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We compute an effective potential between two fixed sources in light-front quantization of a quenched
scalar Yukawa theory that models the interaction of complex scalar fields through the exchange of a neutral
scalar. Despite the breaking of explicit rotational symmetry by the use of light-front coordinates, the
effective potential is rotationally symmetric and matches the standard Yukawa potential for scalar
exchange. The neutral scalar field is represented by a coherent state, which is obtained nonperturbatively as
an eigenstate of our model Hamiltonian, with the eigenenergy determining the effective potential. The
sources are represented by wave packets that are fixed with respect to ordinary time, but move in light-front
coordinates. The theory is quenched, to remove pair-production processes that would otherwise cause the
spectrum to be unbounded from below. For divergent contributions we consider both a simple momentum
cutoff and a Pauli-Villars regularization, with the divergence absorbed by a renormalized mass for the

sources.
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I. INTRODUCTION

A key quantity to obtain from quantum chromodynamics
is the effective potential between a quark and an antiquark
[1]." This has been studied quite carefully in the lattice
formulation of QCD [3]. For comparison, it would be
useful to be able to do the equivalent calculation in a
nonperturbative light-front formulation.” In order to
develop a method for doing so, we study static sources
in a quenched scalar Yukawa theory, where the complica-
tions of gauge fields and intrinsic quantum numbers can be
neglected. We focus on formulating an eigenvalue problem
that yields the energy of a state with two static sources
dressed by a cloud of scalar particles. While doing so, we
accommodate the later necessity of associating dynamics
with intrinsic quantum numbers of the sources. This is to
allow for sources with spin and color charge that will
change when interacting with the surrounding cloud. Here

'For recent discussion of static sources, see, for example, [2].
*For reviews of light-front quantization and applications, see [4-9].
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we restrict the model to complex source fields with
ordinary charge; however, we accommodate the possibility
of dynamical properties by placing the static sources in the
quantum state, rather than using delta-function currents in
the Lagrangian.

The analysis of static sources on a light front has been
considered previously. In particular, Rozowsky and Thorn
[10] studied the force between two sources on a light front by
arranging a purely transverse separation, a limitation that we
avoid. Burkardt and Klindworth [11] applied a transverse
lattice approach [12] in (2 + 1)-dimensional QCD to the
calculation of a QQ potential which is nearly rotationally
invariant. Blunden et al. [13] considered light-front models
where a particle interacts with a static potential.

An important aspect of our work is that we obtain the
effective potential through variation of the ordinary energy,
built from light-front quantities, rather than the light-front
energy alone. This is the physical definition of a potential
that can be translated into a force between the sources.
The necessity of considering the ordinary energy has been
seen in other contexts [14—17]. Such a consideration is also
important because the static sources prevent momentum
conservation, leaving the ordinary energy as the only
conserved part of the four-momentum.

We take the following as our definition of light-front
coordinates [18]:

Published by the American Physical Society
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FIG. 1.

xt=(t£2), (1.1)
with x* chosen as the light-front time. The inversion is
obviously 7=1(x"+x7) and z=14(x"—x7). These
relationships are illustrated in Fig. 1(a).® The associated
derivatives are

X =y, x=0(".%),

0 1/0 0
— ===t 1.2
ox*t 2 <8t 8Z> (1.2)
The light-front energy and momentum are
p_EE+pz’ p+EE—pzv ﬁJ_:(vapy)' (13)

The dot product of four-vectors is p - x = % pxt+ J
with p-x=1ptx~ —p, %, as the dot product of
three-vectors. The mass-shell condition is then p-p =
ptp~ — p? = m?, which implies p~ = (m? + p?)/p*.
In what follows, we first define quenched scalar Yukawa
theory in light-front quantization, in Sec. II. The con-
struction of a single static source dressed by neutral scalars
1s described in Sec. III; this includes mass renormalization
such that the eigenenergy is equal to the physical mass of
the complex scalar field. Two static sources are then
constructed as a product of single sources placed with
fixed separation in Sec. IV; here we obtain the key result
that the energy of the two-source eigenstate is shifted from
twice the physical mass of one by an amount equal to the
Yukawa potential. We also compute the change in the
average number of neutral scalars. To anticipate similar
calculations in more complicated theories, particularly
gauge theories, we rederive these results with use of
Pauli-Villars regularization [9] in Sec. V to replace the
simple momentum cutoff used in Secs. III and I'V. A brief
summary is given in Sec. VI. Details of the construction of

The figure was drawn with JaxoDraw [19].

(b)

Static source trajectories in the z — ¢ plane for (a) ordinary and (b) light-front coordinates.

wave packets on a light front are given in Appendix A, to
properly represent a static source that moves in the x~
direction [13]. Some aspects of the calculations and an
alternate approach to the single-source case are placed in
additional Appendixes.

II. QUENCHED SCALAR YUKAWA THEORY

Scalar Yukawa theory couples a complex scalar field y
with bare mass m to a real scalar field ¢ with mass yu; the
physical mass of the complex scalar will be written as m.
The Lagrangian is

1 1
L=0,, "y —mir|? +5(3ﬂ¢)2 —Ellsz)z —gply. (2.1)

This model is also known as the (massive) Wick—Cutkosky
model [20] and has received considerable attention in light-
front quantization [21-31] in both two and four dimen-
sions. The most recent work focuses on the construction of
the eigenstate for a charged scalar dressed by a cloud of
neutrals [32,33].

The quenched form of the theory excludes pair produc-
tion. Without this restriction, the theory is ill defined, with a
spectrum that is unbounded from below, as happens in any
cubic scalar theory [34,35]. The quenching also means that
the neutral scalar does not require mass renormalization,
hence the use of the physical mass y in the Lagrangian.

The light-front Hamiltonian density is [9]

N 1, = 1
H=1010P +mila +3 (0000 +5120 + 9l . (22)
The mode expansions for the fields are

dptd*p,

P(x) = NS

la(p)e™P™ + aT(B)ei”‘x] (2.3)
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and

dp+d2pl
V16rp*

The nonzero commutators are

x(x) = (p)e™'P™ + ci(z)e”’"‘]. (2.4)

la(p). @]:5( —p)=8(pt = p)8(BL - 1),
[co(p).ck(P)] =6(p—p') (2.5)
|
dpdq
P = ==
md \/16ﬂ3p+q+(p++q+)[(
dpdp,
" V167 p{ p3 (pf +p3)

For the quenched theory, the second term in P; is dropped.
The light-front momentum operator is

P = [ dga a'(@alg)
+ [ lelpe () + e ). 238)
We then define an ordinary energy operator as

(P~ +P"). (2.9)

1
2
This will play a key role, because momentum is not
conserved when static sources are present.

II1. SINGLE SOURCE

A. Wave packet for the source

A static source is not at rest in light-front coordinates. It
moves steadily in the positive x~ direction, as indicated in
|

dp

(FE[: 2] [ F) =

[Cl(ﬁl)ci(£2)0<£1+£2)+d ([7 +[)2>C+( )

T (P)es

) [ cl
\/16753p'+ Viedpt T

The light-front Hamiltonian is P~ = Pj + Py, with

int?

m2 22
P = [ dp™ P (e, () + € (e ()

and

Lp+q)cs(p)+ci(ptg)e-(p))alg)+a’(q)(cl(p)er(p+q)+cl(p)e_(p+q))]

-(py]-

[
Fig. 1(b). For this we consider light-front wave packets
for the sources, which are discussed in detail in

Appendix A. We place a single source at +R /2 with a
state given by

P2y = / dp o FE () (p)|0).  (3.1)

where F*(p) is a momentum-space envelope function
peaked at a light-front momentum for an object of mass
— (m.0,). The explicit factor of \/p™ is
included to facilitate calculation of expectation values for
the light-front energy and the probability density.

The model is intended to produce a spatial probability
density that is sharply peaked at the source locations +R /2.
To impose this, we compute the expectation value of |y|?
for the state |F*)

m at rest, p

(p)e' PP kel (p)e_(p)e TP 4 IFE). (3.2)

Here the extra dots indicate terms that do not contribute. Contractions of the various operators yield delta functions that

resolve all but two sets of integrals. We evaluate at x* = 0:

- dp .
F:t 2 Fj: e ipx i —117!' 3.3
With the definition
yr(x) = = FE(p)e 2%, (3.4)
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the expectation value reduces to
(FEL L2 NFS) om0 = ()P

To represent a static source, we require that this become a
delta function when the spatial packet becomes infinitesi-
mally narrow”

(3.5)

(FE|: |22 F5) | o = N?6(x~ £R.)5(X. FR1/2). (3.6)

with N? a normalization factor to be determined. Therefore,
we identify

w0 = N25(x~ £ R)8(¥L F R1/2).  (3.7)

The momentum-space wave-packet envelope is the Fourier
transform

dx
e
V16r

As transforms, w* and F* share the common normalization

F=(p) = Tyt (x).

(3.8)

N = / dely ()2 = / dplF* (). (39)

where the integral over p™ can be extended to —co because
the envelope F* is sharply peaked about p* = m > 0.

The value of the normalization for F* is separately
determined by the normalization of |F*) as

1 = (F*|F*) = /dmﬁleE(p)l2

- m/d£|Fi(£>|2 — MmN, (3.10)
where p* is replaced by the peak value of m and the p*
integration is again extended to —oco. Thus, we have
N = 1/y/m, which is dimensionally consistent with the
Hamiltonian term m?|y|?> being an energy density.

The expectation value for the free part of the light-front
energy for the complex field is given by

Pi) = [ dlF: u + milelF). Ban)

The first term can be evaluated from
|

2m 2

g dq
T
2m | \/1673g*

Gur= [—2ifile (D) =l (p)e). (312
Vieep e s

The presence of the p, factor means that the first term in

(3.11) is zero, because the wave packet is symmetrically

peaked at p, = 0. The second term is readily obtained

from (3.6), with the normalization N> = 1/m, as

[ st 1)
2

m2 . - m
= —0/ dxd(x~ + R)6(X, F R, /2)=—2. (3.13)
m m

The expectation value for the light-front longitudinal
momentum is m, because the wave packets are sharply
peaked at p™ = m. Thus for £ = (P~ + P")/2 we have

(FE|E|FYY = m}/2m + m/2, (3.14)
which reduces to m when the coupling ¢ is zero and the mass

is not renormalized. The presence of interactions with the
neutral scalar will renormalize the mass, as we show below.

B. Coherent state for the neutrals

On this source state |[F*), we build a coherent state of
neutrals as an ansatz for the solution

(GEF%) = \[zfe] 4Gt @ pxy (315
with \/Z_?E a normalization factor given by
7t = ¢ J 4GP, (3.16)
It is an eigenstate of the annihilation operator
a(q)|G{ F*) = Gy (q)|G{ F*), (3.17)

and we require it also to be an eigenstate of the energy
operator £

mi 1 L[l +4°
[_o+§m] G +/dg— [LTHﬁ] a'(¢)Gy (9)|GY)

E|GEF*) = E*|G{F*). (3.18)
This eigenvalue condition, projected onto (F*|, reduces to
iiq+Rz/2iiqL'§L/2G?:(g) + e:FqurRz/QzFi‘?L'ﬁJ_/zaT(g)}|G1i> = E*|GY), (3.19)

“The constraint for x~ is obtained by requiring z = I(x* —x7) = £R,/2 to hold at light-front time x* = 0.
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where we have used (3.6) to replace (F*||y|>| F*) and used
the resulting delta functions to do the x integrals in

Pine f dxgg I)(’z

For this eigenvalue equation to be satisfied, the terms that
contain a” must cancel, which means that

5 {qu +q" Gli(ﬁ)

i¥€$iq+Rz/2$i;{l.R’L/2 = 0.

m./16z3q*

The function Gi” must then be

(3.20)

g [q° e Fia R/2FiG R, /2
Gi(q) =—— :
- 167° (¢*)° +q1 + 4

(3.21)

The eigenenergy is then computed from the remaining
terms as

E* :_+_ oia R /2GR GE (¢)

ol i

m: 1 1(g /dq 1
=—+-m—=(= = :
2m 2 2\m 167° (¢*)? +¢% +4?

The integral in the last term is divergent. We introduce a
cutoff A and define

(3.22)

[ dq (A —(q")*—q7)
I(A) - 16 3 +32 2 2
wu (q7) +ql+u

. (3.23)

(GYF*|:€:|G{F*)

2 2 2

ol Vi

Variation with respect to Gi* yields (3.20) and the same
results follow, including the value m of (GfF*|:&:
|GEF*) at this minimum, once the mass renormalization
is taken into account.

For comparison with the double-source state, we also
consider the average number (n)_ of neutral scalars in this
single-source state. This is computed from the coherent
state as

(n)s = / dq(GEF*|at (q)a(g)|GEF*) = / dq|G(g)2-
(3.28)

ilq*R /2+iq, - RL/ZGi( )+ eFia R/2Fiq, - RL/ZGi*(q)].

and the eigenenergy becomes

m3 1 1/g\2
Ef =24 _—m—— (=) ul(A).
2m 2" 2<m>”()

We can arrange E* = m, the physical mass, by choosing
the bare mass such that

(3.24)

m=m?+ @ L Ei(n). (3.25)

The cutoff dependence is then removed.

We now have an exact solution for the single-source state
that includes the source and a Fock-state expansion in the
number of neutral scalars. The form is independent of
the source location, except for a phase in the individual
wave functions Gli. We also see that, in both cases, the
normalization of the state is determined by

g\ dq +
+ G f16;3<< T )
Zy =e (3.26)

The integral is divergent and requires a cutoff, to give
meaning to the norm of the state.

Assuming that such a cutoff is in place, the single-source
problem can be also formulated as a variational problem
with |GT F*) as the trial state. The expectation value of the
energy is

m 1 1 [ + p?
=—0+—m+/dg—{ lq+ +q+]G?*(g)GT(z)

(3.27)

However, on substitution of the form for Gft, the expect-
ation value reduces to

=) [t

which contains the same divergent integral that defines the
normalization. Thus, unless one chooses to fix the coupling
g as a bare coupling by fixing the value of (n),, the number
of neutrals that dress a single source is effectively infinite.
Instead of invoking a restriction on the coupling, we will
accept this infinite value as part of the nature of the single-
source state and investigate the change in the number of
neutrals induced by the presence of a second source.

(q")?
2 +qi +ut?

. (3.29)
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IV. DOUBLE SOURCE

The case of two static sources can also be solved with a
coherent state. We take the variational approach, with a trial
state built from a product of single-source states of opposite
charge

VA

G,GIGFTF™) = | =———
| 291 Y > Z?_Zl_
(4.1)

where G, (g) is a function to be determined and Z fixes the
overall normalization as

(FYF7: 2|2 |[FTFT)

/ V/ 167r3p’+

at e
o] 160 DG ) G ),

o= [ mr (et [ Fep)
0 \/16ﬂ3p’+ = \/167t3p+ =

7 - _qu\c2 9)+G (9)+GT(9) ] (4.2)

It will turn out that G,(q) is actually zero.

We choose the two sources to be of opposite charge, to
have a simpler calculation without the cross terms that
would arise for two identical sources with the same charge.
However, this is not a serious restriction because one can
argue that the overlap between spatial packets is effectively
zero. This would allow the cross terms to be ignored.

When there are two sources, the expectation value of
:l¥|>: becomes

/ dp,piIF-(p,)P

With the normalization requirement [ dpp™|F=(p)|* =1 and the limit (3.7), this reduces to

1
m

which places the sources appropriately at R /2 and ~R /2. In terms of light-front coordinates, the peaks are at x~

)—C)J_ = j:I—éJ_/Z when x+ =0.
The expectation value for £ in the state is

1 [ mk 1q2+ﬂ
E)==[2—"242 — |1+
(:&:) z{m—km}—i—/dgz[ =

+i/L
2m J \J16z°q*

x [G,(q) + G (q) + G1(q) + G5(q)

Variation with respect to G; results in

/ " [dppllEtp)P @)

\/ 167r pt
(FYF |22 [FYF7) o = — [6(x~ + R)S(F . — R /2) + 8(x — R)8(F + R, /2)], (4.4)
=F R, and

]|Gz< )+ Gi(g) + Gr(g)
ol R/2+iG1RL/2 4 oiq " R:/2-iG,R1/2)
+ G (q) + G (q)]- (4.5)
9 1 igtR,/2+iG, R, /2 _

e {e' T Re/2HiqRi/2 4 cc.} =0. (4.6)

1[qd +w
2 gt

Substitution of the known expressions for Gi(q) leaves
G,(g) = 0.In other words, the effect of combining two single
sources is included in the phase associated with each source
location and the interference terms between G| and G7.

On the use of G, =0 and the expressions for G,
the expectation value (:€:) becomes, as discussed in
Appendix C,

2 2 2 p—HR
mg g g e
— — (= IA) - |— ) —, 4.7
m tm <m> HI(A) <2m> 4zR (4.7)

#a"|iGate) + G 0) + G (@) + 5

m./16x3q*

|

The first three terms of (:£:) reduce to 2m, with use of the
constraint (3.25) for the bare mass. This brings us to our
key result

<:5:>:2m—(%)2%, (4.8)

which shows that the eigenenergy of two static sources is
their total mass plus a rotationally symmetric, attractive

056027-6
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Yukawa potential in the standard form for scalar exchange
between scalars.’

Perhaps the most remarkable aspect is the rotational
symmetry, despite the explicit breaking of rotational
symmetry by light-front coordinates. This is achieved
not by fine tuning but by staying close to the physics of
the configuration, in that the effective potential between the
sources is contained within the ordinary energy not the
light-front energy and the sources are static with respect to
ordinary time not light-front time.

The change in the number of neutral scalars, induced by
the proximity of the two sources, is given by

(6n) = / dqta'(q)a(g)) — (n), — (n)_  (49)

- / dq|G} (g)+Gr(q) - / dqlGF (g)2- / dq|Gi(q)P-

(4.10)

Again, only the interference terms contribute

(on) =/dg[GT*(g)GI(g)+GI*(Q)GT(Q)]- (4.11)

Substitution of the form for Gf and some additional
calculus, shown in Appendix D, reduces this to

(6n) = —— <2>2{e#REi(—ﬂR)+e-ﬂREi(ﬂR)], (4.12)

1622 \m

where Ei is the exponential integral function [36]. For large

which correctly goes to zero as the separation becomes
infinite.

V. PAULI-VILLARS REGULARIZATION

A more sophisticated approach to regularization of the
infinities encountered, instead of the momentum cutoff, is
to use Pauli-Villars (PV) regularization by inserting a heavy
neutral scalar with negative metric [9]. This particular
formulation of PV regularization was developed in Yukawa
theory [37] and successfully extended to QED [38]; a
formulation for further extension to nonAbelian gauge
theories also exists [9]. The addition to the Lagrangian is

1 1
o = = |3 O = ity | = somleP. 6.1

The mode expansion for the PV field is

dp*d*p,

_ —ipx T ip-x
¢PV(X> \/W[aPV(B)e +aPV(E)€ ]’
(5.2)
with the nonzero commutator
lapv(p). apy(p))] = =8(p — p'). (5.3)

The minus sign is the negative metric that provides for
cancellations between regular and PV contributions.
The contribution to the free Hamiltonian is

separations R, this simplifies to B Uy + G2
Py == [ da" Ly (ganta). (54
1 [g\% 1 1
(on) ———(—) +(’)< > (4.13)
82> \m/) (uR)* (uR)? and to the quenched interaction term
|
v = 9 (L (p+g)er(p)+ <L (p+ e (p)an()
intPV \/16ﬂ3p+q+(p++q+) +\Z T )\ -\ T 9)-\F PV\4
+apy () (el (p)ei(p + @) + L (p)e_(p + @)l (5.5)

The contribution to the light-front momentum operator is

’P;V = _/dﬂcﬁaigv(ﬂ)apv(ﬂ)- (5.6)

We can then define the PV contribution to the energy
operator as Epy = 1 (Pgpy + Pimpy + Piv)-

This differs slightly from the Yukawa potential between
fermions, because in that case the interaction term in the
Lagrangian is g¢ypy and g is dimensionless; here g has units
of mass.

|
The ansatz for the solution to (€ + Epy) |GGy FE) =
E*|G{ Gy F*) for the single-source case is

GEGE, FE) = /757 eJ 40107 @) o [ 446 @iy (@)
(5.7)

with the normalization constants given by (3.16) and

Zi, = ol WP, (5.8)
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The action of the PV annihilation operator yields

apy(q)|Gt Gy F*) = =Gy (9)|GT Gy F).

where the minus sign is due to the negative PV metric.
Projection of the eigenvalue problem onto (F*| leaves

(5.9)

m§ 1 1[q7 +4* 1[q] +p
20 it G+ [ day [T s |t @iGt i)+ [ day| D o aby (@606 GR)

L9 / _ 49
2m ) \/167°q*

=E*|G{ Gpy)-

The terms that contain ' and aj,, must cancel separately.

For a' this yields the same equation as before, (3.20), and
for a}y, we have

1 (g% + 43
|t g G

9 1 eFia R/2FiG R /2 _ ().

m./16z3q*

The function Gli is then unchanged from (3.21) and

+ pFiq R/2FiG, R /2
Givlg) = =2 [ .
Y mV16r (67) + ad + iy

The eigenenergy is computed from the remaining terms as

(5.11)

(5.12)

m3 1 g
Ef=_90__ 7
om 2" om
dq +igtR,J2+iG, R 2]+ +
\/ﬁe SHACRI2IGE(q) - Gry(9))-
(5.13)

7t78, = o J 4l @P-IGx )]

{eHa RPPHLRPGE (q) = Gpy (@) +eT1 KPFEAR 0T (q) + apy (¢)] |G Gry)

(5.10)

Substitution of the forms of Gi* and G, and definition of
the integral

IPV(/‘}%V):/ d% [ 2 12 2 2 12 2 |
167°u [ (¢7)" +q1+u* (") +q1 +upy
(5.14)

provides for

m: 1 1/g\2
Ef =20t om—s <m> ulpy(upy).  (5.15)

The integral Ipy is, of course, the analog of the cutoff
integral defined earlier in (3.23). It is finite, except in the
limit of infinite PV mass, and is used to renormalize the
source mass as before:

2

u
mg = m” + gzglpv(ﬂ%v) (5.16)

We then find that E* is just m. The insertion of the PV
scalar also regulates the normalization:

:exp [— 2 2/ dg
m 1673

For the double-source case, the ansatz is a product of the
single-source solutions
|G GpyG Gy FTF™) = |G| GiyF*)|Gy Gpy F7). (5.18)

Projection of the eigenvalue problem

((CF)2

q" q"
2 27 (2 2 2 >} (5-17)
+q1 +u (q7) +q1 +upy

[
(E+Epy)|G{ GGGy FTF)=E|G{ G} Gy GpyFTF™)

(5.19)

onto (FTF~| yields

056027-8
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Lol + [ [ 4 o] a@ior + 6@l + [ dag [E2585 4 o+ |abygiGivia) + Gnta)

2m 2

g dq
AT
2m J \/1673g™*

x |G} GgyGy Gpy) = E|G{ Gy Gy Gpy).

iq"R/2+iq R /2 e—iq*Rz/z—iaL'RL/z] [GT(Q) _ va(g) + Gl_(ﬁ) _ Gﬁv(ﬁ) + a+(z) + G;V(Q)]}

(5.20)

The previous determined forms of Gi and Gp, are sufficient to render the coefficients of a' and af,v as zero. Thus, the
eigenvalue problem is solved as before with a simple overlap of single-source states, and the eigenvalue is

E g +m+ / 4 [

=—4m+— | ———=]e
m 2m | \/16x3q™*

Substitution of the expressions for Gi and Giy leaves

I_[Y(R) - Ypy(R)],

mg g
E= PR Wﬂlw(ﬂgv) o

(5.22)
where Ipy is given in (5.14), Y is defined in (C4), and

( ) dq ei‘/+R:+i§L'ﬁL +e_iq+R;_i§L'ﬁi
YPV R E/ —
=016 (q") g7 +ppy

Because Ypy differs from Y only by the replacement of u by
Upy, we can immediately evaluate Ypy, as in Appendix C,
and obtain, on use of the mass renormalization (5.16),

E — 2m —_ i 2L [e_ﬂR —_ e_ﬂPVR]
2m) 4zR ’

In the limit of an infinite PV mass, we then recover
our original result with an effective potential of

(5.23)

(5.24)

-(%)? j%;. The result for (6n) is also unchanged.

VI. SUMMARY

We have shown that, by considering the ordinary
energy of static sources fixed with respect to ordinary
time, a light-front calculation yields the correct Yukawa
potential. Rotational symmetry is maintained despite the
explicit breaking by the light-front coordinates themselves
and without fine tuning of parameters. The effective
potential arises from the overlap between the clouds of
neutral scalars that dress the sources. It is essentially an
interference term in the expectation value of the energy.

The success of the calculation is due to two factors. One
is that we consider the ordinary energy E, not the light-front
energy P~. The other is that the sources are fixed with
respect to ordinary time, not light-front time x*. This is
analogous to our work on the Casimir effect [17]. The

R it RG] (g) - G () + Gr(g) - G (@)

(5.21)

|
primary observation is that changing coordinate systems
does not and should not change the physics.

The calculation is nonperturbative, even though the
resulting Yukawa potential is of order g>. The eigensolution
is obtained to all orders in g as a coherent state of neutral
scalars. Such a solution is possible because the static
sources remove the constraint of momentum conservation.

The approach can be extended to more complicated
theories, although the solution of the eigenvalue problem
will typically require numerical techniques. An obvious
next application is to standard Yukawa theory with two
fermions as sources static in position but dynamic with
respect to spin. This can be done first as quenched but then
also with fermion-pair contributions. Static-source poten-
tials in QED and QCD are also clearly of interest; we
suggest that the present work provides a starting point, with
the implementation of Pauli-Villars regularization [9] as a
key ingredient.

APPENDIX A: LIGHT-FRONT WAVE PACKETS

To be able to incorporate the steady movement in x~ of a
static source, we consider the quantum mechanics of wave
packets on a light front. We use such wave packets for the
sources dressed by neutral scalars in a Fock-state expansion
or a coherent state for the neutral scalars.

The ordinary time evolution of a particle with wave
function ¥ is determined by the usual Schrédinger equation
i%—lf = P'W. The action of the momentum operator P* is
represented by —ia%. Therefore, the light-front time evo-
lution is determined by

Y i (0 0Ny 1y oy L

Separation of variables is then

P(x,x") = z(x")w(x), to find

applied, with
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2i dt 1 m? + p?

—_—  =—Py= AL S S A2

ca eV o (A2)

where the separation constant is written in the form of the

on-shell light-front energy p~ for a particle of mass m with

light-front momentum p = (p*, p l) The light-front time
+

o f Lx™).

In momentum space, P~ for a free par[icle of momentum

evolution is then 7 = exp (—i

2
p is just the multiplicative operator - p+ PL and q,’zp( ) =

Né(q* = p*)a(q.
transform yields v, (x)

— p.) is the eigenfunction. A Fourier
= Ne'Z*. A wave packet, with

momentum envelope ¢(p), is then given by

. dp
Flax */m

2p
(A3)

The normalization factor contains 16 rather than 8 because
the dot product contains a factor of 1/2 for the p™x~ term.

For a static source, we have p, = 0; however, p* is not
zero. For a source at z = £R_/2, we must have %(x+ -
x7)=4R./2 or x~ = x* F R.. Thus, x~ increases with
light-front time [13]. For the wave packet, this corresponds

to the factor exp [i(3 pta~ —21—+x+)], which, to be con-
sistent with x~ —x™ being constant for the trajectory,
must have p™ = m. This is, of course, the usual value
for p™ when the particle is at rest, but this simple analysis
shows the connection with the associated wave packet
and establishes that the envelope ¢ must be peaked
at p = (m, 0 ).

As an example of these envelope functions, we consider
a Gaussian form, parametrized by a width ¢, that becomes a
delta function in the appropriate limit.® The peak momen-
tum value of p™ = m is achieved by including a phase
factor e~ /2

Polwr) = "1y ) +Z<H/dp>(zf’m+”> (PP
Pt lwF*) =m|wFi>+;<f[/d3i> (iﬁ)w(&,m \/—HaT(p )F*),

and

$(p) exp Hg-z—@ﬁ)].

wE(x) = (61\//,‘/):/2 o=imx /2 p—(x"£R,)? /26> ,—(31F R, /2)2 /26>
(A4)
The Fourier transform is
¢+ (2) = \/%—m (%) 3/2e?l'(p*—m)R,/%iiﬁLRi/z
% =Pt =m)/8 =Pl /2. (AS)

For a static source, the momentum and position distribu-
tions are both sharply defined. In our units, where 7 = 1,
this is not mathematically obvious; the correct relationship
is recovered in an 2 — O limit.

APPENDIX B: FOCK-SPACE EXPANSION
METHOD FOR THE SINGLE-SOURCE
PROBLEM

We construct an eigenstate of £ as a Fock-state expan-
sion for the neutrals, built on a state for a single static

source at iﬁ/z
<H/dp> (Pys--p,)
x—l_[cfr I|FE).

Because of the static source, (light-front) momentum is not
conserved, and we do not seek simultaneous eigenstates
for P~ and P*. Thus the Fock-state expansion does not
contain a momentum conserving delta function to restrict
the integrals over individual momenta. We simply
require ElyFE) = EX|yF*).

The action of individual parts of £ [See Egs. (2.6)—(2.8).]
yield the following

lWwF*) =

(B1)

PradwF%) —QZ<H/dp>wn PP )/dx x|

[ o

¢_ H a'(p,)|F*). (B2)
(B3)
q) —iqtxT [2+ig, X + aT( ) iq X7/2—il7LXL HaT |Fi (B4)

®The analysis presented in the main sections is independent of the specific form chosen.
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Projection of E|yF*) = EX|yF*) onto (F*|-}

n'!

) n' 2 2 -
"L L (T >
{2m+2m+ i 2( p +q; Wn’(21""’gn’)+2m; 16n3q+€

1 n'+1

g dq
il 8y S [
\/r7 1\4, i1°2j4q +n 2m; \/W

:Eil//n’<gl7 . "7Qn/)'

An analytic solution is obtained by writing y,, as a product
of single-particle wave functions Gf (¢,)

w(gl,...,gn):jn_!f[w(gg. (B6)

Substitution of this product, and division by ,, leaves

— |2 q; ' 2m . /16x3g* G?(Qi)
% 1 g n'+1 . . N
20, - i R)=E*, B7
+2m+2 2mn’+lzf (R) (B7)
where

)eiiqwz/ziiql-zﬁ/; (BS)

> dq
fH(R) = / —=Gi(q
=] Tiewg T
The equation is solved provided that the content of the
square brackets is zero and that E* is given by

m3 1 g >
E* ="+ _m+_-—f*(R). B9

o T3M+5 - fF(R) (B9)
We will find that for this single-source case any R depend-
ence is actually absent; the function f* is simply constant.

2 2 2 2
Loy Mo 1ig g1 tH
<.5.>_m+m+2(m> /dq{ ey

1 a(q,) yields

:Fiq_?Rz/zzFqu.j'ﬁL/z

+igtR,/2+iG,-R, /2

1
\/m‘/’"’ﬂ(ﬁl’""_j_l’ﬁ’ﬁj"" 4

For the square bracket in (B7) to be zero, we need

Gi (q) - —2 \/—ZITe:Fiqul/z:Fi‘?u'RJ_/Q '
1\4 mV 1623 (q+)2+‘ﬁ_+ﬂ2

Substitution into the expression for f* and then into E*
yields

(B10)

mi m 1[g\2
E* :z_rfﬁ__E(Z) ul(A) (B11)

where I(A) is defined in (3.23). The mass renormalization
presented in (3.25) then fixes E* = m, the physical mass.

We see that, due to the factorization (B6), the neutral
scalars form the coherent state used in Sec. I1I. The location
of the source, at iﬁ/ 2, is encoded in the phase of the
individual wave functions G7, with the product in each
Fock sector having a phase that corresponds to translation

in light-front coordinates from the origin to (£R., +R, /2),
as generated by the total momentum.

APPENDIX C: DOUBLE-SOURCE EXPECTATION
VALUE FOR &

On use of G, = 0 and the expression (3.21) for G, the
double-source expectation value (:€:) given in (4.5)
becomes

+ | ,ig"R./2+iG, R /2 —ig*R,/2—ig, ‘R, /2|2
+:| q |ef1 ./2+ig R,/ + el /220G, L/|

167° (") + 4% + u*?

(C1)

1673

g dgq
2m | \J167°q* m

T | ,iqtR./2+iG, R, /2 —ig"R,/2—iG ‘R, /2|2
g) q |eq ~/ q1 L/ _|_e q ~/ q1 L/‘

(@) +q3 + 4

The last two terms differ only in their sign, and a factor of 2, and reduce to

2 \m

(:€:) m3+ 1 <g)2 / dg 2 + ¢ Re+iGRy | p=iq"R=iG Ry
Ny =—"+m—= (= = .

1673

(C2)
(") +q% +u?
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The 2 in the numerator corresponds to a divergent integral
that, with a cutoff A, is proportional to the integral (3.23)
previously encountered in the single-source case. From that
definition, we have

(:£:) = ’%‘2)+ m— (%)z;u(/\) —% (%)QY(R), (C3)

with

dq eld R+iGi-R | p=ig"R.~iG, R,
YR)= [ !

g0 167° (a7 + gt + 4
1/ dg eiq+Rz+i(7J_fﬂ + e—iferz—i‘h'iﬁ
C2) e (g gt

(C4)

In the second integral there is no restriction on the range of
g*. This unrestricted integral is easily evaluated in spheri-
cal coordinates ¢ = (q,.qy.q") = (q.0. $), relative to an

axis parallel to R. The ¢ integral is trivial, leaving

1 0 1 igR cos @ —igR cos 0
):—2/ qqu/ dcosf’ 2+62 .
l6z* Jo -1 q-+u

(C5)

1  g%dg
Y(R>:162/ 5 5 R =+ iR
7 Jo g +p iq

1 © g’dq . 1 o _
/ 5 sin(¢R) = ——== ¢k,

T4R )y @+ 47°R2

The cos @ integral reduces this to
eiqR _ e—iqR e—iqR _ eiqR
[ q ]

(Co)

Substitution into the expression (C3) for (:£:) brings us to
a nearly final form

2 2 2 p—HR
ey =" _ (4 Y A
(:6:) = m " (m) HI(A) <2m) 4zR’

All that remains is to invoke mass renormalization.

(C7)

APPENDIX D: CHANGE IN NUMBER OF
SCALARS

The change induced in the number of scalars by the
combination of two static sources is

(on) =/dg[GT*(g)GI(g)+GI*(Q)GT(Q)]- (D1)

Substitution of the form (3.21) for Gli leaves

g 2 q+ 24 eil]JrRz""i(fLﬁL + e—ifIJrRz—iql'ﬁL
(6n) = (_>/ dg—— 2.2 1,212 :
m >0 ~l6m ((g7)" +q7+u]

(D2)

Use of the same spherical coordinates as in Appendix C
reduces this to

on) = (& 2] /°° pldp
n)y ==
m) 16z* Jo (p* + u?)?

1 . .
x/ d cos 0 cos f[e'aReos0  g=iaRcosd]
—1

(D3)

Performance of the cos @ integration, and some algebraic
rearrangement, yields

oy = (4} ! /°° ap
n) ==
m 47T2R2 0 (pZ +ﬂ2)2

x [Rp?sin(pR) + p cos(pR) — p].

(D4)

The individual p integrations can be computed as follows

©  pdp 1
_pdp__ 1 (D5)
A (pZ +//l2>2 2”2
/ pcos(pR dp d [esin(pR)dp (D6)
o PP+ dRJy (PP )
©p s1n(pR d [« pcos(pR)dp
=-—| T3 (D))
o (PP+i)? dRJo (PP + i)
o sin(pR)dp 1 d [esin(pR)dp
A | A (D8
o (p*+u%) 2udp Jo  p tu
and [39]
wsin(pR)dp 1 . _ .. R
———>— = —[e™"REi(uR) — ¢"*Ei(—uR)], D9
A Pl = 5l k) (~uR)]. (DY)

where Ei is the exponential integral function [36]. The
combination of the various integrals yields

(6n) = ——— <—>Q[e/‘REi(—,uR) + e #REi(4R)]. (D10)
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