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The Sun provides an excellent target for studying spin-dependent dark matter-proton scattering due to its
high matter density and abundant hydrogen content. Dark matter particles from the Galactic halo can
elastically interact with Solar nuclei, resulting in their capture and thermalization in the Sun. The captured
dark matter can annihilate into Standard Model particles including an observable flux of neutrinos.
We present the results of a search for low-energy (<500 GeV) neutrinos correlated with the direction of the
Sun using 7 years of IceCube data. This work utilizes, for the first time, new optimized cuts to extend
IceCube’s sensitivity to dark matter mass down to 5 GeV. We find no significant detection of neutrinos from
the Sun. Our observations exclude capture by spin-dependent dark matter-proton scattering with cross section
down to a few times 10−41 cm2, assuming there is equilibrium with annihilation into neutrinos/antineutrinos
for dark matter masses between 5 GeVand 100 GeV. These are the strongest constraints at GeVenergies for
dark matter annihilation directly to neutrinos.

DOI: 10.1103/PhysRevD.105.062004

I. INTRODUCTION

Based on numerous observations from cosmology and
astronomy, dark matter (DM) is believed to constitute
over ∼80% of all matter in the universe [1–4]. The quest
to establish the particle nature of DM is also tied to
observations in high energy astrophysics, including
observations in neutrinos. The search for neutrinos
produced by annihilations or decays of DM is one major
aspect of indirect detection of DM from astrophysical
objects. The Sun is particularly well suited for such
searches as it has been gravitationally capturing candi-
dates for DM particles such as weakly interacting massive

particles (WIMPs) from the surrounding halo for its entire
lifetime of 4.5 billion years [5–9]. These particles
accumulate in the Sun, where they annihilate into stan-
dard model (SM) particles as their density builds up. This
process provides a route to studying WIMP interactions
with nucleons since there is time for equilibrium to be
established between captures and annihilations [10–14].
Given the high matter density of the Sun, the only SM

particles that can escape the Sun with relatively little
attenuation are neutrinos [15–21]. (Secluded DM models
where DM annihilation proceeds via a long-lived mediator
which can decay outside the Sun into SM particles, also
allow for the production of gamma rays in addition to
neutrinos correlated with the direction of the Sun [21–32]).
Several experiments including Super-Kamiokande [33],
IceCube [34,35] and ANTARES [36,37] have looked for
neutrino signatures of DM annihilation in the Sun. These
searches are especially useful for probing spin-dependent
DM-proton scattering cross sections, and have already
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outperformed direct detection experiments by more than an
order of magnitude in terms of sensitivity. IceCube’s
previously published searches using three years of data
already result in the world’s best constraints on the spin-
dependent scattering cross section for DM mass in the range
Oð100Þ GeV to 10 TeV.
Due to IceCube’s optimal sensitivity to TeV–PeV

neutrinos, the detector’s probing of DM parameter space
below 50 GeV has been limited up until now, while a large
parameter space for GeV WIMPs remains unconstrained
[38]. This work for the first time extends IceCube’s reach
to 5 GeV DM masses for some of the studied annihilation
channels. The paper is structured as follows. Section II
describes the IceCube detector and the process of data
selection used in this analysis. Section III presents the
analysis, including the details of the signal and back-
ground estimation methods used. The results are discussed
in Sec. IV. Section V presents our conclusions and places
the results in context.

II. ICECUBE AND DEEPCORE DATA

A. Detector

The IceCube Neutrino Observatory—located at the
South Pole—consists of an array of 5160 photodetectors
on 86 strings embedded within 1 km3 of the Antarctic ice.
Each photodetector unit—known as a digital optical
module (DOM)—is a downward facing photomultiplier
tube (PMT) with associated electronics enclosed within a
glass vessel [39]. The typical horizontal spacing between
the strings is 125 m with 60 DOMs per string. The
exception are the 8 strings in the bottom-center of the
array known as DeepCore, which has a geometry opti-
mized to lower the energy threshold of IceCube [40]. A
higher density of high-quantum efficiency DOMs,
coupled with the outer array acting as a veto region to
reject atmospheric muons makes DeepCore particularly
suitable for detecting neutrinos as low as ∼5 GeV in
energy. A detailed description of the instrumentation and
signal reconstruction can be found in Refs. [41,42].

B. Event selection

We use IceCube and DeepCore data collected between
January 1st, 2011 and January 1st, 2018 with a total live-
time of 6.75 years. The event selection and reconstruction
used in this analysis follows the same methods as those
used in Ref. [43]. The IceCube DOMs surrounding the
DeepCore volume are used to veto atmospheric muons.
This is achieved by rejecting events in which photons in
a certain time-window are observed outside before they
are detected in DeepCore. The photoelectrons detected
within the DeepCore volume are fitted using a multidi-
mensional likelihood to estimate the energy and direction
of a neutrino event. Each event is classified as either
“tracklike” or “cascadelike”, depending on whether the fit

is better described by a νμ charged-current (CC) inter-
action, or a hadronic shower with no muon resulting from
neutral current interactions as well as ντ=νe CC inter-
actions. An eleven variable boosted decision tree (BDT)
is used to further reject atmospheric muons.
The two main differences in the event reconstruction

with respect to that in [43] are at the final data reduction
level and are discussed here. One, we no longer require
that the stopping vertex of the reconstructed muon be
contained within DeepCore. Two, the boosted decision
tree (BDT) cut is loosened to allow additional particles in
the data sample. The purpose of the aforementioned
relaxed cuts is to enhance the overall number of neutrinos
in the data at the cost of an increase of 13% background
contamination with respect to that given in [43]. The final
sample includes 192,212 events. This is also the first time
that an IceCube analysis utilizes both “tracklike” and
“cascadelike” events to search for dark matter. At the low
energies considered in this work, tracks and cascades
show negligible differences in their angular resolutions.
The median angular resolution of events in this sample at
10 GeV is ∼35° and improves to ≤ 5° above 200 GeV.

III. ANALYSIS

We use an unbinned likelihood ratio method to search
for neutrinos correlated with the direction of the Sun. The
one-dimensional likelihood function is given by,

LðnsÞ ¼
YN

i

�
ns
N
SðΨiÞ þ

�
1 −

ns
N

�
BðΨiÞ

�
; ð1Þ

where ns is the number of signal neutrino events, N is the
total number of data events, Ψi is the angular distance
between the reconstructed direction of the ith event and
the direction of the Sun, SðΨiÞ is the signal probability
distribution function (PDF) for the ith data event, and
BðΨiÞ is the background PDF for the ith data event. Given
the similar angular resolutions of tracks and cascades in
this sample, the likelihood does not depend on event-
topology and tracks and cascades are treated identically.
We also calculate a test statistic (TS), given by twice the
logarithm of the ratio of the best-fit likelihood to the null
(background-only) hypothesis,

TS ¼ 2 log
Lðn̂sÞ

Lðns ¼ 0Þ ; ð2Þ

where n̂s is the best fit value of the number of signal
events. The modeling of the signal PDF from simulation
and the background PDF from randomized data are
described below.
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A. Signal and background probabilities

1. Neutrinos from DM annihilation

We consider only DM masses higher than 5 GeV for
which evaporation from the Sun is negligibly small [44,45].
Ignoring self-interactions, the number of DM particles in
the Sun NχðtÞ is given by,

dNχ

dt
¼ Γcap − KannN2

χ ; ð3Þ

where Γcap is the WIMP capture rate, and the second term
expresses the annihilation rate in terms of a factor Kann,
that accounts for the DM number density and the
velocity-averaged annihilation cross section [46]. Once
equilibrium has been reached between WIMP capture and
annihilation rate, the capture rate and annihilation rate
Γann are related by,

Γcap ¼ 2Γann: ð4Þ

The factor of two accounts for the fact that every
annihilation event involves two DM particles. The cap-
ture rate itself is a function of DM-proton cross section
(σSD spin-dependent and σSI spin-independent). On the
observable side, the neutrino/anti-neutrino flux at Earth
from DM annihilation in the Sun dϕν=dt is given by,

dϕν

dt
¼ Γann

4πD2

dNν

dE
; ð5Þ

where D is the Earth-Sun distance and dNν=dE is the
spectral energy distribution of the final-state neutrinos
and anti-neutrinos produced as a result of DM annihila-
tion. This means that using the measured flux of neutrinos
and the assumed DM annihilation spectra, we can con-
strain the annihilation rate under equilibrium [Eqs. (4)
and (5)], and therefore, the DM-proton cross section.
We consider DM annihilation via three different chan-

nels: bb̄, ττ̄ and νν̄. The annihilation spectra are modeled
using WIMPSIM [31,47], while the neutrino interactions in

the detector are simulated using GENIE [48]. At any given
energy, we can weight the simulations by a desired flux
model to calculate the total signal or background weights.
The signal weight at a given energy is computed using the
all-flavor neutrino spectrum from WIMPSIM for a given
DM mass and channel, whereas the background weights
are obtained from the atmospheric neutrino spectrum
[49]. The signal PDF generation is a two-step process.
First, for each annihilation channel and WIMP mass we
determine an optimal range in reconstructed neutrino
energy that maximizes the ratio of the summed signal
weights and the square root of the background weights.
Table I lists the optimal reconstructed neutrino energy
ranges for each mass and annihilation channel. In the
second step, we obtain the signal PDF by weighting the
angular separation between the simulated neutrino and
the reconstructed neutrino by the WIMPSIM flux at the
given reconstructed neutrino energy. This procedure
effectively assigns a higher weight to the neutrinos in
the optimized energy range and a directional correlation
with the Sun. Figure 1 (left panel) illustrates the signal
and background PDFs as a function of the angular
separation from the Sun.

2. Background estimation

The background PDFs are parametrized as a function
of the angular separation from the Sun. For every event in
the data, 30 azimuth angles are randomly sampled from a
uniform distribution. These 30 angles are then combined
with the Sun zenith angle to generate a random “fake”
Sun position vector. The angle between the reconstructed
neutrino direction and the randomized Sun direction is
then used to fill the background PDF histogram. This
process ensures that for any given position of the Sun, the
background is estimated by randomizing the event direc-
tions with respect to the trajectory of the Sun (Fig. 1).

IV. RESULTS

For all three annihilation channels, and DM masses
between 5 GeV and 100 GeV (up to 500 GeV for cross-
checks), we determine the best-fit number of signal event,
ns that maximizes the likelihood in Eq. (1). We obtain no
statistically significant deviation from the expected back-
ground for any of the masses and channels we scanned.
Figure 1 (right panel) shows the observed distribution of
events in a 200° by 180° region in Sun-centered coor-
dinates. The highest TS obtained for any test was 0.11 for
a mass of 300 GeV with DM annihilating to τþτ−. We
note that such an underfluctuation of data across all tests
we performed is not unlikely given that the tests are
highly correlated. From background-only simulations, we
expect all masses for a given channel to show a TS ¼ 0,
5% of the time.

TABLE I. The reconstructed energy ranges of neutrinos used in
the search for each WIMP mass and channel. The median energy
of neutrinos in each range is shown in parentheses.

WIMP Mass
(GeV)

τþτ− Ereco
(GeV)

νν̄ Ereco
(GeV)

bb̄ Ereco
(GeV)

5 <9 (7) 2–11 (8) –
10 1–16 (10) <23 (13) 0–11 (8)
20 3–30 (15) 13–39 (23) <18 (11)
35 8–50 (21) 25–70 (38) <27 (14)
50 15–69 (29) 42–86 (55) 3–38 (17)
100 30–128 (47) 83–167 (107) 6–70 (22)
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A. Systematic uncertainties

The results presented in this work are sensitive to
systematic uncertainties due to detector effects. The
systematic uncertainties affect the overall event rate, as

well as the angular and energy resolutions in the analysis.
In order to study how these effects propagate into the
signal PDFs and finally the upper limits on the DM-
proton scattering cross section, we repeat all the analysis

FIG. 1. Left: the PDF distributions for signal (orange) and background (blue) for three different annihilation channels and WIMP
masses. The top panel corresponds to the bb̄ annihilation channel for a 10 GeV WIMP mass, the middle panel to annihilation into
τþτ− for 35 GeV WIMP mass, and the bottom panel annihilation into νν̄ for 100 GeV WIMP mass, under the assumption of 100%
annihilation to the respective channel. The angle Ψ represents the opening angle with respect to the Sun. Right: Sun-centered data
maps for the corresponding channels (masses). The black cross marks the position of the Sun. αrel and θrel are the azimuth and zenith
angles relative to the Sun, respectively.
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steps on several simulated datasets. Each simulation was
produced by varying the parameters of photon propaga-
tion at the detector, the DOM efficiency and the models of
hole-ice (surrounding the strings) and the bulk ice
(between the strings) up to �10%. We then compare
the sensitivity obtained in these simulations to that
obtained from the baseline case. Table II describes the
effect on the sensitivity for each WIMP mass for the
two most notable systematics, for annihilation to bb̄
(other channels show similar trends). At low masses
(10 GeV), the most dominant systematic—DOM effi-
ciency [39]—degrades the sensitivity up to 20%. At
100 GeV, the biggest impact is due to the modeling of
bulk ice properties, such as the scattering and absorption
of photons by ice [50,51]. The effect is below 8%.

B. Constraints

We set 90% upper limits on ns and the annihilation rate
Γann [s−1] of DM. The limits on annihilation rate are then
converted to limits on the spin-dependent and spin-
independent DM-proton cross sections following [52].
Tables III and IV summarize these results. Figure 2 shows
the limits on the spin-dependent cross section as a function
of DMmass. For each mass, we show the least constraining

limits as obtained under the largest systematic variation for
the respective mass (Table II). The differences between the
limits for different channels depend on their spectral energy
distributions relative to IceCube energy threshold. The
differences between the limits for different masses are
related to IceCube’s varying angular resolution with energy.
In particular, poorer angular resolution (∼35°) for neutrinos
below ∼10 GeV, results in an increased number of back-
ground events in the search region, worsening the limits for
lower masses and softer channels. For any given channel,
IceCube limits on the spin-dependent WIMP-proton cross
section presented in this paper are world-leading and are the
strictest so far among indirect DM search experiments.
IceCube is particularly sensitive to direct annihilation of
DM into neutrinos and the constraints for this channel are
stronger than those obtained via direct detection [53].
The predicted flux of solar atmospheric neutrinos is, in

principle, a background for dark matter searches from the
Sun [55–57]. However, as shown in Ref. [58], IceCube is
not yet sensitive enough to detect the expected flux of
neutrinos from cosmic ray interactions in the Sun. In fact,
compared to the sensitivity required [56,57], the cross
section limits reported in this work are still nearly two
orders of magnitude higher.

TABLE II. The ratio of sensitivity (upper limits) obtained under
different systematic variations to the baseline sensitivity (upper
limits) obtained in this analysis. Absolute DOM efficiency and
the uncertainties in the bulk ice scattering and absorption
coefficients are the most dominant systematics in this analysis.

WIMP Mass (GeV) 10 20 35 50 100

DOM Efficiency −6% 1.17 1.13 1.10 1.09 1.03
DOM Efficiency þ6% 0.85 0.90 0.96 0.95 0.97
Absorption þ10% 1.06 1.05 1.03 1.02 0.97
Scattering þ10% 1.02 1.06 1.08 1.09 1.06

TABLE III. 90% C.L limits on the spin-independent and spin-dependent dark matter-proton cross section for DM annihilation to bb̄
(left), τþτ− (center) and νν̄. The expected sensitivity from an ensemble of background-only observations is also shown under σExpSD [cm2]
for each channel and DM mass.

bb̄ ττ̄ νν̄

Mass
(GeV)

σSI [cm2]
×10−41

σSD [cm2]
×10−39

σExpSD [cm2]
×10−39

σSI [cm2]
×10−41

σSD [cm2]
×10−39

σExpSD [cm2]
×10−39

σSI [cm2]
×10−41

σSD [cm2]
×10−39

σExpSD [cm2]
×10−39

5 � � � � � � � � � 5.34 1.33 1.38 0.38 0.092 0.23
10 16.6 8.39 10.8 0.29 0.15 0.21 0.04 0.029 0.057
20 1.54 1.57 2.53 0.05 0.05 0.08 0.02 0.014 0.027
35 0.54 0.93 1.50 0.02 0.03 0.05 0.01 0.012 0.022
50 0.34 0.80 1.29 0.009 0.02 0.04 0.004 0.011 0.020
100 0.29 1.12 1.23 0.008 0.03 0.04 0.005 0.022 0.024

TABLE IV. 90% C.L. limits on annihilation rate for DM
annihilation to bb̄ (left), τþτ− (center) and νν̄.

Mass
(GeV)

bb̄ ττ̄ νν̄
Γann [s−1� × 1023 Γann [s−1] ×1023 Γann [s−1] ×1023

5 139 9.55
10 396 7.0 1.37
20 2.97 0.97 0.27
35 7.41 0.22 0.09
50 3.51 0.096 0.05
100 1.39 0.038 0.027
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V. CONCLUSION

We present a new analysis of low-energy neutrino data
from the IceCube DeepCore detector to probe spin-
dependent dark matter-proton scattering and dark matter
annihilation rate in the Sun. Our limits are some of the
strongest in the world for a range of dark matter masses
between 5 GeV and 100 GeV. The work demonstrates
that neutrino telescopes even with limited statistics and
angular resolution at low-energies can still provide a
powerful probe of new physics. The DM limits are
also a powerful probe of the coupling constants of
the nonrelativistic effective field theory of dark matter-
nucleon interactions, including velocity- and momentum-
dependent interactions [59].
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FIG. 2. 90% upper limits (solid lines) and expected sensitivity (dotted) on the spin-dependent cross section as a function of WIMP
mass obtained by 7 years of IceCube DeepCore data in this work. We validated the analysis up to 500 GeVand 300 GeV for bb̄ and τþτ−
but only show up to 100 GeV in the tables for consistency.The dark and light shaded bands show the central 68% and 95% expected
limits respectively. Also shown are limits from the Super-K [33], PICO-60 [53] and ANTARES [54] experiments.
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