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We investigate the dynamics of particles in a Kerr metric which describes the gravitational field in a
neighborhood of a rotating black hole. After elimination of cyclic coordinates this problem reduces to
investigating a Hamiltonian system with 2 degrees of freedom. This system possesses an additional Carter
integral quadratic in momenta and hence is integrable by the Liouville-Arnold theorem. A bifurcation
diagram is constructed and a classification of the types of trajectories of the system is carried out according to
the values of first integrals. In particular, it is shown that there are seven different regions of values of first
integrals which differ in the topological type of the integral submanifold. Pro-and-retrograde trajectories of
particles are found.
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I. INTRODUCTION

In a well-known work [1], Smale proposed a topological
approach to analysis of dynamical systems which is based on
the analysis of the types of integral submanifolds and their
bifurcations under changes of first integrals. This approach
turned out to be particularly efficient in investigating
integrable (and not only Hamiltonian) systems and was
used afterward on several occasions in various problems of
celestial mechanics [2–4], rigid body dynamics [5–7], vortex
dynamics [8,9], etc. This method was further developed in
different ways: for example, in Ref. [10,11] possible
bifurcations of integral submanifolds were investigated
and topological invariants of integrable systems were con-
structed, whereas the focus of Ref. [4,12] was on the analysis
of partial solutions and their stability.
A central role in the topological approach is played by

the bifurcation diagram of the system, which shows
bifurcation surfaces (or curves) in the space of values of
first integrals which correspond to their critical values.
It is when these surfaces intersect that the type of
the integral submanifolds of the system changes.
Furthermore, the critical values of the first integrals
correspond to singular partial solutions (critical solu-
tions), which persist under perturbations, including non-
integrable ones (see, e.g., Ref. [13]).
It should be noted that a bifurcation diagram is of

fundamental importance to the qualitative analysis of
fairly complex integrable systems. In particular, it serves
as a basis both in constructing topological invariants and
in the stability analysis. In addition, a bifurcation diagram

(provided with suitable data on invariant submanifolds) is
very illustrative when it comes to a qualitative analysis
(see Ref. [4] for details). That is why in this paper we
systematically apply this approach to an analysis of the
motion of material bodies in a gravitational field given by
a Kerr metric.
We also note that, in analyzing the stability of various

partial solutions, it is important to keep in mind that in fairly
complex systems the stability criteria are obtained, as a rule,
in the form of bulky multiparameter inequalities. Therefore,
in such cases it is important not only to obtain relations
defining the (linear or nonlinear) stability but also to present
the results obtained in a comprehensible form, one that
allows a comparison to be made with the well-known results
and provides a clear understanding of the physical reasons
why the stability is lost/acquired, etc. One such approach
based on the study of bifurcation diagrams is developed
in Ref. [4].
Remark 1.—Figuratively speaking, the role of a bifurca-

tion diagram in analyzing an integrable system is similar to
that of a geographic map in exploring a new territory. Of
course, in the case of idealized systems (the Kepler problem,
a harmonic oscillator, etc.) this diagram is extremely simple
and contributes very little to the understanding of the
dynamics, whereas for complex systems (the problem of
two centers, the Kovalevskaya top, etc.) this diagram can
greatly facilitate an understanding of the structure of phase
space and the analysis of possible types of motion.
Integrability of the geodesic flow in a Kerr metric was

established by Carter [14] in 1968, and a large number of
results have been obtained since then regarding this problem;
see, e.g., the reviews [15–17]. Nevertheless, no complete
bifurcation diagram of the system has been constructed
thus far, and hence no analysis is available of possible
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bifurcations of various types of trajectories of the system
under changes of its parameters. Moreover, there is in fact no
graphical representation of possible types of motion depend-
ing on the values of the first integrals, and, in particular, of
the existence and stability of critical trajectories.
At the same time, there are a number of particular results

in this direction. For example, bifurcation curves for plane
orbits were obtained for the critical value of the Carter
integral Q ¼ 0 in Ref. [18] [in particular, rISCO (where the
subscript refers to the innermost stable circular orbit) was
found for the Kerr metric], and a corresponding diagram was
constructed in Ref. [15]. Qualitative analyses of latitudinal
motion (i.e., of evolution of the angle θ) were carried out in
Ref. [19,20].
Critical spherical orbits (more precisely, spheroidal orbits

with r ¼ const) for a ¼ 1 were investigated in Ref. [21]. An
analysis of spherical orbits for arbitrary awas carried out, for
example, in Ref. [22]. The existence of motions of particles
with negative energy was first shown in Ref. [23] (see also
[24]) in an analysis of the boundary of possible values of
energy E and momentum L inside an ergosphere. We note
that this boundary also corresponds to the critical values of
the integrals (for more details on the case of nonlocal
bifurcation, see Sec. III D).
In Ref. [25,26], resonant tori have been found which are

filled with noncritical solutions periodic in the reduced
system. The solution for the separatrix in the case of planar
motion (with Q ¼ 0) was found in Ref. [27], and the one in
the general case in Ref. [28,29].
Mention should also be made of Ref. [30], in which some

bifurcation diagrams are constructed for particle motion in
the Kerr-Newman system. However, Ref. [30] ignored
physically admissible domains of variation of the variables
(for example, r can take negative values) and of the integrals
of motion, and therefore it is impossible to understand which
of the results have a physical meaning and which of them are
purely mathematical in nature.
There are many other papers describing various special

properties of (timelike) geodesics of the Kerr metric. We
mention some of them which are related to our analysis. For
example, in Ref. [31] the motion of particles falling from the
state of rest was examined, and Goldstein [32] numerically
found trajectories making a large number of turns in the
neighborhood of a black hole and then receding from it (see
also [33], where such orbits are called “zoom-whirl” orbits).
In Ref. [34], a classification of orbits lying on the integral
submanifold of the zero angular momentum (L ¼ 0)
was given.
The paper is structured as follows. In Sec. II we present a

Kerr metric in the Boyer-Lindquist coordinates and show
that in the Newtonian limit (i.e., if jvj

c ≪ 1, where v is the
velocity of a particle) the problem regarding the motion of a
particle reduces to that of a point moving in the potential
field of two fixed gravitational centers “located at imaginary
points”:

U ¼ Gm

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ iaÞ2

p þ Gm

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz − iaÞ2

p :

In other words, this is a special case of the Euler problem. In
addition, we show that outside the horizon the time of a
distant observer grows monotonically on timelike geodesics.
Then we write the equations of motion in Hamiltonian

form, present the integrals of motion of the system, and
obtain a solution in terms of quadratures using the method of
separation of variables. We also analyze possible values of
Noether’s first integrals of energy E and momentum L
and show:
(a) if the particle moves outside the ergosphere, then

E > 0;

(b) if the particle moves inside the ergosphere, then

E > EminðLÞ ¼
a

2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ
L:

Moreover, using the Routh reduction, we reduce the
analysis of the system to an analysis of a natural
Hamiltonian system with 2 degrees of freedom.
Section III is concerned with constructing a bifurcation

diagram of the (reduced) system and with proving its
completeness, i.e., the absence of other critical solutions
and corresponding bifurcations of the integral submanifolds.
Thereby we find all possible types of integral submanifolds
and their bifurcations. In the course of analysis, we find all
critical solutions and investigate their stability.
In Sec. IV, based on the results obtained, we carry out a

fairly complete analysis of the plane and spherical trajecto-
ries of a particle in a Kerr metric.

II. THE MOTION OF PARTICLES IN A KERR
METRIC

A Kerr metric is a stationary and cylindrically symmetric
solution of the Einstein equations in a vacuum. In particular,
it describes the gravitational field of a rotating black hole,
with no external electromagnetic field present. If the size of a
celestial body is larger than the Schwarzschild radius rs, then
for a certain set of multipole moments the gravitational field
outside it is also described using the Kerr solution (see [35]
for details). Specific examples of such bodies are discussed
in Ref. [36,37].
In this section we briefly consider some properties of the

Kerr metric [38] and of its geodesics, which we will need in
what follows. A more detailed discussion of the physical
properties of this metric can be found, for example, in
Ref. [14,39,40].
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A. The Kerr metric and the Euler problem

1. Limit properties of the Kerr metric

In the Boyer-Lindquist coordinates x ¼ ðt; r; θ;φÞ the
Kerr metric is represented in the following form Ref. [41]:

ds2 ¼ gαβdxαdxβ ¼
ΔðrÞ
ρ2

ðdt − asin2θdφÞ2

−
sin2θ
ρ2

ððr2 þ a2Þdφ − adtÞ2 − ρ2
�

dr2

ΔðrÞ þ dθ2
�
;

ρ2 ¼ r2 þ a2cos2θ; ΔðrÞ ¼ r2 − 2rþ a2; ð1Þ

where an α, β ¼ 0, 1, 2, 3 summation is implied over
repeated indices and the signature (1,3) has been chosen.
In the Kerr metric (1) the coordinates r and t are measured

in the following units:

Gm
c2

;
Gm
c3

;

where G is the gravitational constant, c is the velocity of
light, and m is the mass of the celestial body (in the chosen
units of measurement, rs ¼ 2). The variables θ ∈ ð0; πÞ,
φ ∈ ½0; 2πÞ are angle variables. The length of the interval is
the same as the proper time of the freely moving material
point: ds ¼ dτ.
The dimensionless parameter a is expressed in terms of

the angular momentum of the celestial body Mz relative to
the symmetry axis as follows:

a ¼ cMz

Gm2
:

If a ¼ 0 (i.e., if there is no rotation), the metric (1) becomes a
Schwarzschild metric. A detailed analysis of the trajectory of
a material point in this case is carried out, for example, in
Ref. [42]. With a suitable choice of the direction of the axis
(of rotation), one can always achieveMz > 0, so we assume
in what follows that a > 0.
For large distances, i.e., for r ≫ 1 and any values of the

parameter a, the metric (1) becomes the following flat
Minkowski metric:

ds2 ¼ dt2 − ρ2
�

dr2

r2 þ a2
þ dθ2

�
− ðr2 þ a2Þsin2θdφ2

¼ dt2 − dx2 − dy2 − dz2; ð2Þ

where the Cartesian coordinates are given by the following
relations:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ cosφ; y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ sinφ;

z ¼ r cos θ: ð3Þ

As can be seen, for Eq. (2) the level surfaces of the radial
coordinate r ¼ const with t ¼ const are confocal spheroids
in the three-dimensional Euclidean space

x2 þ y2

r2 þ a2
þ z2

r2
¼ 1: ð4Þ

The variables θ and φ are polar and azimuthal angles,
respectively, and the coordinate t plays the role of the time of
an external fixed observer.
We now consider the classical limit of the metric and the

first post-Newtonian correction for particle motion with
small velocities (jvjc ≪ 1). To do so, we make in Eq. (1)
the substitution

t→
c3

Gm
t; r→

c2

Gm
r; θ→θ; φ→φ; a→

c2

Gm
a

and define the Lagrangian function of the particle of unit
mass as follows, L ¼ − Gm

c4
ds
dt, and expand it in powers of c:

L ¼ −c2 þ L0 þ
1

c
L1 þO

�
1

c2

�
;

L0 ¼
1

2

�
ρ2

r2 þ a2
_r2 þ ρ2 _θ2 þ ðr2 þ a2Þsin2θ _φ2

�
þ Gmr

ρ2
;

L1 ¼ −2Gma
rsin2θ
ρ2

_φ;

where _r, _θ, and _φ denote the derivatives with respect to t.
Passing to the Cartesian coordinates (3) and neglecting the
constant term ð−c2Þ and terms of order c−1, we represent the
resulting Lagrangian in the form

L0 ¼
1

2
ð_x2 þ _y2 þ _z2Þ −U;

U ¼ Gm

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ iaÞ2

p þ Gm

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz − iaÞ2

p
¼ Gmr

ρ2
: ð5Þ

Thus, we see that in the classical approximation we obtain
a system describing the motion of a particle in the potential
of two Newtonian centers (the Euler problem) spaced apart
at an “imaginary distance.” In this case, the problems
regarding particle motion in the Kerr metric and in the
Euler system admit separation of variables in the same
coordinates [43] (see Sec. II B for details).
Remark 2.—The problem regarding the planar motion

of a particle in the field of two fixed Newtonian centers
was investigated and reduced to quadratures by Euler
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[44,45]. Darboux [46] considered a generalization of the
planar Euler problem by adding two complex conjugate
masses spaced apart at an imaginary distance. In this case,
the potential always takes real values, and the solution
to the problem also reduces to quadratures. In addition,
the problem regarding the spatial motion of a material
point in the field of two Newtonian centers spaced apart at
an imaginary distance is a good approximation to the
problem regarding a particle (satellite) moving in the field
of a flattened spheroid [47,48].
According to relations (4) and (6), the potential U has a

singularity on the flat disk

z ¼ 0; x2 þ y2 ≤ a2:

The first correction L1 describes gyroscopic forces (an
analog of the magnetic field) whose values are also propor-
tional to the potential U, but, in contrast to Eq. (6), this
correction cannot be expressed in a simple form in terms of
the coordinates (3).

2. Event horizon and ergosphere

As is well known, an important property of the Boyer-
Lindquist coordinates is that for them the surface defining an
event horizon can be represented in the particularly simple
form

Sh ¼ fðt; r; θ;φÞjr ¼ rþg ≃R × S2;

rþ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
; ð6Þ

where rþ is the largest root of the equation ΔðrÞ ¼ 0.
According to Eq. (6), for an event horizon to exist, the value
of rþ must be real. This leads to the condition

a ≤ 1:

Remark 3.—We note that, by virtue of the inequality
a < 1, we have a

r→r→∞0 and, generally speaking, relations
(2) and (3) with a ≠ 0 have only a formal mathematical
meaning.
From a geometrical point of view, the horizon Sh

determines an isotropic hypersurface [39] (null hyper-
surface) in spacetime whose section St

h is, for an external
observer, diffeomorphic to the two-dimensional sphere
S2 at any instant of time t ¼ const [since the Kerr metric
in the Boyer-Lindquist coordinates (1) is stationary in
these variables, the sphere St

h does not depend on t]. In
addition, for each point at the event horizon Sh the light
cone (from the region of the future) lies entirely in the
region r ≤ rþ, and hence the world lines both of particles
and of light beams will, after reaching r ¼ rþ, no longer
be able to return to the region r > rþ [49].
Since the region r ≤ rþ turns out to be inaccessible to the

external observer, we will consider throughout only the

motion of particles outside the event horizon of the Kerr
metric (1), i.e., on the manifold

N 4 ¼ fðt; r; θ;φÞjt ∈ ð−∞;þ∞Þ; r ∈ ðrþ;þ∞Þ;
θ ∈ ð0; πÞ; φ ∈ ½0; 2πÞg ≃R × ðR3nBÞ;

where the three-dimensional region inside the event horizon
in the space is denoted by B ¼ fðr; θ;φÞjr ≤ rþg.
An important feature of the Kerr solution is the existence

of an ergosphere. We recall that an ergosphere is a region of
space in which any material particle (body) cannot remain at
rest relative to any observer for whom the metric is stationary
[i.e., gαβðxÞ do not depend on x0]. For example, substituting
dx1 ¼ 0, dx2 ¼ 0, and dx3 ¼ 0 into the relation ds2 > 0,
which must be satisfied for any world line of material
particles, we obtain the condition

g00ðx1; x2; x3Þ > 0:

This is a condition that must be satisfied by the spatial
coordinates x1, x2, and x3 of the points where the particle can
be at rest. (It is easy to show that this condition is invariant
under changes of variables preserving the stationarity of the
metric.) The boundary of this region is defined by the
equation

g00ðx1; x2; x3Þ ¼ 0

and is called the static surface Se.
Accordingly, for the Kerr metric in the Boyer-Lindquist

coordinates we find a static surface in the form

Se ¼ fðr; θ;φÞjr2 − 2rþ a2 cos2 θ ¼ 0g:

This surface in three-dimensional space lies everywhere
outside the event horizon ðr ¼ rþÞ and touches it at two
points: θ ¼ 0 and θ ¼ π (see Fig. 1). Therefore, in this case
an ergosphere is a region given by the relations

(a) (b)

FIG. 1. Typical view of sections of the event horizon Sh and the
boundary of the ergosphere Ss for a fixed a ¼ 0.9. (a) Sections
formed by the intersection with the plane z ¼ 0. (b) Sections
formed by the intersection with the plane y ¼ 0 (gray denotes the
region where the ergosphere lies).
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N 3
e ¼ fðr; θ;φÞjr > rþ; r2 − 2rþ a2cos2θ < 0g:

As is well known, inside an ergosphere the Boyer-
Lindquist coordinates cannot be introduced using material
bodies [40]. We show that, nonetheless, their use for para-
metrization of the timelike geodesics of the Kerr metric (i.e.,
the trajectories of material particles) will not lead to contra-
dictions everywhere outside the event horizon. To do so, we
show that the following inequality always holds for r > rþ:

dt
dτ

> 0;

where τ is the proper time of the particle.
Let us divide both parts of Eq. (1) by ds2 ¼ dτ2 and,

denoting uα ¼ dxα
dτ , consider the function (this function is an

analog of the kinetic energy of a particle in classical
mechanics)

TðuÞ ¼ 1

2
gαβðr; θÞuαuβ; ð7Þ

the value of which on timelike geodesics is, by definition,
equal to 1=2. It follows from the choice of the signature of
the metric that, for each fixed pair of values of r, θ (r > rþ),
the three-dimensional surface

TðuÞ ¼ 1

2
ð8Þ

in R4
u ¼ fug is a two-sheet hyperboloid. Since gtφ ≠ 0, the

axis Ot is not one of its principal axes, and, generally
speaking, it is not obvious that ut vanishes nowhere
on Eq. (8).
To show this, we find extreme values of the function F ¼

ut on the hyperboloid (8). Using, for example, the method of
undetermined Lagrange multipliers, on one of the parts of
the hyperboloid (8) we find

dt
dτ

≥ utmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2þa2Þ2−a2Δsin2 θ

p
ρ

ffiffiffiffi
Δ

p
����
r>rþ

> 0: ð9Þ

Accordingly, on the second half of the hyperboloid
(8), utmax ¼ −utmin.
As a consequence, we obtain the well-known fact that in

spacetime with a Kerr metric above the event horizon (6)
there is no close timelike geodesics.
It follows from the definition of the surface (8) that on one

half (the connected component) of the hyperboloid (8) one
has ds ¼ dτ, and on the other half ds ¼ −dτ. Therefore, if
we adopt the convention that the positive direction of the
flow of proper time is toward the future, then the half of the
hyperboloid where ds ¼ −dτ needs to be discarded.
Throughout of the rest of this paper we restrict our attention

to the part of the surface (8) on which the following relation
is satisfied:

ds ¼ dτ:

B. Equations of motion of a material point and their
integration

We now consider the inertial motion of a material point
(particle) in a gravitational field which is described by the
Kerr metric outside the event horizon. Its trajectories (world
lines) are timelike (i.e., ds2 > 0) geodesic metrics (1) on the
manifold N 4. In this section we will use a natural para-
metrization of these trajectories xðτÞ, where τ is the proper
time of the particle, the increase of which is directed into the
future (i.e., for this choice of units we have ds ¼ dτ.)

1. Hamiltonian representation

It turns out that in this case, both when the equations of
motion are explicitly integrated and when a qualitative
analysis of the dynamics is carried out, it is more convenient
to use a Hamiltonian representation. To do so, we perform a
standard Legendre transformation from the four-velocities
uα ¼ dxα

dτ to momenta using as the kinetic energy the function
TðuÞ defined in Eq. (7). This yields

pα ¼
∂TðuÞ
∂uα ¼ gαβuα;

H ¼ Tju→p ¼
1

2
gαβpαpβ ¼ −

ΔðrÞ
2ρ2

p2
r −

1

2ρ2
p2
θ

þ ððr2 þ a2Þpt þ apφÞ2
2ΔðrÞρ2 −

ðaptsin2θ þ pφÞ2
2ρ2sin2θ

: ð10Þ

In this case, the equations of motion can be written in the
canonical form

dx
dτ

¼ ∂H
∂p ;

dp
dτ

¼ −
∂H
∂x : ð11Þ

Since, according to Eq. (8), the function T has the fixed
value T ¼ 1=2, it follows that the physically admissible
value of the Hamiltonian (10) for the motion of material
points is also fixed:

H ¼ 1

2
: ð12Þ

Furthermore, since the transformation (10) is linear in
velocities, for each pair of values of r > rþ and θ the
equation also defines the two-sheet hyperboloid in the space
of momentaR4

p ¼ fpg. As noted above (see Sec. II A), when
the direction of the proper time is fixed ðds ¼ dτÞ, the
trajectories of particle motion lie only on one half of this
hyperboloid, and the other half must be omitted from
consideration (see also Sec. III B).
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Remark 4.—To obtain the trajectories of light propaga-
tion, one needs to set H ¼ 0, but we will not consider that
case in this paper.

2. Cyclic variables and Noether’s integrals

As can be seen, the Hamiltonian (10) does not explicitly
depend on the time of a distant observer t or on the angle φ;
i.e., they are cyclic coordinates. Therefore, the values of the
corresponding momenta (Noether’s integrals) remain
unchanged:

E ¼ pt ¼ const; L ¼ −pφ ¼ const:

From a physical point of view, E is the energy of the material
point and L is the projection of its angular momentum onto
the symmetry axis of the metric.
We also recall that the cyclicity of the coordinates t and φ

is due to the invariance of the system (10) and (11) under the
action of the two-dimensional Abelian translation group
G ¼ fgt0;φ0

jt0 ∈ ð−∞;þ∞Þ;φ0 mod 2πg. Its action in
configuration space is given in the following obvious way:

gt0;φ0
ðt; r; θ;φÞ ¼ ðtþ t0; r; θ;φþ φ0Þ:

In other words, this is the isometry group of the Kerr metric,
and the corresponding left-invariant (right-invariant) vector
fields of this group define the Killing vectors.
If a particle moves in spacetime with a stationary metric

for which g0k ¼ 0, k ¼ 1, 2, 3 (for example, in Minkowski
space or in a Schwarzschild metric), then its energy always
turns out to be positive. For the Kerr metric, gtφ ≠ 0;
therefore, we analyze the region of possible values of the
integrals L and E in more detail.
Specifically, we fix the values of r, θðr > rþÞ and the

value of the integral L ¼ const and find the extreme values
of the function E ¼ pt from the variables pt, pr, and pθ on
the level surface of the function (12). It is easy to show that
the extremum is reached for pr ¼ 0 and pθ ¼ 0 and that the
corresponding extreme value ptðL; r; θÞ is defined as a
solution to the equation

1

Δρ2

�
ðΔρ2 þ 2rðr2 þ a2ÞÞp2

t − 4arLpt

−L2

�
Δ

sin2θ
− a2

��
¼ 1:

For example, using the method of undetermined multipliers
we obtain

∂
∂pα

�
E− λ

�
H−

1

2

��
¼ 0; H−

1

2
¼ 0; α¼ 0;…;4:

Since Hz is homogeneous and quadratic in pr and pθ, it
follows that pr ¼ 0 and pθ ¼ 0.

Of the two roots of this equation only the largest root
corresponds to the required half of the surface (12) on which
ds ¼ dτ holds, and it is this root that defines the required
minimum of energy E (the smaller root corresponds to the
half with ds ¼ −dτ). Accordingly, after some simplifica-
tions we obtain a solution of the form

Emin ¼
2arLþ ffiffiffiffi

D
p

A
;

A ¼ Δρ2 þ 2rðr2 þ a2Þ > 0;

D ¼ ð2arLÞ2 þ A

�
L2

�
Δ

sin2θ
− a2

�
þ Δρ2

�

¼ 4Δρ2
�
ρ2L2

sin2θ
þ A

�
> 0: ð13Þ

Now, using this representation for the smallest possible value
of energy at the corresponding point of space with the
coordinates r and θ with the fixed integral L, we can draw
the following conclusions about the region of possible values
of L and E (see Fig. 2).
(1) If the point r, θ lies outside the ergosphere (i.e.,

Δ
sin2 θ − a2 > 0), then, according to Eq. (13),

ffiffiffiffi
D

p
> 2arjLj;

and hence the particle’s energy E always turns out to
be larger than zero (the exact minimum value of E
depending on L in this situation will be given below;
see Sec. III).

(2) If the values of r, θ correspond to a point inside the
ergosphere, then, according to Eq. (13), an exact
minimum is reached for D ¼ 0, i.e., at the event
horizon (with Δ ¼ 0), and hence

(b)(a)

FIG. 2. The boundary of the surface T ¼ 1=2 for the fixed a ¼
0.9 and θ ¼ π=2 (i.e., for ur ¼ 0 and uθ ¼ 0) on the plane uφ, ut

(a) and the boundary of the surface H ¼ 1=2 (i.e., when pr ¼ 0
and pθ ¼ 0) on the plane L, E (b) for different values of r. Black
and red lines correspond to the values of r lying in the ergosphere
and on its boundary, and blue lines denote the values of r lying
beyond the ergosphere.
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E > Emin ¼
aL

r2þ þ a2
¼ a

2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ
L: ð14Þ

As we see, when L are negative, negative values of
the particle’s energy E are also possible.

Thus, we obtain the following simple result.
Proposition 1.—Suppose that at the initial time t ¼ 0 the

material point is inside an ergosphere and its energy is
negative: E < 0. Then it does not leave the ergosphere
as t → �∞.

3. Reduction and explicit integration

Wemake use of the symmetry corresponding to the cyclic
variables t and φ and perform a Routh reduction. To obtain a
system in a form more typical for mechanics, we make the
change of variables

pr → −pr; pθ → −pθ; H → −Ĥ:

As a result, we obtain a Hamiltonian natural system with
2 degrees of freedom,

dpr

dτ
¼ −

∂Ĥ
∂r ;

dpθ

dτ
¼ −

∂Ĥ
∂θ ;

dr
dτ

¼ ∂Ĥ
∂pr

;
dθ
dτ

¼ ∂Ĥ
∂pθ

;

Ĥ ¼ 1

2ρ2

�
p2
r

Δ
þ p2

θ

�
þ V;

V ¼ 1

2Δρ2

�
−ðΔρ2 þ 2rðr2 þ a2ÞÞE2

þ 4arELþ
�

Δ
sin2θ

− a2
�
L2

�
: ð15Þ

The phase space of this system has the form

M4 ¼ fz ¼ ðpr; pθ; r; θÞjr ∈ ðrþ;þ∞Þ; θ ∈ ð0; πÞg ≃R4;

and, as noted above, the trajectories of material particles lie
on the fixed level set of the Hamiltonian

Ĥ ¼ −
1

2
:

Remark 5.—One can calculate the Gaussian curvature
of the metric corresponding to the kinetic energy of
system (15):

K ¼ −
rðr2 − 3a2 cos2 θÞ

ρ6
:

We see that if a2 < 3=4, the curvature of the configuration
space of system (15) is everywhere negative.

In addition to the Hamiltonian Ĥ, the reduced system (15)
has the additional Carter integral [14]

FðzÞ ¼ p2
θ þ

�
aE sin θ −

L
sin θ

�
2

− 2a2ĤðzÞ cos2 θ: ð16Þ

The physical meaning of the Carter integral was discussed in
more detail in Ref. [50]. Thus, we obtain the following well-
known result: a Hamiltonian system describing the motion of
particles in the Kerr metric is integrable using the Liouville-
Arnold theorem.
Since both integrals of system (15) turn out to be

quadratic, it can, as is well known [51], be integrated by
themethod of separation of variables. In this case, r and θ are
separating variables, and, therefore, to reduce the problem to
quadratures, we fix the common level set of the Carter
integral and the value of the Hamiltonian as follows:

ĤðzÞ ¼ −
1

2
; FðzÞ ¼ Qþ ðL − aEÞ2; ð17Þ

where Q is a constant. Now we express, taking into account
Eq. (17) from Eqs. (12) and (16), the momenta pr and pθ

and substitute them into the last two equations of motion of
system (15). As a result, we obtain equations of motion for r
and θ in the following form:

�
dr
dτ

�
2

¼ 1

ρ4
RðrÞ;

�
dθ
dτ

�
2

¼ 1

ρ4
ΘðθÞ;

RðrÞ ¼ ðEðr2þ a2Þ− aLÞ2 − ðQþðL− aEÞ2þ r2ÞΔðrÞ;

ΘðθÞ ¼Q− cos2θ

�
a2ð1−E2Þþ L2

sin2θ

�
: ð18Þ

As can be seen, in order to integrate these equations in
explicit form, one needs to rescale time as

dτ ¼ ρ2ðr; θÞdu: ð19Þ

We note that the chosen variables are also separated for the
problem regarding two Newtonian centers (see Sec. II A).
Thus, for the trajectory of the reduced system the

following is satisfied:
(i) the region of possible motion on the plane R2 ¼

fðr; θÞjr > rþ; θ ∈ ð0; πÞg is defined by the relations

RðrÞ ≥ 0; ΘðθÞ ≥ 0;

(ii) the simple zeros ru and θu of the functions

RðruÞ ¼ 0; ΘðθuÞ ¼ 0

define, respectively, the turning points of the variables
r and θ.
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4. Reconstruction of dynamics

From the known solutions rðτÞ and θðτÞ the evolution of
the other variables is defined, according to Eq. (11), using
the quadratures

ρ2
dφ
dτ

¼ a
ΔðrÞ ðEðr

2 þ a2Þ − aLÞ − aEþ L
sin2 θ

;

ρ2
dt
dτ

¼ r2 þ a2

ΔðrÞ ðEðr2 þ a2Þ − aLÞ þ aL − a2E sin2 θ:

ð20Þ

Note that in Eqs. (18) and (20) it is necessary to choose
the constants of integrals E, L, and Q in such a way that
out of the two parts of the surface Ĥ ¼ −1=2 the part
where ds ¼ dτ is chosen. Also note that, as shown above
(see Sec. II A), the right-hand side of the second of
Eqs. (20) always turns out to be positive.

5. Whittaker’s reduction and completeness of the
phase flow

In the phase space of system (11) there are trajectories
which reach the event horizon r ¼ rþ in a finite proper
time τ. As a result, the part of the Liouville-Arnold
theorem which describes the integral manifolds of the
system and the flow on them cannot be immediately
applied to Eq. (11), since this leads to a violation of the
condition of completeness of the flows generated by the
first integrals H, L, E, and Q of the system [i.e., the
possibility of extending the trajectory to an infinite time
interval ð−∞;þ∞Þ; see, e.g., Ref. [10] ].
It turns out that in this case completeness can be achieved

if the trajectories of particles are reparametrized by the time
of a distant observer t, and that, by virtue of Eq. (9), such a
reparametrization is correct everywhere since tðτÞ is a
monotonically increasing function and, as r → rþ,
t → �∞. Moreover, after such a time reparametrization,
the system is known [52] to be Hamiltonian. Indeed, let us
solve the equation for pt and denote

pt ¼ −Eðpr; pθ; pφ; r; θÞ:

Then for the remaining variables we obtain the canonical
Hamilton equations

dxk

dt
¼ ∂E

∂pk
;

dpk

dt
¼ −

∂E
∂xk ; k ¼ 1; 2; 3:

III. BIFURCATION DIAGRAM AND INTEGRAL
SUBMANIFOLDS OF THE REDUCED SYSTEM

We now consider the problem of classifying the types of
motion of a material particle in a Kerr metric. First we recall

some necessary facts from the theory of integrable
Hamiltonian systems (for details, see [4,10]).
Since this system has a pair of cyclic coordinates t and φ

on which none of the integrals of motion E, L,H, F depend,
we proceed in a standard way: we start with a qualitative
analysis and a classification of the trajectories of the reduced
system (15), and then we examine what the reconstruction of
the dynamics (20) yields.

A. Integral submanifolds and their bifurcations

As shown above, the reduced system (15) is an integrable
natural Hamiltonian system with 2 degrees of freedom.
According to the Liouville-Arnold theorem, its general
position trajectories are straight lines (under a suitable
choice of coordinates) on the two-dimensional integral
submanifolds of the system

M2
I ¼

�
ðpr; pθ; r; θÞjĤðzÞ ¼ −

1

2
;

FðzÞ ¼ Qþ ðL − aEÞ2
	
; ð21Þ

where I ¼ ðL; E;QÞ. In the general position case, these
submanifolds can turn out to be disconnected and can consist
of one or more connected components, each of which can be
of one of three types:

i: R2; a plane;

ii: R1 × S1; a cylinder;

iii: T 2 ≃ S1 × S1; a torus: ð22Þ

Thus, since on each connected component of the
submanifold M2

I all trajectories are the same, it is first
necessary to classify various types and bifurcations of
integral submanifolds of the reduced system (15). Hence,
the space of values of the first integrals of the system

R3
I ¼ fI ¼ ðL;Q; EÞg

splits into regions in which all points I correspond to the
same type of M2

I . Some of these regions can correspond
to manifolds consisting of several connected components,
whereas for other regions M2

I ≃⊘ (this implies that for
these values of the integrals no motion of the system is
possible). These regions are separated from each other by
two-dimensional bifurcation surfaces Σ ⊂ R3

I (as the
above-mentioned values of the integrals pass through
these surfaces, the type of M2

I changes).
We also note that in this case a one-dimensional bifurca-

tion curve σθ ⊂ R3
I arises in the space of integrals. Its origin

is due to the fact that the symmetry group of the system
which defines the rotation about the axisOz has in the phase
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space orbits of two types: a one-dimensional orbit—the
circle S1 and a zero-dimensional orbit—points on the
symmetry axis P0. As is well known, a set consisting of
orbits of the same type (in this case M0 ¼∪ P0 and
M1 ¼∪ S1) is invariant under the phase flow of the system.
Accordingly, for system (10) and (11) motions along the
symmetry axis lie on the manifold M0, and these motions
correspond to the values of the integrals that lie on the
curve σθ.
In the case of a system with separating variables, analysis

of the bifurcations of the integral submanifolds M2
I usually

simplifies considerably [4,10]. Indeed, let us write Eqs. (15)
in the initial variables z ¼ ðpr; pθ; r; θÞ We see that the
integral submanifold (21) is represented as the product of a
pair of plane curves:

M2
I ¼ C1r × C1θ;

C1r ¼ fðpr; rÞjp2
r ¼ Δ2ðrÞRðrÞ; r > rþg;

C1θ ¼ fðpθ; θÞjp2
θ ¼ ΘðθÞ; 0 < θ < πg; ð23Þ

which depend on four parameters: a, L, E, and Q.
Consequently, the problem regarding restructuring M2

I
reduces to separately investigating the bifurcations of
each of the curves, C1r and C1θ.
It follows from Eq. (23) that the structure ofM2

I changes,
first, at those values of the integrals I for which the functions
RðrÞ and ΘðθÞ have zeros which are critical points, i.e.,

RðrcÞ ¼ 0;
dR
dr

����
r¼rc

¼ 0; rc > rþ; ð24Þ

or

ΘðθcÞ ¼ 0;
dΘ
dθ

����
θ¼θc

¼ 0; 0 < θ < π: ð25Þ

Such bifurcations are called local. Second, bifurcations of
curves where the behavior of the functions RðrÞ and ΘðθÞ
changes on the boundaries of their domains of definition are
also possible; such bifurcations are called nonlocal.
Thus, we finally conclude that for this system, depending

on the values of the first integrals I ¼ L;E;Q, the following
cases are possible.
(1) Let I be such that neither the relation (24) nor the

relation (25) is satisfied. Then M2
I is a set of two-

dimensional submanifolds from the list in Eq. (22).
(2) If I is such that only one of the relations (24) and

(25) is satisfied, then, first, one or several (one-
dimensional) curves corresponding to the partial
solutions of the system (15), called critical solu-
tions [4,10], enter M2

I . Second, if any of these
solutions are orbitally unstable [i.e., a critical point
in Eq. (24) or (25) is a minimum], then two-

dimensional surfaces formed by the trajectories
asymptotically approaching the corresponding un-
stable orbit as τ → �∞ also enter M2

I .
(3) If I is such that both systems (24) and (25) simulta-

neously have a solution, then M2
I is formed by the

fixed points of system (15), and, if any of these points
are unstable, the submanifolds adjacent to these
(unstable) points and filled with asymptotic curves
also enter M2

I .

B. Elimination of nonphysical components

It is important to keep in mind that in investigating the
reduced system (15) we eliminate from consideration the
evolution of the time of the distant observer tðτÞ, which,
according to Eq. (9), is given by a monotonically increasing
function. As a result, for some components of the integral
surface M2

I of the reduced system (15), it turns out that
dt
dτ < 0, so they need to be eliminated.
Indeed, the equations of motion of the reduced system

(11) are quadratic and homogeneous in the variables L and E
and hence are invariant under the change of variables

L → −L; E → −E; Q → Q; ð26Þ

i.e., under rotation through 180° about the axis OQ in
the spaceR3

I . At the same time, under this transformation the
right-hand sides change sign in Eqs. (20), which govern
the evolution of φ and t.
To ascertain what exactly needs to be eliminated, we

represent Eq. (20) for t as

dt
dτ

¼ Eþ 2rðr2 þ a2Þ
ρ2Δ

�
E −

aL
r2 þ a2

�
: ð27Þ

We also note that, according to Eq. (9), the function dt
dτ has

the same sign on the entire connected component of the
integral submanifold M2

I , so it suffices for us to examine
only the limiting cases of this ratio for r → þ∞ and r → rþ.
We first set r ¼ rþ þ ε, 0 < ε ≪ 1 in relation (27):

dt
dτ

¼ 1

ε

rþðr2þ þ a2Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
�
E −

aL
r2þ þ a2

�
þOð1Þ:

This implies that, if

E <
aL

r2þ þ a2
; ð28Þ

then on the part of the curve C1r which is adjacent to the event
horizon (and to the corresponding component of the integral
submanifold M2

I ) the following inequality holds:

dt
dτ

< 0:
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That is, this component must be excluded as a nonphysical
one. In other words, under condition (28) there are no
trajectories that approach the horizon.
In a similar way, it is proved that if

E < 0;

then there are no physical (i.e., such that dtdτ > 0) components
M2

I for which r → þ∞. Indeed, according to Eq. (27), as
r ≫ 1,

dt
dτ

¼ EþO

�
1

r

�
< 0 for E < 0:

For bounded components ofM2
I which are not adjacent to

the event horizon, the reasoning presented here turns out to
be inapplicable. However, owing to invariance of the reduced
system under the change of variables (26), the pairs of its
invariant submanifolds that are related by this transformation
turn out to be equivalent to

M2
L;E;Q ≃M2

−L;−E;Q:

On the other hand, relation (27) changes sign under such a
transformation. This implies that one of the components of
these submanifolds must be eliminated as a nonphysical one.
By straightforward verification it can be shown that bounded
components of M2

I which are not adjacent to the horizon
r ¼ rþ are physical if for them E > 0.
Remark 6.—As shown in Sec. II A [see (9)] the sign of dt

dτ
cannot change under any deformations of the surface M2

I
under which it does not touch the event horizon.
Consequently, it suffices to calculate dt

dτ for the bounded
component of the curve C1r for some fixed values I0 ¼
ðL0; E0; Q0Þ since throughout the region bounded by the
bifurcation surfaces the sign of dt

dτ for this region remains
unchanged.

C. Analysis of the curves C1
θ

We first note that the equation for C1θ can be represented as

p2
θ þ Uθ ¼ Q ¼ const;

Uθ ¼ Q − ΘðθÞ ¼ cos2θ

�
a2ð1 − E2Þ þ L2

sin2θ

�
:

SinceUθ does not depend onQ, the analysis of the curves
C1θ is entirely similar to the analysis of trajectories in the
phase space R2 ¼ fðθ; pθÞg for the Hamiltonian system
describing the motion of a material point in a potential field
Uθ (the function Uθ is sometimes called a latitudinal
potential [21]), and the constant Q is similar to the level
set of the energy integral. As is well known, ascertaining the

type of these trajectories reduces to analyzing the behavior of
the function Uθ on the interval θ ∈ ð0; πÞ.
First, we note that the function Uθ is symmetric about the

straight line θ ¼ π=2, i.e.,

Uθ

�
π

2
þ x

�
¼ Uθ

�
π

2
− x

�
:

Second, if θ ¼ π=2, this function vanishes and simulta-
neously has a critical point:

Uθ

�
π

2

�
¼ 0;

dUθ

dθ

����
θ¼π=2

¼ 0:

Third, the numerator of the function is a fourth-order
polynomial in the variable u ¼ cos θ. Therefore, in addition
to the (multiple) roots, the functionUθðuÞ can have a pair of
roots when θ ¼ π=2 (u ¼ 0).
Moreover, if L ≠ 0, the function increases without bounds

as θ → 0 and θ → π, while if L ¼ 0, on the boundaries
this function takes the finite values Uθð0Þ ¼ UθðπÞ ¼
a2ð1 − E2Þ.
Let us define the constant value

C1 ¼ a2ðE2 − 1Þ − L2;

which is proportional to the second derivative of the function
Uθ in θ ¼ π=2. Depending on the sign ofC1 and the value of
L, four qualitatively different types of the function Uθ are
possible, each of which corresponds to the family of curves
(25), which are parametrized by the value of the integral Q
(see Figs. 3 and 4).
We now construct the corresponding bifurcation surfaces

Σθ ⊂ R3
I by making use of Eqs. (25). The critical point in

θ ¼ π=2 corresponds to the plane in the space of the
integrals

Σθ
0 ¼ fðL;Q; EÞjQ ¼ 0g:

The minimum of the functionUθ withQ < 0 [see Fig. 3(b)]
corresponds to the surface consisting of two parts,

Σθ
min ¼ Σθþ ∪ Σθ

−;

Σθþ ¼
�
ðL;E;QÞjL > 0; Q < 0;

E2 −
1

a2
ðLþ

ffiffiffiffiffiffiffi
−Q

p
Þ2 ¼ 1

	
;

Σθ
− ¼

�
ðL;E;QÞjL < 0; Q < 0;

E2 −
1

a2
ðL −

ffiffiffiffiffiffiffi
−Q

p
Þ2 ¼ 1

	
:
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As can be seen, two parts of this surface are symmetric about
the plane L ¼ 0, i.e., Σθþ → Σθ

− as L → −L, and at each
fixed value of Q ≤ 0 they are parts of a hyperbola. When
Q ¼ 0, the surfaces Σθþ and Σθ

− form one smooth curve for
which C1 ¼ 0.
The extremum of the function Uθ with L ¼ 0 [see

Fig. 4(b)] corresponds to the bifurcation curve (men-
tioned above)

σθ ¼ fðL; E;QÞjL ¼ 0; Q ¼ a2ð1 − E2Þg:

We now sum up the results described above and relating to
the analysis of the form of the curve C1θ depending on the
values of the integrals. We assume that the axis OQ in the
space R3

I is vertical. Accordingly, the upward direction
corresponds to an increase in the values of Q, while the
downward direction corresponds to a decrease in Q;
see Fig. 5.
(1) If C1 < 0, then the region of possible values of the

integrals in R3
I is bounded from below by the plane

Σθ
0; in this case the motion of a particle in the

equatorial plane θ ¼ π=2 is stable.

(2) If C1 > 0, then the region of possible values of the
integrals in R3

I is bounded from below by the surface
Σθ
min; in this case the motion of a particle in the

equatorial plane θ ¼ π=2 is unstable.
(3) If Q > 0, then, as the graph Uθ in Fig. 3 implies, for

any L ≠ 0 the curve C1θ ≃ S1 is a connected curve and
intersects with the equatorial plane.

(4) If Q < 0 and C1 > 0 (i.e., the point I corresponding
to the values of the integrals lies between the surfaces
Σθ
min and Σθ

0), then, as the graph Uθ in Fig. 3(b)
implies, for any L ≠ 0 the curve Cθ ≃ S1 ∪ S1

)b()a(

FIG. 3. Typical view of the latitudinal potential Uθ and the
corresponding curves C1θ on the plane (θ, pθ) with L ≠ 0 and
different values of C1 for a fixed a ¼ 0.3 and L ¼ 1.

)b()a(

FIG. 4. Typical view of the latitudinal potential Uθ and the
corresponding curves C1θ on the plane (θ, pθ) with different values
of C1 for a fixed a ¼ 0.3 and L ¼ 0.

FIG. 5. Structure of bifurcation surfaces and curves in the space
of first integrals R3

I for a fixed a ¼ 0.5. Gray denotes the region of
possible values of L, E, and Q.
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consists of two closed curves which do not intersect
with the equatorial plane.

D. Analysis of the curves C1
r

Since the function ΔðrÞ is always positive on the interval
r ∈ ðrþ;þ∞Þ, the analysis of the curve C1r reduces in fact to
investigating the behavior of the zeros of the function

RðrÞ ¼ ðEðr2 þ a2Þ − aLÞ2
− ðQþ ðL − aEÞ2 þ r2ÞΔðrÞ

¼ ðE2 − 1Þr4 þ 2r3 þ ða2ðE2 − 1Þ − L2 −QÞr2
þ 2ðQþ ðL − aEÞ2Þr − a2Q; ð29Þ

depending on the parameters a, Q, E, and L.
This function is a fourth-degree polynomial and therefore

has no more than 4 roots. We also note that

RðrþÞ ≥ 0; ð30Þ

and that the zero value is only reached at the boundary of the
region of possible values of L and E inside the ergosphere.
It follows from Eqs. (29) and (30) that, if E2 − 1 < 0,

then RðrÞ→r→þ∞ −∞. Therefore, on the interval r ∈
ðrþ;þ∞Þ the polynomial RðrÞ can have only an odd
number of roots, i.e., 1 or 3. Accordingly, if E2 − 1 > 0,
then RðrÞ→r→þ∞ þ∞, and if r > rþ, there can in prin-
ciple be 0, 2, or 4 roots. However, according to Descartes’s
rule of signs, if all roots of a polynomial are positive, then
no neighboring coefficients in its power expansion can
have the same sign. Consequently, the polynomial (29)
with E2 − 1 > 0 cannot have 4 roots on the interval
ðrþ;þ∞Þ since the signs at the coefficients r3 and r4

coincide.
Thus, we finally find that on the interval r ∈ ðrþ;þ∞Þ

the function RðrÞ can have
(a) if E2 < 1, either 1 or 3 roots (see Fig. 6),
(b) if E2 > 1, either 0 or 2 roots (see Fig. 7).
We now construct the corresponding bifurcation surfa-

ces Σr ⊂ R3
I .

1. Nonlocal bifurcations

These bifurcations are not described by Eqs. (24), and
the bifurcations of the curve C1

r are due to changes in the
behavior of the function RðrÞ on the boundaries of
the interval ðrþ;þ∞Þ.
First, we see that, according to Eq. (29), if the expression

ðE2 − 1Þ changes sign, the behavior of RðrÞ changes as
r → þ∞. It should be kept in mind that outside the
ergosphere (in particular, as r → þ∞) the energy E > 0
(see Sec. II B); therefore, the value E ¼ −1 must be
eliminated (for details, see Sec. III B). Thus, the correspond-
ing surface in R3

I which defines such a nonlocal bifurcation
has the form

Σr
∞ ¼ fðL;E;QÞjE ¼ 1g:

The energy E ¼ 1 has the meaning of the escape energy of a
particle from the black hole. In the Kepler problem, the
escape velocity is treated in a similar way.
It is also important to keep in mind that, when Q < 0, the

bifurcation surface Σr
∞ lies outside the region of possible

values of the integrals L, E, and Q, which is bounded by the
surface Σθ

min (see Sec. III C).

)b()a(

FIG. 6. The function RðrÞ and the corresponding curves C1r on
the plane (r, pr) for a fixed a ¼ 0.3 with E < 1.

)b()a(

FIG. 7. The function RðrÞ and the corresponding curves C1r on
the plane (r, pr) for a fixed a ¼ 0.3, L ¼ 4, Q ¼ 1, with E > 1.
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Second, we note that Eq. (29) also implies thatRðrþÞ ≥ 0,
and also that, if

E ¼ a
a2 þ r2þ

L ¼ a

2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ
L; ð31Þ

the region of positive values of RðrÞ adjacent to the
horizon r ¼ rþ disappears (shrinks to a point). We also
recall that, according to the results in Sec. II B, the
condition dt

dτ > 0 is not satisfied for the values of
the integrals L and E lying under the straight line (31)
(see Sec. III B for details), and therefore no motion is
possible. Thus, we find another surface of nonlocal
bifurcations of the following form:

Σt ¼ fðL;E;QÞjEðr2þ þ a2Þ − aL ¼ 0g:

When the path in the space of values of the integrals
crosses this surface, the regions of possible particle motions
in a neighborhood of the event horizon appear or disappear
(depending on the direction of the intersection).

2. Local bifurcations

We now turn to analysis of bifurcation surfaces given by
relations (24). Since in this case it is impossible to explicitly
solve these equations for rc, we will represent the required
surfaces in the parametric form Eðrc; QÞ, Lðrc; QÞ.
Since this transformation maps the solution to Eqs. (24)

into other solutions, we first restrict our attention to these
bifurcation surfaces under the condition

E ≥ 0

because the surfaces with E < 0 can finally be constructed
by the rotation (26).
The following proposition holds.
Proposition 2.—Let L, E, and Q be possible values of

the integrals bounded by the surfaces Σθ
0, Σθ

min (see
Sec. III C). Then the local bifurcations of the curves
C1
r are possible only for

Q ≥ 0:

We note that, according to the analysis in Sec. III C, the
possible values of integrals L and E satisfy the following
inequality for Q < 0:

a2ðE2 − 1Þ − L2 ≥ 0: ð32Þ

Eliminating from Eqs. (24) the terms containing the
product EL, we obtain an equation satisfied by the
critical values of E, L, and Q in the form

r2cL2 − r2cð3r2c þ a2ÞðE2 − 1Þ þQðr2c − a2Þ − 4r2c ¼ 0:

Expressing L from this relation and substituting it into
Eq. (32), we obtain the inequality

−3r2cðE2 − 1Þ − r2c þ a2

r2c
ð−QÞ − 4rc ≥ 0;

which cannot be satisfied for

a < rþ < rc; Q < 0:

Hence, under condition (32) (i.e., when Q < 0) system
(24) has no solution.
System (24), which defines the critical points r ¼ rc, is a

system of two homogeneous quadratic equations in L and E.
As is well known, this system can be reduced to a
homogeneous biquadratic equation. In this case we obtain
an equation of the form

GðXÞ ¼ AX2 − 2BX þ C ¼ 0;

A ¼ r4cðrcðrc − 3Þ2 − 4a2Þ; C ¼ rcC2
0;

C0 ¼ rcðrc − 2Þ2 − a2
�
1þ rc − 1

r2c
Q

�
;

B ¼ r4cðrc − 3Þðrc − 2Þ2 − r3cð3rc − 5Þa2
− rcðr2c − 4rc þ 5Þa2Qþ 2a4Q: ð33Þ

The correspondences between its solutions and the solutions
of system (24) are as follows:

Xþðrc;QÞ ¼ Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 −AC

p

A
; Eþðrc;QÞ ¼ ffiffiffiffiffiffiffi

Xþ
p

;

Lþðrc;QÞ ¼ 1

2a
ffiffiffiffiffiffiffi
Xþ

p ðC0 − ðr2cðrc − 3Þ− 2a2ÞXþÞ; ð34aÞ

X−ðrc;QÞ ¼ B−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 −AC

p

A
; E−ðrc;QÞ ¼

ffiffiffiffiffiffi
X−

p
;

L−ðrc;QÞ ¼ 1

2a
ffiffiffiffiffiffi
X−

p ðC0 − ðr2cðrc − 3Þ− 2a2ÞX−Þ: ð34bÞ

This yields a surface in the space of first integrals R3
I

which consists of two parts,

Σr
0 ¼ Σrþ ∪ Σr

−;

Σrþ ¼ fðL;E;QÞjE ¼ Eþðrc; QÞ; L ¼ Lþðrc; QÞ; Q ≥ 0g;
Σr
− ¼ fðL;E;QÞjE ¼ E−ðrc; QÞ; L ¼ L−ðrc; QÞ; Q ≥ 0g:

Remark 7.—If Q ¼ 0, then after simplifications the
equations for Σr

0 can be represented as
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E� ¼ r3=2c − 2r1=2c � a

r3=4c ðr3=2c − 3r1=2c � 2aÞ1=2
;

L� ¼ � r2c ∓ 2ar1=2c þ a2

r3=4c ðr3=2c − 3r1=2c � 2aÞ1=2
; ð35Þ

where the upper sign refers toEþ andLþ, and the lower sign
to E− and L−.
Equation (33) has a number of remarkable features which

allow a fairly complete analysis of the behavior of its
solutions depending on the parameters, and hence enable
an analysis of the surface Σr

0.
First, we see that, when rc > rþ,

Cðrc; QÞ ≥ 0:

Thus, from Eq. (34) we draw the following conclusions.
(i) If A < 0, then Eq. (33) always has two real roots, one

of which is negative (i.e., must be discarded):

Xþðrc; QÞ < 0; X−ðrc; QÞ > 0:

(ii) If A > 0 and B > 0, then Eq. (33) either has no real
roots or both of them are positive:

Xþðrc; QÞ > 0; X−ðrc; QÞ > 0:

(iii) If A > 0 and B < 0, then Eq. (33) either has no roots
or both of them are negative (i.e., they must be
discarded):

Xþðrc; QÞ < 0; X−ðrc; QÞ < 0:

Second, the coefficient A does not depend on Q, and
all its roots are found explicitly by the trigonometric
parametrization:

AðrcÞ ¼ r4c
Y2
k¼0

ðr − rkðαÞÞ; rk ¼ 4sin2
�
αþ 2π

3
k

�
;

aðαÞ ¼ sin 3α; 0 ≤ α ≤ π=6;

and for any value of a the roots rk satisfy the following
inequalities (see Fig. 8):

0 ≤ r0 ≤ 1 ≤ rþ ≤ r1 < 3 ≤ r2 ≤ 4:

Consequently, the surface r ¼ r2ðaÞ ¼ const correspond-
ing to the largest root lies, at all values of a, outside the
ergosphere, whereas part of the surface r ¼ r1ðaÞ ¼ const
with (a > a� ¼ 1ffiffi

2
p , i.e., α > π

12
), which is near the equator

θ ¼ π=2, turns out to lie inside the ergosphere.

Third, both for large rc and for a ¼ 0, Eq. (33) simplifies to

GðXÞja¼0 ¼ r7c

�
X −

ðrc − 2Þ2
rcðrc − 3Þ

�
2

¼ 0:

It follows that for X� ⟶
rc→þ∞

1 and according to Eq. (34), we

obtain

Eþ ⟶
rc→þ∞

1 − 0; Lþ ⟶
rc→þ∞

−∞;

E− ⟶
rc→þ∞

1 − 0; L− ⟶
rc→þ∞

∞:

This implies that, on the plane of values of the coefficients
ðA;BÞ with any fixed a and Q ≥ 0, the curve
ΓABðrcÞ∶ðAðrcÞ; BðrcÞÞwith large rc lies in the first quadrant
(i.e., A > 0, B > 0). On the other hand, AðrþÞ > 0, and for
Q ≥ 0 we have

B ¼ ΔðrcÞ½r3cðr2c − 5rc þ 6Þ þ ðrc − 2Þa2Q�
− r3cðrc − 1Þ2a2 − rcð1 − a2Þa2Qjrc¼rþ ≤ 0:

Therefore, the curve ΓABðrcÞ starts at rc ¼ rþ in the second
quadrant and intersects with the axis A ¼ 0 twice as rc → ∞
since AðrcÞ has two roots on the interval ðrþ;þ∞Þ.
Consequently, three general position cases for the structure
of the curve ΓAB are in principle possible (see Fig. 9).
Remark 8.—In this case, in order to give a rigorous proof

in which only the situations shown in Fig. 9 are possible, it is
also necessary to show that, when 0 < a ≤ 1 andQ ≥ 0, the
coefficientBðrcÞ has only one root on the interval ðrþ;þ∞Þ.
The rigorous proof known to us is based on Sturm’s theorem
and is so cumbersome that we do not present it here.
We show that the situation in Fig. 9(c) does not take place

for a2 > 0 and Q ≥ 0. To do so, we calculate BðrkÞ using
the above-mentioned parametrization of the roots AðrÞ:

FIG. 8. Dependence of the roots of the equation AðrcÞ ¼ 0 on
the parameter a.
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BðrkÞ¼ −2asin2αkð1−4sin2αkÞ2ð32sin5αkþaQÞ;

a¼ sin3α; αk¼ αþ2π

3
k; k¼ 0;1;2; α ∈

�
0;
π

6

�
:

This implies that

Bðr1Þ < 0 for Q ≥ 0;

Bðr2Þ < 0 for Q > Qð1Þ
c ; Qð1Þ

c ¼ 32 sinðαþ π=3Þ
sin 3α

;

Bðr2Þ > 0 for 0 ≤ Q < Qð1Þ
c :

Thus, the segment of the curve ΓABðrcÞ with rc ∈ ðrþ; r1Þ
always enters region iii.
Fourth, the discriminant of Eq. (33) is factored in such a

way that

D̂ðrc; QÞ ¼ B2 − AC ¼ 4a2Δ2ðrcÞPQðrcÞ;
PQðrcÞ ¼ r5c − r3cðrc − 3ÞQþ a2Q2:

Accordingly, for sufficiently small positiveQ for all rc > rþ
it turns out that PQðrcÞ > 0. In addition, for all a ∈ ½0; 1� the
relation rþðaÞ ≤ 2 is satisfied, andhence forQ > 0weobtain

PQðrþÞ ¼ r5þ þ r3þð3 − rþÞQþ a2Q2 > 0:

Consequently, for each fixed a, the critical values of
QcðaÞ at which the polynomial PQðrcÞ has roots on the
interval ðrþ;þ∞Þ are defined by the following conditions:

PQðrcÞ ¼ 0;
dPQðrcÞ

drc
¼ 0; rc > rþ:

These equations lend themselves to a fairly simple analysis
since the second of them reduces to the following quadratic
equation in rc:

dPQ

drc
¼ r2cð5r2c − 4Qrc þ 9QÞ: ð36Þ

It has nonzero real solutions (for positive Q) only under
the condition Q ≥ 45=4. We make use of the following
parametrization:

Q ¼ 45

4 − x2
; x ∈ ½0; 2Þ:

Then the nonzero roots rðþÞ
c and rð−Þc of Eq. (36) can be

represented as

9

4
< rð−Þc ¼ 9

2þ x
<

9

2
< rðþÞ

c ¼ 9

2 − x
:

Substituting into these values from Eq. (36), we find

P2ðrð−Þc Þ ¼ 39

ð4 − x2Þ2
�
25

243
a2 þ ð2 − xÞð2xþ 1Þ

ð2þ xÞ3
�
;

P2ðrðþÞ
c Þ ¼ 39

ð4 − x2Þ2
�
25

243
a2 þ ð2 − xÞð1 − 2xÞ

j2þ xj3
�
:

We see that, for a2 ≤ 1 and x ∈ ½0; 2Þ, the first function is
larger than zero everywhere and the second has the only
root xðaÞ near the value xð0Þ ¼ 1=2, which corresponds to
the critical values of QcðaÞ which satisfy the relations

Qcð0Þ ≤ QcðaÞ ≤ Qcð1Þ;

Qcð0Þ ¼ 12; Qcð1Þ ¼
3125

256
≈ 12.21:

Note that this dependence admits a good approximation
using the Taylor series:

QcðaÞ ¼ 12þ 27

25
μ −

4131

10000
μ2 þOðμ3Þ; μ ¼ 50

243
a2:

A typical view of the surface Σr
0 is shown in Fig. 10.

3. Stability of critical solutions

To analyze the stability of the trajectories r ¼ rc ¼ const,
we first consider the caseQ < Qc. Figure 10 clearly shows a
singularity of the cusp type on each of the curves defined by
relations (34). A natural question arises: do these curves
really contain a singularity or is this because of inaccuracies
in constructing the curve, in which case a more detailed
enlargement will reveal that the curves are smooth?
To answer this question, we first note that, if Q ¼ const,

on each of these curves as E → 1 (L → �∞) the function
RðrÞ has a maximum at the critical point r ¼ rc, whereas at
the other end of these curves as E → þ∞ the function RðrÞ
has a minimum. Consequently, in the expansion in a
neighborhood of the critical point satisfying Eqs. (24),

RðrÞ ¼ WðL; EÞðr − rcðL;EÞÞ þOðjr − rcðL;EÞj2Þ

the coefficient WðL;EÞ changes sign as the parameters
change along the bifurcation curves under study. Hence,
there is a point of the curve ðL�; E�Þ at which

(a) (b) (c)

FIG. 9. Possible positions of the curve ΓAB.
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WðL�; E�Þ ¼
d2R
dr2

����
r¼rc

¼ 0: ð37Þ

Now we find the derivatives dE
drc

and dL
drc

for Q ¼ const on the
bifurcation curves. Let us differentiate Eqs. (24) with respect
to rc, taking into account the fact that E ¼ EðrcÞ and
L ¼ LðrcÞ. Solving the resulting system, we find that

dE
drc

¼ d−1
∂R
∂L

d2R
dr2

����
r¼rc

;
dL
drc

¼ −d−1
∂R
∂E

d2R
dr2

����
r¼rc

;

d ¼
�∂R
∂E

∂2R
∂L∂r −

∂R
∂L

∂2R
∂E∂r

�����
r¼rc

: ð38Þ

In relations (38), the partial derivatives of the function RðrÞ
denote differentiation with respect to the parameters L and
E. From this it follows immediately that, when E ¼ E� and
L ¼ L�, these relations vanish; i.e., this point on the
bifurcation curve is a cusp.
The value rc ¼ r� corresponding to the cusp separates the

unstable critical trajectories rc < r�


d2R
dr2 > 0

�
and the

stable ones rc > r� ðd2Rdr2 < 0Þ.
To obtain relations defining r�, L�, and E�, we represent

Eqs. (24) and (37) in the following form:

R − r
dR
dr

þ r2

2

d2R
dr2

¼ 3r4�ðE2� − 1Þ −Qa2 þ 2r3� ¼ 0;

1

2

d2R
dr2

¼ ða2 þ 6r2�ÞðE2� − 1Þ þ 6r� −Q − L2� ¼ 0:

Taking into account the fact that E� > 0, we find that

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r4� − 2r3� þQa2

p
r2�

ffiffiffi
3

p ;

L�� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qða4 þ 6a2r2� − 3r4�Þ þ 2r3�ð3r2� − a2Þ

p
r2�

ffiffiffi
3

p ;

where the upper sign refers to Lþ� and the lower sign refers to
L−� . Next, we substitute both solutions into the first of
relations (24) and, multiplying the resulting expressions, find
an equation defining r� in the following form:

G ¼ 9r3

4
Rðr�ÞjL¼Lþ

c
Rðr�ÞjL¼L−

c

¼ 8Qa2½r3� þ 2Qa2�½r�ð1 − a2Þ þ Δðr�Þðr� − 1Þ�
þ 24a2r4�ð1 − a2ÞQ
þ r5�½ðΔðr�Þ − 4ða2 þ r�ÞÞ2 − 64a2r�� ¼ 0: ð39Þ

The curves Gðr�; aÞ ¼ 0 for different fixed Q ∈ ½0; QcÞ
are shown in Fig. 11, from which some conclusions can
be drawn:
(a) The fixed values ofQ and a correspond to two values of

r�. The smaller one corresponds to Eq. (34a) and the
other one to Eq. (34b).

(b) r� takes the minimal value if Q ¼ 0. It corresponds to
plane trajectories lying in the equatorial plane θ ¼ π=2.
In this case, Eq. (39) simplifies and its solutions have
the form

r�� ¼ 3þ Z2 ∓ ðð3 − Z1Þð3þ Z1 þ 2Z2ÞÞ1=2;
Z1 ¼ 1þ ð1 − a2Þ1=3ðð1þ aÞ1=3 þ ð1 − aÞ1=3Þ;
Z2 ¼ ð3a2 þ Z2

1Þ1=2;

FIG. 10. Arrangement of bifurcation surfaces and curves in the space of first integrals R3
I for a fixed a ¼ 0.9. Gray denotes the region of

possible values of L, E, and Q.
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where rþ� and r−� correspond to the curves (34a) and
(34b), respectively. The quantity rþ� is called the ISCO
since it describes the smallest radius for which the
circular orbit is stable. As can be seen, for a ¼ 1 we
have rþ� ¼ rþ.

(c) There are stable spherical trajectories 2 > rc > r�
which lie in the ergosphere.

If Q > Qc, then on the curves defined by relations (34)
there are no critical points (see Fig. 10). In this case the lower
bifurcation curve on the section Q ¼ const corresponds to
stable spherical trajectories since on this curve d2R

dr2 < 0,
while the upper curve corresponds to unstable ones
since d2R

dr2 > 0.

E. A complete classification of integral submanifolds
M2

I

Summing up the main results of the previous sections, we
conclude that in the space of values of the first integrals R3

I
there are five bifurcation surfaces:

Σθ
0; Σθ

min; Σr
0; Σr

∞; Σt:

As they intersect, the type of the integral submanifold M2
I

changes. These surfaces divide the entire space R3
I into

regions in such a way that there exist seven different regions
of values of the first integrals L, E, and Q for which motion
is possible. In each of these regions the type of the integral
submanifold M2

I is the same.
Since the flat projection shows the structure of the 3D

images of these regions very poorly, we will depict them
using the sections formed by the intersection with the plane
Q ¼ const (see Fig. 12). Since all types of the integral
submanifolds M2

I are shown in Fig. 12, we will not repeat

these results here but instead will give only the necessary
explanations.
Depending on the value of Q, the entire space R3

I splits
into three parts (layers):

D1¼fQ<0g; D2¼f0<Q<Qcg; D3¼fQc<Qg;

in each of which the section formed by the intersection of the
bifurcation diagram with the plane Q ¼ const looks similar.
Before we proceed to the discussion of each of the parts, we
make some general remarks. First, the planes Σr

∞ and Σt are
intersected by any sectionQ ¼ const along two straight lines
which do not depend on the value of Q. Second, from the
form of the latitudinal potential Uθ (see Figs. 3 and 4), it
follows that
(a) for L ≠ 0 there exists a neighborhood near the sym-

metry axis which the particle cannot enter (the case
L ¼ 0 requires a separate analysis; see Ref. [53]);

(b) if Q < 0 (i.e., in layer D1), all particle trajectories do
not intersect with the equatorial plane; and

(c) if Q > 0 (i.e., in layers D2 and D3), the region
of possible particle motion always contains the
equatorial plane.

It is important to keep in mind that all regions having the
same color in Fig. 12 (i.e., those corresponding to the same
type of M2

I ) turn out to be connected in the three-dimen-
sional space R3

I , even despite the fact that some of their
sections formed by the intersection with the planeQ ¼ const
are disconnected. Figure 13 shows a typical dependence of
the functionsRðrÞ andΘðθÞ in these regions and a projection
of the corresponding integral submanifoldsM2

I onto the half
plane ðr; θÞ.

1. Part D1 [see Fig. 12(a)]

If Q < 0, then there is only one region of possible
motion. The section of this region is shown in Fig. 12(a). It
is bounded by the surface Σθ

min, and the section formed by
the intersection of this surface with the plane Q ¼ const
consists of two hyperbolas intersecting with each other
when L ¼ 0.
As can be seen from Fig. 13, the motion of the particle

occurs inside the spherical (more precisely, spheroidal)
segment, and all trajectories, as they continue moving in
forward time t, go to infinity ðr → þ∞Þ; as they move in
backward time, they approach the horizon (r → rþ). There
are no bounded trajectories forQ < 0, and the energy of the
particle is always positive (E > 0). Critical trajectories
corresponding to the values of the integrals L, E, and Q
on the bifurcation surface Σθ

min are always unbounded and
stable.

2. Part D2 [see Fig. 12(b)]

The section formed by the intersection of the surface Σr
0

with the plane Q ¼ const consists of two nonintersecting

FIG. 11. Curves on the plane ðr�; aÞ which correspond to a cusp
and are defined by Eq. (39) for different values of Q < Qc. Green
denotes the dependence r1ðaÞ.
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curves σþ and σ−. For one of the curves, σ−, the angular
momentum L → −∞ as rc → þ∞, while for the other, σþ,
we have L → þ∞ as rc → þ∞. On each of the curves, σ−

and σþ, there is a cusp point, ðL−� ; E−� Þ and ðLþ� ; Eþ� Þ,
respectively, which divides each curve into two smooth
branches (at least of smoothness class C1).
For the curve σ− the following relations hold:

L ∈ ð−∞; L−� �; L−� < 0;

E ∈ ½E−� ;þ∞Þ; E−� < 1:

That is, this curve always lies to the left of the axis L ¼ 0.
One of the smooth branches of this curve for which the
relation E−� < E < 1 is satisfied everywhere corresponds to
stable critical solutions, and the other corresponds to
unstable ones.
For the curve σþ the following relations are satisfied:

L ∈ ð−∞; Lþ� �;
E ∈ ½Eþ� ;þ∞Þ; E−� < 1;

(a) (b)

(c) (d)

FIG. 12. Locations of regions with different numbers of connected components and their topological type on the plane
ðL; EÞ for different values of Q and for a fixed a ¼ 0.9. The number in front of the brackets (if there is one) shows the number
of identical connected components of the submanifoldM2

I . The white regions correspond to nonphysical values of the integrals L and E
with a fixed Q ¼ const.

IVAN BIZYAEV and IVAN MAMAEV PHYS. REV. D 105, 063003 (2022)

063003-18



and there is a value of Q� < Qc such that for Q < Q� one
has Lþ� > 0, and for Q > Q� one has Lþ� < 0; i.e., at some
values of Q the curve σ2 intersects with the axis L ¼ 0. One
of the smooth branches of this curve for which the relation
Eþ� < E < 1 is satisfied also corresponds to stable critical
solutions, and the other corresponds to unstable ones.

3. Part D3 [see Figs. 12(c) and 12(d)]

The section formed by the intersection of the surface Σr
0

with the plane Q ¼ const also consists of a pair of
nonintersecting curves σ1 and σ2. Both curves, σ1 and σ2,
are smooth everywhere (at least of the smoothness class C1)
and for each of them one has L ∈ ð−∞;þ∞Þ.
For the curve σ1 the relation 0 < E < 1 always holds. All

critical solutions corresponding to the values of the integrals
on the curve σ1 are stable.

For the second curve, σ2, one has E ∈ ½Emin;þ∞Þ, and
there is a Q� such that for Qc < Q < Q� one has
0 < Emin < 1, and forQ > Q� one hasEmin > 1. All critical
solutions corresponding to the values of the integrals on σ2
are unstable.
Thus, we see that in R2

I there are only two regions, IV
and V (both of them lie inside layersD2 andD3) for which
there are compact integral submanifolds M2

I : two-dimen-
sional tori. In the other regions, the integral submanifolds
M2

I are noncompact and diffeomorphic to two-dimen-
sional cylinders (see Fig. 14). The difference between
them (which results in R3

I splitting into corresponding
regions) lies in the behavior of the trajectories on this
submanifold as t → þ∞ and t → −∞.
(a) In regions I and III all trajectories onM2

I either “start”
as t → −∞ at infinity (r → þ∞) and “end” as t →
þ∞ at the horizon (r → rþ) or, conversely, either start

FIG. 13. Typical view of the functions RðrÞ and ΘðθÞ and the projection of the corresponding integral submanifoldsM2
I onto the plane

ðr; θÞ.

BIFURCATION DIAGRAM AND A QUALITATIVE ANALYSIS OF … PHYS. REV. D 105, 063003 (2022)

063003-19



at the horizon and end at ∞; in this paper, we call such
an M2

I the “horizon/infinity.”
(b) In region II all trajectories on M2

I are of the type
“infinity/infinity.”

(c) In region VI there are two types of integral submani-
folds: “horizon/horizon” and horizon/infinity.

IV. CRITICAL TRAJECTORIES OF THE KERR
METRIC

We now consider in more detail the (most interesting)
critical trajectories of the system, i.e., particle motions for

which the integrals of motion L, E, and Q lie on the
bifurcation surfaces Σr, Σθ. A characteristic feature of these
trajectories is that the dimension of the corresponding
integral submanifold is one less—namely, for the reduced
system (15) the dimension is 1, and for the complete system
(11) the dimension is 2.

A. Trajectories in the equatorial plane

Let the value of the Carter integral be zero (Q ¼ 0).
Then it follows from the analysis of of the latitudinal
motion (see Sec. III C and Fig. 17) that there are

FIG. 14. Typical view of the functions RðrÞ and ΘðθÞ and the projection of the corresponding integral submanifolds M2
I onto the

plane ðr; θÞ.
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trajectories lying in the equatorial plane θ ¼ π=2, and that
all of them are critical (since in this case the latitudinal
potential has a critical point).
According to the results of Sec. III, the equatorial invariant

plane θ ¼ π=2 is stable under the condition

a2ðE2 − 1Þ − L2 < 0; ð40Þ

and unstable otherwise. The equation governing the evolu-
tion of the radial coordinates for plane trajectories has the
form

dr
dτ

¼ � 1

r2
ffiffiffiffiffiffiffiffiffi
RðrÞ

p
;

RðrÞ ¼ r½ðE2 − 1Þr3 þ 2r2

þ ða2ðE2 − 1Þ − L2Þrþ 2ðL − aEÞ2�: ð41Þ

We represent Eqs. (20) in the form

dφ
dτ

¼2aEþLðr−2Þ
rΔðrÞ ;

dt
dτ

¼Eþ 2

rΔðrÞðEðr
2þa2Þ−aLÞ:

A bifurcation diagram for this case is shown in Fig. 15. In
fact, this is a section formed by the intersection of the general
diagram (see Sec. III) with the plane Q ¼ 0. Nevertheless,
the interpretation of the bifurcation curves differs somewhat
from the preceding in that, as noted above, the curve Σθþ ∪
Σθ
− divides the regions of stability and instability of the

planar motion. Also, the curves Σrþ and Σr
− correspond to

fixed points (and not to periodic solutions) of the reduced
system (15), i.e., critical circular trajectories of the initial
system (11). The curve Σr

∞ also corresponds to a nonlocal
bifurcation such that, when it is intersected with (toward an
increase in E), the particle can leave the neighborhood of the
horizon. The curve Σt bounds, as above, the region of
possible values of the integrals for motions reaching the
ergosphere.
For each fixed value L ¼ L0 the system (41) defines on

the plane ðr; drdτÞ, r > rþ, a set of trajectories corresponding
to different values of the integral E. They form the so-called
phase portrait of a reduced system with a fixed angular
momentum. From the form of the bifurcation diagram in
Fig. 15 it follows that there are four critical values of the
integral of the angular momentum L at which the phase
portrait will not qualitatively change, as indicated next.
(a) Lc

−, Lcþ: values ofLwhich correspond to cusp points on
the curves Σr

− and Σrþ.
(b) Le

−, Leþ: values of L at which the curves Σr
− and Σrþ

intersect with the straight line E ¼ 1.
Depending on the choice of L, three types of phase portraits
of the reduced system are possible (Fig. 16).
Remark 9.—We see that the region of unstable planar

motions which is given by inequality (40) (i.e., the region
bounded by the curve Σθ

min) is very small [see Figs. 15
and 17(a)]. If L and E are chosen in the region
a2ðE2 − 1Þ − L2 > 0, then, in addition to plane trajectories,

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 15. Typical view of the trajectories of a particle with a ¼ 0.9 for different values of the integrals L and E, where red denotes the
event horizon h and blue denotes the boundary of the ergosphere s.

BIFURCATION DIAGRAM AND A QUALITATIVE ANALYSIS OF … PHYS. REV. D 105, 063003 (2022)

063003-21



there are trajectories that do not lie entirely in the equatorial
plane [see Fig. 17(d)]. As τ → �∞, the above-mentioned
trajectories tend asymptotically to the equatorial plane (see
Fig. 17). After explicit integration of the equation for the angle
θ after the time rescaling (19), we obtain the following
relations for the trajectories:

cos θðuÞ ¼ �
�
1 −

L2

a2ðE2 − 1Þ
�

1=2

cosh−1
�
Lu

�
a2ðE2 − 1Þ

L2
− 1

�
1=2

þ C

�
; C ¼ const:

The curve a2ðE2 − 1Þ − L2 ¼ 0 lies in region III, which
contains the unbounded trajectories reaching the event
horizon r ¼ rþ. Therefore, u ∈ ð0; u0Þ, where u0 is the
time it takes for the trajectory to reach the event horizon
r ¼ rþ. In other words, these trajectories can reach the event
horizon before they approach the equatorial plane.

Consider the critical circular trajectories r ¼ rc ¼ const.
For them the values of the integrals L and E are defined by
relations (35). This yields the following expression for the
angular velocity:

ω� ¼ dφ
dt

¼ 1

a� r3=2c

; ð42Þ

where the upper sign refers to Σrþ and the lower sign refers to
Σr
−. Since rc > 1 > a, we see that if ðL;EÞ ∈ Σr

− the particle
rotates in the opposite direction of the rotation of the celestial
body, while if ðL;EÞ ∈ Σrþ the direction of rotation of the
particle is the same as that of the celestial body.
In the general case, the direction of rotation for the plane

trajectories can change since dφ
dτ vanishes for some value of

the radial coordinate.
Proposition 3.—If the trajectory changes the direction of

rotation, then the integrals L and E satisfy the inequalities

L < 0; E > 0; aðE2 − 1Þ − EL > 0: ð43Þ

(a) (b) (c)

FIG. 16. Three possible types of phase portraits of a reduced system for a fixed value of L (a ¼ 0.3).

(a) (b) (c) (d)

FIG. 17. (a) Shape of ΣðθÞ
� on the half plane R2

L;E for a fixed a ¼ 0.3, (b),(c) the behavior of the function ΘðθÞ in different regions, and
(d) a typical view of a trajectory on the plane ðθ; dθdτÞ for a fixed value of L and different values of E.
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The value of the radial coordinate r ¼ rφ corresponding to
the change in the direction of rotation is defined by the
relation dφ

dτ ¼ 0. Hence, we obtain

rφ ¼ 2

�
1 −

aE
L

�
> rþ: ð44Þ

Also, the following condition must be satisfied,

RðrφÞ ¼
4ΔðrφÞðaE − LÞ2

L4
½aðE2 − 1Þ − EL� ≥ 0;

and it is equivalent to the inequality

aðE2 − 1Þ − EL ≥ 0: ð45Þ

Let E < 0. Then, in view of Eq. (14), inequality (45) can be
represented as

−
ar2þL2

ðr2þ þ a2Þ2 − a > 0:

As we see, on the left-hand side the quantities take only
negative values, which gives a contradiction; hence, E > 0.
Taking this into account, we represent condition (45) as

E ≥
Lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ 4a2

p

2a
:

Then relation (44) can be rewritten as

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ 4a2

p

L
> 0:

It can be satisfied only if L < 0. Therefore, inequalities (43)
must be satisfied.
Thus, the following additional curve arises on the plane

ðL;EÞ,

Σφ ¼ fðL;EÞjE¼ Eφ;L < 0g; Eφ ¼
Lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ 4a2

p

2a
;

above which lie the values of the integrals L and E for which
the trajectory changes the direction of rotation.
A typical view of trajectories from different regions on the

plane of the integrals ðL;EÞ is shown in Fig. 15. Below we
briefly describe them.
(a) If L < 0, E < Eφ [see Fig. 15(c)] or L > 0 [see Fig. 15

(d)], then the direction of rotation along the entire
trajectory is the same as that of the celestial
body dφ

dτ > 0.
(b) Let the values of the integrals L and E lie in the region

bounded by the curve Σr
−. Then, in addition to the

trajectories for which r ∈ ðrþ; rð1Þu �, there are also

bounded trajectories r ∈ ½rð2Þu ; rð3Þu � if E < 1 and un-

bounded trajectories r ∈ ½rð2Þu ;þ∞Þ if E > 1. Here rðiÞu ,
i ¼ 1, 2, 3 are the zeros of the polynomial RðrÞ. For
these trajectories (i.e., if r > rð2Þu ), the direction of
rotation never coincides with that of the celestial body
dφ
dτ < 0 (see Fig. 13). To show this, it suffices to note

that, according to Eq. (42), for r ¼ rc we have
dφ
dτ ≠ 0.

(c) The direction of rotation changes for the trajectories
[see Figs. 15(a) and 15(b)] for which the values of the
integrals lie in the region L < 0, E > Eφ. In this case,
the values are in the region bounded by the curve Σr

− at

the initial time r ∈ ðrþ; rð1Þu �.

1. Separatrices

As can be seen in Fig. 16, if L < Le
− or L > Leþ, then the

phase portrait of the system has a fixed saddle point
corresponding to the unstable circular orbit r ¼ rc.
Adjacent to this point are asymptotic trajectories—separa-
trices for which the solution is given in terms of elementary
functions (see also Ref. [27]).
Remark 10.—Under a nonintegrable perturbation, it is

usually in the neighborhood of a separatrix that the most
considerable stochastic layer arises. In addition, an explicit
solution for the separatrix is used, for example, when
calculating the Melnikov integral.
To obtain the corresponding solution, we substitute the

values of the integralsL andE on the curves Σrþ andΣr
− from

relations (35) into the function RðrÞ and represent it as

RðrÞ ¼ 4br
rc

r− ra
rc− ra

ðr− rcÞ2;

b¼ rc
2
−
3

4
r2cð1−E2

�Þ; ra ¼
2rcða∓ r1=2c Þ2
r2c − ða∓ 2r1=2c Þ2

: ð46Þ

From the results of Sec. III D for the stability of critical
solutions, it follows that in the case of an unstable fixed point
one has rc < r�� , and it can be shown that the following
inequalities hold:

0 < b;

0 < rc < ra for E < 1;

ra < 0 for E > 1:

Furthermore, rescaling time as in Eq. (19), we obtain

dτ ¼ ðρðr; θÞduÞjθ¼π=2 ¼ r2du:

As seen in Fig. 16, if rþ < r < rc, there are a pair of
separatrices Su1 and S

s
1 which intersect with the event horizon

rþ. Integrating Eq. (41), we find for them the expression

BIFURCATION DIAGRAM AND A QUALITATIVE ANALYSIS OF … PHYS. REV. D 105, 063003 (2022)

063003-23



rðuÞ ¼ rc
sinh2ð ffiffiffi

b
p

uÞ
cosh2ð ffiffiffi

b
p

uÞ − rc=ra
:

The stable separatrix Ss1 corresponds to u ∈ ½uþ;þ∞Þ and
the unstable separatrix Su1 corresponds to u ∈ ð−∞;−uþÞ,
where uþ is the positive root of the equation rðuþÞ ¼ rþ.
Remark 11.—Strictly speaking, Su1 and S

s
1 are not different

separatrices but rather two parts of the same homoclinic
separatrix, which emanates from a fixed point as u → −∞,
dips under the event horizon, and returns to the fixed point
as u → þ∞.
Again coming back to the phase portrait in Fig. 16, we

see that if Le
− < L < Lc

− or Lcþ < L < Le
−, i.e., E < 1,

then a (homoclinic) separatrix S2 which encloses some
region around a stable fixed point [Fig. 16(b)] emanates
from the fixed saddle point. In this case, rc < r ≤ ra and
is given by

rðuÞ ¼ rc
cosh2ð ffiffiffi

b
p

uÞ
sinh2ð ffiffiffi

b
p

uÞ þ rc=ra
:

As we see, this solution bounds the finite trajectories for
which the radial coordinate changes periodically with
time. Consequently, for finite trajectories the radial
coordinate does not exceed ra in this case.
If E > 1, then the phase portrait has a pair of separatrices

Su2 and Ss2 which go to infinity (r → þ∞). In this case
ra < 0, and an explicit solution is given by the expression

rðuÞ ¼ rc
cosh2ð ffiffiffi

b
p

uÞ
sinh2ð ffiffiffi

b
p

uÞ − rc=jraj
; ð47Þ

where for Ss2 and Su2 we have u ∈ ðuþ;þ∞Þ and
u ∈ ð−∞;−uþÞ, respectively, with uþ being the positive
root of the denominator in Eq. (47).
In addition to the above-mentioned separatrices S1 and

S2, there is a special case where the solution is expressed in
terms of elementary functions. Indeed, let ðL;EÞ ∈ Σrþ and
rc > r�þ or ðL;EÞ ∈ Σr

− and rc > r�−. Then, except for the
stable equilibrium point r ¼ rc, these values of the integrals
also correspond to the bounded trajectory starting and ending
at the event horizon r ¼ rþ. For this trajectory the function
RðrÞ is also represented as Eq. (46), but in this case b < 0
and 0 < ra < rc. After explicit integration of the equation
for the radial coordinate, we obtain

rðuÞ ¼ rc
sin2ð ffiffiffiffiffiffijbjp

uÞ
rc=ra − cos2ð ffiffiffiffiffiffijbjp

uÞ ; u ∈ ð−uþ; uþÞ;

where uþ is the positive root of the equation rðuÞ ¼ rþ.

2. Invariant tori, rotation numbers, and resonances

Assume that the values of the integrals L and E lie in a
region bounded by the curves Σr

� and E < 1. According to

the results of Sec. III D, three roots of the polynomial RðrÞ
lie on the interval ðrþ;þ∞Þ in this case:

RðrÞ ¼ ðE2 − 1Þðr − rð1Þu Þðr − rð2Þu Þðr − rð3Þu Þr;
rþ < rð1Þu < rð2Þu < rð3Þu ;

and the segment ½rð2Þu ; rð3Þu � defines the bounded trajectories
[see Figs. 6(b), 16(b), and 16(c)].
Let r ∈ ½rð2Þu ; rð3Þu �. Then, each time the turning point rð2Þu

or rð3Þu is reached, one should change the sign in Eq. (41) for
dr
dτ. To avoid this difficulty, we transform to the angle variable
ψ ∈ ð0; 2π�:

r ¼ rð3Þu − rð2Þu

2
cosψ þ rð3Þu þ rð2Þu

2
:

We finally obtain equations governing the motion on
invariant tori T 2 ¼ fðψ ;φÞ mod 2πg in phase space in
the following form:

dψ
du

¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ1 þ cosψÞðΓ2 þ cosψÞ

p
;

dφ
du

¼ ΦðψÞ ¼ r
2aEþ Lðr − 2Þ

ΔðrÞ
����
r¼rðψÞ

;

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E2

p

2
ðrð3Þu − rð2Þu Þ; Γ1 ¼

rð2Þu þ rð3Þu

rð3Þu − rð2Þu

> 1;

Γ2 ¼
rð2Þu þ rð3Þu − 2rð1Þu

rð3Þu − rð2Þu

> 1: ð48Þ

As can be seen, the radicand on the first line of Eqs. (48)
does not vanish.
The system of Eqs. (48), which governs the evolution of

the angles ψ and φ, defines a vector field on the torus T 2

without fixed points. It is the rotation number that allows one
to classify the trajectories on T 2 depending on the param-
eters. In this case the rotation number can be represented as

ρL;E ¼ 2πd

�Z
2π

0

ΦðψÞdψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΓ1 þ cosψÞðΓ2 þ cosψÞp �
−1
:

If ρL;E takes a rational value, then all trajectories on the
corresponding invariant torus T2 with given values of L and
E are periodic. If ρL;E takes an irrational value, then the
trajectories on the torus T2 are quasiperiodic. The curves on
the plane L, E which correspond to the rational values of the
rotation number equal to 1=3, 1=2, and 2=3 are shown
in Fig. 18.

B. Spherical trajectories

Let us consider critical trajectories r ¼ rc ¼ const which
do not lie entirely in the equatorial plane. For an external
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(a) (b) (c)

(d) (e) (f)

(g)

FIG. 18. Curves for the fixed a ¼ 0.95 on the plane L, E which correspond to the rational values of the rotation number ρφ=r, and the

trajectories in the equatorial plane for the fixed E ¼ 0.95 and different L. Red denotes the curve for which rð2Þu ¼ 2.
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fixed observer the surface r ¼ const is diffeomorphic to a
sphere. Therefore, these critical trajectories are called
spherical. To visualize them in the three-dimensional space,
we will use the coordinates (3), in which the surface
r ¼ const is a spheroid.
In the space of the first integrals, R3

I , spherical critical
trajectories correspond to the bifurcation surface Σr

0 ¼
Σrþ ∪ Σr

− (see Fig. 10), which in our case (see Sec. III D)
is parametrized by the quantities rc and Q (Q > 0).
Next, we consider only stable spherical trajectories for

which E < 1. In this case, the corresponding part of
the surface Σr

0 is uniquely projected onto the half plane of
the integrals R2 ¼ fðL;QÞjQ > 0g (see Fig. 10).
For the reduced system (15) the spherical critical

trajectories define periodic solutions, while in the phase
space of the initial system (11) they correspond to
trajectories on the two-dimensional invariant tori T 2. To
obtain a flow on the invariant tori, we define their
parametrization using suitable angular coordinates. One
of the coordinates is the azimuthal angle of the particle φ,
and the other angle variable ψ with L ≠ 0 (the case L ¼ 0

is analyzed in detail in, for example, [53]) can be
determined by making the change of variable

cos θ ¼ A sinψ ;

A ¼
�
1

2
þ Qþ L2

2a2ð1 − E2Þ

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
−

Qþ L2

2a2ð1 − E2Þ
�

2

þ L2

a2ð1 − E2Þ

s �1=2

< 1;

where A is the amplitude of the quantity cos θ for a critical
solution with a given value of the integrals L, E, and Q
which is always smaller than unity for L ≠ 0. Using
Eqs. (18) and (20), we find that in the new variables
the flow on the invariant tori T2 can be represented as

dψ
du

¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − E2ÞðB2 − A2sin2ψÞ

q
;

dφ
du

¼ β þ L
1 − A2sin2ψ

;

β ¼ a
ΔðrcÞ

ð2Erc − aLÞ ¼ const;

B ¼
�
1

2
þ Qþ L2

2a2ð1 − E2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
−

Qþ L2

2a2ð1 − E2Þ
�

2

þ L2

a2ð1 − E2Þ

s �1=2

; ð49Þ

where 0 < A < 1 < B.

According to relations (34), the values of the integrals for
spherical trajectories with rc ≫ 1 can be represented as

L ¼ � ffiffiffiffi
rc

p þO

�
1ffiffiffiffi
rc

p
�
; E ¼ 1 −

1

2rc
þO

�
1

r2c

�
;

where the upper sign refers to Σþ and the lower sign refers to
Σ−. Therefore, for the amplitude of the angular deviation of
the trajectory cos θ we obtain

A ¼ Q
rc

þO

�
1

r2c

�
:

Thus, the angular deviation of the critical spherical trajecto-
ries from the equatorial plane tends to zero as rc → þ∞.

1. Pro- and retrograde trajectories (co- and
counterrotating orbits)

We recall that in the case of the Schwarzschild metric the
azimuthal angle φ changes monotonically with time (for
both critical and general trajectories) [16]. We show that if
L < 0, then there are spherical trajectories for which the
direction of rotation about the symmetry axis changes.
Indeed, according to Eq. (49), the rate of change of the

azimuthal angle, dφ
du, oscillates between the values

β þ L
1 − A2

and β þ L: ð50Þ

For L > 0 both these quantities are positive, while for
L < 0 they may have different signs such that the trajectory
becomes pro- and retrograde. The boundary of the existence
region of these trajectories is found using the condition that
the largest of the values (50) with L < 0 vanishes, i.e.,
β þ L ¼ 0. From this we find that

E ¼ ð2 − rcÞL
2a

:

Next, substituting the resulting value of energy into Eq. (24)
and solving the system thus obtained for L andQ, we obtain
the following curve:

Σφ ¼
�
ðL;QÞjL ¼ −

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcðrc − 3Þp ;

Q ¼ r2c
rc − 3

; rc ∈ ðr�;þ∞Þ
	
;

where r� is the root of Eq. (39).
Thus, if the values of the integrals for the spherical

trajectories lie in the region L < 0 to the right of the curve
Σφ, then the function dφ

dt has zeros (see Fig. 19).
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2. Rotation number and resonances

The rotation number for the system (49) is found
explicitly to be

ρL;Q ¼ 1

2πa
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E2

p
Z

2π

0

�
β þ L

1 − A2sin2ϕ

�
× ðB2 − A2sin2ϕÞ−1=2dϕ

¼ 2LΠðA2; ABÞ þ 2βKðABÞ
aπB

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E2

p ;

where the following complete elliptic integrals are defined:

KðkÞ ¼
Z

π=2

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 x

p ;

Πðn; kÞ ¼
Z

π=2

0

dx

ð1 − n sin2 xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 x

p :

A typical view of a trajectory for which ρL;Q takes rational
and irrational values is shown in Fig. 20. The dependence of
the rotation number ρL;Q on L is shown in Fig. 21. As we
see, the rotation number ρL;Q has a discontinuity for L ¼ 0

(see also Ref. [21]).

FIG. 19. Dependence of dφ
du on ψ and a typical view of a trajectory on the plane ðφ; θÞ and in the coordinates (3) in the case where the

function dφ
du has zeros for the fixed values a ¼ 0.95, Q ¼ 15, L ¼ −0.2, rc ¼ 3.6313, and E ¼ 0.9936.

(a) (b)

FIG. 20. Trajectory on the plane ðφ; θÞ for the fixed values
a ¼ 0.95, L ¼ 1.859, Q ¼ 2, and E ¼ 0.871 and for different rc.

−0.5

FIG. 21. Curve Σφ, where red denotes the boundary of stable spherical trajectories on the plane ðL;QÞ, and dependence of the rotation
number ρL;Q on L for a fixed Q.
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