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This paper presents a novel method for laser frequency stabilization in the Laser Interferometer Space
Antenna (LISA) mission by locking a laser to two stable length references-the arms of the interferometer
and an on-board optical cavity. The two references are digitally fused using carefully designed control
systems, attempting minimal or no changes to the baseline LISA mission hardware. The interferometer
arm(s) provides the most stable reference available in the LISA science band (0.1 mHz–1 Hz), while the
cavity sensor’s wideband and linear readout enables additional control system gain below and above the
LISA band. The main technical issue with this dual sensor approach is the undesirable slow laser frequency
pulling which couples into the control system with the imperfect knowledge of the Doppler shift of the light
due to relative spacecraft motion along the LISA arm. This paper outlines requirements on the Doppler
shift knowledge to maintain the cavity well within the resonance when activating the fused control system.
Two Doppler shift estimation methods are presented that use the already on-board measurements, the
inter-spacecraft interferometer link (the main science measurement), and the absolute inter-spacecraft
laser ranging system. Both methods reach the required precision after a few thousand seconds of
measurement integration. The paper demonstrates an approach to initialize and engage the proposed laser
stabilization system, starting from free-running laser and ending with the dual sensor frequency control
system. The results show that the technique lowers the residual laser frequency noise in the LISA science
band by over 3 orders of magnitude: from 30 Hz=

ffiffiffiffiffiffi
Hz

p
to as low as 7 mHz=

ffiffiffiffiffiffi
Hz

p
, potentially allowing the

requirements on Time Delay Interferometry (TDI) to be relaxed—possibly to the point where first-
generation TDI may be sufficient.

DOI: 10.1103/PhysRevD.105.062005

I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) mission
is a space-based gravitational wave detector, proposed and
planned jointly by ESA, NASA and a European consortium
[1,2]. The LISA mission consists of three spacecrafts in a
triangular formation with 2.5 million kilometer arms. The
spacecraft exchange laser beams, employing heterodyne
interferometry to measure displacement between space-
crafts to detect gravitational waves in the frequency band
between 0.1 mHz to 1 Hz, a frequency band inaccessible to
ground-based detectors. The displacement sensitivity goal
should be less than 10 pm=

ffiffiffiffiffiffi
Hz

p
for each arm-link to reach

a strain sensitivity of 10−21=
ffiffiffiffiffiffi
Hz

p
[1].

Stabilization of laser frequency noise is critical for LISA
to meet the design sensitivity, as it is indistinguishable from
displacement along a single link [2]. LISA will lock the
laser to a fixed-length ultra-stable optical cavity as refer-
ence using the Pound-Drever-Hall (PDH) technique [3]. A

similar technique has been recently demonstrated using the
laser instrument on the GRACE Follow-On mission [4]
demonstrating the required cavity performance. However,
stabilization alone cannot realize the LISA sensitivity
requirement, hence Time Delay Interferometry (TDI)
[5–7] will be employed. TDI is a post-processing scheme
that synthesizes laser frequency noise free measurement
variables by forming two-beam, equal arm-length inter-
ferometer combinations using algebraic combinations of
delayed link displacement measurements. Velocity cor-
recting TDI combinations, also known as second-gener-
ation TDI [8], and the Sagnac combination [9] overcome
the effect of spacecraft motion during the light travel
time. In addition to TDI, laser stabilization is required to a
level of 282 Hz=

ffiffiffiffiffiffi
Hz

p
for second-generation TDI and to

1 Hz=
ffiffiffiffiffiffi
Hz

p
for first-generation TDI [10,11]. While sec-

ond-generation TDI is currently being subject to detailed
analysis to ensure all signal and noise propagation is
understood [12], experimental validation of TDI [7] on
the ground is extremely challenging. A supplementary
method of laser stabilization, such as arm locking, will*JobinThomasValliyakalayil@anu.edu.au
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provide risk reduction against unknowns and margin to
link performance.
LISA’s inter-satellite link is designed (and required) to

provide an intrinsic length stability below the ∼10 pm=
ffiffiffiffiffiffi
Hz

p
noise floor inorder todetectgravitationalwaves [1].Hence,by
design, the LISA arm itself provides a highly stable length
reference over frequencies of interest. Arm locking was
proposed by Sheard et al. [13] to use the arm itself for laser
frequencynoise stabilization and to provide furthermargin for
TDIoperation,whichcanbedemonstratedby theGRACE-FO
mission as proposed in [14]. Later a dual arm sensor was
developed [15,16] that utilized the two arm lengths with each
spacecraft, and allowed more freedom in the design of the
controller by moving the nulls to larger frequencies. This
sensor was prone to Doppler pulling [17], whereby on every
light round-trip time (16.7 s for single arm locking, signifi-
cantly less for dual arm locking), the laser frequency experi-
encedashift, equal to theerror in theknowledgeof theDoppler
shifts.Doppler pullingwas reducedwith the help ofmodified-
dual arm locking [10,18], which combined both common and
dual arm locking sensors. However none of these arm locking
systems were compatible with the LISA hardware baseline:
cavity stabilization to a fixed-length resonator. To date, to
maintain compatibility of arm locking with an optical cavity
the approaches investigated required a tunable cavity length
[19]oremploymodulation frequency that couldbe tuned [20].
This paper re-examines a combination of cavity locking

(using the baseline fixed resonator length) and arm locking,
and shows the following:

(i) Suppression of laser frequency noise below the
requirement-level cavity noise (over 3 orders of
magnitude of suppression),

(ii) Successful acquisition and operation of cavity lock
in the presence of Doppler pulling, so long as a prior
Doppler estimate is available.

We emphasize that this combination relaxes the TDI
suppression requirement with minimal or no change to the
optical or electronic hardware on board the spacecraft—
relying mostly on an FPGA upload to existing digital
hardware and/or a flight software update. Even if arm locking
is not considered as baseline for laser frequency stabilization,
this implementation could allow for deployment after the
launch of the spacecraft. The difficulty faced for this hardware
simplification is the requirement for high accuracy of knowl-
edge of Doppler shift. This paper studies this resultant laser
frequency pulling and outlines the requirements for robust
lock acquisition and stable operation thereafter.
The paper is divided into seven sections. Section II

discusses the system model used for analysis and simu-
lations, including the noise propagation through the system.
Section III discusses Doppler pulling with respect to the
current model and IV explores the convergence times for
several Doppler estimation techniques to measure the
Doppler shifts. Section V presents the controller design
for the combined arm and cavity references, while Sec. VI

discusses a Simulink model used to verify the system in the
time domain. Section VII looks into some insights for
utilizing the combination of sensors, while Sec. VIII gives
the conclusions and possible future scope of this technique.

II. MODEL

Figure 1 is the schematic diagram of the model that
includes themain sensors, controllers, and the noise sources.
All the equations in this paper are derivedwith respect to this
model. The laser frequency noise, from the laser source in
spacecraft 1, serves as the main input and is fed into an arm
sensor and the cavity (PDH) sensor. The output of these
sensors, including the noise contributions, are given to
individual controllers. The output from the two controllers
are summed and fed back to the laser source and adjusts the
laser frequency through piezo-electric transducer and ther-
mal actuators, and thus create a feedback system. The
notations and formalism used in this paper follow
McKenzie et al. [10].

A. Sensors

From previous arm locking analysis, the frequency noise
sensors can be styled as a single arm sensor [13], common
arm sensor [16], difference arm sensor [16], dual arm
sensor [16] or modified-dual arm sensor [10]. In this paper,
the common arm sensor is used, in which the average
displacement measurements from two interferometer arms
are used to measure laser frequency noise. For simplicity a
single arm sensor could also be chosen, and we expect only
minor modifications to the results. We approximate the
high gain transponder systems of the other spacecrafts to
act as a active retro-reflector, which transponds time-
delayed laser phase, and hence simplify computations.
The common arm locking transfer function from laser
frequency to sensor (displacement) output is given by

PþðsÞ ¼ Sþ

�
P12ðsÞ
P13ðsÞ

�
; Sþ ¼ ½ 1 1 �: ð1Þ

Sþ refers to the sensor matrix that utilizes the individual
arm responses [10]. The frequency response of the indi-
vidual arms is given by

P12ðsÞ ¼ 1 − e−2sτ12 ; P13ðsÞ ¼ 1 − e−2sτ13 ; ð2Þ

where τ12 and τ13 are the times for the laser-light to traverse
arm 1 (from spacecraft 1 to 2) and arm 2 (from spacecraft 1
to 3) and relates to the arm lengths, L1 and L2 as τ12 ¼
L1=c and τ13 ¼ L2=c (c is the speed of light). For
simplicity, the arm lengths are assumed to be constant
and symmetric within the round-trip time of the laser and
thus have the approximations τ21 ¼ τ12 and τ31 ¼ τ13. The
parameter s refers to the complex variable in Laplace
domain. Equation (1) can be also written analytically as
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PþðsÞ ¼ 2ð1 − cosðωΔτÞe−sτ̄Þ; ð3Þ

where τ̄ ¼ τ12 þ τ13 and Δτ ¼ τ12 − τ13. Here the value of
τ̄ ¼ 16.67 s and the value of Δτ ¼ 0.083 s. This is with
consideration the average length of the arms to be 2.5 mil-
lion kms and the maximum difference in the lengths to be
1% of that length [21]. This approximation may not be
valid during the entire LISA mission at which the phase
margin may decrease by 1° in the worst case scenario, when
the arm lengths are equally matched, which has negligible
effect on the results in this paper. Prior to the controllers,
the sensors are scaled with a normalization factor of 1

2
.

The cavity PDH locking sensor is modeled as a low-pass
filter whose cut-off frequency, fc, is at the cavity half-width
half-max (HWHM) frequency for a high finesse cavity
[22]. With fc referring to the cavity pole, the PDH sensor
can be shown as

PpdhðsÞ ¼
D0

1þ s
2πfc

: ð4Þ

D0 is a gain that is dependent on the length of the
cavity, the reflective and loss coefficients of the mirrors and
the power modulation coefficients in the PDH scheme [22].
We normalize the PDH sensor gain D0 ¼ 2 to be compat-
ible with the arm sensor (in practice, this will require

scaling the error signal prior to the controller). For
LISA, the cavity on the spacecraft is expected to have a
length of 7.77 cm with a free spectral range of approx-
imately 2 GHz, similar to the cavity that is used in the
GRACE Follow-On mission [4,23]. Hence for a finesse of
10,000, the HWHM frequency can be computed to be
approximately fc ¼ 100 kHz.
The bode plot of both sensors is shown in Fig. 2. The

basic design of the controller presented in Sec. V relies on
the arm sensor being dominant (higher gain) in the LISA
science band (10−4 to 1 Hz) since it offers the best
frequency stability. Outside the LISA science band the
controller design emphasizes the cavity sensor; at frequen-
cies below 10−4 Hz to limit the laser frequency pulling due
to imperfect Doppler shift knowledge, and above 1 Hz to
increase the control system’s phase margin at high frequen-
cies and through the nulls of the common arm sensor. The
unity gain frequency (UGF) of the controller is selected at
approximately 10 kHz, a decade lower than the cavity
HWHM frequency, to utilize the flat response of the PDH
sensor.

B. TDI noise requirements

The amount of laser frequency noise that TDI can
suppress is limited by the time synchronization errors [5].
Dedicated inter-spacecraft ranging, using pseudorandom

FIG. 1. Simplified model of the feedback system using spacecraft 1 and 3 of LISA. Spacecraft 2 is not shown in this model, but can be
considered symmetric to spacecraft 3. τ13 and τ31 are the travel times taken for the laser to traverse the separation between spacecraft 3
and 1. The laser frequency noise, νLi

, the clock noise, νclock;ij, the shot noise, νshot;ij, the spacecraft motion noise, νSC;ij, the Doppler
shifts, νD;ij, the cavity noise, νcavity are the noise sources that are considered in this model. The indices i and j take the values of 1, 2 or 3
referring to the different spacecrafts. The red trace outlines the path of the laser in free space, while the black trace of the path is in
electrical/digital hardware.
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noise (PRN) modulation [24,25], is proposed to provide a
spacecraft ranging error of 1 m and with an allowed residual
noise floor of 2 pm=

ffiffiffiffiffiffi
Hz

p
, the laser noise requirement before

second-generation TDI is applied [11] is

ν̃TDI-2ðfÞ ¼ 282
Hzffiffiffiffiffiffi
Hz

p :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2 mHz

f

�
4

s
: ð5Þ

First-generation TDI on the other hand does not correct
for errors in the lengths due to the relative velocity between
the spacecrafts. If the ranging is considered to be constrained
by relative velocity of�5 ms−1 [1] between the spacecrafts,
then in the worst case scenario, both spacecrafts would
experience a maximum relative velocity of 10 ms−1, result-
ing in a change in range of 167 m in one round-trip of the
laser (around 16.67 s). Thus, the laser noise suppression
requirement prior to first-generation TDI is

ν̃TDI-1ðfÞ ¼ 1.7
Hzffiffiffiffiffiffi
Hz

p :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2 mHz

f

�
4

s
: ð6Þ

While second-generation TDI is a conceptual next step from
first-generation, the noise couplings of different noise
sources in second-generation TDI may be more complex
due to the time-varying arm lengths [12,26].
As a goal, this paper designs an arm-locking/cavity

control system with the ability to reduce the laser frequency
noise to below the required level for application of first-
generation TDI. This additional noise reduction results in
an additional margin for the required TDI suppression and
could be seen as risk reduction for second-generation TDI,

and if needed may mean that first-generation TDI would be
sufficient.

C. Noise propagation

This subsection explains the propagation of the various
noise sources as shown in Fig. 1. The noise sources,
notations, and transfer functions follow the previous arm
locking literature [10,13,16,17] and are described in the
Appendix A. In the following analysis, we use the notation
of laser frequency noise (Hz/

ffiffiffiffiffiffi
Hz

p
) as opposed to laser phase

noise (cycles/
ffiffiffiffiffiffi
Hz

p
) in other related papers and drop the

Laplace “(s)” notation from the noisemodels and controllers
in this subsection. For instance, νOðsÞwill be denoted as νO.
The laser frequency noise, νL, is added at the laser

source, and propagates through the interferometer and
the cavity experiencing the transfer functions in Eqs. (1)
and (4). The requirement-level cavity noise, νcavity, gets
added into the system as the base stabilization [2] provided
by PDH locking and hence will propagate when the PDH
error is taken. This requirement-level cavity noise will be
dominated by effects such as readout noise and Brownian
thermal noise. Shot noise, νshot;ij, is added at the photo-
detector in spacecraft i, when interfered with a laser from
spacecraft j. There are four independent shot noise con-
tributions that are added at the primary spacecraft. Clock
noise couples in each of the phasemeter readings between
spacecraft 1 and spacecrafts 2 and 3, totalling to four terms
of clock noise, νclock;ij, with the beat-note frequency being
the maximum value (25 MHz) [1]. The spacecraft motion
noise, νSC;ij, gets coupled into the system whenever there is
a change in the link between two spacecrafts and hence
eight terms are contributed by this noise [10]. The total
noise propagation through the entire open loop system at
point O in Fig. 1 can be shown as

νO ¼ G1Sþ½NL þ NSN þ NCN þ NSCN �
þ G2PpdhνL þ G2Ppdhνcavity; ð7Þ

where NL is the laser noise sensed at the primary spacecraft
photodetectors, NSN is the shot noise, NCN is the clock
noise, and NSCN is the spacecraft motion noise. These are
given by

NL ¼
�
P12νL

P13νL

�
NSN ¼

�
νshot;12 þ νshot;21e−sτ12

νshot;13 þ νshot;31e−sτ13

�
NCN ¼

�
νclock;12 þ νclock;21e−sτ12

νclock;13 þ νclock;31e−sτ13

�
NSCN ¼

�−νSC;12ð1þ e−2sτ12Þ − 2νSC;21e−sτ12

−νSC;13ð1þ e−2sτ13Þ − 2νSC;31e−sτ13

�
: ð8Þ

FIG. 2. Bode plot of the arm sensor and the PDH sensor. The
arm sensor is modeled as the common sensor considered with
τ̄ ¼ 16.67 s and Δτ ¼ 0.08335 s. The arm sensor has nulls at
multiples of 60 mHz where the phase goes from −90° to 90°. The
difference in the arm lengths is reflected in the null depths. The
PDH sensor has a flat response with the corner frequency at
approximately 100 kHz, and a phase of −6° at 10 kHz.
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G1 and G2 are controllers used for each of the arm sensor
and cavity sensor, respectively. Using Eqs. (7) and (8), with
transfer functions (A3), (A8), (A11), (A16), (A20), the
complete closed loop equation at point C can be written as

νC ¼ νL−νO

¼ νL
1þG1PþþG2Ppdh

−
νcavityG2Ppdh

1þG1PþþG2Ppdh

−
G1

1þG1PþþG2Ppdh
Sþ½NSNþNCNþNSCN �: ð9Þ

The noise budget after engaging the hybrid control system
is plotted in Fig. 3 using controllers for each sensor
(covered in detail in Sec. V). The black dashed line plots
the pre-TDI requirements based on the LISA sensitivity
goal [Eq. (6)]. It can be seen that the requirement-level
cavity noise (shown as red dashed lines) is suppressed by
over 3 orders at 10 mHz (shown as pink line) and is the
dominant noise in the noise budget. At the null frequencies
(multiples of 60 mHz), the noise sources are not sup-
pressed. The other noise sources are coupled into the
system when the arm is dominant. At very low frequencies,
the cavity noise is dominant and follows the LISA require-
ment level.
The suppression function of the laser frequency noise,

the first term in Eq. (9), and the suppression function of the
requirement-level cavity noise, the second term in the
equation, is plotted in Fig. 4, with the controller discussed
in Sec. V. This figure shows there is significant gain for
laser frequency at all frequencies below 10 Hz and the
suppression of cavity noise across the LISA science band.

III. DOPPLER PULLING AND
PROPAGATION IN LISA

As the LISA constellation orbits around the Sun, the
spacecraft follows independent orbits and the arm lengths
are expected to change by up to 1% [21]. The relative
movement of the spacecraft cause Doppler shifts in the
laser frequency given by νdðtÞ ¼ vðtÞ=λ, where v(t) is
the relative velocity at which the spacecraft moves and λ
is the wavelength of the laser (1064 nm). The maximum
expected relative velocity between the spacecrafts is
5 ms−1 [1], producing a one-way Doppler shift of approx-
imately 5 MHz. As the lasers on the end station space-
crafts are phase locked to the laser on the primary
spacecraft, the laser beam on returning back to the primary
spacecraft will have twice the one-way Doppler shifts.
The sum of the Doppler shifts will be taken when the
phase is given to the common arm sensor. If the one-way
Doppler shift of the laser traveling from spacecrafts i to j
is νD;ij, the effective Doppler shifts in the system can be
shown as [10]

νD;þðtÞ ¼ νD;12ðtÞ þ νD;21ðtÞ þ νD;13ðtÞ þ νD;31ðtÞ: ð10Þ

Based on orbital dynamics of LISA [21,27], we use a toy
model that approximates the common Doppler shifts to be a
sum of sinusoids with half-year and one year periods as
shown below:

νD;þðtÞ ¼ ν1 sinðω1tþ ϕ1Þ þ ν2 sinðω2tþ ϕ2Þ: ð11Þ

ν1 and ν2 are amplitudes of the two sinusoids of frequencies
ω1 and ω2, along with phase shifts ϕ1 and ϕ2, respectively.

FIG. 3. Noise budget using the noise models and the transfer
functions along with the LISA requirements. The main contrib-
uting noise source is the requirement-level cavity noise that is
suppressed from engaging the arm locking controller (pink trace)
and within the first-generation TDI requirement (dashed black
line) in the science band.

FIG. 4. Suppression function of the system with respect to laser
frequency noise and requirement-level cavity noise. The laser
frequency noise is stabilized by both the arm and the cavity while
the cavity noise suppression is provided by the arm in the
LISA band.
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This model can represent a smooth orbit evolution with
(approximately) correct dynamics over the ∼1 month time
frame for arm locking turn-on transient relevant to this
paper. Pulling of the laser frequency in arm locking is a
known issue [10,17] that arises because the arm locking
sensors have zero response at dc. On one hand, the
cavity sensor can sense this Doppler pulling and allows
correction at long timescales (> 104 s). Conversely, the
cavity sensor has finite linear range and limited gain in the
LISA band, hence pulling must be minimized to ensure
cavity lock is maintained. For this paper we consider this
number to be �20 kHz, a fifth of the HWHM frequency
(100 kHz).
An offset to the cavity lock point is undesirable as it

introduces coupling from other noise sources, such as
laser intensity noise. This section will demonstrate that,
with the controller from Sec. V, laser frequency pulling
reaches a maximum of 20 kHz at lock acquisition within
the model framework. In laboratory testing using a cavity
and system with parameters similar to LISA, the residual
laser frequency noise was seen to increase up to level of
100 Hz=

ffiffiffiffiffiffi
Hz

p
level with a 10 kHz offset off resonance on a

PDH-stabilized laser with the setup in [28]. Note, this noise
would be still suppressed by the arm locking controller by
the magnitude shown in Fig. 4.

A. Lock acquisition timeline

This section will focus on the potential lock acquisition
timeline for LISA to employ arm locking while restricting
the transient Doppler pulling caused by the feedback of the
controller. For implementation of arm locking, precise
Doppler information is required for real-time subtraction
from the phasemeter signal before feeding back to the laser.
Section IV discusses two methods to measure the Doppler
shift using only the hardware included in the baseline
mission. The two techniques are (1) to use the intersatellite
range signal and average the beat note frequency for a
sufficient time, and (2) use the inter-spacecraft absolute
ranging system whose baseline deploys a pseudorandom
code on the intersatellite inter-spacecraft link [24,25].
Depending on the noise performance of the cavity, either
the cavity or the ranging readouts can be used for
estimation. If the residual noise of the cavity is at require-
ments level, the estimates need at least 50000 s (∼13.9
hours) of integration time to get the necessary accuracy.
Instead, the absolute ranging system based on PRN ranging
is relied on, requiring only 6300 s (∼1.75 hours) of data to
get a sufficiently accurate estimate of the Doppler trends.
Cavity performance that approaches the thermal limit
[4,29] will significantly reduce residual noise, allowing
Doppler parameter estimates to converge within 1500 s
(∼0.5 hour) using the interferometer response only. These
estimates (using either approach) can populate the phase-
meter with a model estimate of the Doppler shifts based on
Sec. III B.

B. Arm locking acquisition

When the arm locking controller is enabled on the
primary spacecraft (spacecraft 1) to stabilize the laser,
estimates of the heterodyne frequency, including Doppler
shifts, are subtracted from the phasemeter readings. Any
error in Doppler shift estimate will represent a bias that
cannot be suppressed by the arm locking controller.
Accordingly, such a bias excites a transient response in
the arm locking system and results in the frequency pulling
behavior documented previously [10,17]. Importantly, the
introduction of the Fabry-Perot (FP) cavity estimation
provides necessary information to limit frequency pulling.
This section describes the model for this transient behavior.
If the errors in Doppler shifts are small, then the transient
laser frequency pulling can also be reduced to within the
allowable limits of the cavity. The turn on transient of the
controller can be represented by the closed-loop step
response of the error between the actual and estimated
Doppler shifts, and computed as

νCðtÞ ¼ L−1
�½νD;þðsÞ − ðνD;estðsÞÞ�VðsÞ

s

�
; ð12Þ

VðsÞ ¼ −G1ðsÞ
1þ G1ðsÞPþðsÞ þG2ðsÞPpdhðsÞ

: ð13Þ

νD;estðsÞ is an estimate of the common Doppler frequency.
The term in square brackets consists of the error in
estimation of Doppler shifts. L−1 represents the inverse
Laplace transform function of the system and V(s) is the
transfer function of the Doppler shifts, with a similar
analysis in Sec. II C. A simplification of the Doppler shifts
can be done for smaller timescales, where the Doppler
shifts at that instant can be modeled as a second order
polynomial equation shown below [10]:

νD;estðtÞ ¼
�
ν0;þ þ γ0;þtþ

α0;þt2

2

�
; ð14Þ

where ν0;þ, γ0;þ and α0;þ are the estimates of the Doppler
shift, the first derivative of Doppler shift (Doppler rate) and
second derivative of Doppler shift (Doppler acceleration) at
the instant when the controller is just turned on. The error
limits, based on the results of Fabry-Perot cavity estimation
for 200 s given in [10], were sufficient due to the wide
limits afforded for a free running laser (up to 10 MHz). For
this work, we require that the worst case Doppler pulling be
bounded by �20 kHz.
The toy model values of ϕ1 and ϕ2 in Eq. (11) determine

the point in the orbit paths at which laser lock is acquired.
At the point of higher Doppler rate, we expect the model to
have more stringent error requirements compared to lock-
ing at points where the Doppler rate has relatively lower
amplitude. Figure 5 shows the Doppler pulling when
locking at different orbital points using a polynomial model
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with the error bounds given in Table I. The traces are shown
to be restricted within �20 kHz and thus provide us the
flexibility to engage the arm locking controller at any point
in the spacecraft orbit, without causing any significant
Doppler pulling. The poor model fit [due to the difference
in Eqs. (11) and (14)] results in an intrinsic unmodeled
Doppler error propagated into the control system. Even
with ideal parameter knowledge, the polynomial model is
incapable of fully resolving Doppler evolution and will
result in a Doppler pulling of up to 17 kHz [relative to the
assumed sinusoidal orbit description in Eq. (11)].
Adaptation of a more complex Doppler model can

theoretically eliminate this source of systematic estimation
error and associated intrinsic Doppler pulling component.
However, the complexity and the number of variables that
need to be estimated requires further analysis. A prelimi-
nary analysis of the sinusoidal model (along with the error
bounds) is given in Appendix B, based on the toy model
in Eq. (11).
Further investigations were done to test the error bounds

of the Doppler parameter estimates by runningMonte Carlo

simulation (100 runs). With the orbital set point selected to
give the maximum pulling, Fig. 6 shows that the poly-
nomial model and associated derived error bounds in
Table I can restrict laser frequency pulling to within the
�20 kHz requirement. After 25 days, the pulling would
reach steady state that is limited by �27 Hz.
During the steady state period, we expect the spacecraft

to undergo orbit corrections or engage spacecraft thrusters,
which would come as a step or ramp function in the
Doppler error. Analysis on this disturbance in the steady
state of the Doppler pulling indicates an excitation of a
transient response in the control loop comparable to initial
lock acquisition. If the frequency deviations are within the
requirements shown in Table I for ν0 and γ0, the laser will
maintain lock with the cavity.

IV. DOPPLER FREQUENCY ESTIMATION

The previous section presented details of the Doppler
knowledge requirements at controller activation. This
section presents the convergence time required to estimate
the Doppler shifts with sufficient accuracy. The methods
presented here require nominal LISA measurements,
without arm locking engaged, for a few thousand seconds
to allow Doppler shift estimate of sufficient accuracy.
Once sufficient Doppler shift knowledge is achieved, the
arm locking controller can be activated, and the associated
improvement in laser frequency noise suppression
achieved. The two methods of measurement considered
are: (1) LISA phasemeter measurement containing the
nominal interferometer response using cavity-stabilized
laser, (2) using the LISA baseline inter-spacecraft range
measurement [24,25]. The required estimation times are
determined based upon the observation time over which
the weighted Allan variance of the residual noise reduces
to below the required RMS level.
The PRN ranging system uses a pseudorandom binary

sequence (PRBS) modulation to time stamp the outgoing
light with a clock-like signal as it leaves the spacecraft,
providing a reference with which the clocks can be
aligned and the distance can be measured between the
spacecrafts. This is limited by PRBS code noise and shot
noise, with a residual displacement noise expected of
order ∼0.1 m=

ffiffiffiffiffiffi
Hz

p
[24,25].

FIG. 5. Frequency deviation from cavity line center due to
Doppler-error-pulling at lock acquisition. The estimate is calcu-
lated using the polynomial functions in Eq. (14). The different
traces correspond to the lock acquisition Doppler pulling at
different set points in the orbits with the error bounds in the
model, given in Table I. The maximum Doppler pulling corre-
sponds to the point in the orbits with the maximum Doppler rate.

TABLE I. Parameter requirements for orbital knowledge in order to meet lock acquisition conditions using the polynomial model with
the controller shown in Fig. 14. Each parameter’s error limit is checked in combination with the errors of other parameters in
Monte Carlo simulations. The achievable levels are cross-checked with estimation using Fabry-Perot (FP) cavity estimation in [10] and
PRN ranging, or thermal noise limited (TNL) cavity estimation, as described in Sec. IV.

Parameter Actual/maximum value Maximum error tolerance (�) Fractional change Estimation methods

ν0 12 MHz 10 Hz 8.33 × 10−7 FP cavity estimation/TNL cavity estimation
γ0 4 Hz=s 60 μHz=s 1.5 × 10−4 PRN ranging/TNL cavity estimation
α0 −1.2 μHz=s2 5 nHz=s2 4.17 × 10−3 PRN ranging/TNL cavity estimation
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The FP cavity estimation method described in
Appendix A of [10] has a residual noise derived from
the cavity noise coupled through an open arm sensor. For
this calculation, we make two estimates of Doppler error
based on two levels of cavity residual errors: (1) the cavity
residual given in Eq. (A9), which is a conservative estimate,
(2) the cavity residual such as in GRACE-FO [4] or in [29],
which approaches the cavity thermal noise limit (TNL)
[30], the best possible case (in reality, the cavity will likely
be between these two bounds), modeled as

νcavity ≈ νthermal limit ¼
0.1ffiffiffi
f

p Hz=
ffiffiffiffiffiffi
Hz

p
: ð15Þ

The effective residual displacement noise can be derived as

ΔxresidualðsÞ ¼
ΔϕcavityðsÞ � PþðsÞ � λ

2

¼ νcavityðsÞ � PþðsÞ � λ
2s

: ð16Þ

The estimator performance is predicted based upon the
expected weighted Allan deviation over time. The Allan
deviation was derived from the time domain using numeri-
cal simulation of the relevant noise spectra. To mitigate the
effects of temporal leakage, we apply a windowed and
overlapped Allan variance estimation from [31]. The
following equation captures the operation of windowing
in the overlapped Allan variance formula,

σ2yðτÞ ¼
PM−3mþ2

j¼1 fPjþm−1
i¼j ðwmðiÞ½yðiþmÞ − yðiÞ�Þg2
2m2ðM − 2mþ 1Þ ;

ð17Þ
where m ¼ τ=τ0, τ0 is the sampling rate of the measure-
ment data, y, of length, M. wm is the window function of
length, m, corresponding to each τ, the averaging time. The
window function used in this paper is the normalized
Blackman-Harris filter giving the correct Allan deviation
slopes for the different higher noise slopes. Figures 7–9
showcase the Allan deviation (after normalization) for
each parameter (Doppler constant, rate and acceleration)
using the residual displacement sensitivity as above in time
domain. The data points highlighted in each figure are
the minimum times that are required for the noise to be
averaged to meet the error limits in Table I.
From Figs. 7–9, it can be observed that the thermal-

noise-limited cavity-arm sensor (yellow trace) can be used
for estimating all the parameters within a short timescale
(< 0.5 hour). The PRN (blue trace) would perform better
than the cavity, if the residual noise is near the LISA pre-
stabilization limit (red trace).
If the cavity does not reach the thermal-noise limit, the

cavity can still be employed for determining the Doppler
constant parameter, while the PRN can be used for
determining the higher derivatives of the Doppler shifts
(which necessitate longer integration times for estimation).
The requirement-level cavity-arm sensor is limited by the
random walk function at lower frequencies, and after 500 s

FIG. 7. Allan deviation for the velocity measurement between
the spacecrafts. The dashed line indicates a Doppler constant
requirement of 10 Hz, corresponding to 10.64 μm=s. The PRN
ranging scheme has a slope of −3=2 while the requirement-level
cavity-arm sensor has a slope of −1=2 until around 500 s and then
rolls up with slope of 1=2. The thermal-limited cavity-arm sensor
has a slope of −1 after 8.335 s. The time required for the deviation
to reach the error limit is 411 s for PRN while the cavity sensor
can reach it under 30 s and the thermal-limited cavity sensor can
always realize this requirement (within 1 s).

FIG. 6. Monte Carlo simulations of frequency deviation from
cavity line center due to Doppler-error-pulling at lock acquisition.
The estimate is calculated using the polynomial functions in
Eq. (14). The black traces show the various Monte Carlo
simulations with the dashed traces showing the pulling with
the maximum error limits, given in Table I. The maximum pulling
is limited to 20 kHz within the linewidth, not breaking the
resonance of the cavity.
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has more residual noise. This estimation needs to be
employed every time the laser acquires lock with the
spacecrafts and can be used only in the beginning of
the laser lock for estimating the constant Doppler shift. The
PRN technique would be ideal for determining the other
Doppler parameters due to the residual being white noise
and hence over time, the measurement errors reduce over
time, by the square root of time, for velocity, and more
quickly for acceleration and jerk. Table II summarizes the
integration times for the different measurement methods to
obtain a precise readout of each Doppler trend.

V. CONTROLLER DESIGN

From the descriptions, transfer functions, and the effects
of noises on the output, and the LISA goals, the main
requirements for the controllers can be derived. However
additional requirements were also included to make the
controller more robust and perform better during the
mission lifetime.
(1) The phase margin at unity gain crossings must be

more than 30° (open loop phase within �150°).
Additionally, the same condition is applied for
crossover frequencies between arm and cavity.

(2) The arm locking control system is to have at least 15
times the gain of the cavity control system at
10−4 Hz and at least 100 times the FP cavity gain
at 1 Hz. These are soft conditions to prioritize the
bandwidth of the arm locking sensor within the
LISA science band.

Keeping these conditions in mind, the controller design can
be split in two parts.

A. Controller 1: Arm locking controller

This controller is used with the arm locking sensor, and
is used mainly to control bandwidth of the arm sensor,
shown as G1 in Fig. 1. This controller can be further split in
three stages as follows:
Stage I.—Stage I is primarily a controller with a frac-

tional slope of 2.3 and a unity gain frequency at 13.63 kHz.
The integrator scales the sensor information and provides
feedback back to the laser source at lower frequencies. This
provides the necessary suppression below LISA require-
ments and the slope ensures that the cavity will dominate
the response at higher frequencies. The implementation of
the controller is done using a sum cascade of low-pass
filters as shown in Table V in Appendix B.
Stage II.—Stage II consists of a cascade of seven high-

pass filters in the low frequency band (< 10 μHz), to ensure
the cavity dominates at lower frequencies, allowing a
reduction of the Doppler pulling induced by the arm sensor.
The different high-pass filters allow for a smooth transition
of the arm and the cavity in terms of the phase stability of
the system. The combined response gives 7 × 20 db ¼
140 db=decade of suppression of Doppler shifts at very

FIG. 9. Allan deviation for the jerk measurement between the
spacecrafts. The dashed line indicates a Doppler acceleration
requirement of 5 nHz=s2, corresponding to 5.32 fm=s2. The PRN
ranging scheme has a slope of −7=2 while the requirement-level
cavity-arm sensor has a slope of −5=2 until 500 s and then rolls
off with −3=2. The thermal-limited cavity-arm sensor has a slope
of −2 until 8.335 s and rolls off with −3. The time required for the
deviation to reach the error limit is 6270 s for PRN while the
cavity-sensor requires 17740 s. The thermal-limited cavity sensor
can estimate the parameter to the required level within 1200 s.

FIG. 8. Allan deviation for the acceleration measurement
between the spacecrafts. The dashed line indicates a Doppler
rate requirement of 60 μHz=s, corresponding to 64 pm=s2. The
PRN ranging scheme has a slope of −5=2 while the requirement-
level cavity-arm sensor has a slope of −3=2 until 500 s and then
rolls off with −1=2. The thermal-limited cavity-arm sensor has a
slope of −1 until 8.335 s and rolls off with −2. The time required
for the deviation to reach the error limit of 60 μHz=s is 4311 s for
PRN while the cavity-sensor requires 50010 s. The thermal-
limited cavity sensor can estimate the Doppler rate to the required
level within 370 s.
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low frequencies (< 0.1 μHz). Implementation and optimi-
zation of such a filter structure is a topic for futurework, with
a particular focus required upon stability and the partitioning
of the controller between software and firmware.
Stage III.—Stage III is a lag compensator to decrease the

phase of the arm controller and thus allow the phase margin
at the lower crossover frequency between the arm and the
cavity to be within the requirements.
The combined response for controller 1 is shown below

with the values in Table III:

G1ðsÞ ¼
�
g1
s

�
2.3
�

s
sþ ph1

�
5
�

s
sþ ph2

�
2

×

�
glc

�
sþ zlc
sþ plc

��
: ð18Þ

B. Controller 2: Cavity controller

This controller is used along with the cavity sensor,
as shown as G2 in Fig. 1. Within the LISA band, the
controller gain follows a fractional f−3=2 slope with a UGF
of 7.32 kHz. The positive slope can make sure that the
cavity does not dominate arm locking within the LISA band
but dominate at higher frequencies, while at lower frequen-
cies the cavity will have a larger gain due to the high-pass
filters in controller 1:

G2ðsÞ ¼
�
g2
s

�
1.5
: ð19Þ

The implementation of the controller is done using a
sum cascade of low-pass filters as shown in Table VI in
Appendix B.

VI. SIMULINK MODEL

Time domain simulation for a representative control
system was performed for model validation. Due to
computational limitations, simulations of the long
(1 month) Doppler transients with fast control loops
(UGF at 10 kHz) was prohibitive. Instead, a simplified
problem was studied to validate the modeling procedure
utilized for LISA predictions. The proposed controller
architecture was tested using a discretized Simulink
time-domain simulation shown in Fig. 11. In the analysis,
the round-trip time is taken to be 1 s with the controller
unity gain frequency scaled down to 500 Hz. Results are
obtained by running a discrete solver for fixed step size at
the sample rate of 10 kHz.
The challenge of a computationally exhaustive algebraic

loop at higher sampling frequencies was solved by adding
an explicit pipeline delay, converging the loop within a time
step, an accommodation needed to run the simulation. This
posed another problem as the phase introduced by this

TABLE II. Minimum averaging time required using different estimation methods to reduce the Doppler terms to the error limits
in Table I.

Inter-spacecraft link

Doppler term Thermal limited cavity Requirement level cavity PRN absolute ranging Required precision (Doppler trends)

Constant 1 s 30 s 411 s 10 Hz
Rate 370 s 50010 s 4311 s 60 μHz=s
Acceleration 1200 s 17740 s 6270 s 5 nHz=s2

TABLE III. Values for the gain, poles and zeros for the
controllers as shown in Eqs. (18) and (19).

Parameter Value

g1 2π × 1.36 × 104

g2 2π × 7.32 × 103

ph1 2π × 1.29 × 10−6 rad=s
ph2 2π × 1.16 × 10−3 rad=s
zlc 2π × 10−4 rad=s
plc 2π × 4.5 × 10−6 rad=s
glc 0.045

FIG. 10. Open loop gain of the controller. The UGF is at around
11 kHz and the phase margin is within 30°. The arm sensor gain is
dominant from ∼10 μHz to 1 kHz, while the cavity is dominant
outside this region. The blended sensor must maintain a sufficient
phase margin where the cavity and arm-locking gain are equal to
prevent noise amplification, such as the approximately 40°
achieved at the low crossover point (∼10 μHz). A phase margin
of ∼20° is obtained around the nulls of the arm locking sensor,
where the arm locking gain crosses the cavity gain curve,
resulting in an increased sensitivity to cavity noise in this region.
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delay led to instability of the controller at unity gain
frequency. The additional phase introduced by the delay
can be measured as

ϕdelayðfÞ ¼ 2πfτdelay; ð20Þ

where τdelay ¼ 1=fsampling, the sampling frequency. To
ensure the delay’s contribution does not affect model
conclusions, the sampling rate should be at least a factor
of 20 higher than the unity gain frequency. Hence for
UGF of 10 kHz, a sampling frequency of 200 kHz was
required. This will allow at most only 18° of phase variation
at the UGF and hence be less prone to instability as the
phase margin is 30°. For the purpose of simulation and
evaluation, instead of having a higher sampling frequency,
the gains of the controllers were scaled down using a
overall scale factor to get a lower unity gain frequency.
Thus, the final model was designed with a controller of
unity gain frequency at 500 Hz with a sampling frequency
of 10 kHz. In this modified control system, the arm is
dominant from 0.2 mHz until 200 Hz, while the cavity is
dominant in the remaining frequency band.
The Doppler shifts were added to the system as errors in

the different Doppler trends similar to the analysis in [10].
The resultant pulling will be increased by the shorter round-
trip and at the same time, reduced due to a lower arm
controller bandwidth. The Simulink data is compared with
the predictive Doppler pulling model used in Sec. III using
the modified control system.

Figure 12 shows the noise spectrum using the time-
domain data from the Simulink model. Similar to the
analytical noise budget in Fig. 3, the main contribution is
given by the requirement-level cavity noise that is

FIG. 11. Simulink model illustrating the combination of arm and PDH locking. The purple boxes contain the noise sources considered
in this model while the green boxes contain the controllers for each of the sensors. The UGF of the combined controllers is 500 Hz, with
the sampling frequency at 10 kHz.

FIG. 12. Noise budget using the same noise models and transfer
functions in Sec. II C. The controller has a reduced unity gain
frequency at 500 Hz and the sampling frequency for this
simulation is 10 kHz and has been decimated to 100 Hz. Similar
to Fig. 3, the main contributing noise source is the requirement-
level cavity noise (pink trace) with the arm controller engaged at
lower frequencies.
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suppressed after engaging the arm controller. The other
noise sources couple in a similar way to Fig. 3. Figure 13
shows the Doppler pulling of the scaled system with the
associated analytical model. The close agreement between
analytic and simulated noise models provides validation of
the analytical modeling approach in Secs. II and III.

VII. DISCUSSIONS

This paper has proposed a hybrid arm- and cavity-
locking scheme for LISA. The demonstrated highlights are
as follows:
(1) The hybrid control system increases the noise

suppression by 3 orders of magnitude over most
of the LISA science band (a factor of 4500 at
10 mHz). This large suppression can be considered
as risk reduction against TDI, which continues to be
one of LISA’s main areas of active research, either
by providing a margin over baseline second-
generation TDI or allowing the deployments of a
simpler first-generation scheme. The noise reduction
can increase the margin for the baseline second-
generation TDI or be sufficient to deploy first-
generation TDI—potentially offering simplifications
in the processing (Sec. II).

(2) A lock acquisition scheme is proposed that ad-
dresses the transient behavior when engaging the
arm locking controller in the presence of Doppler
shifts. This was a limiting factor for the applicability
of previous arm locking schemes. In pre-stabiliza-
tion integration with arm locking [11], the cavity
control system uses a frequency-tunable or sideband

locking PDH scheme, supported by the arm locking
controller. This allows the Doppler pulling in the
controller (up to maximum of 10 MHz) to persist
due to the tunable frequency. In this paper, we
utilize a standard PDH locking system with a fixed-
length optical resonator and have stringent restric-
tions on the Doppler pulling. In Sec. III, the laser
frequency pulling is shown to be restricted to
�20 kHz, significantly smaller than the linewidth
of the cavity (100 kHz), maintaining the lock on the
cavity. This level of frequency pulling may introduce
a small, transient degradation in cavity noise perfor-
mance, as offsetting the cavity error signal from
resonance can couple intensity noise into the readout
scheme—but this noise will be suppressed by the arm
locking control system. To achieve a suitable level of
frequency pulling at start-up, we need to estimate the
Doppler shifts with high accuracy and populate them
in the arm locking control system.

(3) Two estimation methods for high accuracy estimates
of Doppler shifts using on-board measurements
have been proposed in Sec. IV: (1) averaging the
inter-spacecraft link phase readout and (2)using the
PRN ranging measurements. For a thermal-noise-
limited cavity, the Doppler parameter estimates can
be obtained after an integration time of at least
1200 s. If the cavity is at requirement-level perfor-
mance, the integration time needed is 50,000 s. PRN
measurements can be used for estimation, requiring
at least 6300 s of data. These integration times are
estimates based on the residual noise spectra and
will require further analysis.

(4) The scheme proposed here is compatible with the
LISA baseline design, requiring firmware updates
for the laser control system with minimal or no
changes to the hardware. Previous work involving
pre-stabilization integration with arm locking has
been described in [11,17], and can provide more
suppression compared to the combination in this
paper. But compared to these previous approaches,
which require hardware changes to the optical cavity
or locking system, the proposed control scheme may
require minor changes for the summation of the
feedback electronics of both the sensors depending
on the final implementation of the system. We
expect the digital resources required would be larger
than a simple cavity locker or phase locker, but by a
small factor (less than a factor of 2 larger in our
initial estimate).

Lastly, the Doppler estimation described here is indicative
only, and thus we acknowledge possible estimationmethods
involving complex control systems. For example, a scheme
utilizing the PDH sensors could be envisioned to iteratively
suppress visible pulling during the lock acquisition phase, at
the expense of possible “in-band” perturbations. However
the time constants of such a scheme need to be carefully

FIG. 13. Doppler pulling of the system with an errors in the
Doppler terms as ν0 ¼ 1.682491 Hz, γ0 ¼ 0.084615 Hz=s and
α0 ¼ −0.37239 nHz=s2. The controller has a reduced unity gain
frequency at 500 Hz and the sampling frequency for this
simulation is 10 kHz and has been decimated to 100 Hz. The
predictive model is able to match exactly the system performance
from Simulink.
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analyzed for stability and may require a thorough under-
standing of the LISA orbits. With further research, such
schemes could potentially serve as alternatives for lock
acquisition for arm locking.

VIII. CONCLUSIONS

This paper showed the control system dynamics and the
Simulink model of a new method that combines the locking
of both LISA arms and a Fabry-Perot cavity to enhance the
suppression of the laser frequency noise. From the noise
budget, the noise coupling into the interferometer response
is predominantly contributed by the requirement-level
cavity noise, below which clock and spacecraft motion
noise will be dominant. The suppression of requirement-
level cavity noise up to 3 orders, demonstrated herein is
sufficient for first-generation TDI to meet the requirements
of LISA (Fig. 3), thereby reducing the complexity of post-
processing computations.
This paper also proposes solutions to improve the

Doppler shift estimation that is required for lock acquis-
ition, by estimating the Doppler trends using inter-space-
craft link and/or inter-spacecraft ranging measurements.
The sensor used in this paper comprises of simple archi-
tecture of common arm sensor, and fixed cavity. The future
scope could be to explore more complex schemes of these
two sensors [10,16,19,20], which should help in better
suppression while maintaining low Doppler pulling.
Experimental verification of this combination would be
useful in solidifying the theoretical work.
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APPENDIX A: NOISE SOURCES

The noise sources, considered in this paper, are sum-
marized as follows:
(1) Laser frequency noise: The equation used for sim-

ulating the laser frequency noise in a free running
non-planar ring oscillator laser can be given as [10]

νLi
ðfÞ ¼ 30000 Hz

f
Hz=

ffiffiffiffiffiffi
Hz

p
: ðA1Þ

Here i can be 1, 2 or 3, referring to the laser
frequency noise in the laser sources in the individual

spacecrafts. Although there are noises sourced from
spacecrafts 2 and 3, they get suppressed as a result of
the high gain approximation of the transponders in
the spacecrafts. As a result, in this paper, the notation
νL will refer to νL1

, as spacecraft 1 is considered the
primary spacecraft. From the model in Fig. 1, the
output (at point C) due to the laser frequency noise
can be written as

νC;LðsÞ ¼ νLðsÞ − νC;LðsÞG1ðsÞPþðsÞ
− νC;LðsÞG2ðsÞPpdhðsÞ; ðA2Þ

LNðsÞ ¼ νC;LðsÞ
νLðsÞ

¼ 1

1þG1ðsÞPþðsÞ þ G2ðsÞPpdhðsÞ
: ðA3Þ

Here G1ðsÞ and G2ðsÞ are controllers of the arm
sensor and the cavity sensor, respectively, described
in Sec. V. It can be seen that both of the sensors
contribute to the suppression of the laser fre-
quency noise.

(2) Shot noise: The shot noise occurs due to quantum
fluctuations of the laser and is observed at the event
when the laser strikes the photo detector. It can be
modeled as shown below [10]:

θshot;ijðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ℏc
2π

1

λP

r
cycles=

ffiffiffiffiffiffi
Hz

p
: ðA4Þ

The equation refers to the shot noise arising due to
laser from spacecraft j being detected at spacecraft i.
As per the equation, if the laser has more optical
power, P, the amount of shot noise would be lower
and vice versa. The typical value for shot noise for
the application of LISA can be estimated using the
parameters and is found to be 6.9 μcycles=

ffiffiffiffiffiffi
Hz

p
[1]:

θshot;ijðsÞ ¼ 6.9 × 10−6 cycles=
ffiffiffiffiffiffi
Hz

p
; ðA5Þ

νshot;ijðsÞ ¼ ð6.9 × 10−6Þ:s Hz=
ffiffiffiffiffiffi
Hz

p
: ðA6Þ

The contribution from each shot noise can be
shown as

νC;shotðsÞ ¼ −νshot;ijðsÞG1ðsÞ − νC;shotG1ðsÞPþðsÞ
− νC;shotðsÞG2ðsÞPpdhðsÞ; ðA7Þ

SNðsÞ ¼ νC;shotðsÞ
νshot;ijðsÞ

¼ −G1ðsÞ
1þG1ðsÞPþðsÞ þ G2ðsÞPpdhðsÞ

: ðA8Þ
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Shot noise can be seen mainly in the frequency
bands where the arm is dominant but gets suppressed
otherwise. However, the amount of shot noise that
couples into the system is very low compared to
other noise sources and can be seen as the limits of
noise suppression.

(3) Cavity noise: For LISA, during the pre-stabilization
period, the laser frequency noise contribution can be
reduced to a residual amount if the cavity is made
using low-loss mirrors using ultra low expansion or
Zerodur [2,32]. This residual noise serves as a
limitation of the stability provided by the cavity.

νcavityðsÞ ¼ 30

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2 mHz

f

�
4

s �
Hz=

ffiffiffiffiffiffi
Hz

p
:

ðA9Þ

The contribution due to the cavity noise can be
shown as

νC;cavityðsÞ¼−νcavityðsÞG2ðsÞPpdhðsÞ
−νC;cavityðG1ðsÞPþðsÞþG2ðsÞPpdhðsÞÞ;

ðA10Þ

TNðsÞ ¼ νC;cavityðsÞ
νcavityðsÞ

¼ −G2ðsÞPpdhðsÞ
1þG1ðsÞPþðsÞ þ G2ðsÞPpdhðsÞ

: ðA11Þ

The transfer function for the cavity noise is given by
TN(s); one can see the cavity noise is suppressed by
the arm locking control system.

(4) Clock noise: It is caused by the clock signal on board
the spacecraft, which is utilized for phasemeter
measurements [10], and is dependent on the beat
note frequency. The following equations describe
the clock noise in LISA:

CiðfÞ ¼
eyiðfÞ
2πf

cycles=
ffiffiffiffiffiffi
Hz

p
: ðA12Þ

Here the value of eyi is 2.4 × 10−12=
ffiffiffi
f

p
1=

ffiffiffiffiffiffi
Hz

p
and

represents the fractional fluctuations of the clock that
is used. The value of i can be 1, 2 or 3, corresponding
to the clock in each individual phasemeter from
spacecraft 1, 2 or 3.

ϕclock;ijðfÞ ¼ ΔijCiðfÞcycles=
ffiffiffiffiffiffi
Hz

p
; ðA13Þ

νclock;ijðfÞ ¼ Δij:CiðfÞ:s Hz=
ffiffiffiffiffiffi
Hz

p
: ðA14Þ

The beat note frequency, Δij between two space-
crafts i and j, is given a value of 30 MHz, assuming

the worst-case scenario of Doppler pulling between
the spacecrafts to be 5 MHz (�5 MHz) and a
maximum heterodyne measurement offset of
25 MHz between two spacecrafts [1]. The corre-
sponding noise response due to clock noise can be
computed as

νC;clockðsÞ ¼ −νclock;ijðsÞG2ðsÞ − νC;clockG1ðsÞPþðsÞ
− νC;clockðsÞG2ðsÞPpdhðsÞ; ðA15Þ

CNðsÞ ¼ νC;clockðsÞ
νclock;ijðsÞ

¼ −G1ðsÞ
1þ G1ðsÞPþðsÞ þ G2ðsÞPpdhðsÞ

: ðA16Þ

The clock noises would be correlated if the same
clock source is used for phasemeter measurement
and uncorrelated if there are separate clock sources.

(5) Spacecraft motion noise: This noise is generated
when the spacecraft follows the proof masses to
retain drag free operation and cause inter-spacecraft
jitters and is given by [17]

ΔX̃ijðsÞ ¼ 1.5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
8 mHz

f

�
4

s
nm=

ffiffiffiffiffiffi
Hz

p
; ðA17Þ

ϕSC;ijðsÞ ¼
ΔX̃ijðsÞ

λ
cycles=

ffiffiffiffiffiffi
Hz

p
; ðA18Þ

νSC;ijðsÞ ¼ ϕSC;ijðsÞ:s Hz=
ffiffiffiffiffiffi
Hz

p
; ðA19Þ

where λ is the laser wavelength and is 1064 nm for
LISA. The corresponding noise response due to
spacecraft motion can be computed as

SCNðsÞ¼ νC;SCðsÞ
νSC;ijðsÞ

¼ −G1ðsÞ
1þG1ðsÞPþðsÞþG2ðsÞPpdhðsÞ

: ðA20Þ

The spacecraft motion noise, νSC;ij refers to the
jitter between spacecraft i and j, to match the proof
mass in spacecraft i. Both the clock noise and space-
craft motion have the same transfer function and
hence, reaches the limit in the LISA science band
while getting suppressedwhen the cavity is dominant.
The total spacecraft motion noise propagated

through the system can be shown as below:

νSCðsÞ ¼ −νSC;12ðsÞ½1þ e−2sτ12 � − 2½νSC;21ðsÞe−sτ12 �
− νSC;13ðsÞ½1þ e−2sτ13 �
− 2½νSC;31ðsÞe−sτ13 �: ðA21Þ
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(6) Digitization noise: Digital hardware used for pha-
semeters and controllers couple noise into the
system, due to analog-digital conversions and pre-
cision of integer arithmetic. But the contribution is
very small, of the order of 10−10 [17], and is
neglected for noise budget in this paper.

APPENDIX B: SINUSOIDAL SPACECRAFT
SEPARATION ORBITAL MODEL

With respect to the orbital dynamics of LISA that is
described by the model in Eq. (11), the frequency pulling at
lock acquisition can be reduced further if the Doppler shifts
are modeled as a combination of sinusoids of half-year
and a year periods, rather than the polynomial model of
Doppler shifts in Sec. III. The sinusoidal model is

νD;estðtÞ ¼ ν0;þ þ γ0;þtþ
ZZ

αðtÞdt0dt; ðB1Þ

where

αðtÞ ¼ α̂1 sinðω̂1tþ ϕ̂1Þ þ α̂2 sinðω̂2tþ ϕ̂2Þ: ðB2Þ
Hereν0;þ and γ0;þ are the estimates of theDoppler shift and

the first derivative ofDoppler shift (Doppler rate) at the instant
when the controller is just turned on. α̂1 and α̂2 are amplitude
estimates of the two sinusoids of frequency estimates ω̂1

and ω̂2, along with phase shift estimates ϕ̂1 and ϕ̂2, which
provides the Doppler acceleration of the system.
The maximum allowed values for the error in the Doppler

shift parameters are given in Table IV for the sinusoidal
orbital model. The values were obtained by Monte Carlo
simulations that select outputs that maintain less than
�20 kHz deviation of laser frequency at lock acquisition.

FIG. 14. Frequency deviation from cavity line center due to
Doppler-error-pulling at lock acquisition. The estimate is calcu-
lated using the sinusoid functions in Eq. (B1) for estimation. The
black traces show the different Monte Carlo simulations with the
dashed traces showing the pulling with the maximum error limits,
given in Table IV. The maximum pulling is 20 kHz and the
HWHM linewidth of the cavity is 100 kHz, maintaining the
cavity lock.

TABLE IV. Parameter requirements for orbital knowledge in order to meet lock acquisition conditions with the controller shown in
Fig. 10. Each parameter’s error limit is checked in combination with the errors of other parameters in Monte Carlo simulations. The
achievable levels are cross-checked with estimation using Fabry-Perot (FP) cavity estimation in [10] and PRN ranging, or thermal noise
limited (TNL) cavity estimation as described in Sec. IV. The other parameters require more information using orbital analysis before or
during the commissioning of LISA.

Parameter Actual=Maximum value Maximum error tolerance (�) Fractional change Estimation methods

ν0 12 MHz 10 Hz 8.33 × 10−7 FP cavity estimation/TNL estimation
γ0 4 Hz=s 60 μHz=s 2.5 × 10−4 PRN ranging/TNL estimation
α1 −1 μHz=s2 20 nHz=s2 2 × 10−2 PRN ranging/TNL estimation
α2 0.25 μHz=s2 20 nHz=s2 8 × 10−2 PRN ranging/TNL estimation
f1 63.4 nHz 0.1 nHz 1.57 × 10−3 Orbital dynamics
f2 31.7 nHz 0.1 nHz 3.15 × 10−3 Orbital dynamics
ϕ1 2 πrad 10 μrad 1.6 × 10−6 Orbital dynamics
ϕ2 2 πrad 10 μrad 1.6 × 10−6 Orbital dynamics

FIG. 15. Doppler shifts with the estimation models using the
sinusoid functions in Eq. (B1) for estimation. With the red dotted
trace showing the actual Doppler shifts in Eq. (11), the black
traces show the various Monte Carlo orbital models for different
errors in the parameters with the dashed lines trace showing the
worst case, given in Table IV.
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The results of the simulations are shown in Fig. 14. Figure 15
shows the spread of the sinusoidal model, at the worst-case
orbit phase, based on the parameters in Table IV. The
sinusoidal model is more accurate than the polynomial
model (but more complex). If parameter estimates for the
orbital model are better than those in Table IV, using the
sinusoidal orbital model can lead to a smaller frequency
deviation at lock acquisition than is possible to achieve with
the polynomial model, which is limited by the intrinsic
model error. Doppler shift parameter estimation shown in
Sec. IV will be able to converge to the required precision of
Table IV.
Alternatively, FP cavity estimation with LISA require-

ment-level performance, described in [10] can be used for the
estimation for ν0 while the PRN ranging can be used for
estimating γ0, α̂1 and α̂2, similar to the analysis in Sec. IV.We
expect the parameters f̂1, f̂2, ϕ̂1 and ϕ̂2 to be derived from
orbital models of LISA described analytically or measured
during commission period. During the transient of the lock
acquisition, the cavity is detuned up to 20 kHz. Though it is
still in the linear regime, the optimal noise performance may
be compromised to some extent, discussed earlier.

APPENDIX C: IMPLEMENTATION OF
CONTROLLERS

For ease of implementation, stage I of controller 1 was
implemented as a sum of multiple low-pass filters with
appropriate gains. The poles and gains of the low-pass
structure are given in Table V:

G1;IðsÞ ¼
g0
s2

X13
i¼1

gi
sþ pi

: ðC1Þ

A similar approach was done to implement controller 2
using the values in Table VI:

G2ðsÞ ¼
g0
s

X13
i¼1

gi
sþ pi

: ðC2Þ
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