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We construct a template to model the postmerger phase of a binary black hole coalescence in the
presence of a remnant Uð1Þ charge. We include the quasinormal modes typically dominant during a binary
black hole coalescence, ðl; m; nÞ ¼ fð2; 2; 0Þ; ð2; 2; 1Þg and also present analytical fits for the quasinormal
mode frequencies of a Kerr-Newman black hole in terms of its spin and charge, here also including the
(3, 3, 0) mode. Aside from astrophysical electric charge, our template can accommodate extensions of the
Standard Model, such as a dark photon. Applying the model to LIGO-Virgo detections, we find that we are
unable to distinguish between the charged and uncharged hypotheses from a purely postmerger analysis of
the current events. However, restricting the mass and spin to values compatible with the analysis of the full
signal, we obtain a 90th percentile bound q̄ < 0.33 on the black hole charge-to-mass ratio, for the most
favorable case of GW150914. Under similar assumptions, by simulating a typical loud signal observed by
the LIGO-Virgo network at its design sensitivity, we assess that this model can provide a robust
measurement of the charge-to-mass ratio only for values q̄≳ 0.5; here we also assume that the mode
amplitudes are similar to the uncharged case in creating our simulated signal. Lower values, down to
q̄ ∼ 0.3, could instead be detected when evaluating the consistency of the premerger and postmerger
emission.
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I. INTRODUCTION

The most generic family of regular, stationary, asymp-
totically flat, electrovacuum solutions in Einstein-Maxwell
theory is the Kerr-Newman (KN) family of black holes
(BHs) [1,2]. This solution extends the Kerr metric [3] and is
uniquely characterized by the mass M, the dimensionless
spin χ, and charge-to-mass ratio q̄, typically identified with
the electric charge-to-mass ratio of the BH. Astrophysical
BHs are expected to carry negligible electric charge [4–6].
Although a rotating BH embedded in a magnetic field can
selectively accrete electric charge, the maximum amount
accreted through this effect is negligible for astrophysical
values of magnetic fields [7]. Additionally, mechanisms
such as vacuum polarization, breakdown pair production,
and neutralization from surrounding material prevent a
stellar-mass BH from sustaining a large amount of electric
charge [4,5]. Even if a significant amount of charge is

acquired, it is dissipated on a timescale much shorter than
the one probed by gravitational-wave (GW) observations
[5]. These dissipation mechanisms have roots in the large
charge-to-mass-ratio of the electron [8]. As a consequence,
gravitational-wave (GW) searches, parameter estimation
(PE), and population studies [9,10] are routinely carried out
by assuming that BHs giving rise to the signals observed in
the LIGO-Virgo interferometers [11,12] can be accurately
described by the Kerr metric. Even though all these
arguments rely on well understood physical principles
and thus in standard astrophysical scenarios the neutral
BH approximation is a reasonable one, a robust and direct
observational verification of charge neutrality for the
population of BHs observed by LIGO and Virgo is still
missing.
The confirmation of small or null electrical charge would

also constrain more exotic scenarios, where the charge
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parameter of the KN family can be identified with the
magnetic charge (due to primordial magnetic monopoles
[13–15]), vector charge in theories mediated by a gravi-
tational vector field [14], a hidden electromagnetic charge
in models of minicharged dark matter [8], or a topologically
induced charge [16]. Models of minicharged dark matter
would evade the aforementioned discharge mechanisms
due to their different charge-to-mass-ratio, while charge
effects arising from modified gravity scenarios would be
due to the presence of an additional gravitational field.
Given that at the scale of BH mergers all these effects can
be parametrized with the same parameter appearing in
Einstein-Maxwell theory, we will simply refer to this
parameter as charge, bearing in mind its different meanings
depending on the context in which this parameter is
interpreted. Charged BHs have also recently gained interest
as a possible explanation of ultrahigh energy cosmic ray
particles [17]. GWs constitute a unique probe of these
exotic scenarios for stellar-mass binary black hole (BBH)
mergers, since the corresponding electromagnetic (EM)
signal emitted by such sources would lie in the kHz range,
where plasma absorption and reflection by the interstellar
medium would prevent the detection of an EM counterpart
[8,18]. For these reasons, we will not discuss possible EM
counterparts to GWs that would be present if BHs possess a
charge; in the recent past this topic received considerable
attention due to a putative EM counterpart to GW150914
[19–23].
Finally, in addition to probing effects due to new physics

or uncommon astrophysical scenarios, KN BHs provide an
excellent opportunity to test current phenomenological
paradigms to search for violations of the Kerr hypothesis
in a plausible and well understood scenario. The KN case is
in fact an extensively studied modification to Kerr BHs in
GR, stemming from a well-posed extension of Einstein’s
equations, the Einstein-Maxwell theory. It will also include
some of the effects one would find in Einstein-Maxwell-
dilaton theory, which is also well-posed; see [24] for
simulations of binary black holes in the theory starting
from approximate initial data, [25,26] for post-Newtonian
calculations, and [27] for computations of quasinormal
mode (QNM) frequencies for nonspinning black holes in
this theory. Conversely, most alternative theories of gravity
which could likely leave detectable imprints in GW signals
from binary BHs, are instead often not known to have a
well-posed formulation or their effects on observable
quantities have been computed only approximately, e.g.,
[28–38]. However, see [39,40] for well-posed formulations
of some theories, though still assuming weak coupling, and
[41,42] for initial numerical simulations using these
formulations.
Investigating the impact of the KN scenario on GW

measurements is of paramount importance to explore
complications that may arise when considering nonpertur-
bative beyond-GR effects in a self-consistent manner.

These complications include the excitation of additional
modes not present in GR, and the correlations among
beyond-GR parameters and BH intrinsic parameters in the
different phases of the coalescence. The LIGO-Virgo
Collaboration (LVC) routinely applies a battery of tests
to GR [9,43,44] on confident GW detections, aimed at
detecting deviations from GR predictions in the observed
signals. A variety of effects are tested with different
methodologies, including modifications to the generation
or propagation of GWs, the nature of the merging objects,
or the presence of additional polarizations, absent in GR.
Residuals in the interferometer strain, obtained subtracting
a representative best-fit waveform, are also tested for the
presence of additional coherent power not modeled by GR
templates [45,46]. Some of these tests are in principle
sensitive to the presence of charge. Examples are the
parametrized family of tests targeting the emission of
dipole radiation during the early inspiral [44,46,47], the
parametrized ringdown tests [46,48–52] and the inspiral-
merger-ringdown (IMR) consistency test [53,54].
Nevertheless, the aforementioned tests all follow a

phenomenological approach, meaning that they do not
assume a specific form for the modification to GR. The
unmodeled approach is thus noncommittal to a specific
alternative scenario. On the one hand, this is a desirable
feature, given the extraordinarily large number of possible
alternatives to GR [55]. On the other hand, ignoring
predictions from specific theories implies a loss in sensi-
tivity when looking for deviations from the GR Kerr
predictions.
In this work, we improve on the aforementioned agnostic

tests and search for signatures of astrophysical or exotic
charges in the merger-ringdown signal of BBH coalescen-
ces detected by the LIGO-Virgo interferometers. We do so
by tabulating the QNM frequencies of a KN BH for
arbitrary values of charge and spin, building on the work
of Ref. [56], and constructing a GW template implementing
these predictions. We then use this template to perform an
observational analysis on all confident postmerger BBH
observations, deriving a bound on the maximum amount of
charge compatible with current observations. Additionally,
we present a study of the detectability of charge using the
projected design sensitivity of the current detector network.
We employ a robust statistical framework and, for the first
time, a nonperturbative treatment of the effects of charge
and spin in the gravitational ringdown modes, without
relying on assumptions such as a small-charge or WKB
approximations, as used in previous analyses [8,57]. We
also take into account possible modifications in the
amplitude of the waveform, in addition to the modifications
to the phase.
We additionally compute analytic fits for the QNM

frequencies as a function of mass and spin. Such fits are a
crucial ingredient for the construction of complete inspi-
ral-plunge-merger-ringdown analytical templates for
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charged binary black holes (generalizing the ones avail-
able for uncharged black holes) aimed at routinely
extracting all the possible available information on BH
charges from current LVC observations. Such templates
will also require input from post-Newtonian calculations
[25,26] and numerical relativity simulations [14,58] in the
charged case.
The paper is structured as follows: in Sec. II we summa-

rize the results obtained in a companion study [59], discus-
sing a large dataset of QNM numerical solutions as a
function of the charge and spin of the remnant BH. In
Sec. III we use the numerical data to construct parametric fits
in an analytical form. We give the fit coefficients in the
Appendix,withinTables III and IV. Section IVdealswith the
construction of a suitable waveform template describing a
KN BH resulting from a BBH coalescence and the analysis
of all available merger-ringdown observations from the
LVC. Section V discusses the prospects of extracting the
BH charge from upcoming merger-ringdown observations
using ground-based interferometers. Finally, we conclude
and discuss future developments in Sec. VI. Throughout the
manuscript we use both c ¼ G ¼ 1 units andGaussian units
in the electromagnetic sector. The charge to mass ratio, the
parameter entering QNM computations directly, is defined
by q̄ ≔ jQj=M, withQ the BH charge in Gaussian units, and
the absolute value is quoted due to the QNM spectrum
invariance with respect to the sign of the charge in the
Einstein-Maxwell theory. Additionally, for statistical quan-
tities, we quote the median and 90% credible levels (C.L.)—
or credible regions (CR) when discussing multidimensional
distributions—unless explicitly stated otherwise. When
discussing observations, we always quote BH redshifted
masses, as observed in a geocentric reference frame.

II. NUMERICAL QNM COMPUTATION

In the 1980s, Chandrasekhar, in his seminal textbook
[60], identified the coupled system of two partial differ-
ential equations (PDEs) that, under a particular gauge
choice, describe the most general gravito-electromagnetic
perturbations of a KN BH (excluding the perturbations that
change the mass, angular momentum and/or charge of the
solution). See also Ref. [61]. Since then, different studies
have attempted to solve these PDEs using certain approx-
imations. In a first attempt, [62,63] studied perturbations
described by the so-called Dudley-Finley equations. This is
a decoupled system of Teukolsky-like equations that
describes exactly the spin 0 (scalar field) perturbations
of KN and are expected to be a reasonably good approxi-
mation for the higher spin gravito-electromagnetic pertur-
bation equations. Later, Chandrasekhar’s equations for KN
were solved perturbatively in a small rotation (a) expansion
about the Reissner-Nordström BH [64,65], and in a small
charge (Q) expansion about the Kerr background [61]. The
calculation of QNMs, within a WKB and/or near-horizon

approximation, in the KN extremal limit was also consid-
ered in Ref. [66].
More recently, it was shown that the most general

gravito-electromagnetic perturbations of KN can be
described by a coupled system of two PDEs for two gauge
invariant Newman-Penrose fields [56] that, upon gauge
fixing, reduce to the PDE system originally found by
Chandrasekhar [60,61]. These equations were then solved
numerically using numerical methods reviewed in [67], in
relevant ranges of the KN parameter space (notably for KN
with a ¼ Q), to establish strong evidence in favor of linear
mode stability of the KN BH against gravito-electromag-
netic perturbations [56] (further supported by the nonlinear
time evolution study of [68]). However, it was only recently
[59], that the most desired task of obtaining the full
frequency spectra of the QNMs with slowest decay rate
(and others of physical interest) was finally completed. In
the rest of this section, we will borrow and discuss results
from our companion papers [59] that will form the
theoretical basis for the present study.
For the astrophysical investigations considered in this

work, we wish to identify the families of gravito-electro-
magnetic QNMs that dominate the ringdown emission
following a BBH merger, focusing on the perturbations
with spin weight −2. Here by dominant we mean the
families that have the slowest decay rates for all KN BHs
parametrized by the fa;Qg pairs.1 Not surprisingly,
the dominant family of QNMs is the one that, in the a ¼
Q ¼ 0 limit and using Chandrasekhar’s notation [60],
reduces to the Schwarzschild gravitational Z2 fl ¼ m ¼
2; n ¼ 0g mode. Here l is the harmonic number that gives
the number of zeros of the QNM eigenfunction along the
polar direction and n is the radial overtone (related to the
number of zeros of the QNM eigenfunction along the radial
direction). The second family of interest is the one that
reduces to the gravitational Z2 fl ¼ m ¼ 2; n ¼ 1g mode
in the Schwarzschild limit [60]. Although this mode has a
short lifetime, in the uncharged case it contributes signifi-
cantly to the emission soon after the peak of the GW
waveform [69] due to its large excitation. These QNM
spectra were obtained in our companion paper [59] and will
further detailed in an extended study, currently in prepa-
ration. Finally, we will also need information about the
spectra of the QNM family that reduces to the
Schwarzschild gravitational Z2 fl ¼ m ¼ 3; n ¼ 0g mode
in the a ¼ Q ¼ 0 limit. This mode makes a significant

1We use the notation of [59]. In Boyer-Lindquist coordinates,
the outer and inner horizon radii r� are related to the KN massM
and charge Q by r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
and the event

horizon angular velocity and temperature are ΩH ¼ a
r2þþa2 and

TH ¼ 1
4πrþ

r2þ−a
2−Q2

r2þþa2 . At r− ¼ rþ, i.e., a ¼ aext ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
, the

KN BH has a regular extremal (“ext”) configuration with
Text
H ¼ 0, and maximum angular velocity

Ωext
H ¼ aext=ðM2 þ a2extÞ.
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contribution to the emission for BBH mergers where the
progenitor’s mass ratio is significantly different from unity.
The task of identifying the most dominant modes within

each of these families of QNMs is made less trivial by the
fact that for each family fl ¼ m; ng there are not one but
actually two subfamilies of QNMs [59]. These can be
denoted as (1) the photon sphere (PSn), and (2) the near-
horizon (NHn) subfamilies, although this sharp distinction
is unambiguous only for small rotation parameters, i.e.,
close to the Reissner-Nordström family. To classify them in
the Kerr-Newman background, we start by identifying them
in the Reissner-Nordström limit and then we follow these
two subfamilies as the rotation parameter increases. In this
Reissner-Nordström case, the PS family of QNMs is the
one that in the eikonal or geometric optics limit—i.e., the
WKB limit m ¼ l → ∞—has a frequency spectrum that is
closely connected to the properties of unstable equatorial
circular photon orbits: the real and imaginary parts of the
PS frequency are proportional to the Keplerian frequency
and to the Lyapunov exponent of the orbit, respectively.
The latter describes how quickly radial deformations
increase the cross section of a null geodesic congruence
around the orbit. On the other hand, the NH family of
QNMs is characterized by having a wave function that
near-extremality is very much localized around the horizon
and quickly decays to zero as we move away from it. It is
further characterized by the fact that its QNM spectrum

has an imaginary part that vanishes in the extremal limit
and, in the Reissner-Nordström case, has vanishing real
part (unlike the PS modes). Starting in the Reissner-
Nordström solution, as the rotation increases and we run
over the KN parameter space, these PS and NH subfamilies
define two surfaces (in a fQ; a;ωg plot) that do intersect
(with a simple crossover) or have the interesting phenom-
ena of eigenvalue repulsions in the KN parameter space as
detailed in [59]. Typically, this happens for very large
values of Q=M, in a region of the parameter space which is
difficult to probe with observations. When eigenvalue
repulsion occurs, instead of a simple intersection, it
becomes harder to make a clear distinction between the
PS and NH subfamilies. Additional difficulties emerge
from the fact that nontrivial intersections with eigenvalue
repulsions can also happen between different (sub)families,
e.g., between fl ¼ m ¼ 2; n ¼ 0g and fl ¼ m ¼ 2; n ¼ 1g
modes. This requires a careful analysis of the data to identify
to which (sub)family a particular QNM belongs; see
Ref. [59] for additional details. For each KN BH para-
metrized by fa;Qg, we derive all the relevant PSn and NHn
QNMs for a given fl ¼ m; ng family, and identify the
modes that have the slowest decay rate within that particular
fl ¼ m; ng QNM family.
An overview of four (out of the six) subfamilies of

QNMs that we need for our study is presented in Fig. 1, in
order to give a general reference of their relative position in

FIG. 1. Imaginary (left panel) and real (right panel) part of the frequency for the Z2 l ¼ m ¼ 2 KN QNMs. The orange surface (top of
both figures) represents the PS family of the n ¼ 0 mode. The green surface (right side of both figures) represents the NH family of the
n ¼ 0 mode. The dark-red surface (below the orange surface) corresponds to the PS family of the n ¼ 1 mode. Finally, the blue surface
(almost on the top of the green surface) corresponds to the NH family of the n ¼ 1 mode. The point at a ¼ 0 ¼ Q in the orange (dark-
red) surfaces matches the gravitational QNM of Schwarzschild [60,61] for the n ¼ 0 (n ¼ 1) modes, while the brown curve marks the
extremal limit. In these figures and the others we just plot the NH surface up to Q=rþ ¼ 0.99 which explains the small gap between the
green (blue) surface and the extremal brown curve. These highly charged values can be computed with an analytical formula derived in
[59] that provides an excellent approximation to the numerical solution. We display NHn (i.e., the green and blue surfaces) only for large
charge where they can dominate over the PSn subfamilies; for smaller charge they are very strongly damped.
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the frequency plane. Namely, in this figure we focus on the
fl ¼ m ¼ 2; n ¼ 0g and fl ¼ m ¼ 2; n ¼ 1g families
and, for each of them, we display the spectra of each of
their two subfamilies, namely PSn and NHn. We plot the
imaginary (left panel) and real (right panel) part of the
frequency for these KN QNMs as a function of the KN
rotation and charge. In this particular figure we use
dimensionless quantities in units of the horizon radius
rþ (instead of units of M), namely â ≔ a=rþ; Q̂ ≔ Q=rþ,
because it turns out that the distinction between the four
subfamilies is better seen in these units. For the frequency
we always use units ofM: ω̂ ≔ ωM, Ω̂ ≔ ΩM. The brown
curve with Im ω̂ ¼ 0 and Re ω̂ ¼ 2Ω̂ext

H corresponds to

extremality (“ext”) where âext ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Q̂2

p
. Note that, as

expected, PS0 always has smaller jImω̂j than PS1, and NH0

always has smaller jImω̂j than NH1. Focusing our attention
on the families with slowest decay rate, the PS0 and NH0

curves intersect at large charge (with simple crossovers or
with intricate eigenvalue repulsions not clear in this over-
view figure, but identified in [59]). Starting from Q ¼ 0

until a critical large charge Q̂ ¼ Q̂cðâÞ, the PS0 dominates
the QNM spectra and terminates on the brown curve at
extremality, while for Q̂cðâÞ < Q̂ ≤ Q̂ext it is instead the
NH0 (which always terminates at the brown curve) that has
the slowest rate. It should be noted that the NH0 green
surface also intersects the PS1 dark-red surface often with
eigenvalue repulsions that are not clearly visible in Fig. 1
but that are detailed in [59]. They also leave an imprint in
the dark-red PS1 surface that is partially visible in the left
panel of Fig. 3 just to the left of the magenta region. For

reference, although not shown in Fig. 1, the PS0 surface of
the fl ¼ m ¼ 3; n ¼ 0g QNMs would be in between the
orange and dark-red surfaces, and the NH0 surface of the
fl ¼ m ¼ 3; n ¼ 0gQNMs would be in between the green
and blue surfaces.
After this generic overview of two of the main QNM

families of interest for our study, we now give the QNM
spectra of the slowest decaying mode for each of the three
main families, namely fl ¼ m ¼ 2; n ¼ 0g, fl ¼ m ¼
2; n ¼ 1g and fl ¼ m ¼ 3; n ¼ 0g, used in our study.
This time we parametrize the KN BH by χ ¼ a=M;
q̄ ¼ Q=M.
In Fig. 2, we show the result for the fl ¼ m ¼ 2; n ¼ 0g

mode. For small and intermediate charge, the spectra is
dominated by the PS0 mode (orange surface). On the other
hand for very large charge (up to Q=M ¼ 1), the spectra is
instead dominated by the NH0 mode (green surface). In
between these two, there is a yellow area in the left panel
where the PS0 and NH0 intersect either with a simple
crossover or eigenvalue repulsions and they trade domi-
nance. The yellow area picks the frequency of the mode that
has the smallest jImω̂j. In the right plot of Fig. 2, the
yellow and green areas are not visible because in units ofM
the real part of their frequency is very, very close to the
extremal brown curve.2 These surfaces are however well
visible when we use horizon radius units: see Fig. 1.
In Fig. 3, we repeat the exercise for the fl¼m¼2;n¼1g

mode. The PS1 mode (dark-red) dominates for small and

FIG. 2. Imaginary (left panel) and real (right panel) parts of the frequency for the Z2, l ¼ m ¼ 2; n ¼ 0 KN QNM with lowest Imjω̂j.
At each (a=M, q=M) point, only the “dominant” QNM family (i.e., the one with the larger damping time between the PS and NH
families) is shown. The orange (green) surface denotes the region where the PS (NH) family is dominant. The yellow area indicates the
region where the two families of modes trade dominance. At extremality, the dominant mode always starts at Im ω̂ ¼ 0 and Re ω̂ ¼
mΩ̂ext

H (brown curve). The dark-red point (a ¼ 0 ¼ Q), ω̂ ≃ 0.37367168 − 0.08896232i, is the gravitational QNM of Schwarzschild
[60,70]. In the right panel, the yellow and green regions are so close to the extremal brown curve that they are not visible.

2A similar discussion applies to Figs. 3 and 4.
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intermediate charges, while the NH1 mode (blue) domi-
nates for very large charges. In between, there is a small
window with a magenta area where the PS1 and NH1

modes trade dominance and we display the mode with
smallest jImω̂j. In the rightmost side of the dark-red PS1
surface one identifies a small region where the surface is
very deformed by the eigenvalue repulsion between this

l ¼ m ¼ 2 PS1 family and the l ¼ m ¼ 2 NH0 family as
detailed in [59].
Finally, in Fig. 4 we give the spectra for the fl ¼ m ¼ 3;

n ¼ 0g mode. The PS0 mode (magenta surface) dominates
for small and intermediate charges. The light-blue surface
is the NH0 mode and dominates for very large charges. In
between, the orange area describes the region where the

FIG. 3. Imaginary (left panel) and real (right panel) parts of the frequency for the Z2, l ¼ m ¼ 2; n ¼ 1 KN QNM with lowest Imjω̂j.
At each (a=M, q=M) point, only the “dominant” QNM family (i.e., the one with the larger damping time between the PS and NH
families) is shown. The dark-red (blue) surface denotes the region where the PS (NH) family is dominant. The magenta area indicates the
region where the two families of modes trade dominance. At extremality, the dominant mode always starts at Im ω̂ ¼ 0 and Re ω̂ ¼
mΩ̂ext

H (brown curve). The red point (a ¼ 0 ¼ Q), ω̂ ≃ 0.34671099 − 0.27391488i, is the gravitational QNM of Schwarzschild [60,70].
In the right panel, the magenta and blue regions are so close to the extremal brown curve that they are not visible.

FIG. 4. Imaginary (left panel) and real (right panel) parts of the frequency for the Z2, l ¼ m ¼ 3; n ¼ 0 KN QNM with lowest Imjω̂j.
At each (a=M, q=M) point, only the “dominant” QNM family (i.e., the one with the larger damping time between the PS and NH
families) is shown. The magenta (blue) surface denotes the region where the PS (NH) family is dominant. The orange area indicates the
region where the two families of modes trade dominance. At extremality, the dominant mode always starts at Im ω̂ ¼ 0 and Re ω̂ ¼
mΩ̂ext

H (brown curve). The dark-red point (a ¼ 0 ¼ Q), ω̂ ≃ 0.59944329 − 0.09270305i, is the gravitational QNM of Schwarzschild
[60,70]. In the right panel, the orange and light-blue regions are so close to the extremal brown curve that they are not visible.
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PS0 and NH0 modes trade dominance and we show the
mode with smallest jIm ω̂j.

III. FITTING FORMULAE FOR THE NUMERICAL
SOLUTIONS

In this section, after introducing our fitting algorithm and
testing it on previous Kerr results, we construct analytical
fits for the real and imaginary part of KN PS QNM
frequencies as a function of the BH charge and spin
parameters.

A. Bayesian fitting method

We formulate the problem in the language of Bayesian
inference, an extension of classical logic in the absence of
complete information [71]. Our fitting templates will be
characterized by a set of coefficients, collectively labeled
by θ⃗, possibly different for each analytical form chosen. We
infer the optimal (best-fit) values and related uncertainties
for the coefficients by computing their probability distri-
bution, the posterior distribution pðθ⃗jd;H; IÞ, conditioned
on the available numerical data d. The distribution is
obtained through Bayes’ theorem:

pðθ⃗jd;H; IÞ ¼ pðθ⃗jH; IÞ · pðdjθ⃗;H; IÞ
pðdjH; IÞ ; ð1Þ

where H constitutes the parametric model describing the
data (hypothesis), while I denotes all the available back-
ground information. The distribution pðθ⃗jH; IÞ is the prior
distribution, encoding all the available information on the
coefficients before the start of the inference process (e.g.,
the bounds within which we allow the coefficients to vary).
If no a priori information is available, the prior can be
chosen to be uniform on θ⃗ within a given range of interest.
The last key ingredient in the numerator is the likelihood
function pðdjθ⃗;H; IÞ, which is fixed by the error distribu-
tion of the numerical data. For the numerical fits discussed
in this section, we assume a likelihood given by a zero-
mean Gaussian distribution with a standard deviation equal
to the numerical uncertainty, together with uniform priors
on the template coefficients. The overall normalization
Z ≔ pðdjH; IÞ, known as the evidence, encodes the
probability that the data d can be described by the chosen
model. This approach allows one to compute the full multi-
dimensional probability distribution of the coefficient set,
improving upon uni-dimensional error estimates on each of
the coefficients, and avoiding convergence issues in highly
dimensional problems. To explore the posterior probability
distribution we use the nested sampling [72] algorithm
CPNest [73].

B. The Kerr case

Before constructing a QNM template to model the KN
case, we first test our fitting procedure by reproducing
known results from the literature. As test cases, we choose
the models of Berti et al. [74], Nagar et al. [75], and
London et al. [76]. We start from the widely used analytical
representation of Kerr BH spectra as a function of the BH
spin from Berti et al. [74]. It has the general form:

X ¼ c0 þ c1 · ð1 − χÞc2 ; ð2Þ

where ci ∈ R and, defining the complex QNM frequency
ω̃ ¼ ωþ i=τ, X corresponds to ω or to the quality factor
of each QNM mode, Q ¼ ωτ=2. The second model,
employed in the construction of the effective one body
model from Nagar et al. [75], provides an improved
representation of the spectrum with respect to Eq. (2),
by assuming a rational function:

X ¼ Y0

�
1þP3

j¼1 bjχ
j

1þP3
j¼1 cjχ

j

�
; ð3Þ

where bk; ck ∈ R, X corresponds to ω or τ−1 and Y0 is the
Schwarzschild value of the parameter under consideration.
The last model considered, from London et al. [76], has a
precision comparable to the one of Eq. (3), with the
additional advantage of providing a smooth modeling of
the near-extremal behavior. It models directly the complex
QNM frequency by first smoothing the spectrum behavior
through a κ-transformation defined by:

κ ≔ ðlog3ð2 − χÞÞ 1
2þl−jmj; ð4Þ

and subsequently modeling the QNM frequencies as:

ωþ i=τ ¼
X5
j¼0

κjAjeipj ; ð5Þ

for each ðl; m; nÞ with Aj ∈ R; pj ∈ ½0; 2π�. We apply our
fitting algorithm to the ðl; m; nÞ ¼ ð2; 2; 0Þ ω numerical
data, publicly available from Ref. [77], assuming each of
the above templates, seeking to reproduce the results
obtained in the original studies [74–76]. Figure 5 shows
the comparison of each template to the data both using the
coefficients given in the original work and the ones
obtained with our algorithm using the maximum a poste-
riori values. The fractional error is computed as the residual
ðωdata − ωfitÞ=ωdata. As expected, Eqs. (3) and (5) provide a
more accurate description of the QNM frequency, with
residuals around the 0.1% level. Equation (5) proves to be
the most faithful to the numerical data, especially in the
extremal limit (a → 1). The overall agreement of each
result with the dataset employed is quantified by the L2

distance between the numerical data and the analytical
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formula. In the Nagar et al. case, our fits perform an order
of magnitude better in terms of residuals and norm.
However, it has to be noted3 that the fit of Nagar et al.
was calibrated on values of the remnant spin corresponding
to SXS catalog simulations employed in Ref. [75]. These
include also some negative spin values, and only a subset of
the data points for positive spin values considered here.
This dataset discrepancy might explain some of the differ-
ence in the residuals we observe. In the London et al. case,
there is a general improvement in the nonextremal region,
while the original fit provides a smoother behavior around
the extremality limit, although our result still shows a
faithful representation below the 0.1% residual level for all
the considered values of spin. This can be explained by the
fact that we choose to not fix the extremal limit to minimize
the global residuals, contrary to what was done in the
original fit. Since our aim is simply to validate our
numerical algorithm, which is returning compatible results
with the ones of the original works, we do not try to resolve
the small differences we observe in the residuals of these

last two models, which are probably due to the aforemen-
tioned discrepancies in training datasets or fitting choices.

C. The KN case

We now turn to the task of building a parametric function
capable of modeling the spectrum of the gravitational KN
QNMs discussed in Sec. II, the ones reducing to the
Schwarzschild QNMs in the nonspinning, uncharged case.
We initially considered a generalization of the model used
in Refs. [64,65] to fit the small-charge case, including
higher-order terms. However, we found that this is inef-
fective at modeling the spectrum in the large charge limit.
We instead choose to fit the numerical data presented in
Sec. II, using a generalization of the Nagar et al. model,
Eq. (3):

X ¼ Y0

 PNmax
k;j¼0 bk;jχ

kq̄jPNmax
k;j¼0 ck;jχ

kq̄j

!
: ð6Þ

Here X corresponds to ω or τ−1, Y0 stands for the
Schwarzschild value of the corresponding fitted quantity,

FIG. 5. Test of the fitting method (with the maximum posterior point estimate for the fit parameters) against results from the literature
for the Kerr ðl; m; nÞ ¼ ð2; 2; 0Þ frequency, using the same ansatzs as in the original works. The fractional error is computed as the
residual ðωdata − ωfitÞ=ωdata. The L2 norm quantifies the overall agreement with the dataset. The open circles representing the numerical
data have been down-sampled for visualization purposes.

3Alessandro Nagar, private communication.
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and bk;j; ck;j ∈ R, with b0;0 ¼ c0;0 ¼ 1. This template
contains 2 · ðNmax þ 1Þ2 − 2 free coefficients, implying
that already truncating the expression to the same order
used in the Kerr case, Nmax ¼ 3, the number of coefficients
increases to 30, versus the 6 coefficients used in the
uncharged case. We apply the nested sampling algorithm
as described above, choosing uniform priors Uð−10; 10Þ
for all the coefficients appearing in Eq. (6), and setting
Nmax ¼ 3 to limit the number of free parameters. We
restrict our attention to the QNMs of interest for analyzing
observational data, hence we only consider data points
respecting the subextremality condition χ2 þ q̄2 < 0.99. In
this region, the PS family is always dominant (longer
damping time) compared to the NH one. The NH family
has damping times comparable (or larger) to the PS one
only very close to the extremal regime. Thus, in what
follows, we only consider PS QNMs.
We split the data into a training set, which constitutes

90% of the full dataset, and a validation set containing the
remainder of the data. During the fit, we only employ the
training set to find the values of the templates coefficients
and use the validation set in a postprocessing phase, to
evaluate the residuals on values which were not used to
construct the fit. Figure 6 shows the maximum a posteriori
(which coincides with the maximum likelihood, since
all priors are uniform) fitting model against the validation
data points for the fundamental ðl; m; nÞ ¼ ð2; 2; 0Þ
QNM frequency. The residuals are centered around zero,

spanning the range �0.2%, indicating the same level of
agreement of the best Kerr templates available. We achieve
comparable residuals on the frequencies and damping times
of the other modes, except for the damping time of the
ðl; m; nÞ ¼ ð2; 2; 1Þ mode which shows residuals as high
as 1% in the corners of the parameter space, though the
residuals drop below 0.5% for χ2 þ q̄2 < 0.9. This level of
agreement is acceptable given the current and expected
measurement precision obtainable on the damping time
[46]. The maximum of the posterior for both the frequency
and damping time coefficients of the fits for the ðl; m; nÞ ¼
fð2; 2; 0Þ; ð2; 2; 1Þ; ð3; 3; 0Þg modes, together with the
median and 90% C.L. on these coefficients are reported
in the Appendix. As expected, residuals on the training set
are of the same order of magnitude, although presenting
smaller tails.

IV. ANALYSIS OF GW DATA

In this section, after reviewing previous constraints and
sensitivity predictions on BH charges from GW observa-
tions, we introduce our time-domain formalism and GW
emission model used to infer the remnant object properties
from GW data. This model is then applied to high
confidence detections of GW transients with a sufficiently
loud ringdown, presenting observational constraints on
the maximum charge-to-mass ratio compatible with
gravitational-wave data.

FIG. 6. Maximum a posteriori fitting model for the ðl; m; nÞ ¼ ð2; 2; 0ÞQNM frequency, in red. Black points correspond to validation
data points, excluded from the original fit, computed according to the methods described in Sec. II. The shadows encodes the
corresponding residuals. The training dataset shows qualitatively identical behavior, albeit with smaller residuals, as expected.
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A. Previous constraints on BH Uð1Þ charges
Effects induced by the presence of a BH charge

on GW signals were previously investigated in
Refs. [8,14,57,58,78–81] under different approximations.
Reference [78] considered modifications to the early
inspiral phase, although neglecting the effects of spins,
and found no evidence for the presence of a BH charge. The
impact of charge in the inspiral phase and the related PE
were also analyzed in Ref. [79] in simplified settings.
Reference [8] used the observation of GW150914 to place
constraints on the dipolar emission, similarly to what was
done in Ref. [80] (for future prospects of constraining
the dipolar emission using GW observations, see
Refs. [82,83]). A Bayesian study of the measurability of
BH charges in the inspiral phase, considering the effects of
charge up to first post-Newtonian order in the waveform
phase was presented in Ref. [81]. This model was applied
to GWTC-2 low-mass detections, providing the bound q̄ <
0.2–0.3 at 1-σ credibility. A recent study on how some of
these constraints from the inspiral phase could be affected
by the presence of plasma surrounding the binary was
presented in Ref. [18]. The detectability of charge in the
ringdown emission was studied in Ref. [8] in the small
charge limit, while recently Ref. [57] analyzed the ring-
down signal of GW150914 by including the effect of a BH
charge using a WKB approximation. The results we find
are in contrast with the bound obtained in this latter work.
We attribute this difference to the KN spectrum of this latter
reference being approximated using an ansatz based on the
eikonal limit. This ansatz was further calibrated only on
q̄ ¼ χ numerical data, neglecting the full structure of the
two-dimensional parameter space. The limitations of the
eikonal approximation for low-l values (contributing to our
analyses) are discussed in our companion paper [59].
Finally, a major step toward the full characterization of

waveforms sourced by KN metrics was taken in
Refs. [14,58,84], where a set of complete numerical
solutions of the inspiral, merger and ringdown of two
charged nonspinning BHs in quasicircular orbits was
computed. The accuracy of different analytical approxi-
mations was evaluated against numerical results, pointing
to a poor agreement of quantities estimated from a quad-
rupolar approximation in Newtonian models, while a much
better agreement was found on remnant quantities estimates
from the test particle limit. The simulations were used to
perform a mismatch analysis between charged and
uncharged numerical solutions, allowing them to predict
a constraint on the charge-to-mass-ratio of GW150914:
q̄ ≤ 0.3. This is the first prediction on the BH charge to
stem from a full IMR comparison, although it has not been
yet directly validated against observational data. The
prediction was also obtained for a fixed mass ratio and
neglecting the effect of spins, thus not taking into account
the full correlation structure of the BBHs parameter space,
an important point in an observational analysis, as will be

discussed in the remainder of the paper. The detectability
predictions of Refs. [14,58], where applicable, are in good
agreement with the results we obtain.

B. Methods

pyRing—We investigate the KN hypothesis in LIGO-
Virgo data by employing the pyRing [50,51,85] software, a
PYTHON [86] package specifically tailored to the estimation
of ringdown parameters. pyRing implements a Bayesian
approach (see Sec. III), formulating the problem com-
pletely in the time domain, both for the likelihood and the
waveform, in order to exclude any contribution from
the premerger emission. Similarly to the numerical fits,
the underlying stochastic sampling is performed by the
CPNest [73] algorithm. A convenient feature supported by
the software is the possibility to generate synthetic data
streams obtained by adding—injecting, in LVK jargon—
simulated signals to real or simulated detector noise. This
functionality will be explored in the next section to predict
constraints on BH charges obtainable with future detectors
upgrades. The pyRing package has been used to produce the
first ringdown-only catalog of remnant properties, together
with constraints on deviations from GR QNM spectra,
using data from the first three observing runs of the LIGO-
Virgo interferometers; see Tables VIII–IX of Ref. [46].
Moreover, it has been employed to explore possible
signatures [87–89] of the area quantization on the BH
ringdown emission in Ref. [90] and to obtain bounds [85]
on a possible new physics length scale entering QNM
spectra, in a linearized perturbative scheme [91].
GW model—To construct our model for a charged BH,

we start from a standard Kerr template [74,92]:

hþ − ih× ¼ Mf

DL

X∞
l¼2

Xþl

m¼−l

X∞
n¼0

ðhþlmn þ h−lmnÞ ð7Þ

with:

hþlmn ¼ Aþ
lmnSlmnðι;φÞe−iðt−tlmnÞω̃lmnþiϕþ

lmn ð8aÞ

h−lmn ¼ A−
lmnS

�
lmnðπ − ι;φÞeþiðt−tlmnÞω̃�

lmnþiϕ−
lmn ð8bÞ

where ω̃lmn ¼ ωlmn þ i=τlmn (a * denotes complex con-
jugation) is the complex ringdown frequency, determined
in the Kerr cases by the remnant BH massMf and spin χf,

4

ω̃lmn ¼ ω̃lmnðMf; χfÞ. The amplitudes Aþ=−
lmn and phases

ϕþ=−
lmn characterise the excitation of each mode and are

inferred from the data. The inclination of the BH final spin
relative to the observer’s line of sight is denoted by ι, while
φ corresponds to the azimuthal angle of the line of sight in
the BH frame, which without loss of generality we set to

4The “f” subscript on BH parameters indicate these values refer
those of the remnant BH.
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zero given the complete degeneracy with the single-mode
phases. Slmn are the spin-weighted spheroidal harmonics
[93] and tlmn ¼ t0 is a reference start time. In writing
Eq. (7), we follow the convention of Ref. [92] (see their
Sec. III), for which m > 0 indices denote co-rotating
modes, while counter-rotating modes are labeled by
m < 0. In the remainder of this work, we will only consider
corotating modes, since counterrotating modes are pre-
dicted to be hardly excited in the postmerger phase for the
binaries analyzed in this work. For a discussion about
the possible relevance of counterrotating modes see
Refs. [92,94,95].
We restrict this template to a superposition of the

quadrupolar fundamental (longest-lived) mode and its first
corresponding overtone (l ¼ m ¼ 2; n ¼ 0, 1), consider-
ing all the amplitudes and phases as independent numbers.
We refer to the template constructed in this manner using
the Kerr QNM frequencies as Kerr221 [46,51,69]. The
template is then modified by replacing Kerr QNM complex
frequencies as a function of the remnant mass and spin
ω̃lmnðMf; χfÞ, with the corresponding KN frequencies
ω̃lmn ¼ ω̃lmnðMf; χf; q̄fÞ. In the following applications,
we interpolate the numerical values obtained in Sec. II. This
modified template, used in the remainder of this work, is
labeled KN221. The assumption lying behind the construc-
tion of our template is that the postmerger signal of a BBH
coalescence giving rise to a KN BH can be described by the
superposition of the fundamental QNM and its first over-
tone. We stress that the amplitudes and phases of the modes
considered in this model do not assume the predictions for a
Kerr BH arising from a BBH coalescence, a key ingredient
to avoid biases in the remnant PE in alternative scenarios.
Due to the high flexibility of our template, our modeling
hypothesis appears robust. Nevertheless, in the future it
would be interesting to directly test this assumption by
comparing to numerical simulations [14,58], which would
also allow to predict the values of the postmerger ampli-
tudes and phases as a function of the binary parameters,
improving the sensitivity of the model to charge effects.
Due to the coupling of EM fields to the gravitational field,
in principle also the coupling of the s ¼ −1 modes to the
GW spectrum should be considered. However, as shown in
Ref. [8] for simplified settings, the contribution to the
gravitational emission of these modes is subdominant for
nonextremal cases. Thus, we will neglect the contribution
of such modes, leaving investigations of their contribution
to the GW signal to future work.
Analysis details—The event selection criteria (a positive

Bayes factor for the hypothesis of a signal being present
in the data compared to the noise-only hypothesis, and
informative parameters distributions), strain data, data
conditioning methods, and sampler settings are chosen
to be identical to those of Ref. [46], which are publicly
available from the accompanying data release [96].
Additionally, for completeness we include in our analysis

GW170729 [97], which was included in the testing GR
analyses of the first LVC catalog [44], but did not pass the
stricter threshold imposed for the testing GR analysis of the
later GWTC-2 catalog [46]. The dataset thus consists of 18
BBH events listed in Table I (out of a total of 46, mainly
due to the limited sensitivity of GW detectors to high
frequencies) detected by the LVC.5 The dataset is con-
servatively restricted to minimize the effect of noise events,
possibly mimicking a GW event and contaminating our
analysis. The time origin of the strain for the analysis is set
by the peak of h2þ þ h2× in each of the detectors, as
computed a-posteriori from an IMR analysis, and assuming
the maximum likelihood value of the event sky location
[46]. The adopted prior distributions are also identical to
the ones chosen in Ref. [46], in particular uniform on
the remnant mass and spin, the latter spanning the range
[0, 0.99]. The prior distribution on the charge parameter is
also uniform in the interval [0, 0.99]. Finally, we impose an
a priori joint limit on the charge and spin parameters
χ2f þ q̄2f < 0.99, excluding near-extremal BHs configura-
tions consistently with the numerical fits discussed in
Sec. III.

C. Analysis of the GW transient catalog

Full analysis—We apply the KN waveform model
described above to the available LIGO-Virgo events
selected in the previous section. The results are presented
in Fig. 7, where we show the 90% C.L. of the two-
dimensional posterior distributions on remnant spin and
charge-to-mass ratio, for a representative set of four events
showing the strongest constraints on these parameters.
Unidimensional posteriors on the charge-to-mass ratio
are uninformative, while the ones on the spin parameter
are consistent with the result from the Kerr221 analysis, with
a corresponding broadening due to the increased number of
parameters included in the analysis presented here.
Remnant masses, showing very weak correlations with
the charge, are always consistent with the values inferred
without assuming the presence of a charge [46], with a
broadening analogous to the one of the spin. Current events
allow us to exclude a large portion of the spin-charge
parameter space, although a strong correlation is present,
due to the similar effect those two parameters have on
increasing QNM frequencies. In fact, the 90% contour
roughly corresponds to an isofrequency region, containing
the inferred values of spin and charge-to-mass ratio needed
to reproduce the dominant—slowly evolving—frequency
content observed in the postmerger signal. The typical value
of the remnant spin χf generated by the coalescence of

5The selection criterion should in principle be revised in light
of the new physics present in our model. Nevertheless, we
checked that none of the excluded events passes the Bayes factor
threshold applied in Ref. [46] or provides any significant
constraint on the presence of a BH charge.
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close-to-equal-mass, mildly spinning BHs on a quasicircular
orbit, when assuming the absence of charge, is χf ∼ 0.7
[98,99]. Around this value, the results show consistency with
q̄f ∼ 0, although the wide distribution does not allow us to
strongly constrain a specific value of normalized charge and
spin. We compute a global figure of merit comparing the
Kerr and KN hypotheses against the GW data, the Bayes

factor. In the Kerr case we assume the same template, but
now using Kerr predictions for the QNM spectra as a
function of the remnant parameters. The results are reported
in the first column of Table I, indicating that current data do
not allow us to meaningfully distinguish between the two
hypotheses within current statistical uncertainties, according
to criteria such as the Jeffreys scale [100].

FIG. 7. Credible region (90% confidence) of the two-dimensional posterior probability density function of the spin and charge-to-mass
ratio, for the subset of GWTC-2 events showing the tightest constraints (GW190521_07 stands for GW190521_074359). Crosses mark
the median of the two-dimensional distribution. The gray region marks charge-spin values above the extremal limit, excluded in the
analysis. Most of the two-dimensional plane is excluded by the data, although the strong correlation between the two parameters results
in a isofrequency contour, with one-dimensional projections extending over most of the charge and spin ranges.
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Null analysis—As a null test, we repeat the analysis
described above restricting the mass and spin uniform prior
values to the 90% C.L. obtained by the LVC collaboration
from a full IMR analysis [9], hence restricting them to
around O(10–20%) of their median measured value. The
outcome of such analysis will be an upper bound on the
maximum allowed amount of charge compatible with
LIGO-Virgo observations. Such a test provides a compari-
son of our analyses with the ones discussed in the literature
when ignoring the correlation of the charge with the
remnant spin [14]. Indeed, by restricting the available
parameter space, we neglect the full correlation structure
of the problem. Consequently, in the presence of an actual
violation of the Kerr hypothesis, the parameter estimation
resulting from this analysis could not be interpreted as the
correct value of the BH charge. Nevertheless, this sort of
analysis can still be used to detect a violation of the Kerr
hypothesis. In fact, if the Kerr metric is a correct description
of the BH remnant, the result would yield charge values
consistent with zero. By increasing the amount of infor-
mation present in our inference model, this test acquires an
increased accuracy on the detection of a Kerr violation,
compared to the full analysis. Results on the charge-to-
mass ratio obtained under these assumptions are presented
in Fig. 8. In this case, the q̄f posterior support is
significantly reduced with respect to its prior range, the
latter taking into account the subextremality condition

χ2f þ q̄2f < 0.99. For the most favorable case of
GW150914 (highlighted in the figure), we obtain an upper
bound of q̄f < 0.33 at 90% credibility, consistent with the
analysis presented in Ref. [14]. Upper bounds for the other
events are reported in the rightmost column of Table I. We
recompute the Bayes factors against a Kerr hypothesis
where theMf, χf parameters are also restricted to the same
prior bounds. The results are shown in the central column
of Table I, again indicating that no significant evidence is
present in the data for or against the KN hypothesis, as
compared to the Kerr hypothesis.

V. FUTURE MEASUREMENT PROSPECTS

Given the limited information that can be extracted
from current observations, it is natural to ask whether the
LIGO-Virgo network at its design sensitivity can allow
us to distinguish a KN BH from a Kerr BH, using the
templates considered in this work. We explore this
question by addressing both the charge measurability
when assuming a charged BH remnant and the sensitivity
of current ringdown tests of GR when assuming
uncharged BHs.

A. Charge measurability

To address the value of charges that can be measured by
the current GW detector network, we simulate charged

FIG. 8. Posterior distribution on the charge-to-mass ratio for
the null test with GWTC-2 events with detectable ringdown. The
distribution is obtained from a null analysis, breaking the full
correlation structure of the problem. We highlight the event
showing the tightest constraint (GW150914) and the prior
distribution on the charge, which incorporates the subextremality
condition.

TABLE I. Summary of the signal-to-noise Bayes factors be-
tween the KN and Kerr models, for both the full and null analyses,
together with upper bounds at 90% credibility on the remnant BH
charge q̄f from the null analysis. The numerical statistical error on
each ln B is �0.1. No significant evidence for or against charged
black holes is present.

GWTC-2 ringdown events

Event ln BKN
Kerr ln BKN

Kerr (null)
q̄f bound at
90% (null)

GW150914 −0.6 −0.7 0.33
GW170104 −0.2 −0.6 0.45
GW170729 −0.7 −0.3 0.44
GW170814 −0.1 −0.3 0.45
GW170823 −0.1 −0.6 0.45
GW190408_181802 −0.1 −0.6 0.48
GW190512_180714 0.5 −0.1 0.56
GW190513_205428 −0.5 −0.8 0.43
GW190519_153544 0.3 −0.8 0.37
GW190521 −0.2 −0.2 0.47
GW190521_074359 −0.2 −0.8 0.41
GW190602_175927 0.3 −0.4 0.51
GW190706_222641 −0.2 −0.8 0.43
GW190708_232457 0.2 −0.4 0.54
GW190727_060333 −0.2 −0.5 0.51
GW190828_063405 −0.3 −0.3 0.47
GW190910_112807 0.1 −0.6 0.43
GW190915_235702 −0.7 −0.9 0.47
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ringdown signals, using the KN221 template,6 with increas-
ing charge-to-mass ratio q̄f ¼ f10−4; 10−3; 10−2; 10−1;
3 × 10−1; 5 × 10−1g, while the rest of the BH parameters
are fixed to fiducial values close to the ones estimated for
GW150914, listed in Table II. To reduce the number of
free parameters, in our set of injections we impose the
conjugate symmetry, see Ref. [74], A−

lmn ¼ ð−1ÞlAþ
lmn;

ϕ−
lmn ¼ −ϕþ

lmn. The values of the amplitudes and phases are
chosen from the corresponding uncharged case, by fitting the
postmerger waveform of an BBH coalescence with the same
intrinsic parameters, generated using the TEOBResumS model
[75]. We note that to obtain a good agreement between the
waveforms, it is necessary to choose the relative phase Δϕ of
the fundamental mode and first overtone to be in opposition,
Δϕ ≃ π. Such a requirement can be deduced from the fact that
extrapolating the fundamental mode (whose amplitude is fixed
by the late-time signal) back to the peak of the waveform, the
corresponding peak amplitude exceeds that of a BBH remnant.
The additional modes thus have to be chosen in such a way that
the total amplitude is reduced.
Our ringdown-only reference signal has a signal-to-noise

ratio (SNR) of 36, computed by assuming the design
sensitivity power spectral density of the LIGO-Virgo
detector network [101]. Figure 9 shows the hþ polarization
corresponding to the KN221 template for different values of
charge, represented by the color scale, and the parameters
reported in Table II. For each value of the charge we also
indicate the ratio of the KN and Kerr fundamental frequen-
cies. For a given BH spin and moderate values of the BH
charge, Fig. 9 shows a KN waveform morphology similar
to Kerr, suggesting that a high SNR might be needed to
distinguish the modulation of the signal due to the presence
of the charge (apart from more extreme cases). The
differences between the two models are further blurred
by the strong correlation, which we fully account for in the
analysis, between the BH spin and charge.
We perform injections of the KN templates into zero-

noise, while the computation of the likelihood includes the
LIGO-Virgo design sensitivity curves [101]. This pro-
cedure is commonly adopted in the study of new physical
effects in simulated LIGO-Virgo data to avoid shifts in the

posteriors due to a specific noise realization. Each of these
simulated events is then recovered with different templates,
corresponding to the charge and uncharged assumptions:
KN221 and Kerr221. The first template reduces to the second
in the limit of q̄f ¼ 0. Analyzing a KN signal with a Kerr
template has the purpose of understanding the bias we
would incur when ignoring a priori the presence of the BH
charge, as in standard GW observational analyses. In fact,
we expect to recover a biased value of the BH spin for
injections with sufficiently large values of q̄f, given its
strong correlation with the charge parameter, as observed in
the previous analysis. This effect is illustrated in Fig. 10,
where in the left panel we report posteriors (90% C.L.) for
mass and spin, inferred assuming the KN221 (solid filled)
and Kerr221 (dashed line) templates for different injected
values of q̄f, while the right panel illustrates the posteriors
(90% C.L.) for the charge-to-mass ratio and spin assuming
the KN221 template. Results for injections with q̄f below
0.1 are very similar, so they are not shown.
Concerning the inference with the KN221 template, we

find that the one-dimensional (marginalized) posterior for
q̄f is in general uninformative even for high injected
values of q̄f, as one can also deduce from the right panel
of Fig. 10, where the 90% C.L. posterior extends over the
whole range of q̄f in the parameter space. Interestingly
though, the left panel of Fig. 10 suggests that the effect of
a moderately large (q̄≳ 0.3) charge-to-mass ratio on the
signal could be indirectly detected: the assumption of the
Kerr221 template, i.e., excluding the presence of charge,
results in a reconstructed final spin χf which gets
increasingly biased with the value of q̄f. This could
potentially be detected using the IMR consistency test
[53,54], one of the standard tests performed by the LVC.
However, the Bayes factors are not informative enough to
prefer either of the two templates, making the unique
identification of such an effect (as compared to another
modification of the Kerr scenario) with a BH charge
difficult to obtain. Thus, we conclude that the strong
degeneracy between spin and charge does not allow for an
independent measurement of the BH charge from the
LIGO-Virgo network with the model considered. A
similar spin-charge degeneracy is observed in the
ðl; m; nÞ ¼ ð3; 3; 0Þ mode, suggesting that an extension
of the current model considering such a mode would not
strongly affect this conclusion.

TABLE II. BH parameters of the KN BH ringdown signals employed in the simulation study. The table reports the injected values of
final mass Mf , final spin χf, real amplitudes Almn and phases ϕlmn, cosine of the inclination of the BH final spin relative to the line of
sight cos ι, global phase ϕ, polarization angle ψ , luminosity distance DL, right ascension α, declination δ and the resulting signal-to-
noise ratio, when assuming the LIGO-Virgo design sensitivity noise power spectrum.

Injected values

Mf ðM⊙Þ χf A220 A221 ϕ220 ϕ221 cos ι ϕ ψ DL (Mpc) α δ SNR

67.0 0.67 1.1 0.95 −2.0 1.14 1.0 0.0 1.12 403 1.16 −1.19 36

6Our model neglects the presence of additional overtones,
which we expect to be subdominant compared to the amplitude
corrections induced by charged progenitors.
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FIG. 10. Mass-spin and charge-spin plots for analyses of our KN221 injections (see main text for details). Solid filled and dashed
contours are KN221 and Kerr221 posteriors (90% C.L.), respectively, with plus symbols representing the median values of the KN221

posteriors. Dotted lines represent the injected values. The grey region in the right panel is excluded by the subextremality condition.

FIG. 9. Plus polarization of the postmerger KN221 model corresponding to the parameters reported in Table II for different values of
the charge up to q̄f ¼ 0.6 (chosen for visualization purposes), together with its uncharged limit, Kerr221. The color scale is set by the
charge or equivalently by the ratio of the corresponding ðl; m; nÞ ¼ ð2; 2; 0Þ frequencies.
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As discussed in Ref. [58], such a correlation would
instead be broken when including information from the
previous stages of the coalescence, consistently modeling
also the progenitors as KN BHs. An analysis of the signal
with an IMR waveform model for charged BBHs will be
able to give its own estimates of the remnant charge, but an
independent measurement from the ringdown will be useful
to check waveform systematics and to bolster the evidence
for a charged BBH detection being real and not a noise
artefact. To mimic this scenario, in Fig. 11 we report the
marginalized posterior for q̄f assuming a Gaussian prior
constraining the final spin around its simulated value,
pðχfjIÞ ¼ N ð0.67; 0.05Þ, where the width is estimated
from the uncertainty associated to the 90% C.L. of the
final spin estimated from the IMR analysis of GW150914
[44]. The posteriors show that for q̄f ≳ 0.5 a robust
measurement of the charge can be achieved, while for
other values it will only be possible to place an upper
bound. Our result is in agreement with the analysis of
Ref. [58], pointing to a weak measurability up to q̄f ∼ 0.3 at
the considered SNRs.

B. Tests of GR

Another question that naturally arises is whether the
standard tests of GR routinely performed by the LVC
[46] would signal the presence of the additional BH
parameter (assuming the Kerr metric). To answer this
question for the pyRing analysis, we consider a Kerr221
template where now the QNM parameters are allowed to

deviate with respect to the Kerr values. We consider para-
metric deviations of the form:

X ¼ XKerr · ð1þ δXÞ; ð9Þ

where X ¼ ω221, τ221. We only consider deviations in the
overtone to reduce the strong degeneracy between devia-
tions and intrinsic parameters of the BH. The fundamental
mode, generally better constrained, determines the mass
and spin values, while the overtone degrees of freedom are
employed to constrain the deviation parameters. This
allows for a much less prior-dependent determination of
the deviation parameters [46,49]. We define three different
modified Kerr221 templates by adding parametrized
deviations either to the frequency fδω221g or the damping
time fδτ221g, or to both simultaneously fδω221; δτ221g.
Deviations on the frequency peak around the null value for
all the injected values of q̄f considered, and thus do not
signal any deviation from the Kerr scenario. Instead, for the
highest q̄f values considered, deviations on the damping
times tend to be overestimated compared to the Kerr value,
albeit the Kerr case is always inside the 90% C.L., thus
making the test not conclusive. Similarly, the Bayes factors
are uninformative, not allowing one to discriminate
between templates with or without deviation parameters.
We defer further investigations to future work, possibly
using more information from previous stages of the
coalescence, since this should help increase the sensitivity
of the test and hence its conclusiveness.

VI. CONCLUSIONS

In this work, we discussed extensive computations of
the QNM spectrum of a KN BH for the ðl; m; nÞ ¼
fð2; 2; 0Þ; ð2; 2; 1Þ; ð3; 3; 0Þg modes, obtained in a
companion paper [59], characterizing the spectrum’s
dependence on arbitrary values of the BH charge and spin.
These results were used to construct the first analytical fits
of KN QNM frequencies for arbitrary values of the BH
charge and spin. By extrapolating known results for the
Kerr metric, we then constructed an analytical template to
model the postmerger emission process of a BBH merger
giving rise to a KN remnant. We applied this model to all
available LIGO-Virgo observations, showing that current
data do not allow for a direct measurement of the BH
charge from the postmerger emission, mainly due to the
strong correlation of the charge with the remnant spin. A
null test showed that the maximum value of the charge-to-
mass ratio compatible with current LIGO-Virgo observa-
tions, for the most favorable event GW150914, is
q̄f < 0.33. This is the first self-consistent observational
analysis of charged remnant BHs with GWs, employing a
robust statistical framework and taking the full correlation
structure of the problem into account.
Finally, we performed a study aimed at exploring the

sensitivity of current detectors to the remnant BH charge,

FIG. 11. Posterior distribution on the charge-to-mass ratio
recovered analyzing KN221 signals with different values of
charge-to-mass ratio (vertical dashed lines) assuming a Gaussian
prior on the final spin (see the main text). For the highest charge
case, we also plot the bounds on the 90% C.L. as dotted lines.
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finding that unless information from previous stages of the
coalescence is introduced in the template, the LIGO-Virgo
network at its design sensitivity will be unable to measure
the charge of the remnant BH from a postmerger analysis
alone. Also, current tests of GR using only the ringdown
emission, routinely performed by the LVK collaboration,
are unable to confidently point to a deviation from the Kerr
hypothesis. However, for sufficiently large charges
(q̄ ≳ 0.3) a consistent overestimation of the remnant damp-
ing time (with respect to the Kerr value) could signal the
presence of BH charges within the IMR consistency test.
Our results have implications for tests of general

relativity and beyond Standard Model physics, since charge
observations constrain the presence of magnetic monop-
oles, models of minicharged dark matter and alternative
theories of gravity predicting the presence of an additional
BH charge (through either a topological coupling or the
presence of additional gravitational vector fields) degen-
erate with the electric charge at the scales of BH mergers. In
the future, the recent availability of full IMR simulations of
charged BBHs [14,58] could allow us to characterize the
accuracy of the present template without relying on
extrapolations of the known Kerr behavior. Our work also
provides one of the required elements for the construction
of analytical templates able to model the complete signal
coming from a charged BBH merger, along with the
aforementioned numerical simulations and the post-
Newtonian calculations in Refs. [25,26].
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APPENDIX: FIT COEFFICIENTS

In Tables III and IV we report the numerical coefficients
obtained fitting the data presented in Sec. II, using the
template of Eq. (6) with the Bayesian method described in
Sec. III. Single point estimates correspond to the maximum
of the posterior distribution (the same as the maximum of
the likelihood, since the priors on all coefficients are
uniform), which should be used in applications where a
point estimate is employed. We also report the median and
90% CIs of the full probability distribution.
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TABLE III. Numerical results for the coefficients of the real QNM frequency, using as a template the rational expression considered in
Eq. (6) with Nmax ¼ 3. The first column of each mode reports the maximum of the posterior, while the second reports median and
90% C.L. from the full probability distribution. For applications in which a single point estimate is used, the maximum of the posterior
yields a more faithful representation of the numerical data. The Schwarzschild value is given by: Y0 ¼
f0.37367168; 0.34671099; 0.59944329g for the ðl; m; nÞ ¼ fð2; 2; 0Þ; ð2; 2; 1Þ; ð3; 3; 0Þg modes respectively, while b0;0 ¼ c0;0 ¼ 1
by definition.

ω

ðl; m; nÞ (2, 2, 0) (2, 2, 1) (3, 3, 0)

max P Prob max P Prob max P Prob

b0;1 0.537583 0.541þ0.045
−0.050 −2.918987 −2.918þ0.001

−0.001 −0.311963 −0.299þ0.019
−0.017

b0;2 −2.990402 −2.997þ0.084
−0.077 2.866252 2.865þ0.002

−0.001 −1.457057 −1.478þ0.028
−0.031

b0;3 1.503421 1.507þ0.032
−0.035 −0.944554 −0.944þ0.001

−0.001 0.825692 0.834þ0.013
−0.012

b1;0 −1.899567 −1.895þ0.005
−0.007 −1.850299 −1.853þ0.004

−0.003 −1.928277 −1.926þ0.003
−0.003

b1;1 −2.128633 −2.143þ0.120
−0.109 7.321955 7.320þ0.005

−0.008 −0.026433 −0.060þ0.040
−0.048

b1;2 6.626680 6.649þ0.163
−0.183 −8.783456 −8.775þ0.020

−0.007 3.139427 3.190þ0.071
−0.063

b1;3 −2.903790 −2.914þ0.069
−0.064 3.292966 3.288þ0.004

−0.011 −1.484557 −1.504þ0.026
−0.026

b2;0 1.015454 1.009þ0.010
−0.008 0.944088 0.948þ0.005

−0.005 1.044039 1.041þ0.004
−0.004

b2;1 2.147094 2.162þ0.087
−0.094 −5.584876 −5.583þ0.010

−0.009 0.545708 0.575þ0.037
−0.034

b2;2 −4.672847 −4.692þ0.129
−0.116 7.675096 7.666þ0.010

−0.027 −2.188569 −2.229þ0.048
−0.051

b2;3 1.891731 1.900þ0.044
−0.046 −3.039132 −3.035þ0.012

−0.005 0.940019 0.956þ0.019
−0.018

b3;0 −0.111430 −0.109þ0.003
−0.004 −0.088458 −0.089þ0.001

−0.002 −0.112303 −0.111þ0.002
−0.001

b3;1 −0.581706 −0.585þ0.022
−0.020 1.198758 1.198þ0.004

−0.003 −0.226402 −0.234þ0.008
−0.009

b3;2 1.021061 1.025þ0.028
−0.029 −1.973222 −1.971þ0.009

−0.004 0.482482 0.493þ0.012
−0.012

b3;3 −0.414517 −0.416þ0.011
−0.011 0.838109 0.837þ0.002

−0.004 −0.204299 −0.209þ0.005
−0.004

c0;1 0.548651 0.552þ0.046
−0.050 −2.941138 −2.940þ0.001

−0.001 −0.299153 −0.286þ0.019
−0.017

c0;2 −3.141145 −3.148þ0.087
−0.079 2.907859 2.907þ0.002

−0.001 −1.591595 −1.613þ0.029
−0.033

c0;3 1.636377 1.640þ0.034
−0.037 −0.964407 −0.964þ0.001

−0.001 0.938987 0.948þ0.014
−0.012

c1;0 −2.238461 −2.235þ0.005
−0.006 −2.250169 −2.253þ0.003

−0.003 −2.265230 −2.263þ0.003
−0.003

c1;1 −2.291933 −2.307þ0.134
−0.124 8.425183 8.423þ0.005

−0.008 0.058508 0.022þ0.045
−0.054

c1;2 7.695570 7.718þ0.188
−0.208 −9.852886 −9.844þ0.021

−0.007 3.772084 3.828þ0.082
−0.071

c1;3 −3.458474 −3.470þ0.082
−0.072 3.660289 3.655þ0.004

−0.011 −1.852247 −1.874þ0.030
−0.031

c2;0 1.581677 1.575þ0.011
−0.009 1.611393 1.616þ0.005

−0.006 1.624332 1.621þ0.005
−0.005

c2;1 2.662938 2.682þ0.115
−0.124 −7.869432 −7.867þ0.013

−0.008 0.533096 0.569þ0.050
−0.043

c2;2 −6.256090 −6.281þ0.170
−0.157 9.999751 9.988þ0.011

−0.032 −3.007197 −3.056þ0.061
−0.067

c2;3 2.494264 2.506þ0.055
−0.060 −3.737205 −3.731þ0.014

−0.005 1.285026 1.303þ0.024
−0.023

c3;0 −0.341455 −0.338þ0.004
−0.005 −0.359285 −0.361þ0.002

−0.002 −0.357651 −0.356þ0.002
−0.002

c3;1 −0.930069 −0.937þ0.037
−0.034 2.392321 2.391þ0.003

−0.005 −0.300599 −0.311þ0.012
−0.015

c3;2 1.688288 1.697þ0.042
−0.046 −3.154979 −3.151þ0.012

−0.005 0.810387 0.824þ0.018
−0.017

c3;3 −0.612643 −0.616þ0.015
−0.014 1.129776 1.128þ0.002

−0.005 −0.314715 −0.320þ0.006
−0.006
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TABLE IV. Numerical results for the coefficients of the QNM inverse damping time, using as a template the rational expression
considered in Eq. (6) with Nmax ¼ 3. The first column of each mode reports the maximum of the posterior, while the second reports
median and 90% C.L. from the full probability distribution. For applications in which a single point estimate is used, the maximum of
the posterior yields a more faithful representation of the numerical data. The Schwarzschild value is given by: Y0 ¼
f0.08896232; 0.27391488; 0.09270305g for the ðl; m; nÞ ¼ fð2; 2; 0Þ; ð2; 2; 1Þ; ð3; 3; 0Þg modes respectively, while b0;0 ¼ c0;0 ¼ 1
by definition.

τ−1

ðl; m; nÞ (2, 2, 0) (2, 2, 1) (3, 3, 0)

max P Prob max P Prob max P Prob

b0;1 −2.721789 −2.723þ0.016
−0.014 −3.074983 −3.073þ0.005

−0.005 −2.813977 −2.817þ0.018
−0.017

b0;2 2.472860 2.476þ0.028
−0.031 3.182195 3.179þ0.009

−0.009 2.666759 2.672þ0.033
−0.033

b0;3 −0.750015 −0.752þ0.015
−0.014 −1.105297 −1.103þ0.005

−0.004 −0.850618 −0.853þ0.016
−0.017

b1;0 −2.533958 −2.519þ0.024
−0.022 0.366066 0.343þ0.046

−0.048 −2.163575 −2.161þ0.035
−0.035

b1;1 7.181110 7.173þ0.062
−0.061 4.296285 4.328þ0.067

−0.065 6.934304 6.969þ0.095
−0.093

b1;2 −6.870324 −6.898þ0.099
−0.109 −9.700146 −9.696þ0.011

−0.012 −7.425335 −7.499þ0.147
−0.160

b1;3 2.214689 2.236þ0.053
−0.049 5.016955 5.004þ0.026

−0.027 2.640936 2.679þ0.077
−0.072

b2;0 2.102750 2.075þ0.043
−0.047 −3.290350 −3.247þ0.091

−0.088 1.405496 1.401þ0.068
−0.067

b2;1 −6.317887 −6.300þ0.092
−0.093 −0.844265 −0.904þ0.119

−0.123 −5.678573 −5.739þ0.149
−0.157

b2;2 6.206452 6.249þ0.126
−0.117 9.999863 9.999þ0.001

−0.002 6.621826 6.739þ0.226
−0.204

b2;3 −1.980749 −2.007þ0.052
−0.062 −5.818349 −5.802þ0.034

−0.031 −2.345713 −2.401þ0.092
−0.101

b3;0 −0.568636 −0.555þ0.022
−0.021 1.927196 1.906þ0.041

−0.043 −0.241561 −0.240þ0.033
−0.032

b3;1 1.857404 1.851þ0.040
−0.041 −0.401520 −0.376þ0.054

−0.052 1.555843 1.584þ0.072
−0.068

b3;2 −1.820547 −1.836þ0.047
−0.050 −3.537667 −3.537þ0.003

−0.003 −1.890365 −1.942þ0.085
−0.087

b3;3 0.554722 0.564þ0.021
−0.018 2.077991 2.072þ0.012

−0.013 0.637480 0.659þ0.035
−0.032

c0;1 −2.732346 −2.734þ0.016
−0.014 −3.079686 −3.078þ0.005

−0.005 −2.820763 −2.823þ0.017
−0.016

c0;2 2.495049 2.498þ0.027
−0.029 3.191889 3.188þ0.009

−0.009 2.680557 2.686þ0.031
−0.033

c0;3 −0.761581 −0.763þ0.014
−0.013 −1.110140 −1.108þ0.004

−0.004 −0.857462 −0.860þ0.016
−0.016

c1;0 −2.498341 −2.484þ0.024
−0.022 0.388928 0.366þ0.046

−0.048 −2.130446 −2.128þ0.035
−0.035

c1;1 7.089542 7.080þ0.062
−0.060 4.159242 4.192þ0.068

−0.066 6.825101 6.858þ0.095
−0.091

c1;2 −6.781334 −6.807þ0.096
−0.104 −9.474149 −9.472þ0.010

−0.010 −7.291058 −7.361þ0.142
−0.157

c1;3 2.181880 2.201þ0.051
−0.046 4.904881 4.893þ0.024

−0.025 2.583282 2.619þ0.074
−0.070

c2;0 2.056918 2.030þ0.041
−0.045 −3.119527 −3.077þ0.087

−0.085 1.394144 1.390þ0.065
−0.065

c2;1 −6.149334 −6.132þ0.090
−0.089 −0.914668 −0.974þ0.117

−0.119 −5.533669 −5.589þ0.143
−0.151

c2;2 6.010021 6.048þ0.120
−0.113 9.767356 9.768þ0.005

−0.005 6.393699 6.504þ0.213
−0.193

c2;3 −1.909275 −1.933þ0.050
−0.058 −5.690517 −5.676þ0.033

−0.030 −2.254239 −2.306þ0.087
−0.097

c3;0 −0.557557 −0.545þ0.021
−0.020 1.746957 1.728þ0.038

−0.040 −0.261229 −0.260þ0.030
−0.030

c3;1 1.786783 1.780þ0.038
−0.039 −0.240680 −0.216þ0.049

−0.050 1.517744 1.543þ0.067
−0.064

c3;2 −1.734461 −1.749þ0.046
−0.047 −3.505359 −3.505þ0.004

−0.004 −1.810579 −1.857þ0.079
−0.081

c3;3 0.524997 0.533þ0.018
−0.018 2.049254 2.044þ0.011

−0.013 0.608393 0.628þ0.034
−0.030
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