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In the present work, we consider nuclear matter in the innermost crust of neutron stars under the presence
of a strong magnetic field within the framework of a relativistic mean-field description. Two models with a
different slope of the symmetry energy are considered in order to discuss the density dependence of the
equation of state on the crust structure. The nonhomogeneous matter in β equilibrium is described within
the coexisting phases method, and the effect of including the anomalous magnetic moment is discussed.
Five different geometries for the pasta structures are considered. It is shown that strong magnetic fields
cause an extension of the inner crust of the neutron stars, with the occurrence of a series of disconnected
nonhomogeneous matter regions above the one existing for a null magnetic field. Moreover, we observed
that in these disconnected regions, for some values of the magnetic field, all five different cluster
geometrical shapes occur, and the gas density is close to the cluster density. Also, the pressure at the
neutron star crust-core transition is much larger than the pressure obtained for a zero magnetic field.
Another noticeable effect of the presence of strong magnetic fields is the increase of the proton fraction,
favoring the appearance of protons in the gas background.
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I. INTRODUCTION

In different astrophysical sites, such as core-collapse
supernovae [1,2], neutron stars (NSs) [3], or even NS
mergers, nonhomogeneous matter in different geometric
structures, the so-called pasta phases, may exist under given
conditions of temperature, density and asymmetry [4–7].
These structures result from the competition of the strong
force and the Coulomb interaction. The nuclear shapes
evolve monotonically with increasing density from droplets
to rods, slabs, tubes and bubbles. It has been shown that the
presence of pasta structures may be related with important
mechanisms in compact stars, as for instance the decay of
the magnetic field [8], neutrino opacity, thermal and
electrical conductivity, and superfluidity; see [9] for a
review. These mechanisms can give information on the
thermal evolution of stars, or the timing and structure of
glitches [9–15], thus making the low-density nonhomo-
geneous matter equation of state (EOS) an important issue
in the nuclear astrophysics fields.
Magnetars [16–19], mainly soft gamma repeaters

(SGRs) and anomalous x-ray pulsars (AXPs), belong to
a kind of NS with a very strong magnetic field at the
surface, up to 1014 ∼ 1015 G and quite long spin periods, of
the order of 2 ∼ 12 s [20]. Nowadays about 30 of such

objects have been observed [21]. Frequently, these objects
emit large amounts of electromagnetic radiation in the form
of x rays, or γ rays. More recently, even a fast radio burst
(FRB), i.e., a radio wave emission with a duration of circa a
millisecond, detected by the Canadian Hydrogen Intensity
Mapping Experiment (CHIME) FRB project, was associ-
ated with the magnetar SGR 1935þ 2154 [22]. The
detection of the gravitational wave GW170817 emitted
by a binary neutron star merger [23], followed up by the
detection of the electromagnetic counterpart, the γ-ray burst
GRB170817A [24], and the electromagnetic transient
AT2017gfo [25], has opened the new era of multimessenger
astrophysics. With the next generation of GW detectors, it
is expected that besides transient events also the continuous
gravitational wave emission will be detected. In particular,
magnetars are good candidates to be a source of continuous
gravitational wave emission, and we expect that in the
future it will be possible to detect this type of gravita-
tional wave.
The scalar virial theorem [26,27] provides an upper limit

on the central magnetic field strength of NSs, ∼1018 G.
Other calculations, like the solutions of the coupled
Einstein-Maxwell equations [28,29] confirmed that in
the center of a NS, the magnetic field has an intensity
not higher than 1018 G [30–32]. Presently, it is believed that
the magnetic field inside stable magnetized NSs occurs in a
mixed poloidal-toroidal configuration [33,34], the relative
magnitude of each component being dependent on the
boundary conditions imposed [35,36], and, therefore, on
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the structure of the NS. In [34] the maximum strength of
both components, poloidal and toroidal, does not differ
much. However, it was shown that in the presence of a
differentially rotating core the toroidal magnetic field can
be amplified due to the winding, so that toroidal fields that
dominate over the poloidal ones may be generated [37,38].
In [39], the authors could also obtain a larger toroidal
component than the poloidal one within a twisted-torus
equilibrium configuration for nonrotating magnetized NSs.
Although realistic magnetic fields, such as the ones that

may exist inside NSs, do not affect much the core EOS, as
discussed in [40], it has been shown that these fields have a
non-negligible effect, both on the outer and inner crusts.
The magnetic field affects strongly the NS outer crust
[41–44], in particular, the neutron drip density, its composi-
tion and the properties of the nuclei present in the outer crust.
In Refs. [45–49], it was shown from the calculation of

the dynamical or thermodynamical spinodals that a com-
plex inner crust could exist with several disconnected
nonhomogeneous regions. Considering a fixed proton
fraction, it was shown that disconnected regions with pasta
phases could exist at densities above the one associated to
the B ¼ 0 crust-core transition [50]. However, it was still
necessary to confirm these results if β equilibrium would be
imposed.
Avancini et al. have studied the inner crust pasta phases

in the field-free case [5,51], at zero and finite temperatures
using the Thomas-Fermi (TF) and coexistence phases (CP)
methods within a relativistic mean-field (RMF) description
of nuclear matter. Both β-equilibrium stellar matter and
matter with a fixed proton fraction have been considered.
Later, the effect of the magnetic fields on the inner crust
was also studied by some authors [52–55]. In Ref. [53],
quantities such as nuclear size, surface tension and the
transition between pasta configurations, were studied using
the TF approximation with a fixed proton fraction of
Yp ¼ 0.1, 0.3, and considering the RMF NL3 model.
Recently, Bao et al. [52] investigated the effects of strong
magnetic fields on the pasta properties and crust-core
transition, using the TF approximation and two RMF
models, TM1 and IUFSU, imposing the condition of β
equilibrium. Some features, such as an increase of the
proton fraction or the decrease of the binding energy per
nucleon, due to the magnetic field, were discussed [52].
In the present work, we will study the innermost part of

the crust in β equilibrium, using the CP calculation [5], and
considering a magnetic field strength B� ranging from 5 ×
103 to 2 × 104, with B� ¼ B=Be

c, Be
c being the critical field

at which the electron cyclotron energy is equal to the
electron mass, Be

c ¼ 4.414 × 1013 G. In particular, we are
interested in confirming whether the disconnected nonho-
mogeneous regions exist above the B ¼ 0 crust-core
transition, and in understanding the properties of clusters
inside these regions. We will only study the effect on the
inner crust and not in the outer crust.

The present paper is organized as follows: in Sec. II the
methods and the formalism are given, in Sec. III we show
our results and discussion, and we draw some conclusions
in Sec. IV.

II. FORMALISM

We describe nuclear matter at the NS inner crust within a
relativistic mean field approach, in which the nucleons
interact via the exchange of mesons. The exchanged
mesons are the isoscalar-scalar and vector mesons (σ
and ω, respectively) and the isovector meson (ρ). We
consider a system of protons and neutrons with mass M
interacting with and through an isoscalar-scalar field ϕwith
mass ms, an isoscalar-vector field Vμ with mass mv, an
isovector-vector field bμ with mass mρ. We also include a
system of electrons with massme to obtain a charge neutral
system. Protons and electrons interact through the electro-
magnetic field Aμ. The onset of muons occurs above the
crust-core transition and, therefore, they have not been
included in the present study. The Lagrangian density reads

L ¼
X
i¼p;n

Li þ Le þ Lσ þ Lω þ Lρ þ Lγ; ð1Þ

where the nucleon Lagrangian reads

Li ¼ ψ̄ i

�
γμiDμ −M� −

1

2
μNκbσμνFμν

�
ψ i; ð2Þ

with

iDμ ¼ i∂μ − gvVμ −
gρ
2
τ⃗ · bμ − e

1þ τ3
2

Aμ; ð3Þ

and

M� ¼ M − gsϕ; ð4Þ

the nucleon effective mass. The electron Lagrangian is
given by

Le ¼ ψ̄e½γμði∂μ þ eAμÞ −me�ψe; ð5Þ

and the meson Lagrangian densities are

Lσ ¼
1

2

�
∂μϕ∂μϕ −m2

sϕ
2 −

1

3
κϕ3 −

1

12
λϕ4

�
; ð6Þ

Lω ¼ −
1

4
ΩμνΩμν þ 1

2
m2

vVμVμ þ ξ

4!
g4vðVμVμÞ2 ð7Þ

Lρ ¼ −
1

4
Bμν ·Bμν þ 1

2
m2

ρbμ · bμ; ð8Þ

Lγ ¼ −
1

4
FμνFμν; ð9Þ
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where the tensors are given by

Ωμν ¼ ∂μVν − ∂νVμ; ð10Þ
Bμν ¼ ∂μbν − ∂νbμ − gρðbμ × bνÞ; ð11Þ

Fμν ¼ ∂μAν − ∂νAμ: ð12Þ

The parameters of the model are the nucleon massM, three
coupling constants gs, gv, and gρ, of the mesons to the
nucleons, the electrons mass me, the masses of the mesons
ms,mv,mρ, and the self-interacting coupling constants κ, λ,
and ξ. The electromagnetic coupling constant is given by
e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π=137
p

, and τ3 ¼ �1 is the isospin projection for
protons (þ1) and neutrons (−1). The nucleon anomalous
magnetic moments (AMM) are introduced via the coupling
of the baryons to the electromagnetic field tensor Fμν, with
σμν ¼ i

2
½γμ; γν�, and strength κb, with κn ¼ −1.91315 for

the neutron, and κp ¼ 1.79285 for the proton. μN is the
nuclear magneton. The contribution of the anomalous
magnetic moment of the electrons is negligible [56], hence
it will not be considered.
In this work, we use two RMF models, NL3 [57] and

NL3ωρ [58,59]. The last model contains an additional
nonlinear term Lωρ, which mixes the ω and ρ mesons,
allowing to soften the density dependence of the symmetry
energy above saturation density. This term is given by

Lωρ ¼ Λvg2vg2ρVμVμbμ · bμ: ð13Þ

These two models belong to the same family, meaning that
they have the same isovector saturation properties, i.e., the
binding energy, Eb ¼ −16.2 MeV, the saturation density,
ρ0¼0.148 fm−3, and the incompressibility, K ¼ 272 MeV.
The symmetry energy, J, and its slope, L, differ, and they
are equal to J ¼ 31.7 (37.4) MeV, and L ¼ 55.5
(118.9) MeV for NL3ωρ (NL3). The NL3ωρ model
satisfies the constraints imposed by microscopic calcula-
tions of neutron matter [60] although NL3 does not. Both
predict stars with masses above 2 M⊙, even when hyper-
onic degrees of freedom are considered [61]. The choice
of two models with the same isoscalar properties will allow
us to study the effect of the density dependence of the
symmetry energy on the nonhomogeneous matter. The
symmetry energy is the same at 0.1 fm−3 for both models,
but, at subsaturation densities, the two models show a quite
different density dependence, see Fig. 1 of Ref. [6]. Let us
stress that although the high density behavior of NL3 is not
able to describe the tidal deformability obtained from
GW170817 or the NS radii determined from NICER
observations, the NL3 parametrization was fitted to a large
number of nuclear properties [57] and should be adequate
to study systems that have a density similar to the ones
found in nuclei, i.e., subsaturation densities, as the ones
occurring in the inner crust.

The field equations of motion follow from the Euler-
Lagrange equations. From the Lagrangian density in
Eq. (1), we obtain the following meson field equations
in the mean-field approximation:

m2
shϕi ¼ gsðρsp þ ρsnÞ ¼ gsρs; ð14Þ

m2
vhV0i ¼ gvðρvp þ ρvnÞ ¼ gvρb; ð15Þ

m2
ρhb0i ¼

1

2
gρðρvp − ρvnÞ ¼

1

2
gρρ3; ð16Þ

and the Dirac equations for nucleons and electrons are
given by�

iγμ∂μ − qbγμAμ −M� − gvγ0V0

−
1

2
gρτ3bγ0b0 −

1

2
μNκbσμνFμν

�
Ψb ¼ 0; ð17Þ

ðiγμ∂μ − qeγμAμ −meÞψe ¼ 0: ð18Þ
ρs is the total scalar number density and ρb is the total
baryonic density. In charge-neutral, β equilibrium matter,
the conditions

ρvp ¼ ρve; ð19Þ
μn ¼ μp þ μe; ð20Þ

should be satisfied. We solve the coupled Eqs. (14)–(19)
self-consistently at a given baryon density in the presence
of strong magnetic fields. The energy density of neutron
star matter is given by

ε ¼
X
b¼p;n

εb þ εe þ
1

2
m2

sϕ
2 þ 1

2
m2

vV2
0 þ

1

2
m2

ρb20; ð21Þ

where the energy densities of nucleons and electrons have
the following forms:

εp ¼
qpB

4π2
Xνmax

ν¼0

X
s

"
kpF;ν;sE

p
F þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�2

p þ 2νqpB
q

− sμNκpB
�
2
ln

					 kpF;ν;sþEp
Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�2
p þ 2νqpB

q
− sμNκpB

					
#
;

εn ¼
1

4π2
X
s

�
1

2
knF;sE

n3
F −

2

3
sμNκnBEn3

F

�
arcsin

�
m̄n

En
F

�
−
π

2

�

−
�
1

3
sμNκnBþ 1

4
m̄n

�

×

�
m̄nknF;sE

n
F þ m̄3

n ln

				knF;sþEn
F

m̄n

				
��

;

εe ¼
jqejB
4π2

Xνmax

ν¼0

X
s

�
keF;ν;sE

e
F

þðm2
eþ 2νjqejBÞ ln

				 keF;ν;sþEe
Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
eþ 2νjqejB

p 				
�
: ð22Þ
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The expressions of the scalar and vector densities for
protons and neutrons are given by

ρsp ¼ qpBm�
p

2π2
Xνmax

ν¼0

X
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�2

p þ 2νqpB
q

− sμNκpBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�2

p þ 2νqpB
q

× ln

					 kpF;ν;s þ Ep
Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�2
p þ 2νqpB

q
− sμNκpB

					;
ρsn ¼

m�
n

4π2
X
s

�
En
Fk

n
F;s − m̄2

n ln

				 knF;s þ En
F

m̄n

				
�
;

ρvp ¼ qpB

2π2
Xνmax

ν¼0

X
s

kpF;ν;s;

ρvn ¼
1

2π2
X
s

�
1

3
ðknF;sÞ3 −

1

2
sμNκnB

�
m̄nknF;s

þ En2
F

�
arcsin

�
m̄n

En
F

�
−
π

2

���
; ð23Þ

and the vector densities for electrons are given by

ρve ¼
jqejB
2π2

Xνmax

ν¼0

X
s

keF;ν;s; ð24Þ

where kpF;ν;s, knF;s, and keF;ν;s are the Fermi momenta,
respectively, of protons, neutrons and electrons, which
are related to the Fermi energies Ep

F, E
n
F, and Ee

F as

kp2F;ν;s ¼ Ep2
F −

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�2

p þ 2νqpB
q

− sμNκpB
i
2
;

kn2F;s ¼ En2
F − m̄2

n;

ke2F;ν;s ¼ Ee2
F − ðm2

e þ 2νjqejBÞ; ð25Þ

with

m̄n ¼ m�
n − sμNκnB: ð26Þ

The summation in ν in the above expressions terminates at
νmax, the largest value of ν for which the square of Fermi
momenta of the particle is still positive and which corre-
sponds to the closest integer from below defined by the
ratio

νmax ¼
�ðEe

FÞ2 −m2
e

2jqejB
�
; for electrons

νmax ¼
�ðEp

F þ sμNκpBÞ2 −m�
p
2

2jqpjB
�
; for protons:

The chemical potentials of baryons and electrons are
defined as

μb ¼ Eb
F þ gvV0 þ 1

2
gρτ3bb0; ð27Þ

μe ¼ Ee
F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ke2F;ν;s þm2

e þ 2νjqejB
q

: ð28Þ

In the coexisting phases method, matter is organized into
separated regions of higher and lower density, the higher
ones being the pasta phases, and the lower ones, a back-
ground nucleon gas, see [50,51]. The interface between
these regions in the present approach is sharp. Finite size
effects are taken into account by including a surface and a
Coulomb term in the energy density after the minimization
of the free energy.
By minimizing the sum εsurf þ εCoul with respect to the

size of the droplet/bubble, rod/tube or slab, one gets

εsurf ¼ 2εCoul; ð29Þ

with

εCoul ¼
2α

42=3
ðe2πΦÞ1=3½σDðρIp − ρIIp Þ�2=3; ð30Þ

where α ¼ f for droplets, rods and slabs and α ¼ 1 − f for
tubes and bubbles, f is the volume fraction of phase I, σ is
the surface energy coefficient and Φ is given by

Φ ¼

 ð2−Dα1−2=D

D−2 þ αÞ 1
Dþ2

; D ¼ 1; 3
α−1−ln α
Dþ2

; D ¼ 2:
ð31Þ

The Gibbs equilibrium conditions are imposed to get the
lowest energy state, and, for a temperature T ¼ TI ¼ TII ,
are written as

μIn ¼ μIIn ;

μIp ¼ μIIp ;

PI ¼ PII; ð32Þ

where I and II label the high- and low-density phases,
respectively.

III. RESULTS AND DISCUSSION

Having as a main objective to understand how the
magnetic field affects the structure of the inner crust and
the crust-core transition, in the following we calculate the
nonhomogeneous matter in the inner crust of NSs in β
equilibrium under different field strengths, of the order of
∼1017–1018 G. All calculations are performed with and
without the anomalous magnetic moment (AMM) of the
nucleon in order to evaluate under which conditions it is
important to include it.
In Fig. 1, the radii of the Wigner-Seitz (WS) cells and

clusters inside them are shown as a function of density
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without (top row) and with (middle row) AMM. In the two
bottom rows, the neutron and proton densities are given for
the cluster and the gas phases, without AMM (light colors)
and with AMM (dark colors). All the calculations shown in

this figure are for the NL3 model. In the same figure, in the
two top rows, the growth rates Γ determined within a
dynamical spinodal calculation are also plotted with a
blue line. The dynamical spinodal formalism has been

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 1. Radii of WS cell (red) and nucleus (green) for β-equilibrium matter using the NL3 parametrization without [first row, (a), (b)
and (c)] and with [second row, (d), (e) and (f)] the inclusion of AMM for different magnetic field strengths B� ¼ 5 × 103 [left, (a), (d),
(g), and (j)], 104 [middle, (b), (e), (h), and (k)], 2 × 104 [right, (c), (f), (i), and (l)]. The no-field case is also shown with gray points as a
reference. Growth rates obtained with a dynamical spinodal calculation in [48] are plotted with blue lines. The gas (blue), designated by
L for low density, and the cluster (red), designated by H for high density, neutron [third row, (g), (h), (i)] and proton [fourth row, (j), (k),
(l)] densities inside the WS cell are also plotted as a function of the density without (light colors) and with (dark colors) AMM.
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introduced in [62,63], and it is based on the calculation of
the small oscillation frequencies of matter obtained by
considering small deviations of the fields and distribution
functions of neutrons, protons and electrons from equilib-
rium. The spinodal region is characterized by purely
imaginary frequencies ω and we denominate the growth
rates as Γ ¼ jωj. In Ref. [45], the dynamical spinodal
approach was applied to magnetized matter and the authors
have predicted the occurrence of pasta phases at larger
densities than the expected ones, i.e. as in the B ¼ 0 case.
In this figure, we see that other pasta phase regions,
disconnected from the low-density spinodal region, appear,
contrary to the field-free case. This effect is caused by the
Landau quantization induced by the magnetic field, and, as
it was said before, it was predicted in previous works,
which pointed out that strong magnetic fields may cause an
extension of the NS inner crust [45–48].
In Fig. 1, some interesting features may be identified:

(i) As for the “primary” pasta region, namely for a density
ρ≲ 0.06 fm−3 (for NL3ωρ; ρ≲ 0.08 fm−3), when the mag-
netic fields are relatively weak (B� ¼ 5 × 103 in the present
work), the impact of the magnetic field and AMM are
negligible. This is consistent with the results of Ref. [52]. In
this last study, Bao et al. found that the effects of the
magnetic fields and AMM are negligible when B ≤ 1017 G,
see also [40,64]. (ii) Above the connected low-density
instability region, there are several disconnected pasta
regions that appear, the stronger the field B, the smaller
the number of regions and the wider the density range that
they cover. As we will see, in each one of these regions, all
different geometric configurations may occur. (iii) As for
the extended pasta regions (disconnected nonhomogeneous
matter), it is verified that if AMM is considered, more and
narrower disconnected regions occur. This is explained by
the spin polarization: including the AMM, the spin polari-
zation degeneracy is removed. (iv) The weaker the fields,
the closer the disconnected pasta regions, and, in general,
the narrower they are. (v) For a given magnetic field
strength B�, the higher the baryon density, the narrower the
individual pasta regions. A very narrow pasta is visible at
the density of ∼0.117 fm−3 in Fig. 1(e) (see the magnifi-
cation in the inset). We should point out that for much
weaker fields, like B� ¼ 103 and 3 × 103, more structures
like these would occur and be closer together, which is
in agreement with the above conclusions. We recall that
B� ¼103 (5 × 103) corresponds to a field B¼4.4×
1016G (B ¼ 2.2 × 1017 G).
In the two bottom rows, the neutron and proton densities

inside the WS cells are plotted. The behavior of the neutron
gas and cluster densities in the first spinodal region follow
the behavior discussed in [6,52]: the cluster density remains
almost flat while the gas density increases almost linearly.
Above this first spinodal region the disconnected regions

appear which present some special properties: the neutron
cluster density increases and the gas and cluster densities

differ only slightly, but this difference increases for stronger
fields and it is larger if AMM is set to zero. In the bottom
row, the proton gas and cluster densities are given. In the
first spinodal region, the proton cluster density decreases
with density, as in [6,52]. Above this region, the proton
cluster density remains approximately constant. The pres-
ence of the magnetic field has a particular effect on the
proton gas density: it is nonzero above ≈0.05 fm−3. Just as
it was discussed before for the neutrons, also the proton gas
and the proton cluster densities are almost equal in these
disconnected regions, in particular, if AMM is finite.
The finite proton density in the background gas will

certainly affect matter properties such as the electrical
conductivity.
The structure of the disconnected regions for each

magnetic field with and without AMM is better under-
stood looking at Fig. 3. Matter in these disconnected
regions shows the normal configuration transition order,
i.e., “droplet-rod-slab-tube-bubble,” whereas sometimes
reversed-order pasta may arise, namely, in the order
of “bubble-tube-slab-rod-droplet,” as seen in Fig. 3 of
Ref. [50]. However, in this last work, a fixed proton fraction
was considered while in our case the proton fraction
increases with density. As discussed in Ref. [52], although
for B ¼ 0, NL3 only shows the droplet configuration, for a
finite magnetic field, all geometries occur in the first
spinodal region. Besides, also inside the narrow discon-
nected spinodal regions generally all the geometries occur
for the magnetic fields considered, independently of having
or not zero AMM. This is better seen in Fig. 2 where the
highest-density disconnected spinodal region is plotted. We
also include the proton and the neutron gas and cluster
densities: notice that, for each species, the cluster and gas
densities are very similar, even if the AMM is included (the
insets show the difference). Another feature observed is that
the transition density to homogeneous matter at the end of
the first spinodal region occurs at smaller densities for
larger fields: the gray lines in Fig. 1 extend to larger
densities than the colored green and red lines. This same
conclusion had been drawn in Ref. [52], where within the
Thomas-Fermi approach only this spinodal region has been
calculated.
The same quantities plotted in Figs. 1–3 for the NL3

model are also shown in Figs. 4–6 for the NL3ωρ para-
metrization. Most of the conclusions mentioned above also
hold here. We notice, however, that the difference in the
symmetry energy properties of both models has noticeable
effects: comparing the density extension of the discon-
nected pasta regions obtained with NL3ωρ and NL3
parametrizations, we see that NL3 presents a larger total
extension, possibly associated with the larger symmetry
energy slope L. This effect had already been discussed in
Refs. [45,46,48], but in these works, the proton fraction
was held constant. Now we confirm the same effect in β-
equilibrium matter. In summary, although for B ¼ 0, NL3
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and NL3ωρ have quite different crust-core transitions,
≈0.06 and 0.08 fm−3, respectively, for the magnetic field
intensities shown in Figs. 1 and 4, the extension is similar,

and lies in the range 0.1–0.12 fm−3 for both models. It
should be pointed out that although at saturation NL3 has a
symmetry energy larger than the one of NL3ωρ, respec-
tively 37.4 and 31.7 MeV, in the range of 0.1–0.12 fm−3

their symmetry energy is similar.
For the scenarios considered with or without AMM, but

relatively weak fields, the end density of droplets within the
NL3ωρ model can go almost up to around 0.07 fm−3. This
behavior was also obtained in Refs. [65,66], in two
calculations that did not take into account the magnetic
fields. The extended pasta regions above that density are
difficult to obtain for the field intensity B� ¼ 5 × 103. This
can be understood, because, as predicted within the growth
rates approach, the density range of this clusterized matter
is quite small. The same situation occurs for even weaker
fields with strengths as might also occur in the inner crust
of magnetars, e.g., B� ¼ 103 and 3 × 103 (respectively 4 ×
1016 and 1017 G). However, our main conclusions may be
drawn with the field intensities we consider: for densities
above the main spinodal region, which also occurs for zero
magnetic field, a finite magnetic field may give rise to
disconnected spinodal regions which generally (i) contain
all types of geometries in their narrow density range,
(ii) with very similar cluster and gas densities, and (iii) with
a nonzero proton density of the gas.
The binding energy per nucleon of the pasta phases (Ep)

with respect to the zero-field homogeneous matter binding
energy per nucleon (Eh), i.e.,ΔE ¼ EpðBÞ − EhðB ¼ 0Þ, is

FIG. 3. The evolution of the pasta shapes as a function of the
baryonic density for β-equilibriummatter and for differentmagnetic
field strengths: B� ¼ 0 (gray), 5 × 103 (red), 104 (green), 2 × 104

(blue), for the NL3 model with (bottom) and without (top) AMM.

(a) (b) (c)

(d) (e) (f)

FIG. 2. The pasta phases at the largest-density disconnected region: radii of the WS cell (red) and cluster (green), proton density of
high-density phase ρHp (blue) and low-density phase ρLp (light blue), neutron density of the high-density phase ρHn (purple), and low-
density phase ρLn (orange) as a function of the density, for the NL3 parametrization, with (bottom) and without (top) AMM. The insets
show that the low and high proton and neutron densities are similar but different. As before, H is for the cluster density and L is for the
gas density.
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plotted in Fig. 7 as a function of the baryonic density, using
the NL3 (top) and NL3ωρ (bottom) models for 5 × 103

(red), 104 (green), and 2 × 104 (blue). The dark (light)
colors correspond to the results with (without) AMM.

Both models show a similar behavior in general: the
binding energy is lowered when strong magnetic fields
are considered due to the Landau quantization, which
causes the softening of the EOS. However, the difference

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 4. Radii of the WS cell (red) and nucleus (green) for β-equilibrium matter using the NL3ωρ parametrization without [first row,
(a), (b) and (c)] and with [second row, (d), (e) and (f)] the inclusion of AMM for different magnetic field strengths B� ¼ 5 × 103 [left,
(a), (d), (g) and (j)], 104 [middle, (b), (e), (h) and (k)], 2 × 104 [right, (c), (f), (i) and (l)]. The no-field case is also shown with gray points
as a reference. Growth rates obtained with a dynamical spinodal calculation in [48] are plotted with blue lines. The gas (L, blue) and the
cluster (H, red) neutron [third row, (g), (h), (i)] and proton [fourth row, (j), (k), (l)] densities inside the WS cell are also plotted as a
function of the density without (light colors) and with (dark colors) AMM.
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between the binding energies obtained with strong mag-
netic fields and the field free case become smaller as the
baryonic density increases, because the magnitude of the

effect depends on the intensity of the magnetic field with
respect to the Fermi momentum of the nucleon: the larger
the B field, the larger the effects on the thermodynamic
properties of the magnetized matter. For the stronger fields,
it is clearly seen that the inclusion of AMM lowers the
energy, particularly at the lowest densities and strongest
magnetic fields, being the most prominent effect of AMM.
This essentially reflects the presence of the term sμNκiB.
Notice also that the disconnected nonhomogeneous matter
shows just a modest trend, almost continuous in the
continuation of the primary pasta, i.e., the binding energy
of clusterized matter is just a smooth line with segments cut
off for some densities. In these intervals, matter is homo-
geneous and the binding energy was plotted only for
nonhomogeneous matter.
In Fig. 8, the proton fraction Yp in the WS cell is plotted

against the baryonic density. The proton fraction decreases
with increasing density following the B ¼ 0 proton fraction
in the primary pasta region. After attaining a minimum, the
proton fraction starts to increase as shown in Refs. [6,52].
In the presence of a finite magnetic field, several features
are identified: (i) the decrease of the proton fraction at low
densities occurs much slower, so that the minimum of Yp

occurs at larger densities; (ii) after the minimum is attained,
the Landau quantization is reflected in the proton fraction,
and a fluctuation around the B ¼ 0 scenario is obtained;
(iii) the disconnected spinodal regions have larger proton
fractions than the one at the upper boundary of the primary
pasta region. This behavior is similar to the one of the

(a) (b) (c)

(d) (e) (f)

FIG. 5. The pasta phases at the largest-density disconnected region: radii of the WS cell (red) and cluster (green), proton density of
high-density phase ρHp (blue) and low-density phase ρLp (light blue), neutron density of the high-density phase ρHn (purple), and low-
density phase ρLn (orange) as a function of the density, for the NL3ωρ parametrization, with (bottom) and without (top) AMM. The insets
show that the low and high proton and neutron densities are similar but different.

FIG. 6. The evolution of the pasta shapes as a function of the
baryonic density for β-equilibrium matter and for different
magnetic field strengths: B� ¼ 0 (gray), 5 × 103 (red), 104

(green), 2 × 104 (blue), for the NL3ωρ model with (bottom)
and without (top) AMM.
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homogeneous matter core, above the crust-core transition.
It is evident that strong magnetic fields increase the proton
fraction within the cell, while the difference between AMM
and no-AMM cases are barely distinguishable, except at
the “extended” pasta region: slightly larger proton fractions
are obtained with AMM. In addition, when the magnetic
fields are relatively weak (B� ¼ 5 × 103 ∼ 2 × 1017 G), the
impact of the magnetic fields on the proton fraction Yp is
not large, as seen in the figure, i.e., the red points almost
coincide with the gray points until a density of the order
of 0.015 fm−3.
In Tables I and II, the pressures Pi (MeV=fm3) and the

corresponding baryonic densities ρi (fm−3) at the pasta-
homogeneous phase or homogeneous-pasta phase transi-
tion points are shown, respectively, for the NL3 and the
NL3ωρ parametrizations. All the calculated regions have
been included in the tables. For a finite magnetic field, the

pressure at the last transition boundary is quite larger
than the pressure at the primary spinodal transition to
homogeneous matter. The pressure at the crust-core
interface Pt is a key parameter to determine the crustal
fraction of the moment of inertia [67–71], because the
crustal momentum of inertia may be the mechanism that
drives glitches in NSs, as the ones observed in the Vela
pulsar [67]. It was, however, suggested that this mecha-
nism may be more complicated if the entrainment effects
between the superfluid neutrons and the crust are taken
into account [72,73], and, in this case, the angular
momentum reservoir of the crust would not be enough
to explain the glitch mechanism. The possible increase of
the nonhomogeneous matter at the transition to the NS
core due to the presence of strong magnetic fields could
be an answer to the extra angular momentum reservoir.
Though we may have not computed the crust-core
interface precisely, due to convergence problems occur-
ring when the cluster and gas densities are similar, the
present study indicates that the pressure at the crust-core

FIG. 7. The difference between the finite-B binding energy per
nucleon of the pasta phases (Ep) and the zero-B binding energy per
nucleon of homogeneous matter (Eh),ΔE ¼ EpðBÞ − EhðB ¼ 0Þ,
as a function of the baryonic density for β-equilibriummatter using
the NL3 (top) and NL3ωρ (bottom) parametrizations, considering
different magnetic field strengths: 5 × 103 (red), 104 (green), and
2 × 104 (blue). The results consider calculations with (dark colors)
and without (light colors) AMM.

FIG. 8. The proton fraction as a function of the baryonic density
for β-equilibrium matter using the NL3 (top) and NL3ωρ
(bottom) parametrizations, considering different magnetic field
strengths: B� ¼ 0 (gray), 5 × 103 (red), 104 (green), and 2 × 104

(blue). The results consider calculations with (dark colors) and
without (light colors) AMM.
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transition may be well above the 0.65 MeV=fm3 indi-
cated in Ref. [67].

IV. CONCLUSION

In the present paper, we investigate the effects of strong
magnetic fields under the β-equilibrium condition, in the
innermost crust of NSs where nonhomogeneous nuclear
matter known as pasta phases may exist. The CP approxi-
mation and RMF models NL3 and NL3ωρ are employed.
Although the CP approach is non-self-consistent, and, in

particular, the surface tension has been considered mag-
netic field independent, we believe that both qualitative,
and even quantitative conclusions, although probably
carrying a large uncertainty, can be drawn. The two models
chosen have allowed us to discuss how sensitive is matter
with a different symmetry energy behavior to magnetic
field effects. NL3 and NL3ωρ have in common the same
isoscalar properties, but have a very different density
dependence of the symmetry energy. NL3 has a smaller
symmetry energy below ρ ¼ 0.1 fm−3, where most of the
inner crust lies, and this favors smaller proton fractions and

TABLE I. The pressures Pi=f
n (MeV=fm3), and the corresponding baryonic densities ρi=fn (fm−3) at the nth initial (i) pasta-

homogeneous phase transition, and at the nth final (f) homogeneous-pasta phase discontinuity points, for NL3 parametrization and all
the spinodal regions, starting at the upper boundary of the primary spinodal region. The last density/pressure corresponds to the crust-
core transition.

B� AMM 1, f 2, i 3, f 4, i 5, f 6, i 7, f 8, i 9, f 10, i 11, f

5 × 103 No ρi;fn 0.06930 0.07330 0.07722 0.08800 0.09217 0.10590 0.10739 � � � � � � � � � � � �
Pi=f
n 0.56126 0.61657 0.71852 1.07596 1.21360 1.83551 1.89440 � � � � � � � � � � � �

Yes ρi;fn 0.06750 0.06872 0.07136 0.07584 0.07965 0.08493 0.08849 0.09490 0.09622 0.10132 0.10271

Pi=f
n 0.49730 0.52282 0.57339 0.68389 0.79260 0.96607 1.09669 1.32341 1.37746 1.60711 1.67405

104 No ρi;fn 0.06420 0.07392 0.08316 0.10477 0.10936 � � � � � � � � � � � � � � � � � �
Pi=f
n 0.45504 0.63916 0.89136 1.81560 1.99741 � � � � � � � � � � � � � � � � � �

Yes ρi;fn 0.055690 0.06264 0.07060 0.08484 0.09020 0.10001 0.10473 0.11779 0.11793 � � � � � �
Pi=f
n 0.30335 0.41565 0.56473 0.95961 1.15361 1.58326 1.82087 2.47114 2.47935 � � � � � �

2 × 104 No ρi;fn 0.06919 0.10123 0.11412 � � � � � � � � � � � � � � � � � � � � � � � �
Pi=f
n 0.53919 1.73962 2.25502 � � � � � � � � � � � � � � � � � � � � � � � �

Yes ρi;fn 0.06555 0.09880 0.10243 � � � � � � � � � � � � � � � � � � � � � � � �
Pi=f
n 0.46980 1.65124 1.75850 � � � � � � � � � � � � � � � � � � � � � � � �

TABLE II. The pressures Pi=f
n (MeV=fm3), and the corresponding baryonic densities ρi=fn (fm−3) at the nth initial (i) pasta-

homogeneous phase transition, and at the nth final (f) homogeneous-pasta phase discontinuity points, for NL3ωρ parametrization and
all the spinodal regions, starting at the upper boundary of the primary spinodal region. The last density/pressure corresponds to the crust-
core transition.

B� AMM 1, f 2, i 3, f 4, i 5, f 6, i 7, f 8, i 9, f 10, i 11, f

5 × 103 No ρi;fn 0.08516 0.09531 0.09622 � � � � � � � � � � � � � � � � � � � � � � � �
Pi=f
n 0.96444 1.10613 1.25015 � � � � � � � � � � � � � � � � � � � � � � � �

Yes ρi;fn 0.08422 0.08700 0.09107 0.09566 0.09808 0.10173 0.10396 � � � � � � � � � � � �
Pi=f
n 0.94087 1.00968 1.11587 1.23839 1.31097 1.43031 1.50674 � � � � � � � � � � � �

104 No ρi;fn 0.07561 0.08401 0.09841 � � � � � � � � � � � � � � � � � � � � � � � �
Pi=f
n 0.76215 0.96028 1.29971 � � � � � � � � � � � � � � � � � � � � � � � �

Yes ρi;fn 0.06901 0.08360 0.09250 0.10190 0.10550 0.11333 0.11594 � � � � � � � � � � � �
Pi=f
n 0.62999 0.95172 1.16818 1.44014 1.56046 1.85963 1.96759 � � � � � � � � � � � �

2 × 104 No ρi;fn 0.08375 0.09956 0.10832 � � � � � � � � � � � � � � � � � � � � � � � �
Pi=f
n 1.05267 1.16429 1.63340 � � � � � � � � � � � � � � � � � � � � � � � �

Yes ρi;fn 0.07658 0.08348 0.09152 0.11752 0.12016 � � � � � � � � � � � � � � � � � �
Pi=f
n 0.86279 1.06788 1.18199 2.05859 2.16918 � � � � � � � � � � � � � � � � � �
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stronger magnetic field effects, in particular, a smaller
number of Landau levels. The larger proton fraction
predicted by NL3ωρ involves a larger number of Landau
levels, and a smaller relative extension of the nonhomo-
geneous matter when compared to NL3.
Within a zero-temperature calculation and the WS

approximation to describe clusterized matter, we have
carried out calculations with and without the anomalous
magnetic moment of the nucleon. We found, when taking
into account strong magnetic fields, that, besides a
primary spinodal region occurring at densities as pre-
dicted in the B ¼ 0 calculations [74–76], a series of
disconnected regions including pastalike clusters may
appear at densities above the first spinodal region, giving
rise to an extension of the inner crust of the NS.
Several properties of the nonhomogeneous layers have

been calculated, including the nuclear size, the pasta
shapes, the pasta-homogeneous matter transitions, the
binding energy per nucleon, the pressure at the interfaces,
and the density dependence of the proton fraction. Most
results concerning the first spinodal region are in good
agreement with the discussion performed in Ref. [52],
where a Thomas-Fermi calculation was used to study the
nonhomogeneous layers of a magnetized NS. In their
study, however, no disconnected spinodal regions were
reported. In previous studies, these disconnected regions
had been predicted within a dynamical spinodal, which
takes into account both the Coulomb interaction and the
finite range of the nuclear force [45,46]. In the present
study, the density range of the disconnected spinodal
regions, where new pasta phases are found, agrees well
with the predictions of the dynamical spinodal. Also, in a
recent work [50], the accordance between the unstable
regions obtained within the dynamical approach, and a
calculation as the one performed here, was found. In that
calculation, however, a fixed proton fraction was con-
sidered, and since the proton fraction increases with the
density, and the magnetic field effects are stronger the
smaller the proton Fermi momentum, it was not clear if
the β equilibrium would disfavor the appearance of the
high-density disconnected regions. This, however, has
proven not to be the case.

We may summarize the main conclusions of our study
as: (i) finite magnetic fields give rise to disconnected
spinodal regions at densities above the B ¼ 0 crust-core
transition density; (ii) the extra spinodal regions contain
matter in different geometric configurations; (iii) in the WS
cells of these spinodal regions, the cluster and gas densities
are very close, for both neutrons and protons; (iv) the
magnetic field favors the appearance of protons in the
background gas of the nonhomogeneous matter, even in
the first spinodal region; (v) in the presence of a magnetic
field, the pressure at the crust-core transition may be much
larger. We also found that the effect of the AMM is weak,
except for the largest-field intensity considered, of the order
of 9 × 1017 G. A self-consistent calculation that describes
adequately the range of the nuclear force, as a Thomas-Fermi
approach to the description of nonhomogeneous matter,
needs to be performed to confirm the present results. The
existence of these extra nonhomogeneous matter geometries
could have a direct effect on the explanation of the magnetic
field evolution inside NSs [33,34].
The present study was performed at zero temperature,

however, it is expected that the temperature will wash out
the Landau quantization effects which are responsible for
the extra spinodal regions. Recently, in Ref. [49], the effects
of temperature under strong magnetic fields within a
thermodynamical spinodal calculation was carried out. It
is expected that the extended pasta regions will appear for
temperatures below 109 K for the magnetic fields we
consider in our calculation.
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