
Nonperturbative light-front effective potential for static sources
in quenched scalar Yukawa theory

Sophia S. Chabysheva
Department of Physics, University of Idaho, Moscow, Idaho 83844, USA

John R. Hiller
Department of Physics, University of Idaho, Moscow, Idaho 83844, USA

and Department of Physics and Astronomy, University of Minnesota-Duluth,
Duluth, Minnesota 55812, USA

(Received 30 December 2021; revised 21 February 2022; accepted 13 March 2022; published 30 March 2022)

We compute an effective potential between two fixed sources in light-front quantization of a quenched
scalar Yukawa theory that models the interaction of complex scalar fields through the exchange of a neutral
scalar. Despite the breaking of explicit rotational symmetry by the use of light-front coordinates, the
effective potential is rotationally symmetric and matches the standard Yukawa potential for scalar
exchange. The neutral scalar field is represented by a coherent state, which is obtained nonperturbatively as
an eigenstate of our model Hamiltonian, with the eigenenergy determining the effective potential. The
sources are represented by wave packets that are fixed with respect to ordinary time, but move in light-front
coordinates. The theory is quenched, to remove pair-production processes that would otherwise cause the
spectrum to be unbounded from below. For divergent contributions we consider both a simple momentum
cutoff and a Pauli-Villars regularization, with the divergence absorbed by a renormalized mass for the
sources.
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I. INTRODUCTION

A key quantity to obtain from quantum chromodynamics
is the effective potential between a quark and an antiquark
[1].1 This has been studied quite carefully in the lattice
formulation of QCD [3]. For comparison, it would be
useful to be able to do the equivalent calculation in a
nonperturbative light-front formulation.2 In order to
develop a method for doing so, we study static sources
in a quenched scalar Yukawa theory, where the complica-
tions of gauge fields and intrinsic quantum numbers can be
neglected. We focus on formulating an eigenvalue problem
that yields the energy of a state with two static sources
dressed by a cloud of scalar particles. While doing so, we
accommodate the later necessity of associating dynamics
with intrinsic quantum numbers of the sources. This is to
allow for sources with spin and color charge that will
change when interacting with the surrounding cloud. Here

we restrict the model to complex source fields with
ordinary charge; however, we accommodate the possibility
of dynamical properties by placing the static sources in the
quantum state, rather than using delta-function currents in
the Lagrangian.
The analysis of static sources on a light front has been

considered previously. In particular, Rozowsky and Thorn
[10] studied the force between two sources on a light front by
arranging a purely transverse separation, a limitation that we
avoid. Burkardt and Klindworth [11] applied a transverse
lattice approach [12] in (2þ 1)-dimensional QCD to the
calculation of a QQ̄ potential which is nearly rotationally
invariant. Blunden et al. [13] considered light-front models
where a particle interacts with a static potential.
An important aspect of our work is that we obtain the

effective potential through variation of the ordinary energy,
built from light-front quantities, rather than the light-front
energy alone. This is the physical definition of a potential
that can be translated into a force between the sources.
The necessity of considering the ordinary energy has been
seen in other contexts [14–17]. Such a consideration is also
important because the static sources prevent momentum
conservation, leaving the ordinary energy as the only
conserved part of the four-momentum.
We take the following as our definition of light-front

coordinates [18]:
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1For recent discussion of static sources, see, for example, [2].
2For reviews of light-front quantization and applications, see [4–9].
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x� ≡ ðt� zÞ; x⃗⊥ ¼ ðx; yÞ; x ¼ ðx−; x⃗⊥Þ; ð1:1Þ

with xþ chosen as the light-front time. The inversion is
obviously t ¼ 1

2
ðxþ þ x−Þ and z ¼ 1

2
ðxþ − x−Þ. These

relationships are illustrated in Fig. 1(a).3 The associated
derivatives are

∂
∂x� ¼ 1

2

� ∂
∂t�

∂
∂z

�
: ð1:2Þ

The light-front energy and momentum are

p−≡Eþpz; pþ≡E−pz; p⃗⊥¼ðpx;pyÞ: ð1:3Þ

The dot product of four-vectors is p · x ¼ 1
2
p−xþ þ p · x

with p · x ¼ 1
2
pþx− − p⃗⊥ · x⃗⊥ as the dot product of

three-vectors. The mass-shell condition is then p · p ¼
pþp− − p2⊥ ¼ m2, which implies p− ¼ ðm2 þ p2⊥Þ=pþ.
In what follows, we first define quenched scalar Yukawa

theory in light-front quantization, in Sec. II. The con-
struction of a single static source dressed by neutral scalars
is described in Sec. III; this includes mass renormalization
such that the eigenenergy is equal to the physical mass of
the complex scalar field. Two static sources are then
constructed as a product of single sources placed with
fixed separation in Sec. IV; here we obtain the key result
that the energy of the two-source eigenstate is shifted from
twice the physical mass of one by an amount equal to the
Yukawa potential. We also compute the change in the
average number of neutral scalars. To anticipate similar
calculations in more complicated theories, particularly
gauge theories, we rederive these results with use of
Pauli-Villars regularization [9] in Sec. V to replace the
simple momentum cutoff used in Secs. III and IV. A brief
summary is given in Sec. VI. Details of the construction of

wave packets on a light front are given in Appendix A, to
properly represent a static source that moves in the x−

direction [13]. Some aspects of the calculations and an
alternate approach to the single-source case are placed in
additional Appendixes.

II. QUENCHED SCALAR YUKAWA THEORY

Scalar Yukawa theory couples a complex scalar field χ
with bare mass m0 to a real scalar field ϕ with mass μ; the
physical mass of the complex scalar will be written as m.
The Lagrangian is

L¼∂μχ
�∂μχ−m2

0jχj2þ
1

2
ð∂μϕÞ2−

1

2
μ2ϕ2−gϕjχj2: ð2:1Þ

This model is also known as the (massive) Wick–Cutkosky
model [20] and has received considerable attention in light-
front quantization [21–31] in both two and four dimen-
sions. The most recent work focuses on the construction of
the eigenstate for a charged scalar dressed by a cloud of
neutrals [32,33].
The quenched form of the theory excludes pair produc-

tion. Without this restriction, the theory is ill defined, with a
spectrum that is unbounded from below, as happens in any
cubic scalar theory [34,35]. The quenching also means that
the neutral scalar does not require mass renormalization,
hence the use of the physical mass μ in the Lagrangian.
The light-front Hamiltonian density is [9]

H¼j∂⃗⊥χj2þm2
0jχj2þ

1

2
ð∂⃗⊥ϕÞ2þ

1

2
μ2ϕ2þgϕjχj2: ð2:2Þ

The mode expansions for the fields are

ϕðxÞ ¼
Z

dpþd2p⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3pþp ½aðpÞe−ip·x þ a†ðpÞeip·x� ð2:3Þ

(a) (b)

FIG. 1. Static source trajectories in the z − t plane for (a) ordinary and (b) light-front coordinates.

3The figure was drawn with JaxoDraw [19].
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and

χðxÞ ¼
Z

dpþd2p⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3pþp ½cþðpÞe−ip·x þ c†−ðpÞeip·x�: ð2:4Þ

The nonzero commutators are

½aðpÞ; a†ðp0Þ� ¼ δðp − p0Þ≡ δðpþ − p0þÞδðp⃗⊥ − p⃗0⊥Þ;
½c�ðpÞ; c†�ðp0Þ� ¼ δðp − p0Þ: ð2:5Þ

The light-front Hamiltonian is P− ¼ P−
0 þ P−

int, with

P−
0 ¼

Z
dp

m2
0 þ p⃗2⊥
pþ ½c†þðpÞcþðpÞ þ c†−ðpÞc−ðpÞ�

þ
Z

dq
μ2 þ q⃗2⊥

qþ
a†ðqÞaðqÞ; ð2:6Þ

and

P−
int¼g

Z dpdqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3pþqþðpþþqþÞ

p ½ðc†þðpþqÞcþðpÞþc†−ðpþqÞc−ðpÞÞaðqÞþa†ðqÞðc†þðpÞcþðpþqÞþc†−ðpÞc−ðpþqÞÞ�

þg
Z

dp
1
dp

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3pþ

1 p
þ
2 ðpþ

1 þpþ
2 Þ

p ½c†þðp1
Þc†−ðp2

Þaðp
1
þp

2
Þþa†ðp

1
þp

2
Þcþðp1

Þc−ðp2
Þ�: ð2:7Þ

For the quenched theory, the second term inP−
int is dropped.

The light-front momentum operator is

Pþ ¼
Z

dqqþa†ðqÞaðqÞ

þ
Z

dppþ½c†þðpÞcþðpÞ þ c†−ðpÞc−ðpÞ�: ð2:8Þ

We then define an ordinary energy operator as

E ¼ 1

2
ðP− þ PþÞ: ð2:9Þ

This will play a key role, because momentum is not
conserved when static sources are present.

III. SINGLE SOURCE

A. Wave packet for the source

A static source is not at rest in light-front coordinates. It
moves steadily in the positive x− direction, as indicated in

Fig. 1(b). For this we consider light-front wave packets
for the sources, which are discussed in detail in
Appendix A. We place a single source at �R⃗=2 with a
state given by

jF�i ¼
Z

dp
ffiffiffiffiffiffi
pþp

F�ðpÞc†�ðpÞj0i; ð3:1Þ

where F�ðpÞ is a momentum-space envelope function
peaked at a light-front momentum for an object of mass
m at rest, p ¼ ðm; 0⃗⊥Þ. The explicit factor of

ffiffiffiffiffiffi
pþp

is
included to facilitate calculation of expectation values for
the light-front energy and the probability density.
The model is intended to produce a spatial probability

density that is sharply peaked at the source locations�R⃗=2.
To impose this, we compute the expectation value of jχj2
for the state jF�i

hF�j∶jχ2j∶jF�i ¼ hF�j
Z

dp0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3p0þp dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16π3pþp ½c†þðp0ÞcþðpÞeiðp0−pÞ·xþc†−ðp0Þc−ðpÞeiðp0−pÞ·x þ � � ��jF�i: ð3:2Þ

Here the extra dots indicate terms that do not contribute. Contractions of the various operators yield delta functions that
resolve all but two sets of integrals. We evaluate at xþ ¼ 0:

hF�j∶jχ2j∶jF�ijxþ¼0 ¼
Z

dp0ffiffiffiffiffiffiffiffiffiffi
16π3

p F��ðp0Þeip0·x
Z

dpffiffiffiffiffiffiffiffiffiffi
16π3

p F�ðpÞe−ip·x: ð3:3Þ

With the definition

ψ�ðxÞ ¼
Z

dpffiffiffiffiffiffiffiffiffiffi
16π3

p F�ðpÞe−ip·x; ð3:4Þ
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the expectation value reduces to

hF�j∶jχ2j∶jF�ijxþ¼0 ¼ jψ�ðxÞj2: ð3:5Þ
To represent a static source, we require that this become a

delta function when the spatial packet becomes infinitesi-
mally narrow4

hF�j∶jχ2j∶jF�ijxþ¼0¼N2δðx−�RzÞδðx⃗⊥∓ R⃗⊥=2Þ; ð3:6Þ

with N2 a normalization factor to be determined. Therefore,
we identify

jψ�ðxÞj2 → N2δðx− � RzÞδðx⃗⊥ ∓ R⃗⊥=2Þ: ð3:7Þ
The momentum-space wave-packet envelope is the Fourier
transform

F�ðpÞ ¼
Z

dxffiffiffiffiffiffiffiffiffiffi
16π3

p eip·xψ�ðxÞ: ð3:8Þ

As transforms, ψ� andF� share the common normalization

N2 ¼
Z

dxjψ�ðxÞj2 ¼
Z

dpjF�ðpÞj2; ð3:9Þ

where the integral over pþ can be extended to −∞ because
the envelope F� is sharply peaked about pþ ¼ m > 0.
The value of the normalization for F� is separately

determined by the normalization of jF�i as

1 ¼ hF�jF�i ¼
Z

dppþjF�ðpÞj2

¼ m
Z

dpjF�ðpÞj2 ¼ mN2; ð3:10Þ

where pþ is replaced by the peak value of m and the pþ
integration is again extended to −∞. Thus, we have
N ¼ 1=

ffiffiffiffi
m

p
, which is dimensionally consistent with the

Hamiltonian term m2jχj2 being an energy density.
The expectation value for the free part of the light-front

energy for the complex field is given by

hP−
0χi ¼

Z
dxhF�j∶j∂⃗⊥χj2 þm2

0jχj2∶jF�i: ð3:11Þ

The first term can be evaluated from

∂⃗⊥χ¼
Z

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3pþp ip⃗⊥½cþðpÞe−ip·x−c†−ðpÞeip·x�: ð3:12Þ

The presence of the p⃗⊥ factor means that the first term in
(3.11) is zero, because the wave packet is symmetrically
peaked at p⃗⊥ ¼ 0. The second term is readily obtained
from (3.6), with the normalization N2 ¼ 1=m, asZ

dxhF�j∶jm2
0jχj2∶jF�i

¼ m2
0

m

Z
dxδðx− � RzÞδðx⃗⊥ ∓ R⃗⊥=2Þ ¼

m2
0

m
: ð3:13Þ

The expectation value for the light-front longitudinal
momentum is m, because the wave packets are sharply
peaked at pþ ¼ m. Thus for E ¼ ðP− þ PþÞ=2 we have

hF�jEjF�i ¼ m2
0=2mþm=2; ð3:14Þ

which reduces tomwhen the coupling g is zero and themass
is not renormalized. The presence of interactions with the
neutral scalar will renormalize the mass, as we show below.

B. Coherent state for the neutrals

On this source state jF�i, we build a coherent state of
neutrals as an ansatz for the solution

jG�
1 F

�i ¼
ffiffiffiffiffiffi
Z�
1

q
e
R

dqG�
1
ðqÞa†ðqÞjF�i; ð3:15Þ

with
ffiffiffiffiffiffi
Z�
1

p
a normalization factor given by

Z�
1 ¼ e−

R
dqjG�

1
ðqÞj2 : ð3:16Þ

It is an eigenstate of the annihilation operator

aðqÞjG�
1 F

�i ¼ G�
1 ðqÞjG�

1 F
�i; ð3:17Þ

and we require it also to be an eigenstate of the energy
operator E

EjG�
1 F

�i ¼ E�jG�
1 F

�i: ð3:18Þ

This eigenvalue condition, projected onto hF�j, reduces to

�
m2

0

2m
þ 1

2
m

�
jG�

1 i þ
Z

dq
1

2

�
q2⊥ þ μ2

qþ
þ qþ

�
a†ðqÞG�

1 ðqÞjG�
1 i

þ g
2m

Z dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3qþ

p fe�iqþRz=2�iq⃗⊥·R⃗⊥=2G�
1 ðqÞ þ e∓iqþRz=2∓iq⃗⊥·R⃗⊥=2a†ðqÞgjG�

1 i ¼ E�jG�
1 i; ð3:19Þ

4The constraint for x− is obtained by requiring z ¼ 1
2
ðxþ − x−Þ ¼ �Rz=2 to hold at light-front time xþ ¼ 0.
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where we have used (3.6) to replace hF�jjχj2jF�i and used
the resulting delta functions to do the x integrals in
P−

int ¼
R
dxgϕjχj2.

For this eigenvalue equation to be satisfied, the terms that
contain a† must cancel, which means that

1

2

�
q2⊥ þ μ2

qþ
þ qþ

�
G�

1 ðqÞ

þ g
2m

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3qþ

p e∓iqþRz=2∓iq⃗⊥·R⃗⊥=2 ¼ 0: ð3:20Þ

The function G�
1 must then be

G�
1 ðqÞ ¼ −

g
m

ffiffiffiffiffiffiffiffiffiffi
qþ

16π3

r
e∓iqþRz=2∓iq⃗⊥·R⃗⊥=2

ðqþÞ2 þ q2⊥ þ μ2
: ð3:21Þ

The eigenenergy is then computed from the remaining
terms as

E�¼m2
0

2m
þ1

2
mþ g

2m

Z dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3qþ

p e�iqþRz=2�iq⃗⊥·R⃗⊥=2G�
1 ðqÞ

¼m2
0

2m
þ1

2
m−

1

2

�
g
m

�
2
Z dq

16π3
1

ðqþÞ2þq2⊥þμ2
: ð3:22Þ

The integral in the last term is divergent. We introduce a
cutoff Λ and define

IðΛÞ ¼
Z dq

16π3μ

θðΛ2 − ðqþÞ2 − q2⊥Þ
ðqþÞ2 þ q2⊥ þ μ2

; ð3:23Þ

and the eigenenergy becomes

E� ¼ m2
0

2m
þ 1

2
m −

1

2

�
g
m

�
2

μIðΛÞ: ð3:24Þ

We can arrange E� ¼ m, the physical mass, by choosing
the bare mass such that

m2
0 ¼ m2 þ g2

μ

m
IðΛÞ: ð3:25Þ

The cutoff dependence is then removed.
We now have an exact solution for the single-source state

that includes the source and a Fock-state expansion in the
number of neutral scalars. The form is independent of
the source location, except for a phase in the individual
wave functions G�

1 . We also see that, in both cases, the
normalization of the state is determined by

Z�
1 ¼ e

−ð gmÞ2
R dq

16π3
qþ

ððqþÞ2þq2⊥þμ2Þ2 : ð3:26Þ

The integral is divergent and requires a cutoff, to give
meaning to the norm of the state.
Assuming that such a cutoff is in place, the single-source

problem can be also formulated as a variational problem
with jG�

1 F
�i as the trial state. The expectation value of the

energy is

hG�
1 F

�j∶E∶jG�
1 F

�i ¼ m2
0

2m
þ 1

2
mþ

Z
dq

1

2

�
q2⊥ þ μ2

qþ
þ qþ

�
G��

1 ðqÞG�
1 ðqÞ

þ g
m

Z dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3qþ

p ½e�iqþRz=2�iq⃗⊥·R⃗⊥=2G�
1 ðqÞ þ e∓iqþRz=2∓iq⃗⊥·R⃗⊥=2G��

1 ðqÞ�: ð3:27Þ

Variation with respect to G��
1 yields (3.20) and the same

results follow, including the value m of hG�
1 F

�j∶E∶
jG�

1 F
�i at this minimum, once the mass renormalization

is taken into account.
For comparison with the double-source state, we also

consider the average number hni� of neutral scalars in this
single-source state. This is computed from the coherent
state as

hni� ≡
Z

dqhG�
1 F

�ja†ðqÞaðqÞjG�
1 F

�i ¼
Z

dqjG�
1 ðqÞj2:

ð3:28Þ

However, on substitution of the form for G�
1 , the expect-

ation value reduces to

hni� ¼
�
g
m

�
2
Z dq

16π3
ðqþÞ2

½ðqþÞ2 þ q2⊥ þ μ2�2 ; ð3:29Þ

which contains the same divergent integral that defines the
normalization. Thus, unless one chooses to fix the coupling
g as a bare coupling by fixing the value of hni�, the number
of neutrals that dress a single source is effectively infinite.
Instead of invoking a restriction on the coupling, we will
accept this infinite value as part of the nature of the single-
source state and investigate the change in the number of
neutrals induced by the presence of a second source.
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IV. DOUBLE SOURCE

The case of two static sources can also be solved with a
coherent state. We take the variational approach, with a trial
state built from a product of single-source states of opposite
charge

jG2G
þ
1 G

−
1F

þF−i ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Z

Zþ
1 Z

−
1

s
e
R

dqG2ðqÞa†ðqÞjGþ
1 F

þijG−
1F

−i;

ð4:1Þ

where G2ðqÞ is a function to be determined and Z fixes the
overall normalization as

Z ¼ e−
R

dqjG2ðqÞþGþ
1
ðqÞþG−

1
ðqÞj2 : ð4:2Þ

It will turn out that G2ðqÞ is actually zero.
We choose the two sources to be of opposite charge, to

have a simpler calculation without the cross terms that
would arise for two identical sources with the same charge.
However, this is not a serious restriction because one can
argue that the overlap between spatial packets is effectively
zero. This would allow the cross terms to be ignored.
When there are two sources, the expectation value of

∶jχj2∶ becomes

hFþF−j∶jχ2j∶jFþF−ijxþ¼0 ¼
Z

dp0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3p0þp Fþ�ðp0Þeip0·x

Z
dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3pþp FþðpÞe−ip·x

Z
dp

2
pþ
2 jF−ðp

2
Þj2

þ
Z

dp0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3p0þp F−�ðp0Þeip0·x

Z
dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3pþp F−ðpÞeip·x

Z
dp

1
pþ
1 jFþðp

1
Þj2: ð4:3Þ

With the normalization requirement
R
dppþjF�ðpÞj2 ¼ 1 and the limit (3.7), this reduces to

hFþF−j∶jχ2j∶jFþF−ijxþ¼0 ¼
1

m
½δðx− þ RzÞδðx⃗⊥ − R⃗⊥=2Þ þ δðx− − RzÞδðx⃗⊥ þ R⃗⊥=2Þ�; ð4:4Þ

which places the sources appropriately at R⃗=2 and −R⃗=2. In terms of light-front coordinates, the peaks are at x− ¼∓ Rz and
x⃗⊥ ¼ �R⃗⊥=2 when xþ ¼ 0.
The expectation value for E in the state is

h∶E∶i ¼ 1

2

�
2
m2

0

m
þ 2m

�
þ
Z

dq
1

2

�
q2⊥ þ μ2

qþ
þ qþ

�
jG2ðqÞ þ Gþ

1 ðqÞ þ G−
1 ðqÞj2

þ g
2m

Z dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3qþ

p feiqþRz=2þiq⃗⊥·R⃗⊥=2 þ e−iq
þRz=2−iq⃗⊥·R⃗⊥=2g

× ½G2ðqÞ þ Gþ
1 ðqÞ þG−

1 ðqÞ þ G�
2ðqÞ þ Gþ�

1 ðqÞ þG−�
1 ðqÞ�: ð4:5Þ

Variation with respect to G�
2 results in

1

2

�
q2⊥ þ μ2

qþ
þ qþ

�
½G2ðqÞ þGþ

1 ðqÞ þ G−
1 ðqÞ� þ

g
2m

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3qþ

p feiqþRz=2þiq⃗⊥·R⃗⊥=2 þ c:c:g ¼ 0: ð4:6Þ

Substitution of the known expressions for G�
1 ðqÞ leaves

G2ðqÞ ¼ 0. In otherwords, the effect of combining two single
sources is included in the phase associated with each source
location and the interference terms between Gþ

1 and G−
1 .

On the use of G2 ¼ 0 and the expressions for G�
1 ,

the expectation value h∶E∶i becomes, as discussed in
Appendix C,

h∶E∶i ¼ m2
0

m
þm −

�
g
m

�
2

μIðΛÞ −
�

g
2m

�
2 e−μR

4πR
; ð4:7Þ

The first three terms of h∶E∶i reduce to 2m, with use of the
constraint (3.25) for the bare mass. This brings us to our
key result

h∶E∶i ¼ 2m −
�

g
2m

�
2 e−μR

4πR
; ð4:8Þ

which shows that the eigenenergy of two static sources is
their total mass plus a rotationally symmetric, attractive
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Yukawa potential in the standard form for scalar exchange
between scalars.5

Perhaps the most remarkable aspect is the rotational
symmetry, despite the explicit breaking of rotational
symmetry by light-front coordinates. This is achieved
not by fine tuning but by staying close to the physics of
the configuration, in that the effective potential between the
sources is contained within the ordinary energy not the
light-front energy and the sources are static with respect to
ordinary time not light-front time.
The change in the number of neutral scalars, induced by

the proximity of the two sources, is given by

hδni≡
Z

dqha†ðqÞaðqÞi − hniþ − hni− ð4:9Þ

¼
Z

dqjGþ
1 ðqÞþG−

1 ðqÞj2−
Z

dqjGþ
1 ðqÞj2−

Z
dqjG−

1 ðqÞj2:

ð4:10Þ

Again, only the interference terms contribute

hδni ¼
Z

dq½Gþ�
1 ðqÞG−

1 ðqÞ þG−�
1 ðqÞGþ

1 ðqÞ�: ð4:11Þ

Substitution of the form for G�
1 and some additional

calculus, shown in Appendix D, reduces this to

hδni ¼ −
1

16π2

�
g
m

�
2

½eμREið−μRÞ þ e−μREiðμRÞ�; ð4:12Þ

where Ei is the exponential integral function [36]. For large
separations R, this simplifies to

hδni ¼ −
1

8π2

�
g
m

�
2 1

ðμRÞ2 þO
�

1

ðμRÞ3
�
; ð4:13Þ

which correctly goes to zero as the separation becomes
infinite.

V. PAULI-VILLARS REGULARIZATION

A more sophisticated approach to regularization of the
infinities encountered, instead of the momentum cutoff, is
to use Pauli-Villars (PV) regularization by inserting a heavy
neutral scalar with negative metric [9]. This particular
formulation of PV regularization was developed in Yukawa
theory [37] and successfully extended to QED [38]; a
formulation for further extension to nonAbelian gauge
theories also exists [9]. The addition to the Lagrangian is

LPV ¼ −
�
1

2
ð∂μϕPVÞ2 −

1

2
μ2PVϕ

2
PV

�
− gϕPVjχj2: ð5:1Þ

The mode expansion for the PV field is

ϕPVðxÞ ¼
Z

dpþd2p⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3pþp ½aPVðpÞe−ip·x þ a†PVðpÞeip·x�;

ð5:2Þ

with the nonzero commutator

½aPVðpÞ; a†PVðp0Þ� ¼ −δðp − p0Þ: ð5:3Þ

The minus sign is the negative metric that provides for
cancellations between regular and PV contributions.
The contribution to the free Hamiltonian is

P−
0PV ¼ −

Z
dq

μ2PV þ q⃗2⊥
qþ

a†PVðqÞaPVðqÞ; ð5:4Þ

and to the quenched interaction term

P−
int PV ¼ g

Z dpdqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3pþqþðpþ þ qþÞ

p ½ðc†þðpþ qÞcþðpÞ þ c†−ðpþ qÞc−ðpÞÞaPVðqÞ

þa†PVðqÞðc†þðpÞcþðpþ qÞ þ c†−ðpÞc−ðpþ qÞÞ�: ð5:5Þ

The contribution to the light-front momentum operator is

Pþ
PV ¼ −

Z
dqqþa†PVðqÞaPVðqÞ: ð5:6Þ

We can then define the PV contribution to the energy
operator as EPV ≡ 1

2
ðP−

0PV þ P−
int PV þ Pþ

PVÞ.

The ansatz for the solution to ðE þ EPVÞjG�
1 G

�
PVF

�i ¼
E�jG�

1 G
�
PVF

�i for the single-source case is

jG�
1 G

�
PVF

�i¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z�
1 Z

�
PV

q
e
R
dqG�

1
ðqÞa†ðqÞe

R
dqG�

PVðqÞa†PVðqÞjF�i;
ð5:7Þ

with the normalization constants given by (3.16) and

Z�
PV ¼ e

R
dqjG�

PVðqÞj2 : ð5:8Þ

5This differs slightly from the Yukawa potential between
fermions, because in that case the interaction term in the
Lagrangian is gϕψψ and g is dimensionless; here g has units
of mass.
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The action of the PV annihilation operator yields

aPVðqÞjG�
1 G

�
PVF

�i ¼ −G�
PVðqÞjG�

1 G
�
PVF

�i; ð5:9Þ

where the minus sign is due to the negative PV metric.
Projection of the eigenvalue problem onto hF�j leaves

�
m2

0

2m
þ1

2
m

�
jG�

1 G
�
PViþ

Z
dq

1

2

�
q2⊥þμ2

qþ
þqþ

�
a†ðqÞG�

1 ðqÞjG�
1 G

�
PViþ

Z
dq

1

2

�
q2⊥þμ2PV

qþ
þqþ

�
a†PVðqÞG�

PVðqÞjG�
1 G

�
PVi

þ g
2m

Z dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3qþ

p fe�iqþRz=2�iq⃗⊥·R⃗⊥=2½G�
1 ðqÞ−G�

PVðqÞ�þe∓iqþRz=2∓iq⃗⊥·R⃗⊥=2½a†ðqÞþa†PVðqÞ�gjG�
1 G

�
PVi

¼E�jG�
1 G

�
PVi: ð5:10Þ

The terms that contain a† and a†PV must cancel separately.
For a† this yields the same equation as before, (3.20), and
for a†PV we have

1

2

�
q2⊥ þ μ2PV

qþ
þ qþ

�
G�

PVðqÞ

þ g
2m

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3qþ

p e∓iqþRz=2∓iq⃗⊥·R⃗⊥=2 ¼ 0: ð5:11Þ

The function G�
1 is then unchanged from (3.21) and

G�
PVðqÞ ¼ −

g
m

ffiffiffiffiffiffiffiffiffiffi
qþ

16π3

r
e∓iqþRz=2∓iq⃗⊥·R⃗⊥=2

ðqþÞ2 þ q2⊥ þ μ2PV
: ð5:12Þ

The eigenenergy is computed from the remaining terms as

E� ¼ m2
0

2m
þ 1

2
mþ g

2m

×
Z dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16π3qþ
p e�iqþRz=2�iq⃗⊥·R⃗⊥=2½G�

1 ðqÞ −G�
PVðqÞ�:

ð5:13Þ

Substitution of the forms of G�
1 and G�

PV and definition of
the integral

IPVðμ2PVÞ¼
Z dq

16π3μ

�
1

ðqþÞ2þq2⊥þμ2
−

1

ðqþÞ2þq2⊥þμ2PV

�
;

ð5:14Þ

provides for

E� ¼ m2
0

2m
þ 1

2
m −

1

2

�
g
m

�
2

μIPVðμ2PVÞ: ð5:15Þ

The integral IPV is, of course, the analog of the cutoff
integral defined earlier in (3.23). It is finite, except in the
limit of infinite PV mass, and is used to renormalize the
source mass as before:

m2
0 ¼ m2 þ g2

μ

m
IPVðμ2PVÞ: ð5:16Þ

We then find that E� is just m. The insertion of the PV
scalar also regulates the normalization:

Z�
1 Z

�
PV ¼ e−

R
dq½jG�

1
ðqÞj2−jG�

PVðqÞj2�

¼ exp

�
−
�
g
m

�
2
Z dq

16π3

�
qþ

ðqþÞ2 þ q2⊥ þ μ2
−

qþ

ðqþÞ2 þ q2⊥ þ μ2PV

��
: ð5:17Þ

For the double-source case, the ansatz is a product of the
single-source solutions

jGþ
1 G

þ
PVG

−
1G

−
PVF

þF−i ¼ jGþ
1 G

þ
PVF

þijG−
1G

−
PVF

−i: ð5:18Þ

Projection of the eigenvalue problem

ðEþEPVÞjGþ
1 G

þ
PVG

−
1G

−
PVF

þF−i¼EjGþ
1 G

þ
PVG

−
1G

−
PVF

þF−i
ð5:19Þ

onto hFþF−j yields
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�
2

�
m2

0

2m
þ 1

2
m
�
þ
Z

dq
1

2

�
q2⊥ þ μ2

qþ
þ qþ

�
a†ðqÞ½Gþ

1 ðqÞ þ G−
1 ðqÞ� þ

Z
dq

1

2

�
q2⊥ þ μ2PV

qþ
þ qþ

�
a†PVðqÞ½Gþ

PVðqÞ þ G−
PVðqÞ�

þ g
2m

Z dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3qþ

p ½eiqþRz=2þiq⃗⊥·R⃗⊥=2 þ e−iq
þRz=2−iq⃗⊥·R⃗⊥=2�½Gþ

1 ðqÞ − Gþ
PVðqÞ þ G−

1 ðqÞ −G−
PVðqÞ þ a†ðqÞ þ a†PVðqÞ�

�

× jGþ
1 G

þ
PVG

−
1G

−
PVi ¼ EjGþ

1 G
þ
PVG

−
1G

−
PVi: ð5:20Þ

The previous determined forms of G�
1 and G�

PV are sufficient to render the coefficients of a† and a†PV as zero. Thus, the
eigenvalue problem is solved as before with a simple overlap of single-source states, and the eigenvalue is

E ¼ m2
0

m
þmþ g

2m

Z dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3qþ

p ½eiqþRz=2þiq⃗⊥·R⃗⊥=2 þ e−iq
þRz=2−iq⃗⊥·R⃗⊥=2�½Gþ

1 ðqÞ −Gþ
PVðqÞ þ G−

1 ðqÞ − G−
PVðqÞ�: ð5:21Þ

Substitution of the expressions for G�
1 and G�

PV leaves

E ¼ m2
0

m
þm −

g2

m2
μIPVðμ2PVÞ −

g2

2m2
½YðRÞ − YPVðRÞ�;

ð5:22Þ

where IPV is given in (5.14), Y is defined in (C4), and

YPVðRÞ≡
Z
qþ>0

dq

16π3
eiq

þRzþiq⃗⊥·R⃗⊥ þe−iq
þRz−iq⃗⊥·R⃗⊥

ðqþÞ2þq2⊥þμ2PV
: ð5:23Þ

Because YPV differs from Y only by the replacement of μ by
μPV, we can immediately evaluate YPV, as in Appendix C,
and obtain, on use of the mass renormalization (5.16),

E ¼ 2m −
�

g
2m

�
2 1

4πR
½e−μR − e−μPVR�: ð5:24Þ

In the limit of an infinite PV mass, we then recover
our original result with an effective potential of
−ð g

2mÞ2 e−μR
4πR. The result for hδni is also unchanged.

VI. SUMMARY

We have shown that, by considering the ordinary
energy of static sources fixed with respect to ordinary
time, a light-front calculation yields the correct Yukawa
potential. Rotational symmetry is maintained despite the
explicit breaking by the light-front coordinates themselves
and without fine tuning of parameters. The effective
potential arises from the overlap between the clouds of
neutral scalars that dress the sources. It is essentially an
interference term in the expectation value of the energy.
The success of the calculation is due to two factors. One

is that we consider the ordinary energy E, not the light-front
energy P−. The other is that the sources are fixed with
respect to ordinary time, not light-front time xþ. This is
analogous to our work on the Casimir effect [17]. The

primary observation is that changing coordinate systems
does not and should not change the physics.
The calculation is nonperturbative, even though the

resulting Yukawa potential is of order g2. The eigensolution
is obtained to all orders in g as a coherent state of neutral
scalars. Such a solution is possible because the static
sources remove the constraint of momentum conservation.
The approach can be extended to more complicated

theories, although the solution of the eigenvalue problem
will typically require numerical techniques. An obvious
next application is to standard Yukawa theory with two
fermions as sources static in position but dynamic with
respect to spin. This can be done first as quenched but then
also with fermion-pair contributions. Static-source poten-
tials in QED and QCD are also clearly of interest; we
suggest that the present work provides a starting point, with
the implementation of Pauli-Villars regularization [9] as a
key ingredient.

APPENDIX A: LIGHT-FRONT WAVE PACKETS

To be able to incorporate the steady movement in x− of a
static source, we consider the quantum mechanics of wave
packets on a light front. We use such wave packets for the
sources dressed by neutral scalars in a Fock-state expansion
or a coherent state for the neutral scalars.
The ordinary time evolution of a particle with wave

functionΨ is determined by the usual Schrödinger equation
i ∂Ψ∂t ¼ P0Ψ. The action of the momentum operator Pz is
represented by −i ∂

∂z. Therefore, the light-front time evo-
lution is determined by

i
∂Ψ
∂xþ ¼ i

2

� ∂
∂tþ

∂
∂z

�
Ψ ¼ 1

2
ðP0 − PzÞΨ ¼ 1

2
P−Ψ: ðA1Þ

Separation of variables is then applied, with
Ψðx; xþÞ ¼ τðxþÞψðxÞ, to find
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2i
τ

dτ
dxþ

¼ 1

ψ
P−ψ ≡m2 þ p2⊥

pþ ; ðA2Þ

where the separation constant is written in the form of the
on-shell light-front energy p− for a particle of mass m with
light-front momentum p ¼ ðpþ; p⃗⊥Þ. The light-front time

evolution is then τ ¼ exp ð−i m2þp2⊥
2pþ xþÞ.

In momentum space, P− for a free particle of momentum

p is just the multiplicative operator m2þp2⊥
pþ , and ϕpðqÞ ¼

Nδðqþ − pþÞδðq⃗⊥ − p⃗⊥Þ is the eigenfunction. A Fourier
transform yields ψpðxÞ ¼ Ñeip·x. A wave packet, with

momentum envelope ϕðpÞ, is then given by

Ψðx; xþÞ ¼
Z

dpffiffiffiffiffiffiffiffiffiffi
16π3

p ϕðpÞ exp
�
i

�
p · x −

m2 þ p2⊥
2pþ xþ

��
:

ðA3Þ

The normalization factor contains 16 rather than 8 because
the dot product contains a factor of 1=2 for the pþx− term.
For a static source, we have p⃗⊥ ¼ 0; however, pþ is not

zero. For a source at z ¼ �Rz=2, we must have 1
2
ðxþ −

x−Þ ¼ �Rz=2 or x− ¼ xþ ∓ Rz. Thus, x− increases with
light-front time [13]. For the wave packet, this corresponds
to the factor exp ½ið1

2
pþx− − m2

2pþ xþÞ�, which, to be con-
sistent with x− − xþ being constant for the trajectory,
must have pþ ¼ m. This is, of course, the usual value
for pþ when the particle is at rest, but this simple analysis
shows the connection with the associated wave packet
and establishes that the envelope ϕ must be peaked
at p ¼ ðm; 0⃗⊥Þ.
As an example of these envelope functions, we consider

a Gaussian form, parametrized by a width ϵ, that becomes a
delta function in the appropriate limit.6 The peak momen-
tum value of pþ ¼ m is achieved by including a phase
factor e−imx−=2

ψ�ðxÞ ¼ 1=
ffiffiffiffi
m

p
ðϵ ffiffiffi

π
p Þ3=2 e

−imx−=2e−ðx−�RzÞ2=2ϵ2e−ðx⃗⊥∓R⃗⊥=2Þ2=2ϵ2 :

ðA4Þ

The Fourier transform is

ϕ�ðpÞ ¼ 1ffiffiffiffiffiffiffi
2m

p
�

ϵffiffiffi
π

p
�

3=2
e∓iðpþ−mÞRz=2e�ip⃗⊥·R⃗⊥=2

× e−ϵ
2ðpþ−mÞ2=8e−ϵ2p2⊥=2: ðA5Þ

For a static source, the momentum and position distribu-
tions are both sharply defined. In our units, where ℏ ¼ 1,
this is not mathematically obvious; the correct relationship
is recovered in an ℏ → 0 limit.

APPENDIX B: FOCK-SPACE EXPANSION
METHOD FOR THE SINGLE-SOURCE

PROBLEM

We construct an eigenstate of E as a Fock-state expan-
sion for the neutrals, built on a state for a single static
source at �R⃗=2

jψF�i ¼
X
n

�Yn
i

Z
dp

i

�
ψnðp1

;…; p
n
Þ

×
1ffiffiffiffiffi
n!

p
Yn
i

a†ðp
i
ÞjF�i: ðB1Þ

Because of the static source, (light-front) momentum is not
conserved, and we do not seek simultaneous eigenstates
for P− and Pþ. Thus the Fock-state expansion does not
contain a momentum conserving delta function to restrict
the integrals over individual momenta. We simply
require EjψF�i ¼ E�jψF�i.
The action of individual parts of E [See Eqs. (2.6)–(2.8).]

yield the following

P−
0 jψF�i ¼ m2

0

m
jψF�i þ

X
n

�Yn
i

Z
dp

i

��Xn
i

p2⊥i þ μ2

pþ
i

�
ψnðp1

;…; p
n
Þ 1ffiffiffiffiffi

n!
p

Yn
i

a†ðp
i
ÞjF�i; ðB2Þ

PþjψF�i ¼ mjψF�i þ
X
n

�Yn
i

Z
dp

i

��Xn
i

pþ
i

�
ψnðp1

;…; p
n
Þ 1ffiffiffiffiffi

n!
p

Yn
i

a†ðp
i
ÞjF�i; ðB3Þ

and

P−
intjψF�i ¼ g

X
n

�Yn
i

Z
dp

i

�
ψnðp1

;…; p
n
Þ
Z

dx∶jχj2∶

×
Z dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16π3qþ
p ½aðqÞe−iqþx−=2þiq⃗⊥·x⃗⊥ þ a†ðqÞeiqþx−=2−iq⃗⊥·x⃗⊥ � 1ffiffiffiffiffi

n!
p

Yn
i

a†ðp
i
ÞjF�i: ðB4Þ

6The analysis presented in the main sections is independent of the specific form chosen.

SOPHIA S. CHABYSHEVA and JOHN R. HILLER PHYS. REV. D 105, 056027 (2022)

056027-10



Projection of EjψF�i ¼ E�jψF�i onto hF�j 1ffiffiffiffi
n0!

p
Q

n0
i aðq

i
Þ yields

�
m2

0

2m
þ1

2
mþ

Xn0
i

1

2

�
q2⊥iþμ2

qþi
þqþi

��
ψn0 ðq1;…;q

n0 Þþ
g
2m

Xn0
j

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3qþ

p e∓iqþj Rz=2∓iq⃗⊥j·R⃗⊥=2

×
1ffiffiffiffi
n0

p ψn0−1ðq1;…;q
j−1;qjþ1

;…;q
n0 Þþ

g
2m

Xn0þ1

j

Z dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3qþ

p e�iqþRz=2�iq⃗⊥·R⃗⊥=2 1ffiffiffiffiffiffiffiffiffiffiffi
n0 þ1

p ψn0þ1ðq1;…;q
j−1;q;qj;…;q

n0 Þ

¼E�ψn0 ðq1;…;q
n0 Þ: ðB5Þ

An analytic solution is obtained by writing ψn as a product
of single-particle wave functions G�

1 ðqiÞ

ψnðq1;…; q
n
Þ ¼ 1ffiffiffiffiffi

n!
p

Yn
i

G�
1 ðqiÞ: ðB6Þ

Substitution of this product, and division by ψn0, leaves

Xn0
i

�
1

2

�
q2⊥iþμ2

qþi
þqþi

�
þ g
2m

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3qþ

p e∓iqþi Rz=2∓iq⃗⊥i·R⃗⊥=2

G�
1 ðqiÞ

�

þm2
0

2m
þ1

2
mþ g

2m
1

n0 þ1

Xn0þ1

j

f�ðR⃗Þ¼E�; ðB7Þ

where

f�ðR⃗Þ≡
Z dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16π3qþ
p G�

1 ðqÞe�iqþRz=2�iq⃗⊥·R⃗⊥=2: ðB8Þ

The equation is solved provided that the content of the
square brackets is zero and that E� is given by

E� ¼ m2
0

2m
þ 1

2
mþ g

2m
f�ðR⃗Þ: ðB9Þ

We will find that for this single-source case any R⃗ depend-
ence is actually absent; the function f� is simply constant.

For the square bracket in (B7) to be zero, we need

G�
1 ðqÞ ¼ −

g
m

ffiffiffiffiffiffiffiffiffiffi
qþ

16π3

r
e∓iqþi Rz=2∓iq⃗⊥i·R⃗⊥=2

ðqþÞ2 þ q2⊥ þ μ2
: ðB10Þ

Substitution into the expression for f� and then into E�
yields

E� ¼ m2
0

2m
þm

2
−
1

2

�
g
m

�
2

μIðΛÞ ðB11Þ

where IðΛÞ is defined in (3.23). The mass renormalization
presented in (3.25) then fixes E� ¼ m, the physical mass.
We see that, due to the factorization (B6), the neutral

scalars form the coherent state used in Sec. III. The location
of the source, at �R⃗=2, is encoded in the phase of the
individual wave functions G�

1 , with the product in each
Fock sector having a phase that corresponds to translation
in light-front coordinates from the origin to ð�Rz;�R⃗⊥=2Þ,
as generated by the total momentum.

APPENDIX C: DOUBLE-SOURCE EXPECTATION
VALUE FOR E

On use of G2 ¼ 0 and the expression (3.21) for G�
1 , the

double-source expectation value h∶E∶i given in (4.5)
becomes

h∶E∶i ¼ m2
0

m
þmþ 1

2

�
g
m

�
2
Z

dq

�
q2⊥ þ μ2

qþ
þ qþ

�
qþ

16π3
jeiqþRz=2þiq⃗⊥·R⃗⊥=2 þ e−iq

þRz=2−iq⃗⊥·R⃗⊥=2j2
½ðqþÞ2 þ q2⊥ þ μ2�2

þ g
2m

Z dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3qþ

p �
−2

g
m

� ffiffiffiffiffiffiffiffiffiffi
qþ

16π3

r
jeiqþRz=2þiq⃗⊥·R⃗⊥=2 þ e−iq

þRz=2−iq⃗⊥·R⃗⊥=2j2
ðqþÞ2 þ q2⊥ þ μ2

: ðC1Þ

The last two terms differ only in their sign, and a factor of 2, and reduce to

h∶E∶i ¼ m2
0

m
þm −

1

2

�
g
m

�
2
Z dq

16π3
2þ eiq

þRzþiq⃗⊥·R⃗⊥ þ e−iq
þRz−iq⃗⊥·R⃗⊥

ðqþÞ2 þ q2⊥ þ μ2
: ðC2Þ

NONPERTURBATIVE LIGHT-FRONT EFFECTIVE POTENTIAL … PHYS. REV. D 105, 056027 (2022)

056027-11



The 2 in the numerator corresponds to a divergent integral
that, with a cutoff Λ, is proportional to the integral (3.23)
previously encountered in the single-source case. From that
definition, we have

h∶E∶i ¼ m2
0

m
þm −

�
g
m

�
2

μIðΛÞ − 1

2

�
g
m

�
2

YðRÞ; ðC3Þ

with

YðRÞ≡
Z
qþ>0

dq

16π3
eiq

þRzþiq⃗⊥·R⃗⊥ þ e−iq
þRz−iq⃗⊥·R⃗⊥

ðqþÞ2 þ q2⊥ þ μ2

¼ 1

2

Z dq

16π3
eiq

þRzþiq⃗⊥·R⃗⊥ þ e−iq
þRz−iq⃗⊥·R⃗⊥

ðqþÞ2 þ q2⊥ þ μ2
: ðC4Þ

In the second integral there is no restriction on the range of
qþ. This unrestricted integral is easily evaluated in spheri-
cal coordinates q⃗ ¼ ðqx; qy; qþÞ ¼ ðq; θ;ϕÞ, relative to an

axis parallel to R⃗. The ϕ integral is trivial, leaving

YðRÞ ¼ 1

16π2

Z
∞

0

q2dq
Z

1

−1
d cos θ

eiqR cos θ þ e−iqR cos θ

q2 þ μ2
:

ðC5Þ

The cos θ integral reduces this to

YðRÞ ¼ 1

16π2

Z
∞

0

q2dq
q2 þ μ2

�
eiqR − e−iqR

iqR
þ e−iqR − eiqR

−iqR

�

¼ 1

4π2R

Z
∞

0

q2dq
q2 þ μ2

sinðqRÞ ¼ 1

4π2R
π

2
e−μR: ðC6Þ

Substitution into the expression (C3) for h∶E∶i brings us to
a nearly final form

h∶E∶i ¼ m2
0

m
þm −

�
g
m

�
2

μIðΛÞ −
�

g
2m

�
2 e−μR

4πR
; ðC7Þ

All that remains is to invoke mass renormalization.

APPENDIX D: CHANGE IN NUMBER OF
SCALARS

The change induced in the number of scalars by the
combination of two static sources is

hδni ¼
Z

dq½Gþ�
1 ðqÞG−

1 ðqÞ þG−�
1 ðqÞGþ

1 ðqÞ�: ðD1Þ

Substitution of the form (3.21) for G�
1 leaves

hδni¼
�
g
m

�
2
Z
qþ>0

dq
qþ

16π3
2þeiq

þRzþiq⃗⊥·R⃗⊥þe−iq
þRz−iq⃗⊥·R⃗⊥

½ðqþÞ2þq2⊥þμ2�2 :

ðD2Þ

Use of the same spherical coordinates as in Appendix C
reduces this to

hδni ¼
�
g
m

�
2 1

16π2

Z
∞

0

p3dp
ðp2 þ μ2Þ2

×
Z

1

−1
d cos θ cos θ½eiqR cos θ þ e−iqR cos θ�: ðD3Þ

Performance of the cos θ integration, and some algebraic
rearrangement, yields

hδni ¼
�
g
m

�
2 1

4π2R2

Z
∞

0

dp
ðp2 þ μ2Þ2

× ½Rp2 sinðpRÞ þ p cosðpRÞ − p�: ðD4Þ

The individual p integrations can be computed as followsZ
∞

0

pdp
ðp2 þ μ2Þ2 ¼

1

2μ2
; ðD5Þ

Z
∞

0

p cosðpRÞdp
ðp2 þ μ2Þ2 ¼ d

dR

Z
∞

0

sinðpRÞdp
ðp2 þ μ2Þ2 ; ðD6Þ

Z
∞

0

p2 sinðpRÞdp
ðp2 þ μ2Þ2 ¼ −

d
dR

Z
∞

0

p cosðpRÞdp
ðp2 þ μ2Þ2 ; ðD7Þ

Z
∞

0

sinðpRÞdp
ðp2 þ μ2Þ2 ¼ −

1

2μ

d
dμ

Z
∞

0

sinðpRÞdp
p2 þ μ2

; ðD8Þ

and [39]

Z
∞

0

sinðpRÞdp
p2 þ μ2

¼ 1

2μ
½e−μREiðμRÞ − eμREið−μRÞ�; ðD9Þ

where Ei is the exponential integral function [36]. The
combination of the various integrals yields

hδni ¼ −
1

16π2

�
g
m

�
2

½eμREið−μRÞ þ e−μREiðμRÞ�: ðD10Þ
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