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We discuss a remarkable correspondence between the description of black holes as highly occupied
condensates of N weakly interacting gravitons and that of color glass condensates (CGCs) as highly
occupied gluon states. In both cases, the dynamics of “wee partons” in Regge asymptotics is controlled by
emergent semihard scales that lead to perturbative unitarization and classicalization of 2 → N particle
amplitudes at weak coupling. In particular, they attain a maximal entropy permitted by unitarity, bounded
by the inverse coupling α of the respective constituents. Strikingly, this entropy is equal to the area
measured in units of the Goldstone constant corresponding to the spontaneous breaking of Poincaré
symmetry by the corresponding graviton or gluon condensate. In gravity, the Goldstone constant is the
Planck scale, and gives rise to the Bekenstein-Hawking entropy. Likewise, in the CGC, the corresponding
Goldstone scale is determined by the onset of gluon screening. We point to further similarities in black hole
formation, thermalization and decay, to that of the glasma matter formed from colliding CGCs in
ultrarelativistic nuclear collisions, which decays into a quark-gluon plasma.
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I. INTRODUCTION

A topic of fundamental interest in physics is the possible
existence of deep connections between the infrared behav-
ior of the strong interaction and gravity, going back to the
formulations of QCD and string theory. In the last couple of
decades, the paradigmatic example has been the AdS/CFT
correspondence, albeit both the AdS and the CFT sides of
this correspondence are not the theories of phenomeno-
logical interest [1]. A striking recent example of a concrete
connection between gravity and QCD is the so-called BCJ
“double copy” whereby perturbative gravity amplitudes
are constructed out of QCD amplitudes and additional
kinematic factors [2].
In this work, we will discuss a possible novel corre-

spondence between specific states in the two theories
respectively arising from our observations of their remark-
able similarities at an infrared fixed point characterized
by high occupancy. In the case of gravity, these are high
occupancy graviton states which provide a microscopic
“quantum N-portrait” of a black hole (BHNP) [3,4].

In QCD, the corresponding quantum portrait of these states
in the wave function of a hadron at high energies is a
saturated gluon state commonly called a color glass
condensate (CGC) [5]. In the collisions of two nuclei at
ultrarelativistic energies, the collision of the two CGC
gluon shock waves generates an overoccupied glasma
nonequilibrium state [6,7] which subsequently evolves into
a quark-gluon plasma (QGP) [8].
As we shall elaborate, the similarities between the two

quantum portraits strongly hint at universal behavior at a
quantum critical point that may be independent of the details
of their microscopic dynamics or the initial conditions; the
physics of these objects is defined by the fact that they
represent saturated states corresponding to highly occupied
soft quanta at a “critical packing” sufficient to unitarize the
cross section for their formation. The critical packing of the
quanta (gravitons or gluons) is defined by a characteristic
saturation momentum scale, denoted by QS, with the asso-
ciated de Broglie wavelength RS ¼ 1=QS. Other key quan-
tities are (1) The occupation number of quanta per de Broglie
volume (R3

S ¼ Q−3
S ), to be denoted byN, and (2) the running

coupling constant αðQSÞ, determining the strength of the
interaction among these quanta. Critical packing is reached
when the occupation number and the coupling satisfy,

N ¼ 1

αðQSÞ
: ð1Þ

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 105, 056026 (2022)

2470-0010=2022=105(5)=056026(19) 056026-1 Published by the American Physical Society

https://orcid.org/0000-0002-7918-3553
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.056026&domain=pdf&date_stamp=2022-03-29
https://doi.org/10.1103/PhysRevD.105.056026
https://doi.org/10.1103/PhysRevD.105.056026
https://doi.org/10.1103/PhysRevD.105.056026
https://doi.org/10.1103/PhysRevD.105.056026
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


As suggested by this expression, the running of αðQSÞ is
evaluated at the scale QS. The physical meaning of critical
packing is that it represents the point of optimal balance
between the kinetic energies of the individual constituents
and their potential energies. In particular, in the BHNP, this is
the regime in which the graviton condensate forms a self-
sustained long-lived bound state, a black hole.
In both systems (BHNP or CGC), the critical packing

results in the emergence of a large number of gapless
modes corresponding to a specific microstate entropy S. An
important ingredient in the correspondence between the
systems is the relation between this microstate entropy and
the coupling αðQSÞ. This relation, proposed and worked
out in a series of papers [9–11] constitutes an upper bound
imposed by unitarity on the entropy:

Smax ¼
1

αðQSÞ
: ð2Þ

According to [11], the correlation between the saturation of
unitarity and the bound in Eq. (2) is nonperturbative in
nature and cannot be avoided by resummations in pertur-
bation theory. It was argued further that any system
saturating this entropy bound shares certain universal
properties with a black hole. Perhaps the most striking is
the relation between the entropy and surface area and the
role of a Goldstone boson in this relation. The bottom line
is that the maximal entropy permitted by unitarity is equal
to the area (∼R2

S) of the system measured in units of a
Goldstone decay constant f [9–11],

Smax ¼ Area × f2: ð3Þ

This Goldstone boson is a universal consequence of the
spontaneous breaking of Poincaré symmetry. For a satu-
rated system, the expression in Eq. (3) is equivalent to that
in Eq. (2). To summarize Ref. [11], the information
capacity of a unitary system is bounded by the area
measured in units of the Goldstone scale.
In this respect, black holes are not special and their

entropy exhibits the area-law of a generic saturated system.
In the references noted, the connection between black holes
and similar saturated objects in other physical systems was
demonstrated for a number of systems, including states in
gauge theories with large number of colors. Note that in the
black hole case the Goldstone is a graviton; the expression
in Eq. (3) gives the Bekenstein-Hawking entropy [12,13].
Other analogous universal features of such states include
decay timescales and that of information recovery [11],
which shall be discussed later.
A unique, and arguably the most striking, feature of the

correspondence we wish to highlight here is that both the
CGC state probed in QCD at high energies and the BHNP
description of black holes occur in physical systems in
nature. While QCD and gravity differ fundamentally away

from the quantum critical point, the commonality in critical
packing and as we shall discuss in the relations in Eqs. (2)
and(3) in this regime, determines the similarities in impor-
tant features of the two systems. The connections extend
beyond critical packing and cover several other key features
of their dynamics. Both black hole and CGC/glasma states
are consequences of the “classicalization” and unitarization
of 2 → N amplitudes in gravity and QCD respectively in
the high energy Regge limit where the naive N!=NN ∼
expð−NÞ suppression of cross sections is compensated by
an expðNÞ factor from counting the number of microstates
in the system. In the case of black holes, the logarithm of
this number is the black hole entropy factor. In the CGC
scattering picture, it is commonly understood to arise from
the exponentiation of soft gluon bremsstrahlung.
The idea of the saturation of trans-Planckian amplitudes

by black hole production goes back to the papers by ’t
Hooft [14,15], Gross and Mende [16,17] and by Amati,
Ciafaloni and Veneziano [18] (ACV), followed by a large
body of literature we shall not attempt to fully review here.
The step that is crucial for our CGC/BHNP correspondence
is the realization [3] that the relevant amplitude describing
black hole formation in the scattering of two trans-
Planckian gravitons is that of the 2 → N Regge scattering
process in which the bulk of the center of mass energy,

ffiffiffi
s

p
,

is redistributed among N quanta of roughly equal softness,

corresponding to momenta jpj ∼
ffiffi
s

p
N [19]. A two-dimen-

sional effective field theory for 2 → N scattering ampli-
tudes in this regime of “multi-Regge” kinematics in QCD
and gravity was developed by Lipatov [20], who also
observed early-on that gravitational effective vertices could
be represented as “squares” of so-called Lipatov vertices in
QCD [21].
Explicit computations [19] of this process both in string

theory as well as in field theory show that when the
momenta of final-state gravitons are given by jpj ∼ M2

Pffiffi
s

p , the
scattering rate delivers precisely the right exponential
suppression factor e−N that compensates the microstate
degeneracy factor eN of a black hole of mass MBH ¼ ffiffiffi

s
p

.
Note that this typical momentum is equal to the inverse
Schwarzschild radius of such a black hole, jpj ¼ 1

RS
. This

momentum also corresponds to the energy of Hawking
quanta (with temperature TH ∼ 1=RS) produced during
its evaporation. At the same time, as noted, N is equal
to black hole entropy. Thus without any additional input,
the saturation of the 2 → N scattering amplitude in the
Regge limit delivers key ingredients of the black hole
N-portrait.
This result was further refined in an explicit computation

of 2 → N Reggeized graviton amplitudes by Addazi,
Bianchi and Veneziano [22] within the ACV approach.
In this approach, developed over several decades, the
contributions of two- and higher- graviton exchanges to
single graviton exchange at large impact parameters are
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shown to become increasingly important with decreasing
impact parameter b, with all order contributions becoming
important at b ∼ RS. For a detailed discussion, and relevant
references, see for instance [23]. Perturbative unitarization in
this computation is imposed through the eikonalization of the
Reggeon amplitudes at the unitarization boundary RS or
equivalently at TH ∼ 1=RS. An essential feature in demon-
strating the equivalence of this picture to the quantum
N-portrait [3] is the exponentiation of real and virtual
emissions of soft gravitons in the computation of [22].
In QCD, the cross section for 2 → N scattering in multi-

Regge kinematics is given by the BFKL equation [24,25].
As shown by Lipatov and collaborators, infrared t- channel
divergences cancel for this “BFKL Pomeron” in multi-
Regge kinematics, giving a result for the cross section that
corresponds to a resummation of leading logarithms
αS lnðxÞ, where x denotes the longitudinal momentum
fraction carried by wee partons in multi-Regge kinematics.1

This resummation leads to a cross section that grows
rapidly with the center-of-mass energy. However when
gluon occupancies N ≫ 1, many-body processes corre-
sponding to the screening and recombination of small x
gluons become important and counter soft gluon brems-
strahlung, a phenomenon known as gluon saturation
[26,27]. As understood in this work, these many-body
processes can be shown to arise, precisely as employed by
ACV in their computations of gravitational amplitudes,
from the “AGK cutting rules” for multi-Reggeon exchanges
in 2 → 2 scattering amplitudes [28]. Though derived in the
particular context of Pomeron and Reggeon exchanges, the
AGK rules are a general consequence of the combinatorics
of producing a given number of particles from connected
sub-graphs where some are cut and the rest are not; for a
discussion in the language of quantum field theories with
strong sources, applicable in our context, see [29,30].
Gluon saturation leads to the classicalization of 2 → N

amplitudes [31,32] in the Regge limit of QCD and the wee
gluon matter characterizing this saturated state is the CGC.
A key feature of the CGC is that the typical momenta of
wee gluons resolved by a probe with resolution Q is given
by Q≡QSðxÞ, where QSðxÞ is an emergent energy-
dependent scale whose inverse, given by RS ∼ 1=QS,
denotes the close packing radius of saturated gluons at
maximal occupancy. Our choice of RS for this scale is
deliberate since, as we will discuss shortly, the dynamics of
wee partons in both QCD and gravity is governed by this

scale. We note that parton saturation and the saturation scale
were not considered in early discussions of the similarities
between wee parton dynamics in QCD and gravity [33–35].
Taking this physics into account qualitatively modifies that
discussion.2

This paper is organized as follows. In Sec. II, we will
begin by noting the common features of saturated wee
parton states in QCD. We will also discuss a fundamental
difference in the UV (ultraviolet) completeness of the two
theories, and discuss the sense in which the UV regime of
gravity is actually probing the deep infrared (IR) regime of
the theory. We will then establish the concrete dictionary
of the BHNP-CGC correspondence. With this in hand, in
Sec. III we discuss how the entropy bounds Eqs. (2) and (3)
are saturated at the unitarization boundary both for black
holes and theCGC. In particular, we discuss how this entropy
can be expressed as an area law in units of the Goldstone
constant characterizing the spontaneous breaking of
Poincaré invariance by both saturated states. In Sec. IV,
we discuss the timescales characterizing the decay of black
holes in the BHNP and relate these to those in the CGC/
glasma; the relevant scattering rates are controlled by the
dynamical screening of scattering between the wee partons
mediated by collective modes of the N particle state. While
the thermalization process is analogous in the semiclassical
evolution of the two systems, their evolution differs quali-
tatively after a quantum break time when the occupancies
in the two systems are no longer large. We also observe
similarities in the very early-stage behavior of the system
whereby the rapid scrambling of information leads to a
quasiparticle picture with the subsequent generation of
entanglement generated by kinetic scattering processes.
We end with an outlook on further aspects of the BHNP-
CGCcorrespondence andoutline future directions ofwork to
establish this correspondence on a quantitative footing. The
Appendix outlines a general argument relating theGoldstone
decay constant of collectivemodes to the area-law entropy in
the two systems.

II. DICTIONARY BETWEEN THE
SEMICLASSICAL PORTRAIT OF
A BLACK HOLE AND A CGC

We will establish here a dictionary between the semi-
classical UV/IR portraits of black holes and CGCs, by first
identifying the correspondence in the emergent scales of
the two theories.

A. Black holes

According to the black holeN-portrait (BHNP) [3,4], the
black hole represents a long lived state of soft gravitons

1In the Regge limit, s → ∞, s=t → −∞, where −t ¼ fixed is
the momentum transfer squared in the gluon scattering amplitude;
multi-Regge denotes Regge kinematics applied to each rung of
the 2 → N ladder corresponding to bremsstrahlung emission.
Equivalently, in the language of deeply inelastic scattering (DIS),
the Regge limit corresponds to Bjorken xBj ≈Q2=s → 0, where
Q2 is the ultraviolet resolution scale of the DIS probe. In the
parton model, xBj ≈ x, where x is the light cone momentum
fraction of a hadron carried by a parton.

2We note that while a saturation scale has been discussed
previously in the AdS/CFT correspondence, it does not corre-
spond to a critical packing scale of gluons and gravitons as in the
CGC and the black hole N portrait.
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with very high occupation number N ≫ 1; it can therefore
be viewed as a graviton condensate that is approximately
classical. For any given N, the graviton wavelength RS (and
thus momentumQS ¼ R−1

S ) is determined by the saturation
condition,

αgrðQSÞN ¼ 1; ð4Þ

where αgrðQSÞ is the graviton-graviton coupling evaluated
at the scale QS,

αgrðQSÞ≡ Q2
S

M2
P
¼ ðLPQSÞ2: ð5Þ

Here (in speed of light units)MP ¼ ffiffiffiffiffiffiffiffiffi
ℏ=G

p
and LP ¼ ffiffiffiffiffiffiffi

ℏG
p

denote the Planck mass and length respectively, with G
denoting Newton’s constant.
The physical meaning of Eq. (4) can be understood from

several perspectives. It defines the condition for the
N-graviton state to be self-sustaining; when this relation
is saturated, the kinetic energy of each graviton is balanced
by the attractive potential energy from the rest of the
gravitons—the self-bound gravitons form the long-lived
black hole bound state. Since the mass of this bound state
is MBH ¼ NQS, it is clear from Eqs. (4) and (5) that the
wavelength of the constituent gravitons is equal3 to the
Schwarzschild radius of a classical black hole of mass
MBH,

Q−1
S ¼ RS ¼

MBH

M2
P
: ð6Þ

This graviton bound state decays slowly through the loss of
its constituent gravitons as a result of their rescattering. As
we will soon discuss, their rate of emission matches
Hawking’s thermal evaporation rate in the semiclassical
limit N → ∞, RS ¼ Q−1

S ¼ finite.
Another physical interpretation of Eq. (4) is that it

represents the value of the coupling for which the
N-graviton state unitarizes the scattering amplitude for
the center-of-mass energy

ffiffiffi
s

p ¼ MBH. Thus the formation
of a black hole in the high energy scattering of gravitons
can be understood as the creation of a long lived state
of highly occupied (N ≫ 1) albeit weakly coupled
(αgr ∼ 1=N) gravitons. In this quantum portrait of a
classical black hole, unitarization occurs at IR wavelengths
RS ¼

ffiffiffiffi
N

p
LP, much larger than the UV Planck scale LP.

Thus the Schwarzschild radius RS can be understood as the

emergent scale characterizing dynamical unitarization at a
fixed point given by Eq. (4), for any N ≫ 1.

B. Color glass condensate in QCD

Likewise, for high energy scattering in QCD, the
perturbative unitarization line

αSðQSÞN ¼ 1; ð7Þ

corresponds to an emergent saturation scale QS. A physical
interpretation of this relation is that with the emission of N
soft gluons, the phase space density in the Regge limit of
QCD becomes large due to bremsstrahlung. The further
emission of soft gluons is compensated by the recombi-
nation and screening of soft gluons, leading to a saturation
of their growth when the occupancy is given by Eq. (7).
This gluon saturation phenomenon [26,27] is equivalently
expressed as

N ≡ xGAðx;Q2
SÞ

2ðN2
c − 1ÞπR2

AQ
2
S
¼ 1

αSðQSÞ
; ð8Þ

where RA is the nuclear radius, xGAðx;Q2
SÞ is the corre-

sponding gluon parton distribution, and Q2
S ≡Q2, is the

resolution scale of the DIS probe that saturates Eq. (7). In
the language of the operator product expansion (OPE), this
saturation condition is satisfied when “all-twist” contribu-
tions to the growth of parton distributions are of equal
magnitude to the leading twist contribution.
The equivalence between perturbative unitarization and

close packing is manifest in the CGC EFT, where the
dynamics of small gluons is represented by classical gluon
field configurations with maximal occupancy Aμ ¼
Oð1= ffiffiffiffiffi

αS
p Þ corresponding to solutions of the QCD Yang-

Mills equations [31,32,36]. In this framework, Eq. (7)
emerges from a computation of the S-matrix for inclusive
DIS scattering off a large nucleus at high energies. This S-
matrix satisfies a nonlinear renormalization group equa-
tion,4 the Balitsky-Kovchegov (BK) equation [41,42],
describing its evolution in rapidity Y (¼ lnð1=xÞ) with
the emission of small x gluons in the dense gluon
environment. For a given impact parameter, the infrared
fixed point of the BK equation, corresponding to the
unitarization of the cross section, defines the emergent
scale QS ≫ ΛQCD satisfying Eq. (7), where ΛQCD is the
strong coupling scale. From asymptotic freedom, this of
course implies αSðQSÞ ≪ 1 in the Regge limit, where
QSðxÞ is the largest scale associated with the 2 → N
process of interest. An important point to note is that

3There are factors of 2π and Oð1Þ constants that can be
accounted for in computations in a specific framework. Since the
focus here is on the universal features of the CGC-BHNP
correspondence, independent of the details of the particular
frameworks, we will not attempt to carefully account for these
constant factors.

4This JIMWLK equation describes a hierarchy of n-point
Wilson line correlators [37–40] evolving with rapidity. The BK
equation is the closed form equation for the lowest two point
correlator in this hierarchy, obtained in the limit of large Nc and
large nuclear size α2SA

1=3 ≫ 1.
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“perturbative unitarization” of the 2 → N cross section, for
fixed impact parameter, occurs at much shorter distances
∼1=QS ≪ 1=ΛQCD than those corresponding to the non-
perturbative confining dynamics of QCD.

C. A digression on the UV/IR nature of gravity

Before we outline the concrete dictionary mapping the
CGC to the BHNP, we need to clarify the properties that are
intrinsic to the scale dependence of the gravitational
interaction. It is often assumed that the high energy theory
probes short distances. This is certainly the case in a class
of quantum field theories (QFTs) in which “Wilsonian”
UV-completion at any scale can be achieved by integrating
in weakly interacting degrees of freedom corresponding to
shorter and shorter wavelengths, with QCD being a
paradigmatic example.
In such Wilsonian QFTs, there exists a clear connection

between the energy scale and the distance probed by it.
Namely, if we wish to probe a distance L, we must perform
a scattering experiment with a center of mass energy
E ∼ 1=L. Therefore in a theory with Wilsonian UV
behavior, if the particles that scatter have sufficiently high
energies, we can probe arbitrarily short distance scales.
However, evidently there exists a class of theories [43]

that differ dramatically from Wilsonian ones, of which
gravity is a prominent representative [44]. In such theories,
above certain scale, the scattering is dominated by for-
mation of classical objects, consisting of high occupation
number of “soft” quanta. This dynamics effectively pre-
vents the theory from entering into a short distance regime.
This concept was referred to [43] as the “UV-completion by
classicalization.”
In gravity, increasing the center of mass energy is no

guarantee for probing short distances because of the
existence of black holes. Instead, the formation of black
holes suggests that scales shorter than the Planck length
cannot be probed [44]. This can be understood already at
the semiclassical level and, more profoundly, at the level of
multigraviton scattering amplitudes.
The semiclassical argument is simple [45]. As soon as

the initial center of mass energy gets localized within its
Schwarzschild radius, a black hole forms. In this way,
effectively, the scattering experiment with a center of mass
energy

ffiffiffi
s

p
, probes distances L ∼

ffiffiffi
s

p
=M2

P rather than
L ∼ 1=

ffiffiffi
s

p
. That is, deep UV gravity, via black holes,

effectively is converted into a deep IR gravity [44].
The black hole N-portrait [3] offers a microscopic

understanding of this phenomenon. In field theoretic
language, the process of black hole creation means that
the initial center of mass energy of colliding hard quanta
gets distributed among a large number N of soft gravitons,
with wavelengths Q−1

S ∼
ffiffiffi
s

p
=M2

P. In this way, the momen-
tum transfer in each elementary vertex is minuscule. Since
the graviton coupling [see Eq. (5)] probed in such an
experiment is weak, it is easy to see that it satisfies the

saturation relation in Eq. (4). Because weak coupling is
accompanied by saturation, the physics of this regime is
highly nontrivial; in particular, the occupation number of
quantum and the entropy of the N-graviton state have to be
just right for this collective effect to be realized.
Note that the above applies equally to effective field

theories of quantumgravity aswell as its embedding in string
theory. String theory fully accommodates the non-Wilsonian
asymptotic behavior of gravity. As long as the Schwarzschild
radius corresponding to the center of mass energy is much
larger than the string length, black hole formation in string
theory will proceed exactly as in effective field theories of
gravity. This expectation is confirmed by computations of
multigraviton amplitudes—supposedly describing black
hole formation—which agree when computed in both
QFT and in stringy regimes [19].
Our above discussion suggests that while one can say

that a black hole state probes gravity at very high energies,
it would be a mistake to call it a UV-regime of gravity. The
relevant scale (which is an IR scale) is set by the
frequencies of the constituents and not by the overall
energy of the system.
It is also important to not confuse the role of the Planck

scale, which represents the strength of graviton coupling. In
other words, as we will discuss further, it has to be viewed
as the graviton decay constant. As pointed out in [11], when
performing the mapping between a black hole and a generic
saturated system, the Planck mass must be mapped on the
decay constant f of the Goldstone boson of the sponta-
neously broken Poincaré symmetry in that system. This
Goldstone boson must be universal since any saturated
system spontaneously breaks Poincaré symmetry.

D. Dictionary mapping gravity
in the UV to QCD in the IR

It is now straightforward to establish the dictionary
between the BHNP and the CGC. Both states are uniquely
determined by the corresponding saturation equations in
Eqs. (4) and (7) respectively. In both cases, the saturation
scale QS determines the typical momenta of constituent
gravitons and gluons respectively. With this dictionary, a
region of space of radius RS ¼ Q−1

S of the CGC can be
mapped on to a black hole of radius determined by the
saturation of the graviton condensate.
Key features of the dynamics mapped between the two

systems exhibit UV/IR relations that become apparent
when we consider the behavior of the underlying theory
in these two regimes. In gravity, the UV scale is given by
the Planck scale MP and in QCD the corresponding IR
scale is ΛQCD.
The significance of these scales is of course that the

respective theories enter into the strong coupling regimes
when the physics is sensitive to them. On the other hand,
since the unitarization relations in Eqs. (4) and (7) are
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saturated at weak coupling, the saturation scale QS is very
far at largeN from the corresponding strong coupling scale:

for BHNP∶ Q−1
S ≫ M−1

P ;

for CGC∶ QS ≫ ΛQCD: ð9Þ

in the UVand IR respectively. As we will soon discuss, the
saturation scale in both cases exhibits the same relation
with the decay constant f of the Goldstone boson of the
broken Poincaré symmetry resulting from the creation of
these high occupancy states:

f ¼
ffiffiffiffi
N

p
QS ð10Þ

The inverse of this scale f−1 in both theories is equal to
ffiffiffi
α

p
times the screening length of the corresponding degree
of freedom (graviton or gluon). For a black hole, this
corresponds to f ¼ MP.
The lesson here is that the form of the correspondence

between BHNP and CGC depends on the resolution scaleQ
at which we probe these states. When Q ¼ QS, the corre-
spondence is direct, and driven by the dynamics of saturation
at weak coupling in both theories, with α ¼ 1=N ≪ 1.
However UV/IR type differences emerge whenever we

discuss the relations between the saturation momentum QS
and the strong coupling scales in the two theories, once we
move to much shorter distances from Q−1

S in gravity or
much longer distances in QCD. Hence in order to maintain
their qualitative similarities while changing the scale,
we must synchronize the signs in the variations of the
couplings in the two theories. That is, a motion toward the
UV in the BHNP must be mapped on the motion toward the
IR in the CGC and vice-versa.
Of course, away from the saturation point, the corre-

spondence is lost in general. However it is conceivable that,
on the weak coupling side, features of this correspondence
may benefit from Lipatov’s EFT for Reggeized gravitons
and gluons [20,21], the previously noted BCJ relations [2]
and their extension to classical “double copy” rela-
tions [46,47].

III. CONNECTING ENTROPIES
IN THE BHNP AND IN THE CGC

The connection between the microstate entropies of
CGC and BHNP can be summarized by the fact that both
satisfy Eqs. (2) and (3). According to [11], (see also, [9,10])
the above equalities are universally satisfied by critically
packed states [defined by Eq. (1)] that saturate the unitary
bound on entropy, resulting into the combined saturation
relations:

S ¼ N ¼ 1

αðQÞ ¼ Area × f2; ð11Þ

where, as before, f is the decay constant of the Goldstone
boson of broken Poincaré symmetry. We will first repro-
duce the general argument of [11] for the validity of this
relation and then specialize the discussion to black holes
and the CGC.

A. General argument

Consider a critically packed state of occupation number
N ¼ α−1 of quanta with momentum QS and volume
R3
S ¼ Q−3

S . We shall assume that the entropy is given by
Eq. (2). Let us now show that the same entropy is also equal
to the area of the region (¼ 4πR2

S), in units of a Goldstone
decay constant f. The Goldstone modes in question
originate from the fact that any critically packed condensate
spontaneously breaks symmetries both in coordinate and in
relevant internal spaces. As discussed in Appendix A, the
order parameter of this breaking is given by NQ2

S and the
decay constant of the canonically normalized Goldstone
mode is

f ¼
ffiffiffiffi
N

p
QS: ð12Þ

From this relation,5 it is clear that the entropy in Eq. (11) of
the region filled with the condensate is nothing but the area
of that region (Area ¼ 4πR2

S ¼ 4πQ−2
S ) measured in units

of f2.
Notice, as a by-product, the above relation implies the

saturation of the Bekenstein bound on entropy. Indeed,
using the saturation relation in Eq. (2) and the critical
packing relation in Eq. (1) we can write,

S ¼ α−1 ¼ NQSRS ¼ ER; ð13Þ

This last expression is nothing but the energy of the
condensate, E ¼ NQS times its size RS. We have therefore
the well-known expression [48] for the Bekenstein entropy.6

B. Entropy of a black hole

We shall now apply the above reasoning to the BHNP.
The observation that the Bekentein-Hawking entropy of a
black hole is equal to the inverse graviton coupling
evaluated at the momentum transfer QS ¼ 1=RS (or equiv-
alently, to the number N of black hole constituents) was
made in [3]. Indeed, it is obvious from Eq. (5) that the
coupling αgr is nothing but the inverse of the black hole area
in Planck units. Thus the black hole entropy is not just an
area but also the inverse of the gravitational coupling:

5This behavior was explicitly demonstrated in [10,11] for
several field theory examples of extended objects such as
solitons, instantons and baryons in large-Nc QCD.

6As per our remarks in footnote 3 we omit the factor of 2π in
this expression.
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SBH ¼ 1

αgr
¼ 4πR2

S

4L2
P
: ð14Þ

This is a particular form of the more general relation in
Eq. (11). This way of understanding the black hole entropy
connects the geometrical notion of an area to the quantum
field theoretic concept of the graviton coupling.
Further, the BHNP reveals the microscopic meaning of

the simultaneous saturation of the entropy bound and
unitarity. With regard to the latter, as noted previously,
the S-matrix for black hole formation in the scattering of
two trans-Planckian quanta with center of mass energyffiffiffi
s

p
≫ MP is that of 2 → N scattering, where the final N

graviton quanta have momenta given byQS ¼
ffiffi
s

p
N ¼ R−1

S . A
detailed computation of this process, both in quantum field
theory as well as in string theory, was performed in [19]. At
large N, both computations at the black hole formation
threshold give the following rate for the 2 → N process:

Γ2→BH ∼ e−
1
αgr

þSBH ð15Þ

where αgr ¼ Q2
S

M2
P
¼ ðRSMPÞ−2. The exponential factor eSBH

comes from the summation over black hole microstates.
The form of the rate in Eq. (15) highlights the role of
Eq. (14) in the saturation of unitarity by black holes. The
bottomline is that the black hole entropy is equal to the
inverse graviton-graviton coupling at the point where
unitarity is saturated, in full accord with Eq. (11).
Finally, as discussed in [10,11], the black hole entropy

given by Eq. (14), is a particular example of the much more
general expression in Eq. (3) for the microstate entropy of a
saturated system. As already noted, this expression states
that the maximal entropy of an object is equal to the area in
units of the Goldstone decay constant.
In the case of a black hole, as discussed in [11] and in

Appendix A, the Goldstone mode is the graviton itself.
Indeed, the saturated state of the graviton condensate
breaks Poincaré invariance spontaneously. The order
parameter of this breaking is NQ2

S ¼ N=R2
S and the decay

constant of the corresponding Goldstone mode in Eq. (12)
is equal to f ¼ ffiffiffiffi

N
p

=RS ¼ MP, which is nothing but the
Planck mass. This result makes physical sense because on
the one hand, the Planck mass is the graviton decay
constant, and on the other, the black hole is a graviton
state of maximal occupation number so that the expectation
value of the graviton field isMP. The last statement is clear
already from the classical theory, as this is the value
attained by the Schwarzschild metric tensor relative to
the Minkowski metric.

C. Entropy of the CGC

We now wish to argue that Eq. (11) is also satisfied by
the CGC. We shall apply the generic reasoning of [11]

which shows that states saturating unitarity must also
saturate the entropy bounds Eqs. (2) and (3), and therefore
Eq. (11).
As we noted previously, the CGC is a state of maximal

occupancy in the proton that is excited in DIS or hadron-
hadron scattering in the high energy Regge limit of QCD.
In this 2 → N scattering, a high energy probe effectively
interacts with a lumpy deconfined configuration of gauge
fields (Aμ ∼Oð1= ffiffiffiffiffi

αS
p Þ) with a typical correlation length

RS ∼ 1=QS ≪ 1=ΛQCD [5]. From the “perspective” of the
probe, the wee gluons in the boosted proton are Lorentz
contracted to a distance7 1=QS, in contrast to the high
energy valence parton modes that are contracted by 2Rp=γ,
with γ ∼

ffiffiffi
s

p
=mp the Lorentz factor of the valence parton

modes, and Rp,mp the proton mass and radius respectively.
With this in mind, let us consider the CGC spatial

volume VCGC ¼ R3
S ¼ Q−3

S of saturated wee gluon modes.
The energy contained in this region, as seen by the high
energy probe, is then simply

ECGC ¼ NQS: ð16Þ

Now just as in the black hole case, we can think of the
CGC as an approximately classical macrostate representing
a large multiplicity of quantum “parton” microstates. In
other words, these microstates are indistinguishable clas-
sically but represent distinct quantum states, which con-
stitute the entropy SCGC of the CGC in a region of rapidity
Y ¼ lnð1=xÞ relative to the probe.
As we noted previously, explicit weak coupling compu-

tations show that the S-matrix for 2 → N scattering is
saturated for fixed impact parameter in the Regge limit of
QCD. The physical meaning of this key piece of informa-
tion is as follows. The statement that the CGC saturates
unitarity (for a given impact parameter) means that its
microstates account for the entire portion of the Hilbert
space8 describing the complete set of QCD states localized
within the region VCGC with energy ECGC. Indeed, if QCD
matter could exist in other possible states within the same
region VCGC, this would imply that our statement about the
CGC saturating unitarity would be false since such addi-
tional non-CGC states would be formed in the same
scattering process with nonzero probability, thereby violat-
ing the unitarity of the CGC state.
The scaling of the CGC entropy as in Eq. (2) can be

understood as follows. When N is very large, the CGC can
be treated as a classical condensate. Thus when forming
CGC, say, in the scattering of gluons in the Regge limit, we

7Note that since QS ≡QSðxÞ, this picture is invariant under
boosts.

8A caveat is that this statement is true up to power law
suppressed IR modes (in gravity) and UV modes (in QCD) at a
given energy scale. As the energy of the collision increases, these
modes are absorbed into the respective evolution of the saturation
scale in both theories.
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are effectively dealing with a transition process in which a
classical object is formed from an initial quantum state. In
other words, we are dealing with a typical classicalization
process in which a formation probability of a classical
condensate matches the one of a 2 → N quantum scattering
[31,49]. Correspondingly, the probability can be under-
stood in two different ways which, for consistency, must
give the same result.
The first way is to think about the process semiclassi-

cally. That is, we assume that the bulk of the suppression in
forming the state comes from a classically forbidden
Euclidean trajectory. This aspect is similar to any text-
book semiclassical computation of tunneling, a classic
example being Coleman’s treatment of false vacuum
decay [50].
However in the present case there is a slight technical

complication. Ordinarily, in a false vacuum decay, both
initial and final configurations are classical. Cor-
respondingly, the classical Euclidean trajectory, a so-called
“bounce,” is relatively straightforward to find by solving
the classical equations of motion in Euclidean space. Such
a luxury does not exist in the present case, since the initial
two-gluon state cannot be described classically. However
this is not a serious obstacle, since the physics of the
suppression remains unaltered and can be reliably esti-
mated even without having a full-fledged saddle point
classical solution in Euclidean time.
That is, even in the absence of such a solution, we can still

think of the process as “happening” in theEuclidean time and
thus being described by some intermediate Euclidean tra-
jectory. This virtual trajectory, close to the initial two-gluon
state, cannot be described classically. However, it is reason-
able to assume that this initial quantum portion contributes
very little in the Euclidean action, as compared to the part of
the trajectory that is well described classically. The minimal
action of this classical portion can be estimated without
having an exact solution at hand.
Since ECGC ¼ NQS is the energy of the CGC, and RS is

the typical “duration” of the Euclidean time required for its
formation, a reasonable guess for the minimal action of the
relevant Euclidean trajectory is NQSRS ¼ N.
The alternative way [49] to arriving at the same expres-

sion is by thinking of the Euclidean action needed to create
N particles of momentum QS from an initial two-particle
state. The action per particle is the product of the de Broglie
wavelength and energy, QSRS ∼ 1. Therefore, for N par-
ticles this gives the total minimal action ∼N.
The bottom line in the above estimates is that the

probability of creating each microstate of CGC is sup-
pressed by

e−N ¼ e−
1
αS : ð17Þ

This expression is equivalent to the universal suppression
factor for a unitary 2 → N transition to a generic N-particle

microstate, derived from general consistency considera-
tions.9

Explicit computations [38,39,51,52] of small fluctua-
tions on top of the classical CGC solution demonstrate that
the αS suppression is compensated by the phase space in
rapidity for gluon emission; such contributions are αSY ∼
Oð1Þ for Y ∼ 1=αS. The resummation of such contributions,
in the classical background, to all orders, leads to the BK/
JIMWLK equations, which as noted previously, unitarizes
the 2 → N scattering amplitude.
The fact that the CGC saturates unitarity then implies

that the number of microstates (∼eSCGC) must compensate
the suppression in Eq. (17). Hence it follows that the
entropy of the CGC in the volume VCGC must be

SCGC ¼ 1

αS
≡ N: ð18Þ

This demonstrates that the entropy of the CGC satisfies the
first equality in the universal relation in Eq. (11), or
equivalently, saturates the bound in Eq. (2).
Of course, by the generic reasoning already given above,

as an added bonus, Eq. (18) automatically implies the
saturation of the Bekenstein bound,

SCGC ¼ ECGCRS: ð19Þ

We will now argue that (just as for the black hole case)
the entropy does not scale with the volume of the CGC but
instead as its area in units of a decay constant f of the
Goldstone boson corresponding to the breaking of Poincaré
invariance by the CGC. This follows from the generic
argument of [11] leading to Eq. (11), also discussed in
Appendix A. Here we shall apply this reasoning to the
specifics of the CGC.
In QCD, partons are characterized by hard transverse

momenta p⊥ ∼Q, where Q is the (UV) momentum
resolution scale of the probe. The longitudinal momenta
on the other hand (depending on the x values probed) can
range from ΛQCD to Q in QCD’s Bjorken limit, where the
parton concept is robust.
In the Regge limit, the picture changes qualitatively due

to the emergent saturation scale QS. For momentum modes
below this scale, the parton concept is not viable and the
corresponding microstates are indistinguishable from a
classical field. A simple computation in the CGC shows
that the typical transverse momentum is of order QS.
Interestingly, the softest longitudinal momentum modes
that carry any field strength also typically have momenta
OðQSÞ. In other words, as the proton is boosted, the valence
modes seen by a probe shrink by the Lorentz factor;

9That derivation [11], which will not be reproduced here, does
not rely on a particular assumption about the structure of the
theory. The matching with it therefore provides a consistency
check of the above estimate.
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however, the wee modes shrink as well, albeit more slowly
and with a rate computable in the CGC, and their field
strengths in the longitudinal direction are localized on the
lightcone at x− ∼ 1=QS, or pþ ∼QS.
There is however an intermediate hard scale between QS

and Q which characterizes the transition from a gapped
dilute gas “parton gas” picture to that of the overoccupied
CGC classical field. Partons below this scale are screened
or, in QCD language, are “shadowed”; in other words,
many-body (or higher twist, in OPE language) effects
become important. Just as for a thermal gas, the screening
of parton modes breaks the translational invariance of the
parton gas; the Goldstone scale f corresponding to this
breaking of Poincaré invariance is exactly analogous to that
in the BHNP. Indeed, as argued in [11], on general grounds,
this scale is of order f ∼

ffiffiffiffi
N

p
QS for any classical “soliton-

like” lump with characteristic momentum QS and the
occupation number N. We shall discuss these arguments
further in Appendix A. Thus,

SCGC ¼ 1

αS
¼ N ¼ f2Area; ð20Þ

since Area ∝ R2
S. We thus arrive at a universal relation (11)

characteristic of a generic saturates system [11]. As we
shall discuss further, it is important to note that this entropy
is not the entanglement entropy (which is generically
expected to obey an area law in units of the UV cutoff
in the theory) but the microstate entropy with an area
counted in units of f. This is highly nontrivial since
dynamical screening is how the CGC restores unitarity;
the breaking of Poincaré invariance leads to area scaling of
the entropy as opposed to volume scaling, with the scale set
by the Goldstone constant f. As is evident, the above
expressions are identical to the ones satisfied by the black
hole entropy and possess the same microscopic meaning as
revealed by the quantum N-portrait.10

For QCD dynamics in the Regge limit, from solutions
of the “mean field” CGC BK equation,11 one can deduce
this scale to be closely related to p2⊥;shdw ∼Q4

S=Λ2
QCD [57].

The latter can be expressed as p2⊥;shdw ∼ f2αSnD, where
nD ¼ Q2

S=Λ2
QCD is the number of domains in the proton.

Since the entropy of the CGC is given by its area and not
its volume, the maximal total entropy of wee partons

released from scattering off the proton is given by the
ratio of the transverse area of the proton∝ 1

Λ2
QCD

to that of the
CGC,

Stot ¼
1

αS

1

ðRSΛQCDÞ2
¼ nDSCGC; ð21Þ

where we employed Eq. (18). We assumed here that, since
RS dynamically screens color charge at larger distances, the
microstates of each of the nD domains, given by the ratio of
the area of the proton (∼1=Λ2

QCD) to that of a domain (R2
S),

are not correlated. Hence the total entropy of the proton is
given by the number of domains times the entropy of each.
Note that the occupation numberN (implicitly through the

running of the coupling) as well as nD and QS (explicitly)
depend on the intrinsic transverse size of the protonΛQCD, so
the relation betweenN andnD is an additional input thatmust
self-consistently satisfy the relations in Eqs. (7), (18), and
(21). In other words, the universality we posit is between the
black hole state and a lump ofCGCand therefore in principle
independent of the number of saturated lumps nD that can fit
within the proton. Of course, the running of the coupling in
QCD ensures that the two are not entirely independent of
each other.
When entropy is released in the lab frame of the

scattering, it is appropriate to describe it in terms of the
rapidity variable, which adds additively under boosts
between frames.12 In the bremsstrahlung process, on
average, one parton is released in 1=αS units of rapidity:
αSdY ∼ 1. Hence the boost invariant distribution of entropy
in the scattering process is given by13

dStot
dY

¼ nDðαSÞ: ð22Þ

There have been several discussions in the literature on
the entropy of the CGC and the proton at small x [60–68].
Comparisons of our results to these are not straightforward
since several employ different definitions of the entropy or
address different kinematic regions in high energy

10This unitarity limit of maximal screening in the high energy
QCD literature is very appropriately referred to as the “black disc”
limit—for a nice discussion of the different regimes, see [53].

11The parton distributions corresponding to the solutions of
this equation indeed have the structure of a propagating soliton-
like wavefront [54,55]. The kinematic region between QS and
p⊥;shdw is often referred to as the “geometrical scaling” or
“leading twist shadowing” regime in the small x QCD literature,
and there are strong arguments that small x DIS data from HERA
can be interpreted in this light [56,57].

12Indeed, as argued in [58,59], it is only meaningful to
rigorously define this entanglement entropy for a finite interval
of rapidity.

13It would be nice to compare our estimates of the microstate
entropy of CGC (which is determined by the number of nearly
degenerate pure microstates) with the entanglement entropy in
the CGC using the techniques discussed in [59–62]. Since the
typical scaling of the entanglement entropy in local field theories
is given by the area in units of the cutoff of the theory, we expect
that the two must match, at least when entanglement entropy is
computed in the EFT of the Goldstone modes. Indeed, the natural
cutoff of this effective theory is the Goldstone decay constant
f ¼ ffiffiffiffi

N
p

QS. Thus, the entanglement entropy of the CGC in a
volume Q−3

S , must scale as area in units of f, thereby matching
the general bound in Eq. (3).
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scattering.14 The closest treatment to ours is that of [67]
which likewise addresses the Von Neumann entropy
obtained from the counting of the quantum microstates
of the CGC. In deeply inelastic scattering (DIS), the
relevant quantity is the entropy of a lump of CGC
(nD ¼ 1) given in Eq. (18) that unitarizes DIS cross section
in Regge asymptotics:

SDIS ¼ 1

αSðQSÞ
→

dSDIS

dY
¼ constant forY ≤

1

αS
; ð23Þ

to leading logarithmic accuracy. This result, which is valid
in a finite rapidity interval, is consistent with that of [67]. In
contrast, in hadron-hadron (h-h)collisions, since several
lumps of CGC are produced, the entropy released is given
by

Sh−h ¼ nD
1

αSðQSÞ
→

dSh−h

dY
¼ nD: ð24Þ

This estimate is consistent with previous estimates of the
glasma entropy [6,69,70] at t ¼ 1=QS if there is a solution
to the self-consistency relation15 nD ∼ N ¼ 1=αS.
For collisions of heavy-nuclei, for rapidities Y ≤

ln2ðA1=3Þ, this estimate should be multiplied by the
atomic number A since Q2

S;A ¼ Λ2
QCDA

1=3 [26,27,31] and
RA ∝ A1=3. However at asymptotically high energies cor-
responding to Y ≫ ln2ðA1=3Þ, Q2

S becomes independent of
A [71]; in this asymptotics, the entropy will scale as the area
of the nucleus R2

A ∝ A2=3.

IV. GOLDSTONE ORIGIN OF ENTROPY AND THE
TIMESCALE OF INFORMATION-RETRIEVAL

In this section, following [11] [9,10], we shall give a
Goldstone interpretation of the quantum information carry-
ing modes that are responsible for the microstate entropy of
a generic system. This provides a deeper understanding of
the appearance of the Goldstone decay constant f in the
area law scaling of the entropy in Eq. (3). The Goldstone
interpretation of entropy was originally introduced in the
context of BHNP and the key essence was also illustrated
for a critically packed condensate of bosons in [72].
As a further step, it was shown in [9–11] that the

microstate entropy of systems in ordinary gauge theories,
and its connection with unitarity, can be understood and
explained in terms of the Goldstone phenomenon.
This Goldstone formulation allows one to derive a

universal expression [11], presented below, for the time-
scale required for retrieving quantum information stored in

microstates of the system. In particular, this knowledge was
applied to saturated multiparticle states such as lumps of
gluons or baryons in QCD with a large number of colors.
Due to the universality of the Goldstone phenomenon, the
same should be applicable to the CGC.
Let us consider the critically packed state [Eq. (1)] of

some gauge degrees of freedom. We shall assume that the
state is self-sustained, meaning that its “life-expectancy” is
a growing function of N. In certain cases, the configuration
may be exactly stable due to conserved quantum numbers.
For example, this can be the case for topological solitons
and baryons (Skyrmions). For such a system, the infinite-N
limit is well-defined and, in this limit, corresponds to a
classical background configuration which we shall generi-
cally refer to as a “lump.”
The first key point of [10,11] is that such a field

configuration necessarily breaks spontaneously a set of
global symmetries. As already discussed, among the
broken symmetries is Poincaré invariance, as the conden-
sate transforms nontrivially under it. However in addition,
there exist broken global symmetries that parametrize the
embedding of the lump into the group space.
At infinite N, the notion of a spontaneous breaking of

symmetry is exact and the lumps with different internal
orientations can be viewed as different “vacua.” They are
connected by the broken global symmetry transformations
and are strictly degenerate in energy. Correspondingly,
there exist associated Goldstone modes. These modes are
gapless at N ¼ ∞. At finite N, the Goldstones remain
gapless, at least to leading order in 1=N.
The lumps corresponding to different orientations form

different microstates of the same macrostate. The resulting
microstate entropy is defined as the log from the number of
independent orientations nst,

S ¼ lnðnstÞ: ð25Þ

The different orientations are obtained from one another by
the excitations of the Goldstone modes. This fact makes it
transparent that the Goldstone modes are the carriers of the
microstate entropy.
We next present a universal expression for the timescale

required for the retrieval of the quantum information, derived
in [11]. Since quantum information is stored within the
Goldstone modes, the retrieval of this information requires
the read-out of this Goldstone state which in turn necessarily
involves interactions with the Goldstone modes. Thus the
processing of quantum information cannot happen on time-
scales shorter than the Goldstone interaction time given by

tGoldstone ¼
1

ΓGoldstone
∼ f2R3

S ¼ NRS; ð26Þ

where ΓGoldstone is the Goldstone interaction rate (the cross
section times the density of suchmodes) for the characteristic

14We would like to thank V. Skokov and Z. Tu for discussions
pertaining to these issues.

15Note that this assumption would also give us p2⊥;shdw ¼
f2αSnD ∼ f2.
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momentum transfer scaleQS ¼ 1=RS. This expression there-
fore sets an universal lower bound on the timescale required
for retrieving quantum information stored within the system.
The Goldstone argument explains why this timescale is
macroscopic and is determined by the number of constituents
N. From the saturation relation [Eq. (11)], this timescale can
be expressed as

tGoldstone ¼
RS

α
ð27Þ

As noted in [11] for the particular case of the BHNP, the
expression in Eqs. (26) and (27) reproduce the timescale
proposed by Page [73] for the time required to retrieve
information from a black hole. These timescales also agree
with the half-decay time of a black hole and, as we shall now
discuss, with its quantum break-time [74].

V. COMPARINGTIMESCALES FORBLACKHOLE
DECAY AND FOR GLASMA EVOLUTION

TO A QUARK-GLUON PLASMA

A. Semi-classical and quantum portraits
of black hole life time

In black hole physics, an extremely important timescale
can be expressed as follows,

tBH ¼ RS
R2
S

L2
P
¼ NRS ¼ ω−1 ¼ α−1gr RS; ð28Þ

where, as we will now discuss, the four equivalent ways of
writing this timescale will be convenient for making
transparent the physical meaning of each.

The first relation tBH ¼ RS
R2
S

L2
P
is physically meaningful

for two reasons, neither of which requires any knowledge
of the microscopic theory. The first macroscopic interpre-
tation of tBH is that of the half-decay time of a black hole
due to its semiclassical evaporation via Hawking radiation
[75]. The latter can easily be obtained from the Stefan-
Boltzmann law applied to Hawking’s thermal evaporation
relation,

dMBH

dt
¼ −T2

H; ð29Þ

where TH ¼ R−1
S ¼ M2

PM
−1
BH is the Hawking temperature.

We should note that the microscopic theory of the BHNP
reveals that Eq. (29) is valid until the half-decay time.
Beyond this point, the semiclassical analysis can no longer
be trusted.
The second macroscopic interpretation of tBH, as noted

previously, is that of Page [73], who argued that tBH is the
minimal time required for an observer to be able to
resolving outgoing information at an order one rate.
The other three ways of writing tBH in Eq. (28) corre-

spond to three different microscopic interpretations of the

same physics that is provided by the BHNP. Two of these
clarify our microscopic understanding of the above inter-
pretations à la Hawking and Page respectively and reveal
underlying structure not captured by the semiclassical
theory. The final microscopic relation is noteworthy
because it provides an interpretation of tBH that has no
equivalent counterpart within the semiclassical picture of a
black hole.
We shall now consider each of these three microscopic

relations separately. When we write Eq. (28) as tBH ¼ NRS,
it describes the time during which the black hole graviton
condensate loses an Oð1Þ fraction of its initial N constitu-
ents. Indeed according to the BHNP, for each Hawking
emission time of ∼RS, the condensate on average loses one
constituent, significantly depleting over ∼N emissions.
Hence this form of tBH provides a microscopic explanation
to the half-life of a black hole obtained in Hawking’s
semiclassical theory.
The second microscopic relation in Eq. (28), tBH ¼ ω−1,

equates the left-hand side to the inverse of ω ∼ 1
SBHRS

∼ 1
NRS

,
which represents the characteristic energy gap of informa-
tion-carrying Bogoliubov-Goldstone modes of the graviton
condensate [4,72]. This relation then gives a transparent
microscopic interpretation of Page’s time: Information
encoded in a quantum degree of freedom cannot be
resolved faster than the inverse of its excitation energy.
As we discussed already, Eq. (28) is particular example of
Eq. (26), stating that information-retrieval time from an
arbitrary system is given the interaction time of information
carrying Goldstone modes [11].
The last equality in Eq. (28), tBH ¼ α−1gr RS ≡ tQ, pro-

vides us with a qualitatively different microscopic meaning
of tBH being the quantum break time. This notion has no
analog in semiclassical theory and describes a timescale
beyond which the quantum evolution of the black hole
departs fully from the classical one [74]. As argued in [76],
this timescale is characteristic of critically packed systems
for which it has the following simple form,

tQ ¼ 1

αQS
; ð30Þ

where QS ¼ 1=RS is the characteristic momentum scale
and α is the coupling. For the BHNP, α ¼ αgr and RS is the
gravitational radius.
Again, the similarity between the quantum break-time

Eq. (30) and minimal time of information retrieval Eq. (27)
has a deep physical meaning as both processes are con-
trolled by the strength of quantum interactions [11].
However the phenomenon is very general and takes

place even when more than one scale is present. In such
cases, the parametric dependence on α may change. For
example, it was shown in [74] that in the presence of
classical time evolution, or Lyapunov instabilities, the
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quantum break time can be significantly shorter relative to
that given in Eq. (30).
The origin of quantum breaking time can be understood

in general terms by viewing the semiclassical BHNP as a
many-body system [76]. In essence, it arises from the
internal rescattering of the constituents of the condensate
which leads to its depletion as well as to the generation of
entanglement. It also results in an effective “eigenstate
thermalization” [77,78]. Although the quantum state of the
system is always pure, it evolves close to a thermal state in
the sense that distinguishing it from a true thermal state
requires precision measurements over macroscopically
long timescales. We will discuss these points further
shortly.
In the BHNP framework, the equivalence of

Eqs. (28)–(30) can be understood as follows. The rate of
rescattering of a pair of constituents can be estimated as

Γ ∼QS α
2
grN2 ∼ R−1

S ; ð31Þ

where the characteristic momentum transfer in our case is
QS and the Bose enhancement factor ∼N2 comes from the
number of pairs. Taking into account Eq. (11), during the
time tQ ∼ NΓ−1 ∼ NRS, an Oð1Þ fraction of constituents
rescatters and the condensate half depletes. This gives
Eq. (30) and simultaneously establishes its equivalence to
Eq. (28). Most of the depleted gravitons leave the con-
densate and escape in the form of Hawking quanta. With
each scattering and emission, the remaining constituents
become more and more entangled among each other. The
entanglement reaches a maximal value after most of the
gravitons have experienced collisions, with timescale given
by Eq. (28). Beyond this point, the semiclassical descrip-
tion of the system breaks down completely and it “quantum
breaks.”

B. Quantum breaking of glasma formed
in collisions of CGCs

In the QCD case, the thermalization process is best
studied in the ultrarelativistic collisions of large nuclei,
which can be represented as colliding CGC shockwaves.16

In these collisions, a macroscopic deconfined region of
high occupancy gluon fields called the glasma [6,7] is
formed on a timescale τ ∼ 1=QS corresponding to the
longitudinal size of the wee gluon modes in the shock-
waves. How this glasma evolves and the thermalization

process of the system into a quark-gluon plasma (QGP) is
an outstanding problem [79].
In the CGC picture, the collision of the shockwaves, and

the subsequent evolution of the glasma, can be studied
numerically in a classical-statistical approximation at early
times when the occupancies N ≫ 1 [80]. As we will
discuss further later, Weibel-like plasma instabilities [81]
play a significant role in the decoherence of the glasma,
which then subsequently evolves, just as in the BHNP,
through the rescattering of its constituents. Detailed 3þ
1 − D numerical simulations [82,83] of the glasma strongly
suggest that this scattering occurs through a “bottom-up”
thermalization scenario [84] which we will now out-
line below.
We shall closely follow [84] with a slight change to their

notation, with Nh of [84] denoting here the occupation
number instead of the number density, with the latter
denoted instead by the lowercase nh. The evolution in
[84] starts from an initial saturated state of gluons that are
referred to as “hard,” corresponding to momenta p ∼QS.
Their number density in the initial glasma stage decreases
due to two effects. The first is the one-dimensional
“classical” expansion17 of the system which changes the
number density as,

nh ∼
Q3

S

αS

1

ðQStÞ
; ð32Þ

where t must be understood as the proper time. (In the
absence of interactions, the occupation number is of course
conserved and is given byNh ¼ nh

Q2
Spz

¼ 1
αS
.) The other effect

influencing the decrease in the number density is the
quantum scattering of gluons.
The only difference in the evolution of the glasma to that

of a black hole is the absence of the 1-D expansion. As
explained above, the sole mechanism for a black hole to
lose its quantum constituents is through the depletion of the
graviton condensate by their rescattering. The gravitons
that leave the condensate in this way are responsible for
Hawking radiation. The depletion of the graviton conden-
sate due to rescattering is strikingly similar to the initial
time evolution of the CGC/glasma, which we shall now
review. Of course, unlike Hawking quanta, the rescattered
gluons cannot escape to infinity unscathed, but form a QGP
first. This is an inessential difference, as we shall discuss,
from the “early-time” perspective of our UV/IR correspon-
dence. The rest of the early-stage dynamics in the two
systems are qualitatively identical.
When the occupancies are large, the net effect of number

changing processes is small, and the scattering of the hard
gluons is described by 2 ↔ 2 kinetic processes with the
lowest momentum exchanged given by the Debye mass

16One can also formulate the issues here for hadron-hadron
scattering at sufficiently high energies where RS ≪ R, the hadron
radius. While in the asymptotic Regge limit this system should
thermalize to a quark-gluon plasma, whether it does so in high
energy proton-proton collisions is still open because its not clear
that the required parametric separation of timescales is cleanly
achieved even at the highest LHC energies.

17This is a consequence of the geometry of the collision which
leads to a “boost-invariant” expansion [85].
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m2
D ∼

αSnh
QS

∼
Q2

S

ðQStÞ
: ð33Þ

The frequency of collisions, per unit volume, is

dN col

dt
∼ σnhNh ∼

αSnh
m2

Dpzt
; ð34Þ

where σ ∼ α2Sm
−2
D is the scattering cross section and the

occupancy Nh ¼ nh
Q2

Spz
.

SincemD rapidly becomes smaller thanQS, the net effect
of the scatterings is to increase the longitudinal momentum
of gluons (which otherwise would be rapidly depleted at the
rate pz ∼ 1=t) via the random walk relation,

p2
z ∼N colm2

D ∼
αSnh
pz

; ð35Þ

and therefore,

pz ∼ ðαSnhÞ13 ∼
QS

ðQStÞ13
: ð36Þ

Thus the occupation number of hard gluons diminishes in
time as

Nh ∼ ðαSÞ−1ðQStÞ−2
3: ð37Þ

The semiclassical picture of the glasma as a high occupancy
state with Nh ∼ 1

αS
is no longer tenable when Nh ∼ 1, which

occurs when

tglasma ∼Q−1
S α

−3
2

S : ð38Þ

This timescale is the “quantum breaking” time of the CGC.
This quantum breaking time in the glasma should

however be considered an upper bound, because there is
an overlap between the classical and quantum descriptions
[86,87] that begins parametrically sooner as long as the
occupancy satisfies 1 ≪ Nh ≪ 1=αS. As a lower bound, we
can ask what the timescale is if rescattering of soft quantum
is the only mechanism driving the depletion of the glasma,
as in the case of a black hole. This timescale is

tlowglasma ∼ N=Γ ¼ N
ðN2α2SÞQS

¼ 1

QSαS
; ð39Þ

which is not surprisingly the same as that in Eq. (30). One
thus expects quantum breaking to occur in the glasma in the
temporal window α−1S < QSt < α−3=2S .
The subsequent evolution and bottom-up thermalization

of the glasma into a quark-gluon plasma is described by
quantum kinetic 2 → 3 processes captured by an effective
kinetic theory [88]. A parametric estimate [84] of the

thermalization time gives tthermal ∼ α−13=5S Q−1
S . Since αS

only grows logarithmically, no power of the coupling
can beat the Q−1

S term, so asymptotically, in the Regge
limit, thermalization in heavy-ion collisions is extremely
rapid relative to the lifetime of the system tQGP ∼ RA, the
nuclear radius. This “late-stage” dynamics is of course
qualitatively different from that of a black hole.

C. Connecting the timescales

We shall now construct a dictionary between these
timescales in the two systems (CGC/glasma versus
BHNP). To do so, we will describe the analogous process
in the graviton condensate picture of a black hole. There are
two inessential differences. The first is that no decrease in
the occupation number analogous to that in Eq. (32) takes
place due to the absence of the classical expansion of the
system.18 So for gravitons, quantum rescattering is the only
source for reducing their occupancy.
The other difference, of no great import to our dictionary,

is that due to the isotropy of the system, all relevant
momenta of constituent gravitons are always of order R−1

S .
As we discussed previously, this is also true in the CGC/
glasma for t ≤ 1=QS, but pz depletes rapidly subsequently
due to the 1-D expansion. In order to translate the CGC
results into analogous results for graviton condensate, we
must take

pz ∼QS ∼ R−1
S : ð40Þ

Next, in order to make contact with Eq. (33), we need to
evaluate the equivalent mass of the many-body graviton
state analogous to the QCDDebye scale. In this context, the
origin of this mass is a spontaneous breaking of space-time
translation symmetries by the graviton condensate. As a
result of this breaking, a graviton propagating through the
condensate mixes with the corresponding Goldstone mode
and becomes effectively massive. However, unlike the
ordinary Higgs effect, the Goldstone is not an external
field but comes from the collective excitations of the
graviton condensate itself.19

The strength of the effect can be estimated from the
coupling of the graviton hμν with its own energy momen-
tum tensor. It is sufficient to evaluate the latter quantity
Tμν ¼ ∂μhαβ∂νhαβ þ…, to bilinear order. The details of the
tensorial structure are not important for our purposes and
Lorentz indices will be suppressed henceforth. It is suffi-
cient to remember that all the interaction terms contain only

18Fundamentally, this is because all the scattered partons in the
2 → N high energy graviton scattering are “wee” partons; in
QCD, a substantial fraction of the momentum is carried by hard
“valence” partons.

19This is analogous to the “polaron” concept in condensed
matter physics, with the broken translational symmetry reflected
in the localized polaron wave function.

CLASSICALIZATION AND UNITARIZATION OF WEE PARTONS … PHYS. REV. D 105, 056026 (2022)

056026-13



two derivatives. The order parameter of spontaneous
breaking of translation symmetry is represented by the
expectation value of the derivative of a canonically nor-
malized graviton field over the condensate state

h∂hi ∼ ffiffiffiffi
n
RS

q
∼

ffiffiffi
N

p
R2
S
. As a result, the various components

of the graviton field derivatively mix with each other and
this generates a Debye screening effect analogous to a
thermal plasma,

1

MP
hμνTμν ¼

ffiffiffi
n

p
MP

ffiffiffiffiffiffi
RS

p h∂hþ � � � ¼ mDh∂hþ � � � : ð41Þ

Remembering that αgr ¼ ðRSMPÞ−2 and taking the
number density at the saturation point of critical packing,
n ¼ N

R3
S
¼ 1

αgrR3
S
, we can write,

m2
D ¼ αgrnRS ¼ R−2

S ¼ Q2
S: ð42Þ

We see therefore an exact analogy between the Debye mass
and the first relation in both Eqs. (33) and (42), and the
equivalence of the second relation in the former to the latter
at t ¼ 1=QS, which is the minimum crossing time of two
CGC shockwaves.
It is easy to see that the expressions for scattering rates in

the two systems also match. Indeed, the scattering cross
section of constituent gravitons is

σ ∼ α2grR2
S ∼ α2grm−2

D ; ð43Þ

where in the last equation we took Eq. (42) into account.
The resulting interaction rate per unit volume is,

dN col

dt
∼ σnN ∼

αgrn

m2
D
; ð44Þ

which by Eq. (40) is the same as Eq. (34).
Taking into account critical packing, it is not hard to see

that the above expression fully matches the depletion rate
given by Eq. (31), which is the source of Hawking
evaporation. The corresponding half-depletion time is
therefore given by Eq. (28). The reason why the analogous
time in Eq. (39) in the glasma is faster by a factor ∼α1=3S is
due to its one-dimensional expansion, which contributes to
its dilution; as we argued previously, this factor should be
considered an upper bound.

D. Lyapunov exponents, quantum breaking,
chaos and scrambling

We now turn to parallels between the two systems
regarding chaos and information scrambling. The concept
of black holes as information scramblers was introduced by
Hayden and Preskill [89] who suggested that the thermal-
ization time of perturbed black holes is bounded from
below by

tBHsc ¼ RS lnðSBHÞ; ð45Þ

where RS is the gravitational radius and SBH is its entropy.
Later, Sekino and Susskind [90] suggested that black holes
actually saturate this bound. However, the underlying
quantum mechanism behind black hole’s fast scrambling
remained unclear for some time due to the lack of a suitable
microscopic theory of a black hole. The formulation of the
black hole quantum N-portrait made it possible to establish
such a connection. This was done in [74], where the
physical meaning of fast scrambling was identified with
the quantum break-time and chaos. That is, scrambling has
been linked with a significant departure of the quantum
evolution from the classical one. It was proposed in this
work that the Lyapunov exponent λ must play the crucial
role in making the system a fast scrambler. The scrambling
time can therefore be expressed as [74],

tBHsc ¼ λ−1 lnðSBHÞ ¼ λ−1 lnðNÞ: ð46Þ

The very last equality uses the fact that in N-portrait the
black hole entropy is equal to the number of its constituent
gravitons SBH ¼ N and reflects the fact that the scrambling
time can be represented solely in terms of a Lyapunov
exponent and the number of constituents of the system,
without reference to any of its other characteristics. Some
related ideas about Lyapunov exponent were further sug-
gested in [91–93].
As a result, the formula (46) for the scrambling time can

be generalized to arbitrary systems beyond black holes. In
particular, this equation tells us that any critically packed
condensate with occupation number N and a Lyapunov
exponent λ is a fast scrambler. In [74] this was explicitly
demonstrated on a 1þ 1 dimensional Bose-Einstein con-
densate that was originally introduced in [4] as a prototype
toy model for a black hole portrait. It was discovered that an
initial classical state of an uniform condensate would
develop a Lyapunov exponent for the regime Nα > 0.
Then, it would undergo quantum breaking and chaos and
would reach the state of maximal entanglement, after the
time given by Eq. (46).
When applying the above knowledge to a black hole, we

must keep in mind that there may exist several Lyapunov
exponents that can have potentially different physical
origins, depending on the situation in which the black
hole is placed. For example, in case of a classically-
perturbed black hole, a natural candidate(s) for λ is the
inverse dissipation time(s) for a quasinormal mode(s). As
an extreme form of the disturbance we can think of a black
hole merger. Correspondingly, we have to be careful when
drawing analogies with the similar timescales in the CGC/
glasma to which we shall turn now. As we shall see, the
appearance of a lnðNÞ factor in these timescales is
universal there.
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When the spacelike CGC fields generate the timelike
glasma fields in nuclear collisions, the initial state of the
matter after t ∼ 1=QS, because of its occupancy of
Oð1=αSÞ, is that of a coherent classical field. This field
develops subsequently to the bottom-up scattering and
thermalization scenario through a process of information
scrambling and entanglement. Because of its initial 1-D
geometry, with matter exploding undergoing a Hubble-like
expansion into the vacuum, the pz ∼QS modes are rapidly
redshifted relative to the transverse momentum modes with
typical pT ∼QS. This anisotropy triggers an instability
whereby quantum fluctuations, initially αS suppressed
relative to the coherent glasma condensate, grow nearly
exponentially as ∼e

ffiffiffiffiffiffi
QSt

p
[81,94]. These quantum fluctua-

tions therefore become of the order of the classical field on
the timescale tglasma

sc ∼Q−1
S ln2ðα−1S Þ—corresponding to a

butterfly effect that qualitatively changes the physics. This
differs from tBHsc only by the additional logarithmic factor—
a consequence of the expanding geometry of the former.20

In the framework of classical statistical field theory for
nonequilibrium fields [98,99], these exponentially growing
quantum fluctuations can be resummed to all orders in
αSe

ffiffiffiffiffiffi
QSt

p
and expressed as a initial spectrum of fluctuations

for the evolution of the classical fields [100,101]. Each time
evolution of a classical field configuration AclðtÞ ∼ 1=

ffiffiffiffiffi
αS

p
is seeded with a small quantum fluctuation a ∼Oð1Þ at the
initial time t ¼ 1=QS drawn from this initial spectrum of
fluctuations. Averaging observables over the spectrum of
fluctuations leads to the randomization of the information
contained in the glasma. This is seen very cleanly in a toy
0þ 1-dimensional ϕ4 model where the field equations can
be solved analytically and correspond to Jacobi elliptic
functions; in this simple setup, the difference between two
seeds can be mapped on to a small initial phase difference
in classical trajectories in the Poincaré phase plane of the
phase space density. With time evolution, the phase differ-
ence between the trajectories grows rapidly, leading to
decoherence of the trajectories and the filling up the
Poincaré plane [100].
This phenomenon, dubbed “prethermalization” [102],

causes such high occupancy fields to flow to a nonthermal
fixed point described by the quasistationary self-similar
behavior of single particle distributions characteristic of
weak wave turbulence [103]; for the 3þ 1 − D glasma,
numerical simulations [82,83] show that the corresponding
single particle distributions are precisely those that describe
the early-stage of bottom-up thermalization we discussed
earlier. Remarkably, this nonthermal fixed point appears
universal, and is seen to be identical to that of overoccupied
self-interacting scalar fields [104]. The subsequent scattering

generates further entanglement,whoseentanglement entropy
grows until the system thermalized completely.

VI. OUTLOOK

In this work, we outlined some of the elements of a
remarkable correspondence between the saturated wee
gravitons that constitute the black hole quantum N-portrait
[3,4] and saturated wee gluons that constitute a color glass
condensate state [5] inside hadrons that can be probed at
very high energies. Both systems can be understood as
classical states generated in 2 → N scattering when
N ¼ 1=α, which also corresponds to the unitarization
boundary for the scattering. A key feature of the corre-
spondence is an emergent saturation scale QS that charac-
terizes the universal dynamics of the two systems on the
unitarization boundary. This feature was missed by pre-
vious studies in the literature that attempted to draw
parallels between wee parton dynamics in the two theories.
The universal feature shared between the two systems is

the saturation of the unitarity bounds Eqs. (2) and (3) on
microstate entropy and the attainment of the relation
Eq. (11) for a generic saturated system [11], [9,10]. In
particular, this implies that both objects exhibit the area
form of the entropy in terms of respective Goldstone
constants f of spontaneously broken Poincaré invariance.
In the case of the BHNP, where the Goldstone boson comes
from graviton with the decay constant MP, Eq. (3) repro-
duces the Bekenstein-Hawking entropy. Analogously, the
area law of entropy in the CGC is determined by the
Goldstone scale that controls the gluon screening length.
The minimal timescales required for retrieving quantum

information from the two systems saturate the general
bounds in Eqs. (26) and (27) derived in [11]. As already
noticed there for a black hole, both expressions reproduce
Page time [73]. Further, the decay of these semiclassical
states through scrambling and scattering also is strongly
analogous (modulo differences due to the different geom-
etries of the two systems) until a quantum breaking time,
beyond which time the two systems differ significantly.
We showed that the observed universality provides deep

insight into the complementary languages used to describe
the two systems and their mapping into each other.
Specifically, as a concrete consequence of this universality,
we conjectured that the entropy of the CGC saturates the
unitarity bounds Eqs. (2) and (3). It further allowed us to
interpret the onset of screening and shadowing in this
system in terms of a Goldstone scale for the breaking of
Poincaré invariance; this understanding was crucial in
establishing the nontrivial area law in terms of the
Goldstone scale f, for the CGC entropy in a given rapidity
interval.
From the CGC side of the CGC-BHNP correspondence,

this universality may be useful in developing a quantitative
understanding of unitarization in the BHNP, employing key
features of a double copy between QCD and gravity

20In a fixed box geometry, these instabilities indeed grow
exponentially with t [95–97] as opposed to

ffiffi
t

p
in the expanding

case.
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amplitudes. In particular, a classical double copy between
the two theories, may allow one to demonstrate, employing
the dynamics of saturation in QCD, the onset of classic-
alization and unitarization in gravity amplitudes. This work
is in progress and will be reported separately.
An interesting question is whether our work sheds light

on a suggestion in [105,106] that there is an equality
between the critical exponents, as observed by Choptuik
[107], appearing in the self-similar collapse of classical
fluids inD > 4 dimensions and the exponent governing the
growth of the BFKL equation in D ¼ 4 dimensions. The
principal point of our work however is that the CGC and
black holes in BHNP are structurally similar states at the
full quantum level in D ¼ 4 dimensions. This follows from
the universal behavior of these objects saturating the
entropy bounds in Eqs. (2) and (3). The saturation of the
entropy bounds implies the unitarization of the correspond-
ing 2 → N processes (gluon and graviton) in weak cou-
pling in both QCD and gravity in D ¼ 4 dimensions. It
would be interesting to explore whether it is at all possible
that the saturation of the entropy and unitarity bounds
translates into values of classical critical exponents.
Another striking consequence of the BHNP-CGC cor-

respondence that deserves to be explored further is is the
relation between gravitational memory and color memory
in this picture, and their connection to soft theorems
governing the infrared structure of scattering amplitudes.
Strominger has argued that an infrared “triangle” relates the
asymptotic BMS symmetries of gravity to the soft theorems
and the gravitational memory effect, and conjectured that
this infrared triangle is a universal feature of gauge theories
[108]. The connection of this picture to the BHNP was
discussed in [109]. As argued there, the Goldstone modes
on the black hole event horizon can be identified with those
of spontaneously broken horizon supertranslations.
The mapping of gravitational memory to color memory

was first discussed in [110] in the context of Yang-Mills
fields on the celestial sphere at null infinity. It was shown in
[111] that the classical equations describing the transition
between degenerate vacua in the infinite momentum frame
are precisely the equations describing the CGC classical
field. Further, just as gravitational memory can be mea-
sured as a physical displacement of inertial gravitational
wave detectors, the color memory of the CGC state is
measurable due to the large transverse momentum kick
p⊥ ∼QS delivered to a colored probe such as a quark-
antiquark pair that experiences the passage of a CGC shock
wave. The relation of color memory in the CGC to the color
memory of gauge fields at null infinity has been argued on
the basis of the CGC fields being static in lightcone time.
However the mapping of the CGC to the BHNP suggests
that there is a further interpretation of information carrying
CGC modes as Goldstone modes of spontaneously broken

Poincaré symmetry. This feature of the BHNP-CGC
correspondence deserves further investigation.
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APPENDIX: GOLDSTONE MODES AND THE
AREA LAW ENTROPY BOUND

We will briefly review here the arguments of [11] about
the emergence of Goldstone modes and their role in the
area-law form Eq. (3) of the entropy bound Eq. (2) for a
generic critically packed system Eq. (1), thereby supporting
the relation Eq. (11).
Consider a bosonic field ϕj described by creation/

annihilation operators âjðkÞ†; âjðkÞ,

ϕ̂j ¼
X
k

1ffiffiffiffiffiffiffiffiffiffiffi
2Vωk

p ðeikxâjðkÞ þ e−ikxâjðkÞ†Þ: ðA1Þ

Here V is the volume and the label k refers to the three-
momentum. The label j ¼ 1;…; n accounts for different
spin-polarizations and for a representation content with
respect to internal symmetries such as color or flavor.
The modes obey the standard bosonic commutation rela-
tions, ½âiðkÞ; âjðk0Þ†� ¼ δijδkk0 ; ½âiðkÞ; âjðk0Þ� ¼ 0.We shall
assume that the field interacts via a coupling α.
We shall use states in which modes of certain momenta k

are macroscopically occupied,

jNi ¼
Yn
j¼1

ðâjðkÞ†ÞNj

ffiffiffiffiffiffiffi
Nj!

p j0i; ðA2Þ

where N refers to the total occupation number,

N ¼
Xn
j¼1

Nj: ðA3Þ
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Analogously, we can form a coherent state that describes a
classical field-configuration localized within a certain
characteristic radius R,

jsoli ¼ e
P

k

P
n
j¼1

ffiffiffiffiffiffiffiffiffi
NjðkÞ

p
ðâjðkÞ†−âðkÞjÞj0i; ðA4Þ

with

Xn
j¼1

X
k

NjðkÞ ¼ N ≫ 1; ðA5Þ

where the NjðkÞ’s are sharply peaked around the momen-
tum jkj ¼ 1

R ¼ QS.
The classical field is described by the expectation value

over this coherent state,

ϕj ¼ hsoljϕ̂jjsoli: ðA6Þ

We shall refer to such a state as a soliton state.
We shall assume that the occupation number N does not

exceed 1=α. In this case, the kinetic energy of a given
quantum, Ekin ∼ 1

R, is not subdominant to the potential
energy of its interaction with the rest, given by Epot ∼ αN

R .
Under such conditions, the localized classical field con-
figuration ϕj represents a N-particle state of characteristic
momenta ∼QS ¼ 1=RS, each contributing ∼QS toward the
energy of the soliton. Therefore the total energy is,

E ∼
N
RS

∼ NQS: ðA7Þ

Now according to [11], unitarity puts an upper bound on
entropy given by Eq. (2). This also agrees with the
argument in [9] that the entropy of a self-sustained
N-particle state with N ≲ 1=α is bounded by N.
Let us now show that taking into account Eq. (1), the

entropy bound in Eq. (2) is equal to the area in units of a
Goldstone decay constant f. For this, we must determine f.
The localized classical field configuration ϕj always
spontaneously breaks Poincaré symmetry (and internal
symmetries), with the strength of the breaking of
Poincaré invariance measured by the gradient of the fieldP

jð∇ϕjÞ2 ∼ N
R4. The corresponding Goldstone fields are

collective modes emerging from the infinitesimal coordi-
nate-dependent transformations. The scale f is the coef-
ficient accompanying the dimensionless parameter of such
transformations.

For example, consider translations along a coordinate x.
For simplicity, in this case, we can drop the internal index j.
The relevant infinitesimal variation of the solution is,

δϕ ¼ ϵxR∂xϕ ¼ ϵxf ðA8Þ

where ϵx is dimensionless. Its coefficient f ¼ R∂xϕj

represents the decay constant of the Goldstone field. It
is clear that

f ¼ R∂xϕ ¼
ffiffiffiffi
N

p

R
: ðA9Þ

Now taking into account Eq. (1), it is obvious that we can
rewrite Eq. (2), in form of the area law Eq. (3),

Smax ¼
1

α
¼ N ¼ ðRfÞ2; ðA10Þ

thereby reproducing Eq. (11) in its entirety.
Due to the universality of the Goldstone language and

unitarity, the above relations emerge as a generic property
of the saturated systems, regardless of their underlying
structure, as has been confirmed for several systems [9–11].
Now, for both the BHNP and the CGC, the Goldstone

decay constant is given by Eq. (A9). For the BHNP, this scale
is equal to the Planckmass f ¼ ffiffiffiffi

N
p

QS ¼
ffiffiffiffi
N

p
=RS ¼ MP. It

is easy to check that in terms of parameters N, f and α, the
effective 3-graviton vertex in BHNP and 3-gluon vertex in
CGC take similar forms. We remind the reader that a generic
three-graviton vertex is weighted by two derivatives (∂2) and
a single power of 1=MP. For the saturated state of BHNP,
these translate as ∂2 → Q2

S and 1=MP ¼ 1=f ¼ RS=
ffiffiffiffi
N

p
respectively. Thus we have,

three graviton effective vertex

¼ 1=ðR2
SMPÞ ¼ ffiffiffiffiffiffi

αgr
p

QS ¼ Q2
S=f: ðA11Þ

This matches the expression for the strength of the 3-gluon
vertex for CGC fields,

three gluon effective vertex¼ ffiffiffiffiffi
αS

p
QS¼QS=

ffiffiffiffi
N

p
¼Q2

S=f:

ðA12Þ

Thus in units of the Goldstone scale, the strength of the
coupling in the two saturated systems is identical.
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