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1Departamento de Astronomía y Astrofísica, Universitat de València,
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2Departamento de Matemática da Universidade de Aveiro and Centre for Research and
Development in Mathematics and Applications (CIDMA),

Campus de Santiago, 3810-183 Aveiro, Portugal
3Observatori Astronòmic, Universitat de València,
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Mixed fermion-boson stars are stable, horizonless, everywhere-regular solutions of the coupled Einstein-
(complex, massive) Klein-Gordon-Euler system. While isolated neutron stars and boson stars are uniquely
determined by their central energy density, mixed configurations conform to an extended parameter space
that depends on the combination of the number of fermions and (ultralight) bosons. The wider possibilities
offered by fermion-boson stars could help to explain the tension in the measurements of neutron star masses
and radii reported in recent multimessenger observations and nuclear physics experiments. In this work, we
construct equilibrium configurations of mixed fermion-boson stars with realistic equations of state for the
fermionic component and different percentages of bosonic matter. We show that our solutions are in
excellent agreement with multimessenger data, including gravitational-wave events GW170817 and
GW190814 and x-ray pulsars PSR J0030þ 0451 and PSR J0740þ 6620, as well as with nuclear physics
constraints from the PREX-2 experiment.
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I. INTRODUCTION

The determination of the equation of state (EOS) of
matter at the supernuclear densities attained in neutron star
interiors is a long-standing issue in nuclear astrophysics
(see Refs. [1,2] and references therein). High-precision
measurements of the masses and radii of neutron stars are
necessary to confidently constrain the EOS. Recent obser-
vations in both the electromagnetic channel and the
gravitational-wave channel, together with constraints from
nuclear physics, are helping to shed light on this issue, yet
uncertainties remain [3–13].
During the last decade, it has been possible to accurately

measure the mass of two millisecond pulsars with masses
close to 2 M⊙, PSR J1614 − 2230 [14,15] and PSR
J0348þ 0432 [16]. These results impose a strong lower
limit to the maximum mass of neutron stars and have
constrained considerably the properties of dense matter [2].
However, only recently has it been possible to make an
accurate joint determination of the mass and the radius of a
neutron star. Bayesian inference on the pulse-profile
modeling of observations from the Neutron Star Interior
Composition Explorer (NICER) of the rotation-powered,
x-ray millisecond pulsar PSR J0030þ 0451 has yielded
values for its mass and (circumferential) radius of ∼1.4 M⊙
and ∼13 km, respectively [5,6]. Even more recently, the

same teams of researchers have reported the joint deter-
mination of the mass and radius of PSR J0740þ 6620

[10,11], the most massive known neutron star. Combining
data from NICER and XMM-Newton [11], and also
accounting for radio timing (Shapiro delay) in the case
of Ref. [10] (see also Ref. [15]), these teams have inferred
values for its mass and radius of 2.08 M⊙ and ∼13 km,
respectively. The fact that J0740þ 6620 is about 50%more
massive than J0030þ 0451 while both objects are essen-
tially the same size challenges theoretical models of
neutron star interiors.
Gravitational waves have also been able to put joint

constraints on the neutron star mass and radius. The first-
ever detection of a binary neutron star merger by the LIGO-
Virgo Collaboration (LVC), GW170817 [17], made it
possible to place constraints not only on the individual
masses of the components of the binary, but also on the
tidal deformability of neutron stars, which has been used to
constrain the neutron star radius [3] (see also Refs. [9,18]
and references therein).
In addition, the interpretation of the recent LVC detec-

tion of the compact binary merger event GW190814 [19]
poses some difficulties. While the mass of the primary
component, 23.2 M⊙, allows us to conclusively identify it
as a black hole, the mass of the secondary, 2.50–2.67 M⊙,
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raises doubts on the nature of this component, which might
be either a black hole or a neutron star. If the latter is the
case, it would be the most massive neutron star ever
observed. A number of recent investigations have tried
to explain such a large mass [20–33]. Proposals include the
possibility that the secondary is a rapidly rotating neutron
star that collapsed to a spinning black hole before merger
[20,21], a neutron star with a stiff high-density EOS or a
sufficiently large spin [24] (see also Ref. [25]), or a neutron
star with exotic degrees of freedom—i.e., a strange-quark
star, within the scenario in which neutron stars and quark
stars coexist [26] (see also Ref. [27]). Somewhat more
exotic possibilities involving slowly rotating neutron stars
in 4D Einstein-Gauss-Bonnet gravity [31], primordial black
holes [29], Thorne-Żytkow objects [30], or dark-matter-
admixed neutron stars [32,33], have also been suggested.
The neutron star radius can also be constrained by

improving the measurement of nuclear interaction param-
eters [1,34]. Very recently, the PREX-2 experiment has
measured with high accuracy the neutron skin thickness of
208Pb [35] which constrains the neutron star radius for a
1.4 M⊙ neutron star to be larger than 13.25 km [36].
Although compatible with millisecond pulsar radius mea-
surements, this result is in some tension with the gravita-
tional-wave determinations [37]. The combined constraints
of the multimessenger data and PREX-2 measurements
have been shown by Refs. [38,39] to be compatible with
models of hybrid stars with first-order phase transition from
nucleonic to quark matter in the core, a result disfavored by
the analysis of Ref. [40].
Additionally, the nuclear physics modeling of realistic

EOSs at high densities has led to the so-called hyperon
problem (see, e.g., Ref. [41] and references therein). In
order to reach the high masses necessary to fulfill the
observational constraints on the maximum mass of neutron
stars, models have to reach high central densities, at which
the appearance of hyperons is expected. However, the
presence of hyperons may soften the EOS at those densities
and limit the possible values for the maximum mass,
making it difficult to reach the ∼2 M⊙ constraint.
Motivated by these observational and experimental

results, we put forward in this paper a theoretically
motivated new model based on mixed fermion-boson
stars—i.e., neutron stars that incorporate some amount
of bosonic matter. Using this model, we are able to
construct existence plots (mass-radius equilibrium configu-
rations) compatible with multimessenger observational
data, including gravitational-wave events GW170817 and
GW190814, and x-ray pulsars PSR J0030þ 0451 and PSR
J0740þ 6620. We note that our model shares some
similarities with those of Refs. [32,33], but also some
differences. The study of Ref. [32] is only focused on
GW190814 and explains the mass of the secondary by
admixing neutron stars modeled by stiff EOSs with non-
annihilating weakly interacting massive particles of dark

matter. On the other hand, the very recent study of Ref. [33]
also focuses only on GW190814 and explains the mass of
the secondary by resorting to a neutron star admixed with at
least 2.0 M⊙ of dark matter made of axion-like particles. In
our study (see below), we employ a complex scalar field,
while in Ref. [33] the authors consider a real field to model
QCD axions.
Ultralight bosons form localized, coherently oscillating

configurations akin to Bose-Einstein condensates [42,43].
For light-enough bosonic particles—i.e., with a mass
μ ∼ 10−22 eV, these condensates have been proposed to
explain large-scale structure formation through dark
matter seeds [44,45]. Heavier bosons lead to much smaller
configurations with the typical size and mass of neutron
stars—hence the name boson stars [46,47] (see
Refs. [48,49] and references therein). It is worth mention-
ing that recent examples have shown the intrinsic degen-
eracy between the prevailing Kerr black hole solutions of
general relativity and boson-star solutions, using both
gravitational-wave data [50] and electromagnetic data
[51] (see also Ref. [52]). Moreover, macroscopic compo-
sites of fermions and bosons, dubbed fermion-boson stars,
have also been proposed [53–59]. Such mixed configu-
rations could form from the condensation of some
primordial gas containing both types of particles, or
through episodes of accretion. The dynamical formation
of fermion-boson stars through accretion along with their
nonlinear stability properties has recently been studied by
Refs. [55,58,60,61]. In most studies, the neutron star is
modeled with a polytropic EOS, the only exception being
Ref. [62], which employed a realistic EOS. Mergers of
fermion-boson stars have also been studied by Ref. [63].
In this work, we perform a systematic analysis of the
physical properties of fermion-boson stars built using
different state-of-the-art, tabulated EOSs for the fermionic
part. Moreover, we evaluate the prospects for these models
to fit the multimessenger constraints set by XMM-
Newton, NICER, and the LVC detections. Similar studies
using models of neutron stars with admixed fermionic
dark matter are reported in Refs. [64–66].
This paper is organized as follows: Section II briefly

describes the theoretical framework to build equilibrium
models of fermion-boson stars. (Further details are reported
in Ref. [60].) Section III contains our main results. Finally,
in Sec. IV, we discuss our findings and outline possible
extensions of this work.

II. FRAMEWORK

In our setup, the scalar field is assumed to be only
minimally coupled to Einstein’s gravity. Therefore, fer-
mions and bosons only interact gravitationally, with the
total stress-energy tensor being the sum of both contri-
butions, Tμν ¼ TNS

μν þ Tϕ
μν, where (using units with

c ¼ G ¼ ℏ ¼ 1)
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TNS
μν ¼ ½ρð1þ ϵÞ þ P�uμuν þ Pgμν; ð1Þ

Tϕ
μν ¼ −

1

2
gμν∂αϕ̄∂αϕ −

�
1

2
μ2ϕ̄ϕ −

1

4
λðϕ̄ϕÞ2

�
gμν

þ 1

2
ð∂μϕ̄∂νϕþ ∂μϕ∂νϕ̄Þ: ð2Þ

The fermionic part involves the fluid pressure P, rest-mass
density ρ, internal energy ϵ, and four-velocity uμ, with gμν
denoting the space-time metric. The bosonic matter is
described by the complex scalar field ϕ (with ϕ̄ being the
complex conjugate) and by the particle mass μ and self-
interaction parameter λ.
The equations of motion are obtained from the con-

servation laws of the stress-energy tensor and of the
baryonic particles for the fermionic part,

∇μT
μν
NS ¼ 0; ð3Þ

∇μðρuμÞ ¼ 0; ð4Þ

and from the Klein-Gordon equation for the complex scalar
field,

∇μ∇μϕ ¼ μ2ϕþ λjϕj2ϕ; ð5Þ
together with the Einstein equations, Gμν ¼ 8πTμν, for the
spacetime dynamics. Mixed-star models are built using a
static and spherically symmetric metric in Schwarzschild
coordinates,

ds2 ¼ −αðrÞ2dt2 þ aðrÞ2dr2 þ r2ðdθ2 þ sin θ2dφ2Þ; ð6Þ

written in terms of two geometrical functions, aðrÞ and
αðrÞ. A harmonic time dependence ansatz for the scalar
field is assumed, ϕðr; tÞ ¼ ϕðrÞeiωt, where ω is its eigen-
frequency. Furthermore, we consider a static perfect fluid
uμ ¼ ð−1=α; 0; 0; 0Þ. In order to construct equilibrium
configurations, we solve the following set of ordinary
differential equations (ODEs), which are obtained from
Einstein’s equations:

da
dr

¼ a
2

�
1 − a2

r
þ 4πr

��
ω2

α2
þ μ2 þ λ

2
ϕ2

�
a2ϕ2

þ Ψ2 þ 2a2ρð1þ ϵÞ
��

; ð7Þ

dα
dr

¼ α

2

�
a2 − 1

r
þ 4πr

��
ω2

α2
− μ2 −

λ

2
ϕ2

�
a2ϕ2

þΨ2 þ 2a2P

��
; ð8Þ

dϕ
dr

¼ Ψ; ð9Þ

dΨ
dr

¼−
�
1þa2−4πr2a2ðμ2ϕ2þ λ

2
ϕ4þρð1þ ϵÞ−PÞ

�
Ψ
r

−
�
ω2

α2
−μ2−λϕ2

�
a2ϕ2; ð10Þ

dP
dr

¼ −½ρð1þ ϵÞ þ P� α
0

α
; ð11Þ

where the prime indicates the derivative with respect to r.
The system of equations is closed by the EOS for the
nucleonic matter. Previous works on fermion-boson stars
[55–61] assumed a simple polytropic EOS to build equi-
librium models and a Γ-law EOS for numerical evolutions
to take into account possible shock-heating (thermal)
effects. In this work, we improve the microphysical treat-
ment of the fermionic part of the models and construct new
equilibrium solutions described with realistic, tabulated
EOSs (see Sec. III). Despite our models being spherically
symmetric, we can nevertheless apply them to the x-ray
millisecond pulsars J0030þ 0451 and J0740þ 6620, since
the degree of deformation rotation might induce in these
objects is negligible [5,6].
The set of ODEs [Eqs. (7)–(11)] is an eigenvalue

problem for the frequency of the scalar field ω, which
depends on two parameters: namely, the central value of the
rest-mass density, ρc, and that of the scalar field, ϕc. As in
Ref. [60], to obtain the value of the frequency for each
solution, we employ a two-parameter shooting method to
search for the physical solution that fulfills the requirement
of vanishing ϕ at the outer boundary. Once ω is obtained,
we use a fourth-order Runge-Kutta integrator to solve the
ODEs and reconstruct the radial profiles of all variables.
In order to construct physical initial data, we must

impose appropriate boundary conditions for the geometric
quantities, and for both the scalar field and the perfect fluid.
We require that the metric functions be regular at the origin.
We employ Schwarzschild outer boundary conditions,
together with a vanishing scalar field. Explicitly, the
boundary conditions read

að0Þ ¼ 1; ϕð0Þ ¼ ϕc;

αð0Þ ¼ 1; lim
r→∞

αðrÞ ¼ lim
r→∞

1

aðrÞ ;

Ψð0Þ ¼ 0; lim
r→∞

ϕðrÞ ¼ 0;

ρð0Þ ¼ ρc; Pð0Þ ¼ KρΓc : ð12Þ
The total gravitational mass of the solutions can be

defined as

MT ¼ lim
r→∞

r
2

�
1 −

1

a2

�
; ð13Þ

which coincides with the Arnowitt-Desser-Misner (ADM)
mass at infinity. We define the radius of the fermionic part
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as the radial coordinate at which the fluid pressure vanishes,
Rf ¼ rðP ¼ 0Þ, which for the Schwarzschild metric coin-
cides with the circumferential radius. As the bosonic
component of our mixed stars does not have a hard surface,
the radius of this contribution, Rb, is evaluated, as is
customary, as the radius of the sphere containing 99% of
bosonic particles. The particle numbers for both bosons and
fermions are computed as in Ref. [60].

III. RESULTS

Figure 1 displays the mass-radius relations for a large
sample of realistic EOSs (gray curves) corresponding to all
cold EOSs described in Refs. [67,68]. Those take into
account generic nuclear effects, while some of them also
include hyperons, pion and kaon condensates, and quarks.
We compare those results with the observational constraints
placed by NICER on PSRJ0030þ 0451 [5,6]; the NICER/
XMM-Newton combined analysis of PSRJ0740þ 6620
[10,11]; the constraints set by the gravitational-wave event
GW170817 [3] (EOS-insensitive relations); the mass
measurement of two neutron stars with masses close to
2 M⊙, PSR J0348þ 0432 [16] and PSR J1614-2230 [69];
and the lower mass component in the binary merger
GW190814 [19] as a possible neutron star with mass
≥ 2.5 M⊙. All constraints are given as 95% (2σ) confi-
dence intervals. Those have been computed using the
publicly available posteriors provided by the different
groups. Additionally, Fig. 1 also shows the 1σ lower limit
for the radius of a 1.4 M⊙ derived from the PREX-2
measurements of the neutron skin thickness [36] (see,
however, the related discussion in Refs. [37,70]).

For our analysis, we select the three EOSs highlighted in
black in Fig. 1: namely ALF2, which is a hybrid EOS with
mixed APR nuclear matter and color-flavor-locked quark
matter [71]; MS1b, which is a relativistic mean field theory
EOS [71]; and DD2 [72], which is a finite-temperature
hadronic EOS which we evaluate at zero temperature and
beta equilibrium. The three EOSs fulfill the constraints
from the recent NICER and XMM-Newton results, and the
observations of the two high-mass pulsars, as well as the
PREX-2 constraints. Of the three, only MS1b would be
compatible with the low-mass component of GW190814
being a neutron star. On the other hand, only ALF2 and
DD2 are compatible with the results of GW170817, albeit
only marginally. This selection of EOSs illustrates the
current tension that exists between different observational
and experimental constraints of the mass and radius of
neutron stars. Although it is still possible to find EOSs that
fit all constraints within the 2σ confidence level (except for
GW190814), if these constraints were to tighten in future
observations maintaining similar median values, it would
pose a serious problem to the modeling of matter at high
densities. We explore next the possibility of alleviating
some of this tension by considering stars with a bosonic
component additional to the fermionic component.
With this aim, we build sequences of equilibrium

configurations both of fermion stars described by those
three EOSs, and of mixed stars with different values of the
ratio of the number of bosons to fermions, Nb=Nf , and the
particle mass, μ. Models are computed for Nb=Nf ¼
f0.1; 0.2; 0.3g and μ ¼ f0.1; 1.0g in our units, which
correspond to μ ¼ f1.34 × 10−11; 1.34 × 10−10g eV.
These choices of μ are motivated by the following con-
siderations: On the one hand, lower values of μ yield more
diluted boson stars for the same boson star mass range,
leading to milder and more global effects on the neutron
star; on the other hand, higher values of μ decrease the
maximum mass of boson stars and the number of particles,
hence making those models less relevant in the context of
this work (e.g., for μ ¼ 10.0, the maximummass of a boson
star is 0.0633 M⊙). Constraints for real bosonic fields on
the mass of ultralight bosonic particles have been set by
spin measurements of astrophysical black holes and direct
searches of continuous gravitational waves emitted by
boson clouds around spinning black holes [73–75]. An
exclusion range of boson masses has been established
between ∼10−13 eV and 10−11 eV. However, we note that
our model is not bounded by these constraints, as we are
considering a complex scalar field, and it is not yet clear
how the results for a real field would apply to the complex
case. Nevertheless, the particle mass range we consider is
outside the observational bounds. For all models, the self-
interaction parameter λ is set to zero (miniboson stars), and
the fermionic matter always dominates over the bosonic
matter, the latter being a small fraction of the total mass.
The results are depicted in Fig. 2.

FIG. 1. Gravitational mass vs circumferential fermionic radius
for different realistic EOSs including the observational con-
straints (95% confidence levels) from LIGO-Virgo, NICER/
XMM-Newton, and mass measurements of two high-mass
pulsars. We also indicate the PREX-2 1σ lower limit on the
radius for a 1.4 M⊙ neutron star. Gray curves correspond to all
cold EOSs compiled by Refs. [67,68]. We highlight in black the
three EOSs used for the calculations in this work.
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FIG. 2. Total gravitational mass vs circumferential fermionic
radius for equilibrium models of neutron stars (black lines) and
boson-fermion stars (magenta and cyan lines) for different
parameters of the boson-to-fermion ratio Nb=Nf and particle
mass μ. The observational constraints plotted are the same as in
Fig. 1 and follow the same color code. Each panel corresponds to
one of the three fermionic EOSs described in the text.

FIG. 3. Top panel: Ratio of the bosonic and fermionic radius as
a function of the total mass, for a subset of the models considered
in this work. Models not displayed follow a very similar trend.
Middle panel: Radial profile of the rest-mass density ρ (solid
lines) of an illustrative neutron star model described by the MS1b
EOS, and of 1

2
μjϕj2 (dashed lines) for μ ¼ 0.1 and for different

values of Nb=Nf. Bottom panel: Same as middle panel, but
for μ ¼ 1.0.
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For μ ¼ 0.1 (and similarly for smaller values of μ), the
size of the bosonic component is larger than the fermionic
radius (Rb=Rf ∼ 10–100; see cyan curves in the top panel of
Fig. 3). In this case, the contribution to the gravitational
field of the bosonic component is relatively flat in the
region where fermions are present, and therefore the impact
in the equilibrium configuration of the fermionic compo-
nent is small. This results in stars with similar fermionic
radii. This is visible in the middle panel of Fig. 3, where we
show the radial profiles of ρ and 1

2
μ2jϕj2 for a neutron star

and for mixed stars described by the MS1b EOS with the
same central value ρc. However, the additional energy
provided by the bosonic component increases the total
mass of the system. As a result, in these models (cyan lines
in Fig. 2) the mass of the system increases as the ratio
Nb=Nf increases while keeping the radius almost constant.
On the other hand, for μ ¼ 1 (and similarly for larger

values of μ), the bosonic component is located in a region
similar to or smaller than the region occupied by the
fermionic component Rb=Rf ∼ 1 (see magenta curves in the
top panel of Fig 3). In those cases, the bosonic component
modifies the gravitational field in the neighborhood of the
fermionic component to significantly modify the structure
of the star by making it more compact. In those cases
(magenta lines in Fig. 2), the fermionic radius decreases
with increasing values of the ratio Nb=Nf (see bottom panel
of Fig. 3). Additionally, due to this increase in compact-
ness, the maximum mass supported by these models
decreases.

IV. DISCUSSION

The additional degrees of freedom provided by the
presence of a bosonic component may relieve some of
the tension observed in the data in several ways. Leaving
aside the question of the existence of ultralight bosonic
fields in nature, the main uncertainty of our model is the
astrophysical scenario in which fermion-boson stars could
form. A number of theoretical works have tried to address
this issue (see, e.g., Ref. [76] and references therein) in
particular in the context of ultralight bosonic fields as a
model for dark matter. In order to broadly assess the impact
of bosonic fields, we explore here two situations that can be
regarded as the two limiting cases in the range of possible
models.

A. All stars have a constant bosonic-to-fermionic ratio

The first limiting scenario is the case in which the
bosonic field is captured during the formation of the star,
leading to an approximately universal Nb=Nf ratio for all
fermion-boson stars. In this case, an EOS with relatively
low maximum mass for the purely fermionic component,
not fulfilling the GW190814 constraint, may produce more
massive objects by adding a bosonic component with small
values of μ and solve the issue. Examples are DD2 and

ALF2. In these two cases, supplementing a 10%–20%
amount of bosonic component raises the maximum mass
above 2.5 M⊙ while preserving the good agreement in
radius at lower radii. Note that as a general feature of all
EOSs (see gray lines in Fig. 1), the star radius decreases
when the maximum mass decreases, meaning that is
difficult to have at the same time high maximum masses
and small radii. The bosonic contribution is a way of
precisely correcting this feature. Additionally, this pro-
cedure can also be used to increase the maximum mass
even if in the purely fermionic case this mass is below
2 M⊙, which might be a solution to the so-called hyperon
problem [41].

B. Bosonic-to-fermionic ratio changes over time

In the second limiting scenario, the bosonic matter is
assumed to accrete onto the fermionic star after the latter
has formed. In this case, the ratio Nb=Nf would increase
over time, being higher for older objects. The set of neutron
stars considered in this work can be classified into two
categories according to their age. Electromagnetically
observed pulsars have typical ages smaller than 10 Gyr:
the characteristic age of PSR J0030þ 0451 is estimated to
be 8 Gyr [77], PSR J0740þ 6620 is in the range 5–8.5 Gyr
[78], PSR J0348þ 0432 is 2.6 Gyr [16], and PSR J1614 −
2230 is 5.2 Gyr [69]. On the other hand, typical ages of
neutron stars found in mergers of compact binaries, such as
those in GW170817 and GW190814, may be significantly
larger. The merger time for a galactic binary neutron star is
expected to be in the range ∼0.1–1000 Gyr [79], which is
consistent with the estimated merger time of the observed
double neutron star systems in the Milky Way [80]. These
estimates should be valid for the two gravitational-wave
sources we consider, since the metallicity conditions of the
host galaxies is likely to be similar to our Galaxy, given the
low redshift of the sources. For the specific case of
GW170817, it has been estimated that the age of the
binary must be higher than 1 Gyr [81].
Therefore, it is plausible for the second class of objects to

have accreted a significantly larger amount of bosonic field
and thus have a larger ratio of Nb=Nf than the first class. In
this scenario, neutron star radii could be relatively large for
young objects with a very small amount of bosonic
components, fulfilling the constraints set by PSR J0740þ
6620 and PSR J0348þ 0432. And at the same time,
potentially older objects, such as those in GW170817,
would have a significant bosonic component and thus
smaller radii (see magenta lines in Fig. 2). In this situation,
the bosonic field would need to have a particle mass of at
least μ ¼ 1. On the other hand, the constraint set by
GW190814 would be difficult to fulfill if the secondary
were a neutron star, because in this scenario all stars should
have much smaller maximum masses, but it could still be
explained considering that the secondary is a low-mass
black hole.
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Finally, we have to address some of the caveats of our
analysis. The observational constraints for the mass and
radius considered here assume as a model that the observed
object is a neutron star and obtain the posterior distributions
according to this model. Therefore, if we change the model
by adding a bosonic component, the observational con-
straints may in principle change as well. For electromag-
netic observations of x-ray pulsars, the mass measurement
(through Shapiro delay or orbital parameter measurements)
relies almost exclusively on the effect of the total gravi-
tational mass, regardless of its composition. The electro-
magnetic measurement of the radius, on the other hand,
determines the size of the observable star—i.e., the fer-
mionic component alone. The distribution of the bosonic
field should affect weakly the analysis of NICER and
XMM-Newton, because the main effect would be to
modify the light bending close to the star (see, e.g.,
Ref. [5]). For μ ¼ 1 or larger, most of the bosonic field
would be confined inside the fermionic radius. Therefore,
the metric outside the observable surface would correspond
to that of an object with the total mass of the star, and the
analysis of NICER/XMM-Newton would be perfectly
valid. On the other hand, for μ ¼ 0.1 or smaller, most of
the bosonic field would be outside the observable surface,
and the metric would differ with respect to the one
corresponding to the total mass of the system (it would
probably be closer to the space-time generated by the
fermionic component alone). In that case, the analysis of
NICER/XMM-Newton would require corrections.
We also recall that in all of our models, the self-

interaction parameter of the bosonic field has been set to
zero. It would be interesting to study the effect of self-
interactions (λ ≠ 0) on mixed fermion-boson stars with a
realistic EOS, since a self-interaction potential allows us to
increase the maximum mass without changing the particle
mass μ. We leave this analysis as future work.
Regarding gravitational-wave observations, the mea-

sured component gravitational masses would probably
be well estimated, since the structure of the compact
objects appears only at 5PN order in the waveform models
for binaries [82]. However, the estimation of the radius, as
done in GW170817, may require modifications. This is
actually an indirect estimation, as the actual parameter
measured is the quadrupole tidal deformability. From this,
assuming that the object is a neutron star, it is possible to
put constraints on the radius [83]. Therefore, to do a proper
analysis, one should have to either make the relevant
corrections to estimate the fermion-boson star (fermionic)
radius from the observational constraints on the tidal
deformability, or compute the tidal deformability of our
mixed stars (in particular, the quadrupole Love number) to
compare directly with observations. Either of the two
analyses is out of the scope of this paper. However, even
if we do not perform this analysis, we expect that the trends
found in our work should at least be qualitatively correct,

since there is a correlation between the tidal deformability
and the radius.
It is also worth noticing that in scalar-tensor theories of

gravity, in which the scalar field is not minimally coupled to
gravity, neutron star models present significant deviations
from general relativity through spontaneous scalarization,
leading to neutron stars with significantly larger masses and
radii [84–87]. In this regard, a suitable choice of the scalar
field parameters and coupling constants of scalar-tensor
theories could effectively reproduce the same mass-radius
relations we have discussed in this paper for mixed
fermion-boson stars in general relativity. Such potential
degeneracy would make it difficult to distinguish between
the two cases, and thus, between the underlying theories of
gravity.
On a similar note, while our model resembles those of

Refs. [32,33], we have applied it to explain a larger set of
observational and experimental data than those authors,
who exclusively focused on explaining the secondary
component of GW190814 as a potential dark-matter-
admixed neutron star. Our findings for GW190814 agree
with those of Refs. [32,33], which provides an independent
consistency check. Since in our model the bosonic com-
ponent plays the role of dark matter, it is not surprising that
any similar dark matter model would likely fit the data,
irrespective of the type of matter considered.
To summarize, we conclude that the addition of a

bosonic component to a neutron star leads to mixed
configurations with mass-radius relations that are compat-
ible with recent multimessenger observations of compact
stars, both in the electromagnetic channel (PSR J0030þ
0451 and PSR J0740þ 6620) and in the gravitational-wave
channel (GW170817 and GW190814), as well as with the
latest PREX-2 experimental results. The possibility of
enlarging the parameter space of neutron stars with differ-
ent contributions from the bosonic component thus offers a
theoretically motivated approach to reconcile the tension in
the data collected by NICER/XMM-Newton and the LIGO-
Virgo-KAGRA Collaboration.
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