ 600 MeV
with the EOSs adopted in this study. In fact, ξ is not defined
when Qsym ¼ 0. In practice, for the neutron star models
with nc=n0 ¼ 2 and 3, we show ΔMη=M⊙ and zη as a
function of ξ in Fig. 5, considering the OI-EOSs and the
Skyrme-type EOSs. In this figure, we also plot the fitting
formulas given by

ΔMη

M⊙
¼ bm0 =ξ500 þ bm1 ξ500 þ bm2 ξ

2
500 þ bm3 ξ

3
500; ð15Þ

Δzη ¼ bz0=ξ500 þ bz1ξ500 þ bz2ξ
2
500 þ bz3ξ

3
500; ð16Þ
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function of η=ð100 MeVÞ expressed by Eqs. (9) and (10). The
open marks denote the values of ami and azi in the fitting formulas,
while the solid lines denote the fitting as a function of nc=n0 as in
Eqs. (11) and (12).

TABLE II. Values of amij and azij in Eqs. (11) and (12).

j 0 1 2 3

am0j 3.2110 −5.5024 1.3375 −0.059490
am1j 1.8340 −3.2893 0.87206 −0.039859
am2j −4.3905 7.4582 −1.6450 0.071406
am3j 0.94544 −1.5004 0.33522 − 0.014110
az0j 0.25385 −0.60188 0.15808 −0.0053861
az1j 0.15141 −0.36133 0.10275 −0.0035881
az2j −0.38040 0.84306 −0.19442 0.0064246
az3j 0.086653 −0.18150 0.041746 −0.0013309
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FIG. 5. Considering the OI-EOSs and the Skyrme-type EOSs,
ΔMη=M⊙ and zη calculated with Eqs. (13) and (14) are shown
as a function of ξ for nc=n0 ¼ 2 (open circles) and 3 (filled
squares). The dotted and solid lines are fitting lines given by
Eqs. (15) and (16).
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where ξ500 ≡ ξ=ð500 MeVÞ, while again bmi and bzi for
i ¼ 0–3 are the adjusting coefficients depending on Rc. In
a similar way for deriving the fitting formulas for ΔMη and
Δzη, the coefficients in Eqs. (15) and (16) are plotted in
Fig. 6 as a function of nc=n0, which can be fitted with

bmi ðRcÞ ¼ bmi0 þ bmi1R
2
c þ bmi2R

4
c þ bmi3R

6
c; ð17Þ

bzi ðRcÞ ¼ bzi0 þ bzi1R
2
c þ bzi2R

4
c þ bzi3R

6
c; ð18Þ

where the concrete values of the coefficients bmij and bzij for
i ¼ 0–3 and j ¼ 0–3 are listed in Table III. We note that we
consider the fitting of ΔMη and Δzη only for nc=n0 > 1 as
in Fig. 6, even though, in principle, one can also fit them for
a lower density region. This is because the correlation of
ΔMη and Δzη with ξ becomes weaker and the absolute

values of ΔMη and Δzη become much smaller, as the
density becomes lower. So, for nc=n0 ≤ 1 we simply
assume that ΔMη ¼ 0 and Δzη ¼ 0 in this study.
Now, we can derive new empirical formulas for the

neutron star mass Mηξ and redshift zηξ as a function of
Rcð¼ nc=n0Þ, η, and ξ,

Mηξ

M⊙
¼ MηðRc; ηÞ

M⊙
þ ΔMηðRc; ξÞ

M⊙
; ð19Þ

zηξ ¼ zηðRc; ηÞ þ ΔzηðRc; ξÞ; ð20Þ

where the first terms are given by Eqs. (9)–(12) and the
second terms are given by Eqs. (15)–(18). In order to
check the accuracy of our empirical formulas, MηðRc; ηÞ,
zηðRc; η), MηξðRc; η; ξÞ, and zηξðRc; η; ξÞ, in Fig. 7 we
show the relative deviation from the neutron star mass and
redshift determined through the TOV equations, where the
bottom panels are the relative deviation of the neutron star
radius estimated with the empirical formulas for the mass
and redshift from the TOV solution. From this figure, one
can see that the neutron star mass is estimated within ∼10%
accuracy, while the radius for the canonical neutron star is
estimated within ∼3% accuracy, using the empirical for-
mulas MηξðRc; η; ξÞ and zηξðRc; η; ξÞ. We also make a
comment that the mass estimation with MηðRc; ηÞ (top left
panel) is better than that with MηξðRc; η; ξÞ (top right
panel) in the density region around nc=n0 ≃ 1.5, which
comes from the fact that the correlation betweenΔMη and ξ
becomes worse as the density becomes lower. We note
that the mass and gravitational redshift have quite similar
dependence on η, as shown in Fig. 3; i.e., it seems to get a
small amount of difference in information from the mass
and gravitational redshift. Even so, one can accurately
recover the radius, using the empirical relations for the
mass and gravitational redshift.
At the end, we mention another possibility for character-

izing ΔMη and Δzη instead of ξ. In practice, we find that a
new parameter ξRc

, defined by
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FIG. 6. The coefficients in Eqs. (15) and (16) are shown as a
function of nc=n0 with marks, while the solid lines denote the
fitting given by Eqs. (17) and (18), respectively.

TABLE III. Values of bmij and bzij in Eqs. (17) and (18).

j 0 1 2 3

bm0j −7.711 × 10−2 4.122 × 10−2 8.051 × 10−4 −7.267 × 10−5

bm1j 7.763 × 10−1 −5.341 × 10−1 5.793 × 10−2 −2.995 × 10−3

bm2j −1.470 1.123 −1.774 × 10−1 9.771 × 10−3

bm3j 7.276 × 10−1 −5.897 × 10−1 1.077 × 10−1 −6.041 × 10−3

bz0j −2.783 × 10−3 1.679 × 10−3 9.658 × 10−4 −3.707 × 10−5

bz1j 3.989 × 10−2 −4.167 × 10−2 1.204 × 10−3 −1.209 × 10−4

bz2j −9.514 × 10−2 1.031 × 10−1 −1.341 × 10−2 7.713 × 10−4

bz3j 5.321 × 10−2 −5.814 × 10−2 9.859 × 10−3 −5.368 × 10−4
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ξRc
¼

�
�
�
�

Q2RcKsym

Qsym

�
�
�
�

1=2Rc

; ð21Þ

seems to be better than ξ given by Eq. (5) for characterizing
ΔMη and Δzη. That is, adopting the same functional form
as Eqs. (15) and (16), one can express ΔMη and Δzη with
ξRc

, where the correlation in a lower density region is better
than the case with ξ. But, unfortunately, the dependence of
the coefficients bmi and bzi on Rc becomes more complex.
So, in this study, we simply adopt ξ as mentioned above.

B. Function of ηsy
Up to now we consider to derive the empirical formulas

with η, but another combination of the nuclear saturation
parameters may be better to express the neutron star mass
and redshift. Here, we consider to derive the empirical
formulas as a function of ηsy defined by Eq. (8) instead of η.
In Fig. 8, we plot the neutron star mass and redshift with
nc=n0 ¼ 1, 2, 3 constructed with each EOS, together with
the fitting lines given by

Mηsy

M⊙
¼ amsy;0 þ amsy;1 lnðηsy;100Þ þ amsy;2ηsy;100 þ amsy;3η

2
sy;100;

ð22Þ
zηsy ¼ azsy;0 þ azsy;1 lnðηsy;100Þ þ azsy;2ηsy;100 þ azsy;3η

2
sy;100;

ð23Þ

where ηsy;100 ≡ ηsy=ð100 MeVÞ. Again, the coefficients
amsy;i and azsy;i depend on Rc, which are shown in Fig. 9.
In this figure, the marks denote numerical values deter-
mined by fitting with Eqs. (22) and (23) as in Fig. 8, while
the solid lines denote the fitting of amsy;i and azsy;i as a
function of Rc with

amsy;iðRcÞ ¼ amsy;i0 þ amsy;i1Rc þ amsy;i2R
3
c þ amsy;i3R

5
c; ð24Þ

azsy;iðRcÞ ¼ azsy;i0 þ azsy;i1Rc þ azsy;i2R
3
c þ azsy;i3R

5
c; ð25Þ

where the concrete values of amsy;ij and a
z
sy;ij for i ¼ 0–3 and

j ¼ 0–3 are listed in Table IV. Comparing Fig. 8 to Fig. 3,
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FIG. 7. Relative deviation of the neutron star mass (top) and redshift (middle) estimated with the empirical formulas from those
constructed with each EOS are shown as a function of the normalized central baryon number density. Left: the deviation with the
empirical formulasMηðRc; ηÞ and zηðRc; ηÞ. Right: deviation withMηξðRc; η; ξÞ and zηξðRc; η; ξÞ. Bottom: the relative deviation of the
neutron star radius estimated with the empirical formulas for the mass and redshift from that calculated with each EOS.
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η seems to be better than ηsy in this stage, because a specific
EOS model (e.g., OI 220) with nc=n0 ¼ 3 largely deviates
from the fitting line in Fig. 8.
Then, we consider to characterize the deviation

of the neutron star mass and redshift estimated with the
empirical formulas MηsyðRc; ηsyÞ and zηsyðRc; ηsyÞ, given

by Eqs. (22)–(25) from those determined as the TOV
solution. Such a deviation is given by

ΔMηsy ¼ MTOV −MηsyðRc; ηsyÞ; ð26Þ

Δzηsy ¼ zTOV − zηsyðRc; ηsyÞ: ð27Þ

In the beginning, we try to characterize ΔMηsy and Δzηsy
with a specific combination ofQ andQsym, becauseKsym is
already included in the definition of ηsy, but eventually we
find that the combination of Ksym, Q, and Qsym defined by
Eq. (7) are suitable for this problem. In fact, as shown in
Fig. 10, ΔMηsy and Δzηsy are well fitted as a function of ξsy,
where the open circles (filled squares) denote the values
of ΔMηsy and Δzηsy with nc=n0 ¼ 2 (nc=n0 ¼ 3), while the
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FIG. 8. Same as in Fig. 3, but as a function of ηsy. The thick,
solid lines denote the fitting lines given by Eqs. (22) and (23).

TABLE IV. Values of amsy;ij and azsy;ij in Eqs. (24) and (25).

j 0 1 2 3

amsy;0j 0.6990 −1.2408 0.5655 −0.02710
amsy;1j 0.3220 −0.6504 0.3266 −0.01596
amsy;2j −1.2165 2.1443 −0.6833 0.03134
amsy;3j 0.2314 −0.3555 0.1374 −0.006172
azsy;0j 0.05286 −0.1492 0.07355 −0.002614
azsy;1j 0.03503 −0.08519 0.04252 −0.001517
azsy;2j −0.1233 0.2726 −0.08809 0.002965
azsy;3j 0.02629 −0.05430 0.01929 −0.0006297
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FIG. 10. ΔMηsy and Δzηsy with nc=n0 ¼ 2 and 3 are plotted as a
function of ξsy, where the thick, solid lines for nc=n0 ¼ 3 and
thick, dotted lines for nc=n0 ¼ 2 are fitting lines given by
Eqs. (28) and (29).
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FIG. 9. The coefficients in Eqs. (22) and (23) are plotted as a
function ofRc ¼ nc=n0, while the solid lines are the correspond-
ing fitting given by Eqs. (24) and (23).
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dotted (solid) lines denote the fitting of those values with
nc=n0 ¼ 2 (nc=n0 ¼ 3) by

ΔMηsy

M⊙
¼ bmsy;0=ξ

6
sy;500 þ bmsy;1ξ

7
sy;500

þ bmsy;2ξ
8
sy;500 þ bmsy;3ξ

12
sy;500; ð28Þ

Δzηsy ¼ bzsy;0=ξ
6
sy;500 þ bzsy;1ξ

7
sy;500

þ bzsy;2ξ
8
sy;500 þ bzsy;3ξ

12
sy;500: ð29Þ

In these fitting formulas, ξsy;500 is defined as ξsy;500≡
ξsy=ð500 MeVÞ, while bmsy;i and bzsy;i for i ¼ 0–3 are the

adjusting coefficients, depending on nc=n0. In Fig. 11, the
values of bmsy;i and b

z
sy;i for i ¼ 0–3 are plotted as a function

of nc=n0, where the solid lines are the fitting of those values
with the functional form given by

bmsy;0ðRcÞ ¼ bmsy;00R
2
c þ bmsy;01R

4
c þ bmsy;02R

6
c þ bmsy;03R

9
c;

ð30Þ

bmsy;iðRcÞ ¼ bmsy;i0R
2
c þ bmsy;i1R

4
c þ bmsy;i2R

5
c

þ bmsy;i3R
7
c þ bmsy;i4R

9
c; ð31Þ

bzsy;0ðRcÞ ¼ bzsy;00R
3
c þ bzsy;01R

4
c þ bzsy;02R

8
c þ bzsy;03R

9
c;

ð32Þ

bzsy;iðRcÞ ¼ bzsy;i0R
2
c þ bzsy;i1R

4
c þ bzsy;i2R

5
c

þ bzsy;i3R
7
c þ bzsy;i4R

9
c: ð33Þ

The coefficients in these equations, bmsy;ij and bzsy;ij, are
concretely listed in Table V.
Now, we get the alternative empirical formulas for the

neutron star mass and gravitational redshift as a function
of Rc, ηsy, and ξsy,

Mηξsy

M⊙
¼ MηsyðRc; ηsyÞ

M⊙
þ ΔMηsyðRc; ξsyÞ

M⊙
; ð34Þ

zηξsy ¼ zηsyðRc; ηsyÞ þ ΔzηsyðRc; ξsyÞ; ð35Þ

where the first terms are given by Eqs. (22)–(25) and the
second terms are given by Eqs. (28)–(33). In order to check
how well one can estimate the neutron star mass and
gravitational redshift with the empirical formulas with ηsy,
i.e., MηsyðRc; ηsyÞ, zηsyðRc; ηsyÞ, MηξsyðRc; ηsy; ξsyÞ, and
zηξsyðRc; ηsy; ξsyÞ, we calculate the relative deviation from
the TOV solutions constructed with concrete EOSs and
show the absolute value of it in Fig. 12, where the top and
middle panels correspond to the mass and gravitational
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FIG. 11. The coefficients in the fitting formulas [Eqs. (28) and
(29)] bmsy;i and b

z
sy;i for i ¼ 0–3 are plotted as a function of nc=n0,

while the solid lines are the fitting of those values as nc=n0 with
the functional form given by Eqs. (30)–(29).

TABLE V. Values of bmsy;ij and bzsy;ij in Eqs. (30)–(33).

j 0 1 2 3 4

bmsy;0j −9.146 × 10−4 4.823 × 10−4 −5.734 × 10−5 7.712 × 10−7 …
bmsy;1j −3.719 × 10−1 6.652 × 10−1 −3.572 × 10−1 2.324 × 10−2 −7.279 × 10−4

bmsy;2j 3.684 × 10−1 −6.647 × 10−1 3.551 × 10−1 −2.302 × 10−2 7.217 × 10−4

bmsy;3j −2.956 × 10−2 5.484 × 10−2 −2.879 × 10−2 1.839 × 10−3 −5.768 × 10−5

bzsy;0j −1.032 × 10−4 7.160 × 10−5 −1.388 × 10−6 3.541 × 10−7 …
bzsy;1j −4.730 × 10−2 7.798 × 10−2 −4.105 × 10−2 2.563 × 10−3 −7.723 × 10−5

bzsy;2j 4.726 × 10−2 −7.785 × 10−2 4.065 × 10−2 −2.522 × 10−3 7.586 × 10−5

bzsy;3j −3.880 × 10−3 6.386 × 10−3 −3.246 × 10−3 1.967 × 10−4 −5.867 × 10−6
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redshift, while the bottom panels are the relative deviation
of the radius estimated with the empirical formulas for mass
and gravitational redshift. Comparing to Fig. 7, one can see
that the empirical formulas with ηsy are the same level as or
better than those with η. In fact, with respect to the
canonical neutron star models, one can estimate the mass
(radius) within ∼7% (∼2%) accuracy, using the empirical
relationsMηξsyðRc; ηsy; ξsyÞ and zηξsyðRc; ηsy; ξsyÞ. We note
that one can accurately estimate the radius by using the

empirical formulas for the mass and gravitational redshift
again, even though the dependence of the mass and
gravitational redshift on ηsy are quite similar, as show
in Fig. 8.
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FIG. 12. Same as Fig. 7, but with the empirical formulas MηsyðRc; ηsyÞ, zηsyðRc; ηsyÞ, MηξsyðRc; ηsy; ξsyÞ, and zηξsyðRc; ηsy; ξsyÞ.

TABLE VI. Correspondence between the empirical formulas
and their equations.

Empirical formula Corresponding equations

MηðRc; ηÞ (9) and (11)
MηξðRc; η; ξÞ (19) with (9), (11), (15), and (17)
MηsyðRc; ηsyÞ (22) and (24)
MηξsyðRc; ηsy; ξsyÞ (34) with (22), (24), (28), (30), and (31)
zηðRc; ηÞ (10) and (12)
zηξðRc; η; ξÞ (20) with (10), (12), (16), and (18)
zηsyðRc; ηsyÞ (23) and (25)
zηξsyðRc; ηsy; ξsyÞ (35) with (23), (25), (29), (32), and (33)
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FIG. 13. Constraint on the parameter space with ηsy and ξsy
obtained from the constraint on the 1.4 M⊙ neutron star radius
R1.4, with the gravitational wave event GW1708107, i.e., R1.4 ≤
13.6 km [16]. In this figure, the shaded region corresponds to the
allowed region.
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Finally, in Table VI, we show the corresponding equa-
tions for the empirical relations obtained in this study. In
addition, using the estimation of the neutron star mass and
radius with the empirical formulas MηξsyðRc; ηsy; ξsyÞ and
zηξsyðRc; ηsy; ξsyÞ, we make a constraint on the parameter
space with ηsy and ξsy. That is, owing to the gravitational
wave observations at the GW170817, the tidal deform-
ability of the neutron star has been constrained, which tells
us that the 1.4M⊙ neutron star radius should be less than
13.6 km [16]. In practice, assuming that M ¼ 1.4M⊙
together with MηξsyðRc; ηsy; ξsyÞ and zηξsyðRc; ηsy; ξsyÞ,
one can estimate the stellar radius with the given values
of ηsy and ξsy. In Fig. 13, we plot the combination of ηsy and
ξsy so that the radius becomes 13 and 14 km with dashed
lines and 13.6 km with the solid line. So, one can see that
the shaded region corresponds to the allowed region,
considering the constraint through the GW170817.

IV. CONCLUSION

The neutron star mass and radius are one of the most
important observables to constrain the EOS for dense
matter. In fact, some astronomical observations could make
a constraint on EOS, essentially for a higher density region.
On the other hand, the terrestrial nuclear experiments
constrain the nuclear properties especially around the
nuclear saturation density, which enables us to screen
the EOSs. So, at least the neutron star models for a lower
density region are strongly associated with the nuclear
saturation parameters. In this study, we propose the
empirical formulas for the neutron star mass and

gravitational redshift as a function of the central density
and the suitable combination of nuclear saturation param-
eters, which are applicable to the stellar models constructed
with the central density up to threefold nuclear density.
Combining both empirical relations, the stellar radius is
also estimated. Our empirical formulas can directly connect
the neutron star properties to the nuclear saturation param-
eters, which helps us to imagine the neutron star mass and
radius with the specific values of saturation parameters
constrained via experiments, and vise versa. As an appli-
cation with our empirical formulas, we constrain the
parameter space of the nuclear saturation parameters,
considering the constraint on the neutron star radius
through the gravitational wave observations at the
GW170817. Although the current constraint is still poor,
one can discuss the more severe nuclear saturation param-
eters with additional future astronomical observations. In
this study, we focus only on the empirical relations for the
neutron star mass and gravitational redshift, but it must be
also possible to derive the empirical formulas for the other
neutron star bulk properties, such as moment of inertia or
Love number, as in Ref. [46]. We will consider these topics
somewhere in the future.
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