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We present a parametrization of the chiral even generalized parton distributions, H, E, H̃, Ẽ, for the
quark, antiquark, and gluon, in the perturbative QCD (pQCD)-parton framework. Parametric analytic forms
are given as a function of two equivalent sets of variables x, ξ, t (symmetric frame) and X, ζ, t (asymmetric
frame), at an initial scale,Q2

o. In the X > ζ region, a convenient and flexible form is obtained as the product
of a Regge term ∝ X−αþα0t, describing the low X behavior, times a spectator model-based functional form
depending on various mass parameters; the behavior at X < ζ is determined using the generalized parton
distributions symmetry and polynomiality properties. The parameters are constrained using data on the
flavor separated nucleon electromagnetic elastic form factors, the axial and pseudoscalar nucleon form
factors, and the parton distribution functions from both the deep inelastic unpolarized and polarized
nucleon structure functions. For the gluon distributions we use, in particular, constraints provided by recent
lattice QCD moments calculations. The parametrization’s kinematical range of validity is 0.0001 ≤ X ≤
0.85, 0.01 ≤ ζ ≤ 0.85, 0 ≤ −t ≤ 1 GeV2, 2 ≤ Q2 ≤ 100 GeV2. With the simultaneous description of the
quark, antiquark, and gluon sectors, this parametrization represents a first tool enabling a global QCD
analysis of deeply virtual exclusive experiments.
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I. INTRODUCTION

Deeply virtual exclusive photon and/or meson produc-
tion processes allow us to access generalized parton
distributions (GPDs) [1,2], the universal quantities that
lie at the heart of all studies of the 3D structure of the
proton [3]. GPDs can also give access to the mechanical
properties of angular momentum [1,4], pressure, and shear
forces [5–7] defining the internal structure and dynamics of
hadrons. Analogous to the parton distributions functions
(PDFs) obtained from inclusive deep inelastic scattering
(DIS) processes, GPDs parametrize the quark, antiquark
and gluon correlation functions involving matrix elements
between proton states of operators at a light-like separation
between the respective parton fields.
An important difference with inclusive scattering is that

GPDs enter the cross section for deeply virtual exclusive

experiments such as deeply virtual compton scattering
(DVCS) [4], deeply virtual meson production (DVMP),
and related cross channel reactions, at the amplitude level,
multiplied by the Wilson coefficient functions and inte-
grated over the longitudinal momentum fraction, x. QCD
factorization theorems similar to the inclusive DIS case
have been proven for DVCS in Refs. [8,9] and for DVMP
(see Ref. [10]). Because the proton states have different
momenta, GPDs depend on two additional kinematic
variables: the momentum transfer squared between the
initial and final proton, which is proportional to the
invariant, t, and the light-cone (LC) momentum transfer
fraction, ξ, or ζ (see, e.g., Refs. [11,12] for extensive
reviews, definitions, and notations). The phenomenology of
perturbative QCD evolution is therefore similar to the one
extensively developed for inclusive scattering. The observ-
ables, the Compton form factors (CFFs), are complex
quantities obtained as convolutions of GPDs with kernels
governed by perturbative QCD.
Notwithstanding this additional complication, the quark,

antiquark, and gluon components of CFFs and conse-
quently of GPDs can be extracted from deeply virtual
exclusive experiments with the same logic behind DIS,
i.e., merging information from a combination of electron
and neutrino probes, including meson production, e.g., J=ψ
production which is sensitive to the gluon content (see
reviews in Refs. [13,14]), and crossed channel experiments

*btk8bh@virginia.edu
†pmv8ev@virginia.edu
‡ery5ua@virginia.edu
§fy2nb@virginia.edu∥sl4y@virginia.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 105, 056022 (2022)

2470-0010=2022=105(5)=056022(29) 056022-1 Published by the American Physical Society

https://orcid.org/0000-0002-6689-0224
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.056022&domain=pdf&date_stamp=2022-03-29
https://doi.org/10.1103/PhysRevD.105.056022
https://doi.org/10.1103/PhysRevD.105.056022
https://doi.org/10.1103/PhysRevD.105.056022
https://doi.org/10.1103/PhysRevD.105.056022
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


such as deeply virtual exclusive pion-proton Drell Yan
scattering [15,16]. While present available datasets cover
somewhat limited kinematic ranges which are neither
sufficient to separate out the various components nor to
gauge their relative importance in the various regions, the
exclusive program at Jefferson Lab@12 GeV as well as
upcoming measurements at COMPASS and JPARC will
provide, in the upcoming years, a large amount of precise
data. A wide range of diverse experiments from various
targets will be performed, from DVCS to timelike Compton
scattering and various meson production processes. The
future planned Electron Ion Colliders (EIC, EIcC), will
further these exploration at both higher 4-momentum
transfer squared Q2 and low Bjorken x.
It is therefore timely that a flexible parametrization

including valence, sea quarks, and gluon components,
which can be perturbatively evolved to the scale of the
data, is made available. Our parametric forms build on
the previously determined valence distributions which are
modeled at a low initial scale, Q2

o ≈ 0.1 GeV2. At this
scale, only valence quarks are present. Gluons and sea
quarks (quark-antiquark pairs) are resolved as independent
degrees of freedom at a larger scale, Q2

o ≈ 0.58 GeV2.
These components subsequently undergo perturbative evo-
lution and generate additional gluon and sea quarks
dynamically through gluon bremmstrahlung.
The GPDs dynamical framework uses for the initial scale

a parametrization based on the Reggeized spectator model
[17–20]. In this model, we envisage scattering from either
a valence quark, a sea quark, or a gluon, leaving behind,
respectively, a spectator diquark, tetraquark, or color octet
proton. The proton-parton-spectator vertex is modeled
with a form factor which provides a cutoff in the parton’s
kT integration. Finally, Regge behavior is obtained by
allowing the spectator mass to vary modulated by a spectral
function and using the relation x ≈ ½Mq;g

X �−1,Mq;g
X being the

spectator’s variable mass. As we explain in detail later on,
the model’s parameters are constrained recursively by first
fitting the GPD in the forward limit, Hq;q̄;gðx; 0; 0Þ, for
q ¼ u, d, to the corresponding PDFs and in a subsequent
step fitting the t dependence to the form factor. The
GPD property of polynomiality is therefore obtained by
definition for the leading Mellin moment. Since this is
in essence an overlap model, polynomiality does not
hold directly for higher order Mellin moments by
construction, whereas it can be imposed with a meas-
urable uncertainty. The parametrization describes all
chiral-even GPDs, H;E; H̃; Ẽ in the quark sector,
similar to Refs. [19,20]. We introduce a new para-
metrization for Hg;q̄ and Eg;q̄ for the gluon and
antiquarks. Perturbative QCD evolution is performed
at leading order (LO). We also study an extension to
next to leading order (NLO), which provides the basis
for quantitatively determining the parameters of our
next version to be presented in future work.

The paper is organized as follows. In Sec. II, we give the
relevant definitions including various symmetry and inte-
gral properties of the quark and gluon GPDs. In Sec. III,
we present the analytic form of the parametrization for the
various quark and gluon GPDs at the initial scale Q2

o. In
Sec. IV, the numerical values of the different quark flavor
and gluon GPDs parameters are displayed in tabulated
form, and details of perturbative QCD evolution of GPDs
are illustrated. Numerical results for the various GPD
components are shown and discussed in Sec. V. Finally,
in Sec. VI, we present our conclusions and outlook. Many
supplementary formulas explaining the details of the para-
metrization along with its summarized, ready to use,
version are presented in the Appendixes.

II. DEFINITIONS

The parametrization for all twist-2 chiral-even GPDs in
the quark and gluon sectors is given in terms of a set of two
LC momentum fractions and the Mandelstam invariant, t.
The LC variables represent the quark/gluon longitudinal
momentum fraction, X, and the difference between the
longitudinal momentum fractions of the outgoing and
incoming quark, ζ, respectively (Fig. 1, for reviews see
Refs. [13,21,22]).

FIG. 1. Cut diagram for the calculation of GPDs in the spectator
model with labels for both the longitudinal momentum fractions
and transverse momentum of the parton, proton and spectator
system with respect to the initial proton. In the symmetric
system of variables the momentum fractions are evaluated using
Eqs. (2), (3); (bottom) vertices for the spectator system: scalar
(ΛX ¼ 0) or axial vector diquark (ΛX ¼ 1) for valence quarks;
tetraquark (ΛX ¼ 0; 1; 2) for sea quarks, and color octet proton
(ΛX ¼ 1=2) for gluons.

KRIESTEN, VELIE, YEATS, LOPEZ, and LIUTI PHYS. REV. D 105, 056022 (2022)

056022-2



The support in X is expressed in the form

Fq;q̄;gðX; ζ; t;Q2Þ ¼

8>><>>:
FDGLAP
q;g ζ ≤ X ≤ 1

FERBL
q;q̄;g 0 ≤ X < ζ

FDGLAP
q̄;g −1þ ζ ≤ X < 0

; ð1Þ

where Fq;q̄;g ≡Hq;q̄;g; Eq;q̄;g; H̃q;q̄;g; Ẽq;q̄;g. The acronyms
“DGLAP” and “Efremov-Radyushkin-Brodsky-Lepage
(ERBL)” designating specific X ranges in Eq. (1) refer
to the two different modes of perturbative QCD evolution
in these regions.
The kinematic variables are defined using deeply virtual

exclusive photoproduction, ep → e0p0γ, as a testing ground
experiment for GPDs:

(i) X is the LC momentum fraction; X ¼ kþ=pþ, where
k and p are the parton/proton 4-momenta (see
Appendix A for detailed kinematics definitions).

(ii) t is the 4-momentum transfer squared between the
initial and final proton; t¼Δ2¼ðp−p0Þ2¼ΔμΔμ¼
Δ2

0−Δ2⊥−Δ2
3. t ultimately gives access to the trans-

verse spatial distribution, and is always negative.
(iii) ζ is the skewness parameter; ζ ¼ Δþ=pþ > 0.
(iv) Q2 is the virtuality of the initial photon exchanged

between the initial and final electrons; Q2 ¼
−ðke − k0eÞ2.

We use the so-called asymmetric frame where the initial
(final) proton, p (p0), and initial (final) parton, k (k0),
4-momentum components are given in the form v≡
ðvþ; v−; v⊥Þ (see Fig. 1 and Appendix A).
The asymmetric system of LC variables was introduced

to better describe the dynamics of the spectator model
including perturbative QCD evolution [19,20]. In this case,
the initial proton is set along the z axis. A more commonly
used system uses a symmetric set (x, ξ). The conversion
between symmetric (x, ξ) and asymmetric variables (X, ζ)
is given by

x ¼ kþ þ k0þ

Pþ þ P0þ ¼ X − ζ=2
1 − ζ=2

⇒ X ¼ xþ ξ

1þ ξ
ð2Þ

ξ ¼ 2Δþ

Pþ þ P0þ ¼ ζ

2 − ζ
⇒ ζ ¼ 2ξ

1þ ξ
: ð3Þ

For the GPDs, we have

Fq;q̄;gðx; ξÞ ¼

8>><>>:
FDGLAP
q for x > ξ

FERBL
q;q̄ for − ξ < x < ξ

FDGLAP
q̄ for − 1 < x < −ξ

; ð4Þ

where similar definitions hold for the helicity and gluon
distributions, F̃. Other variables used to define GPDs in the
LC frame are (see also Ref. [19])

X0 ¼ X − ζ

1 − ζ
; 1 − X0 ¼ 1 − X

1 − ζ
ð5Þ

k̃ ¼ k⊥ −
1 − X
1 − ζ

Δ⊥ ð6Þ

t ¼ Δ2 ¼ −
M2ζ2

1 − ζ
−

Δ2⊥
1 − ζ

¼ −
4M2ξ2

1 − ξ2
− Δ2⊥

1 − ξ

1þ ξ
; ð7Þ

where it should be underlined that the expression of the
invariant, t, in terms of the longitudinal and transverse
variables, ζðξÞ and ΔT , is specific to the chosen LC frame.
The minimum kinematically allowed value of t, obtained

for ΔT ¼ 0, is

t0 ¼ −
4ξ2M2

1 − ξ2
: ð8Þ

A. Limits and constraints

GPDs are subject to constraints in the forward limit
(i.e., for ζ; t → 0) and in their Mellin moments structure
(polynomiality). Furthermore, they satisfy positivity
bounds written in terms of PDFs from DIS. Although
these limits were written in several reviews, e.g., Ref. [21],
we provide an essential list below.

1. Forward limit

In the forward limit, the quark GPDs H and H̃ define
the PDFs,

HqðX; 0; 0;Q2Þ≡ fq;1 ðX;Q2Þ ð9Þ

H̃qðX; 0; 0;Q2Þ≡ gq1ðX;Q2Þ; ð10Þ

where fq1 and gq1 are the unpolarized and helicity PDFs,
respectively. In the gluon sector,

HgðX; 0; 0;Q2Þ≡ XgðX;Q2Þ ð11Þ

H̃gðX; 0; 0;Q2Þ≡ XΔgðX;Q2Þ; ð12Þ

gðXÞ and ΔgðXÞ being the unpolarized and helicity PDFs,
respectively.

2. Polynomiality

Stemming from the property of polynomiality (see the
discussion in Ref. [21]), in the symmetric frame notation,1

the integrals in x of the quark GPDs are independent of ξ
and give the various proton elastic form factors,

1The same integral properties can be written in the asymmetric
frame with a switch of variables, and inserting the Jacobian,
1

1−ζ
2

[19].
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Z
1

−1
dxHqðx; ξ; t;Q2Þ ¼ Fq

1ðtÞ ð13Þ
Z

1

−1
dxEqðx; ξ; t;Q2Þ ¼ Fq

2ðtÞ ð14Þ
Z

1

−1
dxH̃qðx; ξ; t;Q2Þ ¼ Gq

AðtÞ ð15Þ
Z

1

−1
dxẼqðx; ξ; t;Q2Þ ¼ Gq

PðtÞ: ð16Þ

Fq
1 and Fq

2 are the quark q contribution to the proton Dirac
and Pauli form factors; similarly, Gq

A and Gq
P are the quark

q axial and pseudoscalar form factors.
The second moments of the quark GPDs, H and E, readZ

1

−1
dxxHqðx; ξ; t;Q2Þ ¼ AqðtÞ þ ð2ξÞ2CqðtÞ ð17Þ

Z
1

−1
dxxEqðx; ξ; t;Q2Þ ¼ BqðtÞ − ð2ξÞ2CqðtÞ ð18Þ

(similar relations are found in the axial vector sector).
In the gluon sector, we consider constraints given by the

moments,Z
1

0

dxHgðx; ξ; t;Q2Þ ¼ AgðtÞ þ ð2ξÞ2CgðtÞ ð19Þ
Z

1

0

dxEgðx; ξ; t;Q2Þ ¼ BgðtÞ − ð2ξÞ2CgðtÞ: ð20Þ

Ag, Bg, and Cg have been recently calculated in lattice QCD
[23]. All of the form factors presented above have been
either measured or calculated in lattice QCD and therefore
provide essential constraints to the parametrization.
The form factors Aq;g, Bq;g, and Cq;g depend on the

scale, Q2, and are also scheme dependent at NLO in
perturbative QCD.

Summing Eqs. (17), (18), (19), and (20) at t ¼ 0,
one finds the (scale-independent) angular momentum sum
rule [1],

1

2

�Z
1

−1
xðHq þ EqÞ þ

Z
1

−1
ðHg þ EgÞ

�
¼ Jq þ Jg ¼

1

2
;

ð21Þ

whereas momentum conservation of the nucleon constitu-
ents is expressed byZ

1

−1
xHq þHg ¼ Mq þMg ¼ 1: ð22Þ

Equations for the full polynomiality structure involving
the Mellin moments for any value of integer value n are
reviewed in Refs. [11,22].
Polynomiality is imposed numerically, and not an

ab initio property in partonlike models. In our approach,
we fit the first moments, Eqs. (13), (14), (15), and (16) to
the measured form factors; the n ¼ 1 moments are fitted to
moments of PDFs at t ¼ 0 and at a given Q2 value. Their
value at t < 0 can be only constrained from lattice QCD
results since no measurements of these form factors are
available. For illustration, in Fig. 2, we show the first
few Mellin moments, calculated with our parametrization,
for the GPDs Hu (left panel), Hd (middle panel), and Hg

(right panel) compared to polynomial forms in ξ2 at
t ¼ −0.3 GeV2, and Q2 ¼ 4 GeV2. Notice that the range
in ξ is reduced because of the kinematic limit obtained
imposing Δ2⊥ ≥ 0 in Eq. (7). Although polynomiality is a
fitted property, we find that the first few Mellin moments,
which are most important to determine the GPDs behavior,
follow this property well within the given error from the fit.
We ascribe this behavior to the Lorentz invariance of the
model. To further address this issue, one could explore
Ansäzte similar to the one devised for pion GPDs in
Refs. [24,25].
In Fig. 3, we show results from our fit compared to

lattice QCD calculations for the flavor nonsinglet,

FIG. 2. Polynomiality property for Hu=d=g in our parametrization calculated for a typical Jefferson Laboratory kinematic bin
t ¼ −0.3 GeV2 and Q2 ¼ 4 GeV2. The blue line is our parametrization results, and the red lines are correspond to a polynomial fit in
powers of ξ2. We demonstrate that polynomiality is satisfied in our parametrization.

KRIESTEN, VELIE, YEATS, LOPEZ, and LIUTI PHYS. REV. D 105, 056022 (2022)

056022-4



n ¼ 2 u − d moments, namely, Au−d
2;0 ≡Au−Ad, Cu−d

2;0 ≡
Cu−Cd, Eq. (17), and the n ¼ 3 moment, Au−d

3;0 ¼R
dxx2ðHu−HdÞ [26,27]. Our fit was constrained using

data at t ¼ 0 only. It shows excellent agreement with lattice
calculations for the A form factors, whereas a discrepancy
with the C form factor seems to emerge at small t values.
We give the value of the gluon gravitational form factor
at t ¼ −0.3 GeV2, Cg

2;0 ¼ −2.44, which is in agreement
with the value found in Ref. [23] (Cg

2;0 is equivalent to the
integrated form of the D-term; we refer the reader to
Ref. [28] for a comprehensive review).
We show the effects of perturbative QCD evolution on

the moments in Fig. 4. We calculate several moments of the
gluon GPD Hg evolved from an initial scale up to the final
scale Q2 ¼ 1000 GeV2. The parametrization is fitted to the
lattice calculations of the first moment Ag

2;0 − ð2ξÞ2Cg ¼R
dxxHg. Higher moments are considered predictions of

our parametrization. The moments are calculated at a
kinematic value of ζ ¼ 0.005 and t ¼ −0.3 GeV2.

3. Positivity

Generalized parton distributions are bounded by the
forward parton distribution functions at two different

momentum fraction values. This bound has been studied
in Refs. [29–32]; for an essential review, see Ref. [21].
The GPDs in the DGLAP region limit to the PDFs in

the forward limit where ξ and t are equal to 0. Therefore,
one would expect relations between the two distributions.
Using the wave function description of the GPDs, one can

FIG. 3. Moments of GPDs as calculated by the polynomial fits in ξ2 in red according to our parametrization evolved to a final scale of
Q2 ¼ 4 GeV2. These are shown compared to moments calculated in lattice QCD [26]. The errors of “VA” are the propagated errors of
the fit parameters.

FIG. 4. Moments of the gluon GPDHg as a function of the scale
Q2 for the first four Mellin moments. The moments are calculated
at ζ ¼ 0.005 and t ¼ −0.3 GeV2 and evolved perturbatively from
the initial scale up to a final scale Q2 ¼ 1000 GeV2.
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work out the Schwartz inequality constraining the GPDs
with an upper limit in terms of the unpolarized PDFs.
Stronger constraints can be made when using all of the
polarized PDFs in this constraint.
The momentum fractions for an incoming quark with

respect to the incoming proton and an outgoing quark with
respect to the outgoing proton read

xin ¼
xþ ξ

1þ ξ
⇒ Xin ¼ X ð23Þ

xout ¼
x − ξ

1 − ξ
⇒ Xout ¼

X − ζ

1 − ζ
: ð24Þ

The positivity constraints are given by

ð1 − ξ2Þ
�
Hqðx; ξ; tÞ − ξ2

1 − ξ2
Eqðx; ξ; tÞ

�
2

þ
� ffiffiffiffiffiffiffiffiffiffiffi

t0 − t
p

2M
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p Eqðx; ξ; tÞ
�

2

≤
qðxinÞqðxoutÞ

1 − ξ2
ð25Þ

Eqðx; ξ; tÞ ≤ 2Mffiffiffiffiffiffiffiffiffiffiffi
t0 − t

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðxinÞqðxoutÞ

p
ð26Þ

ð1 − ξ2Þ
�
H̃qðx; ξ; tÞ − ξ2

1 − ξ2
ξẼqðx; ξ; tÞ

�
2

þ
� ffiffiffiffiffiffiffiffiffiffiffi

t0 − t
p

2M
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p ξẼqðx; ξ; tÞ
�

2

≤
qðxinÞqðxoutÞ

1 − ξ2
ð27Þ

Ẽqðx; ξ; tÞ ≤ 2M
ξ

ffiffiffiffiffiffiffiffiffiffiffi
t0 − t

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðxinÞqðxoutÞ

p
: ð28Þ

An illustration of how our parametrization satisfies the
positivity constraints is shown in Fig. 5, for the GPD Hu

plotted vs X at the kinematic point ζ¼0.25,Q2 ¼ 4 GeV2,
and t ¼ −0.1 GeV2.We also show the positivity constraints
for the gluon GPD Hg plotted similarly vs X. We choose a
kinematic point in a region where the gluon contribution
dominates ζ ¼ 0.005, Q2 ¼ 4 GeV2, and t ¼ −0.3 GeV2.

B. Symmetries

Symmetry relations in the longitudinal momentum
fraction X, or x in the symmetric system of variables, play
an important role in GPD modeling [21,34,35]).
In the symmetric system of variables, the support of

Fðx; ξÞ ranges from x ∈ ½−1; 1�, where, in particular, the
quark distribution is defined in the range x ∈ ½−ξ; 1� and the
antiquark distribution is defined in the range x ∈ ½−1; ξ�.
The two regions overlap in the range x ∈ ½−ξ; ξ�, called
the ERBL region. For the gluons, we have 0 < x < 1,
and since the gluons are their own antiparticle, they are
equivalently described through symmetries about the
x ¼ 0 axis.

The antiquark distributions are defined for the unpolar-
ized, F ¼ H, E, and the helicity, F̃ ¼ H̃; Ẽ, GPDs as

Fq̄ðx; ξÞ ¼ −Fqð−x; ξÞ; ð29aÞ

F̃q̄ðx; ξÞ ¼ F̃qð−x; ξÞ: ð29bÞ

From these definitions, we obtain the contributions to
the (−) [flavor nonsinglet (NS)] and (þ) distributions for
the unpolarized case,

FNS ¼ FqV ≡ F−
q ðx; ξÞ ¼ Fqðx; ξÞ − Fq̄ðx; ξÞ ð30aÞ

Fþ
q ðx; ξÞ ¼ Fqðx; ξÞ þ Fq̄ðx; ξÞ; ð30bÞ

and, similarly, for the helicity dependent GPDs, we have

F̃NS ¼ F̃−
q ðx; ξÞ ¼ F̃qðx; ξÞ − F̃q̄ðx; ξÞ ð31aÞ

F̃þ
q ðx; ξÞ ¼ F̃qðx; ξÞ þ F̃q̄ðx; ξÞ: ð31bÞ

FIG. 5. Positivity constraints for the GPD Hu and Hg distri-
butions at the kinematics (top) ζ ¼ 0.25; Q2 ¼ 4 GeV2, and
t ¼ −0.1 GeV2 and (bottom) ζ ¼ 0.005, Q2 ¼ 4 GeV2, and
t ¼ −0.3 GeV2. We use the LO PDF parametrization [33] for
comparison. The red curve is the right-hand side of (25), and the
blue curve is the left-hand side of (25).
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For perturbative evolution (see Sec. IV B), we introduce the
flavor singlet distributions given by the combinations

FΣ ≡X
q

Fþ
q ðx; ξÞ ¼

X
q

½Fqðx; ξÞ þ Fq̄ðx; ξÞ�; ð32Þ

F̃Σ ≡X
q

F̃þ
q ðx; ξÞ ¼

X
q

½F̃qðx; ξÞ þ F̃q̄ðx; ξÞ�: ð33Þ

From Eq. (29), it follows that the symmetries of these
distributions around x ¼ 0 are

FNSðx; ξÞ ¼ FNSð−x; ξÞ; ð34aÞ

FΣðx; ξÞ ¼ −FΣð−x; ξÞ; ð34bÞ

F̃NSðx; ξÞ ¼ −F̃NSð−x; ξÞ ð34cÞ

F̃Σðx; ξÞ ¼ F̃S
qð−x; ξÞ ð34dÞ

For the gluon distributions, we have that the unpolarized
distributions are symmetric around x ¼ 0, while the hel-
icity distributions are antisymmetric,

Fgðx; ξÞ ¼ Fgð−x; ξÞ; ð35aÞ

F̃gðx; ξÞ ¼ −F̃gð−x; ξÞ: ð35bÞ

We must also acknowledge a second symmetry about the
off-diagonal direction ξ. Along with symmetry or asym-
metry under x → −x, these off-diagonal distributions all
have a symmetry under ξ → −ξ, meaning that these
distributions are all time reversal even.
In the asymmetric system, by changing sets of variables

from ðx; ξÞ to (X; ζÞ using Eqs. (2) and (3), one has a similar
set of symmetries where now the support region is,

X ∈ ½−1þ ζ; 1�; ð36Þ

while the symmetry axis changes from x ¼ 0 to X ¼ ζ=2,
whereby the quark distribution is defined in the range
X ∈ ½0; 1� and the antiquark distribution is defined in the
range X ∈ ½−1þ ζ; ζ�, the two regions overlapping in
X ∈ ½0; ζ�, the ERBL region. The (þ) and (−) distributions
are defined as

F−
q ðζ − X; ζÞ ¼ Fqðζ − X; ζÞ − Fq̄ðζ − X; ζÞ

¼ −Fq̄ðX; ζÞ þ FqðX; ζÞ
¼ F−

q ðX; ζÞ: ð37Þ

Similarly for the flavor singlet, plus, distribution, one finds

Fþðζ − X; ζÞ ¼
X
q

Fqðζ − X; ζÞ þ Fq̄ðζ − X; ζÞ

¼
X
q

− Fq̄ðX; ζÞ − FqðX; ζÞ ð38Þ

¼ −FþðX; ζÞ: ð39Þ
The same argument can be used for the gluon distribution,
in which we find

Fgðζ − XÞ ¼ FgðXÞ: ð40Þ
For the helicity GPDs, one has

F̃−
q ðζ − X; ζÞ ¼ −F̃−

q ðX; ζÞ ð41Þ

F̃þðζ − X; ζÞ ¼ F̃þðX; ζÞ: ð42Þ

Lastly, the gluon helicity distribution symmetry in the
ERBL region can similarly be found,

F̃gðζ − XÞ ¼ −F̃gðXÞ: ð43Þ
The behavior of the valence quark and sea quark

distributions around X ¼ ζ=2 is illustrated in Fig. 6, in
which in the upper panel we show the GPDsH−

u (red curve)
and Hþ

u (blue curve), which are, respectively, symmetric
and antisymmetric with respect to X ¼ ζ=2 (for illustration
purposes, we takeHū ¼ 0 for X > ζ andHu ¼ 0 for X < 0
in the DGLAP region). From the figure, it appears clearly
that Hu and Hū are not symmetric. The middle panel
illustrates the symmetries for a low value of ζ, where the
ERBL region is suppressed. Finally, the lower panel shows
the symmetries for the GPD H̃u.
In Fig. 7, we show the symmetry of the gluon distribu-

tion with respect to X ¼ ζ=2.

C. Valence quark GPDs: SU(4) wave function

For valence quarks, the proton-quark-diquark vertex
function, Fig. 1 and Appendix B, can have two possible
couplings depending on whether the outgoing diquark is a
scalar (S ¼ 0) or an axial vector (S ¼ 1). Using the SU(4)
symmetry of the proton wave function, one has [36]

jp↑i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

1þ a2S

s �
aSffiffiffi
2

p ju↑S00i þ
1

3
ffiffiffi
2

p ju↑T0
0i

−
1

3
ju↓T1

0i −
1

3
jd↑T0

1i þ
ffiffiffi
2

p

3
jd↓T1

1i
�
; ð44Þ

where S00 ≡ SS3I3 is the scalar diquark with isospin 0 and spin

component 0; T0;1
0;1 ≡ TS3

I3
is the axial vector (triplet) diquark

with indicated isospin and spin components, and the
parameter aS ¼ 1 for SU(4) symmetry and can differ
from 1 to allow for symmetry breaking [37]. When matrix
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elements are formed with this state and the corresponding
spin down proton, the sum over the spin states leaves purely
flavor or isospin couplings. This feature of the model
allows us to separate out the u and d quark flavors. The
GPDs, F ¼ H, E, decompose as

Fu ¼
2

1þ a2S

�
3

2
a2SF

ð0Þ þ 1

2
Fð1Þ

�
Fd ¼

2

1þ a2S
Fð1Þ: ð45Þ

For the helicity dependent GPDs, F̃q ¼ H̃q; Ẽq, only the
quark spin state j0;↑i contributes, and one has

F̃u ¼
2

1þ a2S

�
3

2
a2SF̃

ð0Þ −
1

6
F̃ð1Þ

�
F̃d ¼ −

2

1þ a2S

1

3
F̃ð1Þ: ð46Þ

If the outgoing spectactor is a tetraquark, i.e., in the case
of a proton-antiquark-tetraquark coupling (Fig. 1, rhs),
one can also have an S ¼ 2 outgoing system. However, we
consider only S ¼ 0, 1 and model the ū and d̄ distributions
similarly to the quark case.

D. Parametrization form

We present our parametric forms separately for the
valence quark (F−

q ; F̃−
q ), antiquark (Fq̄; F̃q̄), and gluon

(Fg; F̃g) components. These expressions are valid at an
initial scale,Q2

o; therefore, the scale does not appear among
the arguments.
For all components, the functional form in the DGLAP

region is given as

FDGLAPðX; ζ; tÞ ¼ FMΛ
MX;m

ðX; ζ; tÞRα;α0
p ðX; ζ; tÞ; ð47Þ

where the functions FMΛ
MX;m

≡HMΛ
MX;m

, EMΛ
MX;m

, H̃MΛ
MX;m

, and

ẼMΛ
MX;m

are obtained as the product of proton-parton-
spectator vertices (Fig. 1, Appendix B). These functions
depend on mass parameters: MX, the minimum spectator
mass; m, the struck parton mass; and MΛ, the dipole form
factor cutoff mass value. Rα;α0

p ensures the proper low X
Regge behavior resulting from a generalization of the
spectator model picture in which the mass of the spectator,
MX, varies according to a spectral distribution [38].

FIG. 6. Quark symmetries. Thick dotted line is at ζ=2, the solid
line is at ζ, the thin dotted line is at 0, and the dot-dashed line is at
−1þ ζ. The ū quark distribution has been added here. We can see
that the symmetries are made explicit here. In the case of the
helicity GPD, the − distribution (representing the valence helicity
distribution) is now antisymmetric due to symmetry constraints,
and the þ distribution (representing the quark sea helicity
distribution) is symmetric.

FIG. 7. The bosonic nature of the gluon means that it is its own
antiparticle; therefore, the gluon is symmetric about X ¼ ζ=2 or
x ¼ 0 in the symmetric system of variables.
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The spectral function produces a smearing in MX ∝ 1=X
such that it reproduces the experimentally observed slope in
X for X → 0, or equivalently at large values of the spectator
mass. The role of the spectral function for GPDs was
studied in detail in Ref. [20].
The parametrization in the ERBL region is obtained by

introducing polynomial forms in X that are either sym-
metric or antisymmetric with respect to the point X ¼ ζ=2,
and by imposing the continuity condition at the crossover
points, X ¼ 0, X ¼ ζ, and the polynomiality condition
(Sec. II A 2).
All parametric forms are evaluated at an initial scale,Q2

o,
and evolved to the scale where constraints from either
experimental data or lattice QCD calculations can be
imposed. The value of Q2

o is therefore also a parameter
in our fit forms. Its impact on evolution for the various
components is presented and discussed in Sec. IV B.
The expressions for all GPDs at the initial scaleQ2

o, to be
readily used in numerical calculations, are summarized
in Appendix C.

III. PARAMETRIZATION DESCRIPTION

We now present expressions for the parametrization of
the valence, antiquark, and gluon distributions evaluated at
the initial scale,Q2

o. The parametric forms are subsequently
evolved numerically to the scale of current experimental
data and can be used directly in the cross section and
asymmetry evaluations, including Monte Carlo simula-
tions. The detailed calculations in the spectator model
leading to the expressions for the various GPDs are shown
in Appendix B. The numerical values of the parameters are
listed in the tables in Sec. IV, in which a description of the
fitting procedure is also given.
The current parametrization represents an extension

of the one presented in Refs. [17–20] in the valence quark
sector, to the antiquark and gluon sectors. The parametri-
zation is now comprehensive of the GPDs H and E for the
following flavors: uv, dv, ū, d̄, and g and H̃ and Ẽ for uv
and dv. The extension to strange and charm quarks can be

considered as soon as more stringent constraints from data
and lattice QCD will be available.
An important benchmark for GPD parametrizations is

given by the ability to reproduce the behavior of the
nucleon form factors when integrated in X. In the valence
sector, in particular, one can benefit from the flavor
separated nucleon Dirac and Pauli form factors obtained
in the accurate analysis of Ref. [39]. For the gluon GPDs,
we rely on lattice QCD calculations recently made available
in Ref. [23]. On the other hand, we used an approximated
method to normalize the antiquark GPDs since, while there
exist lattice computations of the second Mellin moments of
flavor singlet PDFs [26,27], a clear-cut analysis of flavor
separation in the antiquark sector is still lacking (see,
however, Refs. [40,41]).
An example of the uv; dv; uþ ū; dþ d̄; g GPDs H and

E, generated with our parametrization, is shown in Fig. 8
at the kinematic point t ¼ −0.3 GeV2, xBj ≈ ζ ¼ 0.2, and
Q2 ¼ 4 GeV2.
The range of validity of our parametrization is:
(i) 0.0001 ≤ X ≤ 0.85
(ii) 0.01 ≤ ζ ≤ 0.85,
(iii) 0 ≤ −t ≤ 2 GeV2

(iv) 1 ≤ Q2 ≤ 100 GeV2.
In Fig. 9, we show as an example of experimental

observables for exclusive scattering channels, the unpolar-
ized cross section for ep → e0p0γ. The DVCS contributions
in the figure were calculated using the parametrization for
the GPDs H and E, presented in this paper. It should be
noticed that this is not a fit to the data; in other words, these
results should be considered a prediction of the unpolarized
cross section at kinematics typical of Jefferson Laboratory.
Further details regarding the DVCS cross section can be
found in Refs. [43,44].

A. Valence quarks

Our model uses two different descriptions of the valence
quark distribution in the DGLAP and ERBL regions. The
DGLAP region can be considered a direct extension of the

FIG. 8. GPDs H (left) and E (right) with all flavors for the kinematics Q2 ¼ 4 GeV2, t ¼ −0.3 GeV2, and ζ ¼ 0.2.
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parton model in the forward region, where the struck quark
with initial longitudinal momentum fraction X is reinserted
in the proton target after reducing it to X − ζ, ζ being the
fraction transferred in the exclusive scattering process. In
the DGLAP region, the initial and final quarks are both off
shell, while the diquark intermediate state is on mass shell.
The ERBL region is described through a minimal math-
ematical form that is consistent with the properties of
continuity at X ¼ ζ, polynomiality, and X symmetry. This
form is sufficiently flexible to describe the data where
GPDs appear integrated over in the CFFs, while avoiding
ambiguities due to semidisconnected diagrams which are
inherent to a partonic formulation [19].

1. DGLAP region: ζ < X < 1 (ξ < x < 1)

For the valence quark distributions, the spectator is a
system with diquark quantum numbers and variable mass,
MX, with spin S ¼ 0, 1. The analytic expressions of our
model are given directly as a function of the mass
parameters for the quark, m; diquark, MX; and dipole
mass parameter, MΛ. We set as ¼ 1 but allow the mass
parameters to vary in the axial-vector sector (H̃, Ẽ) with
respect to the same parameters for H and E.

The parametric forms read

HMΛ
MX;m

¼ 2πN
�
1 −

ζ

2

�Z
∞

0

dk⊥k⊥
1 − X

a½ðmþMXÞðmþMX0Þ þ k2⊥� − bð1 − X0Þk⊥Δ⊥
D2ða2 − b2Þ3=2 þ ζ2

4ð1 − ζÞE
MΛ
MX;m

; ð48Þ

EMΛ
MX;m

¼ 2πN
�
1 −

ζ

2

�Z
∞

0

dk⊥k⊥
1 − X

−4Mk2⊥½ðmþMXÞ − ðmþMX0Þ� þ a½2MðmþMXÞ�ð1 − X0Þ
ð1 − ζÞD2ða2 − b2Þ3=2 ð49Þ

H̃MΛ
MX;m

¼ 2πN
�
1 −

ζ

2

�Z
∞

0

dk⊥k⊥
1 − X

a½ðmþMXÞðmþMX0Þ − k2⊥� þ bð1 − X0Þk⊥Δ⊥
D2ða2 − b2Þ3=2 þ ζ2

4ð1 − ζÞ Ẽ
MΛ
MX;m

ð50Þ

ẼMΛ
MX;m

¼ 2πN
�
1 −

ζ

2

�
1 − ζ

ζ

Z
∞

0

dk⊥k⊥
1 − X

−4Mk2⊥½ðmþMXÞ þ ðmþMX0Þ� − a½4MðmþMXÞ�ð1 − X0Þ
D2ða2 − b2Þ3=2 ; ð51Þ

where M is the proton mass, X0 is given in Eq. (5), and

a ¼ MðX0Þ − k2⊥
1 − X0 − Δ2⊥ð1 − X0Þ; b ¼ 2k⊥Δ⊥;

ð52aÞ

D ¼ MðXÞ − k2⊥
1 − X

; ð52bÞ

MðYÞ ¼ YM2 −M2
Λ −M2

X
Y

1 − Y
; ð52cÞ

where Y ¼ X;X0.

We parametrize the Regge term as

Rα;α0
p ¼ X−½αþα0ð1−XÞpt�; ð53Þ

where the parameters: α;α0; p take on different values
depending on the GPD. Notice that, although our para-
metric form is given in terms of the asymmetric set of
variables, ðX; ζ; tÞ, these can readily be transformed into
the symmetric set ðx; ξ; tÞ using Eqs. (2) and (3).
Summarizing, the expressions for the valence quarks in

the DGLAP region are given by

H−
q ¼ HqvðX; ζ; tÞ ¼ HMΛ

MX;m
ðX; ζ; tÞRα;α0

p ðX; tÞ ð54Þ

FIG. 9. A prediction of the DVCS cross section as compared
to data. The kinematics shown are at a Q2 ¼ 3.65 GeV2,
t ¼ −0.197 GeV2, xBj ¼ 0.367, and ϵ1 ¼ 8.521 GeV. We break
down the total cross section into contributions from the Bethe-
Heitler background process, DVCS process, and the interference
between the two amplitudes. We compare to the data at the given
kinematic point in Ref. [42]. The lines represented the DVCS,
Bethe-Heitler (BH), BH-DVCS interference (Int), and the sum of
all contributions (Total).
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E−
q ¼ EqvðX; ζ; tÞ ¼ EMΛ

MX;m
ðX; ζ; tÞRα;α0

p ðX; tÞ ð55Þ

H̃−
q ¼ H̃qvðX; ζ; tÞ ¼ H̃MΛ

MX;m
ðX; ζ; tÞRα;α0

p ðX; tÞ ð56Þ

Ẽ−
q ¼ ẼqvðX; ζ; tÞ ¼ ẼMΛ

MX;m
ðX; ζ; tÞRα;α0

p ðX; tÞ; ð57Þ

whereHMΛ
MX;m

is given in Eq. (48), EMΛ
MX;m

is given in Eq. (49),

H̃MΛ
MX;m

is given in Eq. (50), and ẼMΛ
MX;m

is given in Eq. (51).
While these are different functional forms, all GPDs have
the same form of the Regge term. The parameters values
specific to each GPD are listed in Sec. IV.

2. ERBL region: 0 < X < ζ (ξ < x < ξ)

To parametrize the valence component of the GPDs H
and E in the ERBL region, we use the symmetry around
the point X ¼ ζ=2 (x ¼ 0) for the F−, flavor nonsinglet
distributions, given in Eq. (30a). By choosing a quadratic
form for the X dependence, we can fix the three unknown
parameters,

FqvðX; ζ; tÞ ¼ F−
q ¼ aFX2 þ bFX þ cF; ð58Þ

by imposing the following conditions on the symmetric
component, F−

ERBL ¼ H−; E−:
(1) symmetry around X¼ζ=2⇒F−ðζ;ζ;tÞ¼F−ð0;ζ;tÞ,
(2) continuity condition at X ¼ ζ, F−

ERBLðζ; ζ; tÞ ¼
F−
DGLAPðζ; ζ; tÞ,

(3) polynomiality at leading order, Eqs. (13)–(16),
taking H, for instance,

Fq
1ðtÞ ¼

Z
1

−1þζ

dX
1 − ζ=2

HqðX; ζ; tÞ

¼ 1

2

Z
ζ

ζ=2

dX
1 − ζ=2

H−
q ðX; ζ; tÞ

þ
Z

1

ζ

dX
1 − ζ=2

H−
q ðX; ζ; tÞ: ð59Þ

By using the constraints (1) and (2), one finds

bF ¼ −ζaF cF ¼ FDGLAPðζ; ζ; tÞ:

The parameter a is determined by imposing con-
straints (3), giving

aF ¼ 6

ζ3
½ζFðζ; tÞ − 2SFðζ; tÞ�; ð60Þ

where

Hðζ; tÞ ¼ HDGLAPðζ; ζ; tÞ; Eðζ; tÞ ¼ EDGLAPðζ; ζ; tÞ

are the GPD values at the crossover point between
the ERBL and DGLAP regions calculated using

Eqs. (48)–(51). SF is the area subtended by F−≡
H−; E−, H̃þ; Ẽþ, respectively, Eqs. (30a), (30b),
(34c), and (34d), in the ERBL (X < ζ) region. This
is obtained by subtraction from the various form
factors, Eqs. (13)–(16), as

SH ¼
Z

ζ

0

dXH−ðX; ζ; tÞ

¼
�
1 −

ζ

2

��
F1 −

Z
1

ζ

HðX; ζ; tÞ
1 − ζ=2

dX

�
ð61aÞ

SE ¼
Z

ζ

0

dXE−ðX; ζ; tÞ

¼
�
1 −

ζ

2

��
F2 −

Z
1

ζ

HðX; ζ; tÞ
1 − ζ=2

dX

�
: ð61bÞ

Notice that SF appears in the definition of a,
Eq. (60), multiplied by a factor of 2 because of
the crossing symmetry property for the areas sub-
tended by F− and F (see Sec. II B).

The final analytic expressions are given by

HqvðX; ζ; tÞ ¼ aHX2 − aHζX þHðζ; tÞ ð62Þ

EqvðX; ζ; tÞ ¼ aEX2 − aEζX þ Eðζ; tÞ; ð63Þ

where aH and aE are calculated from Eq. (60).
To conclude, our parametric form in the ERBL region

introduces no free parameters. As more data from DVCS
and related experiments become available, thus allowing a
larger number of parameters, more flexibility could be
introduced by, e.g., including higher powers in X.
For the valence components of the GPDs H̃ and Ẽ, the

symmetry is opposite; i.e., F̃− is antisymmetric around
X ¼ ζ=2 (x ¼ 0). We consider the following form:

F̃−
q ¼ F̃qvðX; ζ; tÞ ¼ aF̃X

3 þ bF̃ζX
2 þ cF̃X þ dF̃: ð64Þ

Similar to H and E, the parameters can be fixed by
considering the symmetry conditions for antiquarks:
(1) antisymmetry

around X ¼ ζ=2 ⇒ F̃ðζ; ζ; tÞ ¼ −F̃ð0; ζ; tÞ,
(2) continuity condition at X ¼ ζ, F̃ERBLðζ; ζ; tÞ ¼

F̃DGLAPðζ; ζ; tÞ,
(3) F̃ERBL ¼ 0 at X ¼ ζ=2 (the integral in X is zero).
One can therefore determine three of the parameters as

bF̃ ¼ −
3

2
aF̃ζ; cF̃ ¼ 1

ζ

�
2F̃ðζ; tÞ þ 1

2
aF̃ζ

3

�
dF̃ ¼ −Fðζ; tÞ; ð65Þ

with F̃ðζ; tÞ ¼ F̃DGLAPðζ; ζ; tÞ, while aF̃ is a free parameter
which was determined numerically (see Table I).
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The analytic expressions for the valence helicity GPDs
are given by

H̃qvðX; ζ; tÞ ¼ aH̃X
3 −

3

2
aH̃ζX

2 þ cH̃X þ H̃ðζ; tÞ ð66Þ

ẼqvðX; ζ; tÞ ¼ aẼX
3 −

3

2
aẼζX

2 þ cẼX þ Ẽðζ; tÞ: ð67Þ

The values of the parameters aH̃, aẼ are given in the tables
in Sec. IV. All other parameters are constrained.

B. Antiquarks

Similar to the valence quarks, we describe the antiquark
GPDs in a spectator model in the DGLAP region and in a
symmetric parametric form in the ERBL region.

1. DGLAP region: − 1 + ζ < X < 0, (− 1 < x < − ξ)

In the spectator model, if the struck parton is an
antiquark, the spectator is a tetraquark (Fig. 1). Because
the tetraquark can have spin S ¼ 0, 1, 2, the wave function
has, in principle, a more complicated form than the SU(4)
form described in Sec. II C, which would allow for more
quark flavors than just the u and d quarks. We, however,
consider a simplified version, and we adopt the same
mathematical expressions given for the valence quarks in
Eqs. (48), (49), (50), and (51), with different values of the
mass parameters. The parametrization forms in the anti-
quark sector are

Hþ
q ¼ HMΛ

MX;m
ðX; ζ; tÞRα;α0

p ðX; tÞ ð68Þ

Eþ
q ¼ EMΛ

MX;m
ðX; ζ; tÞRα;α0

p ðX; tÞ ð69Þ

H̃þ
q ¼ H̃MΛ

MX;m
ðX; ζ; tÞRα;α0

p ðX; tÞ ð70Þ

Ẽþ
q ¼ ẼMΛ

MX;m
ðX; ζ; tÞRα;α0

p ðX; tÞ: ð71Þ

The parameter values are listed in Table II. Notice that
the Regge term also has the same form as for the valence
contribution, Eq. (53).

2. ERBL region

In the ERBL region, the GPDs H and E for antiquarks
are antisymmetric with respect to X ¼ ζ=2, while H̃ and Ẽ
are symmetric. We choose therefore the following form
for H and E (analogous to the axial vector sector in
Sec. III A 2), where aþ is a free parameter,

Fþ
ERBLðX; ζ; tÞ ¼ aþX3 −

3

2
aþζX2 þ cX þ d: ð72Þ

The coefficients b, c, and d are constrained similarly to
Eqs. (66) and (67).
For the GPDs H̃ and Ẽ, we take a symmetric form

analogous to Eq. (58), in the vector sector. We have

H̃ERBLðX; ζ; tÞ ¼ aH̃X
2 − aH̃ζX þ H̃ðζ; tÞ ð73Þ

ẼERBLðX; ζ; tÞ ¼ aẼX
2 − aẼζX þ Ẽðζ; tÞ: ð74Þ

TABLE I. Parameters for Huv, Hdv , Hg, Hū, and Hd̄. The valence quark GPD parameters are determined at an
initial scale of Q2

o ¼ 0.1 GeV2. The gluon and antiquark GPDs are determined at the scale Q2
o ¼ 0.58 GeV2. All

parameters, as well as the fitting procedure, are described in the text.

Parameters Huv Hdv Hg Hū Hd̄

m (GeV) 0.420 0.275 � � � 0.380 0.300
MX (GeV) 0.604 0.913 0.726 3.250 2.105
MΛ (GeV) 1.018 0.860 0.979 1.372 1.495
α 0.210 0.0317 −0.622 1.144 1.125
α0 2.448� 0.0885 2.209� 0.156 2.000� 0.10 0.100� 0.060 0.125� 0.023
p 0.620� 0.0725 0.658� 0.257 2.000� 0.05 0.100� 0.025 0.120� 0.05
N 2.043 1.570 1.467� 0.228 1.206� 0.008 1.230� 0.082
a 2000 1000 1000 2000 1000

TABLE II. Parameters for Euv, Edv , Eg, Hū, and Hd̄. The
valence quark GPD parameters are determined at an initial scale
of Q2

o ¼ 0.1 GeV2. The gluon and antiquark GPDs are deter-
mined at the scale Q2

o ¼ 0.58 GeV2. All parameters, as well as
the fitting procedure, are described in the text.

Parameters Euv Edv Eg

m (GeV) 0.420 0.275 � � �
MX (GeV) 0.604 0.913 0.490
MΛ (GeV) 1.018 0.860 0.485
α 0.210 0.0317 −0.622
α0 2.835� 0.146 1.281� 3.176 0.000� 1.212
p 0.969� 0.3355 0.726� 1.543 0.000� 1.197
N 1.803 −2.780 0.034� 0.05
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Therefore, we have no free parameters for the antiquark
axial-vector GPDs in the ERBL region.

C. Gluons

Awell-known issue to PDF fitters is that a non-negligible
gluon density needs to be present already at a low scale in
order to ensure that perturbative QCD evolution of the
parton distributions produces a steep enough slope to
reproduce the data at low X. If, on the contrary, gluon
distributions are initially set to zero, and only generated
perturbatively, the resulting quark/antiquark distributions
become too soft. We model the gluon distribution at the
initial scale in a spectator model with a strong gluon
emitted at the proton vertex leaving behind an octet color
state with proton quantum numbers. The vertex is described
by (Fig. 1, Appendix B)

ΓðkÞūðp − kÞγμUðpÞεμðkÞ;

where uðp − kÞ is the outgoing color octet proton, UðpÞ is
the incoming proton, and εμ is the struck gluon wave

function; ΓðkÞγμ describes the coupling at the proton-octet
proton-gluon vertex in a way similar to the proton-quark-
diquark vertex (details are given in Appendix B). This
model allows us to evaluate the gluon GPDs in the DGLAP
region. We extend our calculation to the ERBL region using
the symmetry properties of gluon distributions described in
Sec. II B. An important part of our calculation is given by
the fact that we can model the t dependence of gluon GPDs
by ensuring that our model follows the normalization
provided by the Mellin moments evaluations for Hg and
Eg given in Ref. [23].

1. DGLAP region: ζ < X < 1, (ξ < x < 1)

The gluon-proton amplitudes for the GPDs, Hg and Eg,
constructed from the tree-level vertex for the process,

p → gþ p8;

where p8 is a color octet spectator baryon with spin 1=2
and momentum kX ¼ p − k ¼ p0 − k0, are given by the
expressions

H
Mg

Λ
Mg

X
¼ 2πN

Z
dk⊥

k⊥
1 − X

1

D2ða2 − b2Þ3=2

×

�
a

�
XX0ðð1 − XÞM −MXÞðð1 − X0ÞM −MXÞ þ

�
1

1 − X0 − ð1 − XÞ
�
k2⊥

�
− b

�
1

1 − X
þ ð1 − X0Þ

�
k⊥Δ⊥

�
þ ζ2

4ð1 − ζÞEg ð75Þ

E
Mg

Λ
Mg

X
¼ 2πN

Z
dk⊥

k⊥
1 − X

1

D2ða2 − b2Þ3=2
−2Mð1 − ζÞ

1 − ζ
2

× f2k2T ½Xðð1 − XÞM −MXÞ − X0ð1 − ζÞðð1 − X0ÞM −MXÞ� − að1 − X0ÞX½ð1 − XÞM −MX�g; ð76Þ

where a, b, and D are given by the same definitions as in Eqs. (52).
For the gluon helicity-dependent GPDs, we find

H̃
Mg

Λ
Mg

X
¼ N

Z
d2k⊥

1

ð1 − XÞ2
½XðX − ζÞðð1 − XÞM −MXÞð1−X1−ζ M −MXÞ þ ð1 − ζ − ð1 − XÞ2ÞkT · k̃T �

ðk2 −M2
ΛÞ2ðk02 −M2

ΛÞ2
þ ζ2

4ð1 − ζÞ Ẽg

ð77Þ

Ẽ
Mg

Λ
Mg

X
¼ N

Z
d2k⊥

2

ζ

ð−2MÞð1 − ζÞ
ð1 − XÞ ×

½Xðð1 − XÞM −MXÞ k̃T ·ΔT
Δ2

T
þ ðX − ζÞð1−X

1−ζÞM −MXÞ k̃T ·ΔT
Δ2

T
�

ðk2 −M2
ΛÞ2ðk02 −M2

ΛÞ2
: ð78Þ

The gluon Regge term is the same as Eq. (53), in which the αg parameter is obtained from fitting to the power of
HgðX; 0; 0Þ≡ XgðXÞ, the gluon PDF.
The expressions for the gluon distributions for unpolarized gluons in the DGLAP region are given by

HgðX; ζ; tÞ ¼ H
Mg

Λ
Mg

X
ðX; ζ; tÞRαg;α0g

p ðX; tÞ ð79Þ
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EgðX; ζ; tÞ ¼ E
Mg

Λ
Mg

X
ðX; ζ; tÞRαg;α0g

p ðX; tÞ: ð80Þ

We limit ourselves to listing the expressions for the helicity
gluon distributions, since their parameters cannot be
sensibly constrained at present, as neither experimental
results nor lattice QCD calculations are either accurate
enough or available.

2. ERBL region

Gluons share the same symmetry properties as the valence
quark distributions; that is, they are symmetric around x ¼ 0.
Therefore, the property of their form factor integration
over x is used in a similar way to obtain the behavior in
the ERBL region. Notice that for the gluon GPDs are
Hgðx; 0; 0Þ ¼ xgðxÞ; therefore, the form factor integrals of
the gluon GPDs correspond to the second Mellin moments
of the energy-momentum tensor form factors.
The analytic expressions in the unpolarized gluon sector

are given by

HgðX; ζ; tÞ ¼ aHX2 − aHζX þHðζ; tÞ ð81Þ

EgðX; ζ; tÞ ¼ aEX2 − aEζX þ Eðζ; tÞ: ð82Þ

The values of the parameters are listed in Sec. IV.

D. Forward limit, ζ = 0 and t= 0

The limits 1) ζ ¼ 0, t ≠ 0 and 2) ζ ¼ 0, t ¼ 0 represent
important physical cases (note that in this case X ¼ x).
The former is needed to perform Fourier transforms
in the transverse plane [45], while the latter gives
the connection to PDFs, namely, Hqðx; 0; 0Þ≡ fq1ðxÞ,
Hgðx; 0; 0Þ≡ xgðxÞH̃q ≡ gq1ðxÞ, and H̃g ≡ ΔxΔgðxÞ
(Sec. II A 1. Moreover, the GPDs Hq;gðX; 0; 0Þ and
Eq;gðX; 0; 0Þ define the angular momentum sum rule,
Eq. (21) [1].
For valence and sea quarks, the parametric expressions

simplify to

fq1ðxÞ ¼ N x−α
Z

d2k⊥
½ðmþMxÞ2 þ k2⊥�ð1 − xÞ3

½ð1 − xÞMðxÞ − k2⊥�4
ð83Þ

EqðxÞ ¼ N xα
Z

d2k⊥
2MðmþMxÞð1 − xÞ4
½ð1 − xÞMðxÞ − k2⊥�4

ð84Þ

gq1ðxÞ ¼ N xα
Z

d2k⊥
½ðmþMxÞ2 − k2⊥�ð1 − xÞ3

½ð1 − xÞMðxÞ − k2⊥�4
ð85Þ

ẼqðxÞ ¼
N πM2

MðxÞ x
−αð1 − xÞ3

�
1

3
−
4

5

ðM þmxÞðM2ð1 − 2xÞ −M2
X þM2

ΛÞ
MMðxÞð1 − xÞ

�
; ð86Þ

where M defined in Eq. (52c), having dimensions of M2, contains the parameters, m, MX, and MΛ. The total number of
parameters per GPD flavor is therefore 5, namely, m, MX, MΛ, N , and α.
For the gluon GPDs, we have

xgðxÞ ¼ x−αN
Z

d2k⊥ð1 − xÞ2 ½x
2ðð1 − xÞM −MXÞ2 þ ð1þ ð1 − xÞ2Þk2⊥�

ðxM2
X þ ð1 − xÞM2

Λ − xð1 − xÞM2 þ k2⊥Þ4
ð87Þ

Eg ¼ x−αN
Z

d2k⊥ð1 − xÞ4 −2Mxðð1 − xÞM −MXÞ
ðxM2

X þ ð1 − xÞM2
Λ − xð1 − xÞM2 þ k2⊥Þ4

ð88Þ

xΔgðxÞ ¼ x−αN
Z

d2k⊥ð1 − xÞ2 ½x
2ðð1 − xÞM −MXÞ2 þ ð1 − ð1 − XÞ2Þk2⊥�

ðxM2
X þ ð1 − xÞM2

Λ − Xð1 − XÞM2 þ k2⊥Þ4
ð89Þ

Ẽg ¼ x−αN
Z

d2k⊥ð1 − xÞ3 ½8Mðð1 − xÞ2M −MXÞk2⊥�
ðxM2

X þ ð1 − xÞM2
Λ − xð1 − xÞM2 þ k2⊥Þ3

: ð90Þ

Notice that the integrals in d2k⊥ defining Ẽ in Eqs. (57) and (78) do not diverge for ζ → 0, since the terms in the numerator
also go to zero, thus canceling the divergence. This can be seen by inspecting the helicity amplitude substructure shown in
Appendix B, in which one has

Aþþ;−þ þ A−þ;þþjζ¼0 ¼ 0;

leading to limζ→0 Ẽq;g → constant,.
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IV. PDF FIT PARAMETERS

We present our fit parameters for H (uv, dv, g, ū, d̄) in
Table I, E (uv, dv, g) in Table II, and H̃ and Ẽ (uv, dv) in
Table III. A fully quantitative fit, constrained by either data
or lattice QCD calculations, is presently not attainable for
the GPD E in the antiquark sector, and for both the
antiquark and gluon helicity GPDs.
All parameters are used to evaluate directly the forms

given in Sec. III, in which the kT integration limits are taken
as [0, 5] GeV.
Our analysis is valid in the kinematic region of

10−4 < ðX; ζÞ < 0.85, 1 < Q2 < 100 GeV2, i.e., in the
multi-GeV region accessible at present and currently
planned facilities, and −t < Q2.
A few comments are in order:
(i) The initial scale, Q2

o, is a fitted parameter. Anti-
quarks and gluons are fitted at a higher scale than
valence quarks according to the physical picture in
which at an initial low scale only valence quarks
are present, while gluons and sea quarks (quark-
antiquark pairs) are resolved as independent degrees
of freedom as the scale increases. Sea quarks and
gluons undergo perturbative evolution beyond their
initial scale and generate additional gluon and sea
quarks dynamically through gluon bremmstrahlung,
Sec. IV B.

(ii) In the DGLAP region, our fit is recursive in that we
first fitted the mass parameters m (quark), MX
(spectator), MΛ (dipole), the Regge parameter α,
and the normalization N to the forward limit, i.e.,
setting t ¼ ζ ¼ 0, and using the definitions from
Sec. II A 1. The error on these parameters can be
evaluated relative to the PDF parametric forms for
the valence, antiquark, and gluon distributions in
Ref. [33], thus not directly using experimental
data. Because of this, in Refs. [20,46], we did not
quote these errors. The error on the valence quarks
parametrization is determined entirely by the form
factor fit. For sea quarks and gluons, it is given by
the error from the fit to the gluon form factors, in
addition to the error on the normalization N , as we
explain in what follows.

(iii) In the DGLAP region, the parameters α0 and p were
fitted subsequently, by keeping the previous set of
parameters fixed, switching on the t dependence,
and calculating the integrals for the various form
factors [Eqs. (13), (14), (15), (16), (19), and (20).
For the quark sector, we used flavor separated
nucleon form factor data [39] and lattice results
from Ref. [26] (see also Ref. [20]). In the gluon
sector, we used the results from Ref. [23].

(iv) In the DGLAP region, the sum of the quark and
spectator masses obeys the constraint,mþMX > M,
guaranteeing that the system is bound.

(v) In the DGLAP region, the values of α are not directly
related to the Regge predictions for PDFs because
the spectator functional form also contributes to the
slope at low X (this point is described in detail
in Ref. [20].

(vi) In the ERBL region, the parameter a is the only free-
varying one in our present parametric form for the
ERBL region. The choice of having only one fixable
parameter is motivated by the present scarcity of
data. Our parametrization can be easily extended to
a more flexible form than the one presented here,
including an enlarged set of parameters for the
ERBL region, as more abundant and precise data
from deeply virtual exclusive processes become
available in the future.

A. Fitting procedure

Following the method introduced in Refs. [17–20], we
adopt the flexible parameteric forms given in Sec. III and let
the experimental data on deep inelastic scattering reactions
and on the nucleon elastic form factors guide the shape
of the parametrization as closely as possible, consistently
with the various constraints using elastic scattering and
DIS experimental data, and information from lattice QCD
calculations whenever applicable:

(i) forward limit (Sec. II A 1) ⇒ DIS data;
(ii) polynomiality (Sec. II A 2 and Fig. 2) ⇒ elastic

scattering data [39], lattice QCD [23,26];
(iii) positivity (Sec. II A 3);
(iv) Symmetry for x → −x (Sec. II B).

TABLE III. Parameters for H̃q and Ẽq where q ∈ fuv; dvg. All parameters are described in the text.

Parameters H̃uv H̃dv Ẽuv Ẽdv

m (GeV) 2.624 2.603 2.624 2.603
MX (GeV) 0.474 0.704 0.474 0.704
MΛ (GeV) 0.971 0.878 0.971 0.878
α 0.219 0.0348 0.219 0.0348.
α0 1.543� 0.296 1.298� 0.245 5.130� 0.101 3.385� 0.145
p 0.346� 0.248 0.974� 0.358 3.507� 0.054 2.326� 0.137
N 0.0504 −0.0262 1.074 −0.966
a 2000 1000 2000 1000
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The fit results in the valence quark sector, namely, for
Huv;dv , Euv;dv , H̃uv;dv , and Ẽuv;dv , were already performed in
Ref. [20]. Nevertheless, for completeness, we present the
values of the parameters in the first two columns of
Tables I, II, and III alongside the new results derived in
this paper for gluons and antiquarks.
In the gluon sector, we first perform a fit to the gluon

PDF at t ¼ 0. Notice, however, that the expression given in
Eq. (87) has to be evolved in perturbative QCD to the Q2

of the data/lattice results. Standard fitting procedures
are therefore cumbersome. To overcome this issue, for a
practical fit, we devised an algorithm that produces a root
mean square error (RMSE) based on a given number of
combinations of parameter values varying within specific
ranges for each parameter. The latter form an “envelope” of
gluon GPDs. After each iteration of the algorithm, the
distance between each subsequent parameter combination
decreases according to

2 × initial value of parameter
ð# of combinationsÞ=ð# of parametersÞ ;

whereby the algorithm is iterated using the combination of
parameter values that yields the lowest RMSE from the
previous step. By implementing a multilinear interpolation,
one can largely increase the number of trials to better
constrain the range of parameters that result in a favorable
fit to the data. An example of the spread of the various
parameter values for the moment

R
dxHgðx; 0; 0Þ ¼ hxgi, is

given in Fig. 10, while the spread in the Q2 dependence of
hxgi, obtained using the envelope GPDs, is shown in
Fig. 11. The error on the normalization parameter is defined
such that the width of the envelope is the size of the error

given in Ref. [33] (we choose this parametrization because
our current fit is done at LO in perturbative QCD).
Therefore, the errors on the parametrization in Ref. [33]
are used as a constraint on the errors of our distribution.
Once the parameters defining the x dependence, MX,

MΛ, α, and N are determined, we find the t-dependent
parameters of the gluons, α0 and p, by recursively fitting
the integral of Hg, Eq. (19), to lattice QCD data at the
scale Q2 ¼ 4 GeV2.
To fit the antiquark sector, we would need flavor

separated lattice QCD results, which are not directly
available at present. Nevertheless, we used our valence
quark model as a means to estimate the values of the ū and
d̄ contribution to the form factors. An improved version
of the fit could be readily obtained once flavor separated
lattice results are available.
We conclude this section by noting that the initial scale,

Q2
o, is also a parameter, to be determined from fits to the

data. In Refs. [17,18], it was found that in the valence sector
Q2

o ≈ 0.1 GeV2. This value is consistent with the more
recent fits from Refs. [20,46] and from the present paper.
The fit to the gluon and sea quarks distributions, however,
yields, as expected, a larger value of Q2

o. Samples from the
envelope for different Q2

o values, keeping the rest of the
parameters fixed, are shown in Fig. 12. We found that
equivalently viable GPD parametrizations can be obtained
for two distinct values of Q2

o. In Tables IV and V, we show
the parameters for Q2

o ¼ 0.58 GeV2. In Sec. V B, we show
results for the GPD Eg obtained for a higher value of Q2

o.

B. QCD evolution

The QCD anomalous dimensions and Wilson coefficient
functions for the off-forward case have been derived
and tested at LO in Refs. [4,34,47,48]. Calculations of
the coefficient functions up to NLO can be found in
Refs. [8,9,49,50]. Correspondingly, one can, in principle,

FIG. 10. First moment of the gluon GPD Hg vs the various
forward limit parameters whose functional form is given in
Eq. (75), where the distribution is evolved to a final Q2 of
4 GeV2. The stars on the plots correspond to the parameters
values given in Table I.

FIG. 11. The first Mellin moment of the gluon GPD Hg as a
function of Q2 evolved using LO pQCD evolution tools.
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evaluate both the LO and NLO kernels of the perturbative
QCD evolution equations [49]. The main issue for evolu-
tion beyond LO is the nonholomorphism of GPDs at the
crossover point between the ERBL and DGLAP regions.
Numerical calculations have therefore been performed
by computing moments in the conformal partial wave

expansion, the CS scheme (Ref. [51] and references
therein). The latter is, however, not directly connected
to the MS scheme, which is preferable to unanbiguosly
constrain the GPDs with forward limit PDFs and to
compare with experiment.
For a practical study, the parametrization presented here

implements perturbative QCD evolution of GPDs using
LO kernels. This gives a sufficiently accurate description of
the data since the effects from LO vs NLO GPDs could not
be possibly observed within the current level of exper-
imental precision. For future studies, NLO evolution will
be presented in a separate, dedicated publication.
Our procedure is as follows: 1) GPDs are evolved in

the DGLAP region from Q2
0 to the final Q2, at any given

kinematic bin (ζ, t). 2) The parameters defining the
X-dependent curve in the ERBL region are determined
at the given scale, Q2, to match the GPDs at the crossover
point, X ¼ ζ, while preserving polynomiality. This step in
our procedure implies that evolution in the ERBL region is
smooth and that it preserves both the symmetry properties
around X ¼ ζ=2 and the shape of the GPDs. Results
illustrating this behavior are plotted in Sec. V.
The structure functions to compare with experiment

are the CFFs, which correspond to convolutions of
GPDs with the Wilson coefficient functions (or the hard
scattering functions).
This represents, perhaps, the most important difference

with the forward case, where one starts from the pQCD
evolved PDFs depending on xBj and Q2 and considers the
convolution in the longitudinal variable with the Wilson
coefficient functions. The latter yields structure functions
which still depend on xBj andQ2 [52]. For GPDs, the CFFs
are defined by the convolutions for each quark flavor q,
F q ¼ ðHq; EqÞ, and F̃ q ¼ ðH̃qẼqÞ and for the gluon, F g,
respectively, as

F qðζ; Q2Þ ¼ CþðX; ζ; Q2Þ ⊗ FqðX; ζ; Q2Þ; ð91Þ

F̃ qðζ; Q2Þ ¼ C−ðX; ζ; Q2Þ ⊗ F̃qðX; ζ; Q2Þ; ð92Þ

while for the gluon,

F gðζ; Q2Þ ¼ αSðQ2Þ
2π

CMS
g ðX; ζÞ ⊗ FgðX; ζ; Q2Þ; ð93Þ

where the convolutions are given by the integral,

⊗ →
Z

1

−1þζ

dX
ð1 − ζ=2Þ ;

and we omitted the t dependence for ease of presentation.
The coefficients functions in the MS scheme are given
by [8,9,49,50]

TABLE IV. Parameters for the gluon GPD, Hg for
Q2

0 ¼ 0.58 GeV2, and Q2
0 ¼ 0.97 GeV2.

Parameters Q2
o ¼ 0.58 GeV2 Q2

o ¼ 0.97 GeV2

MX (GeV) 0.726 1.12
MΛ (GeV) 0.979 1.05
α −0.622 0.005
α0 2� 0.10 0.28� 0.10
p 2� 0.05 0.17� 0.05
N 1.4672� 0.228 1.525� 0.228

TABLE V. Parameters for the gluon GPD, Eg. The first column

shows parameters for Eð1Þ
g , obtained with the initial scale

Q2
0 ¼ 0.97 GeV2, and fitted to a dipole form [Eq. (100)]. The

second and third columns show parameters evolved from Q2
0 ¼

0.97 GeV2 and Q2
0 ¼ 0.58 GeV2, respectively, labeled Eð2Þ

g and

Eð3Þ
g , and fitted to a constant value. In this case, the GPD

functional form displays a node.

Parameters Eð1Þ
g Eð2Þ

g Eð3Þ
g

Q2
o (GeV2) 0.97 0.97 0.58

MX (GeV) 1.120 0.490 0.490
MΛ (GeV) 1.100 0.485 0.485
α 0.053 −0.622 −0.622
α0 0.45� 0.30 0.000� 1.221 0.000� 1.212
p −0.20� 0.30 0.000� 1.205 0.000� 1.197
N 3.970� 1.950 0.020� 0.0273 0.034� 0.050

FIG. 12. Study of the effect of the initial scale of the gluon GPD
Hg. We keep the forward limit parameters MX, MΛ, and α fixed
while varying the initial Q2

o. The red line corresponds to the
physical value of the parametrization Q2

o ¼ 0.58 GeV2, and the
blue lines are values of the initial Q2

o in a range of 0.2 − 2 GeV2.
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C�ðX; ζ; Q2Þ ¼ C�
0 ðX; ζÞ þ

αS
2π

CMS
q ðX; ζÞ ð94Þ

C�
0 ðX; ζÞ ¼

1

X − ζ − iϵ
∓ 1

X − iϵ
; ð95Þ

where the expression for CMS
q and CMS

g were given in
Ref. [9]. At variance with PDFs, for GPDs, it appears
clearly that even at leading order the variable X is integrated
over and the observable longitudinal variables is ζ.
The GPDs entering Eqs. (91), (92), and (93) are obtained

by solving the pQCD DGLAP evolution equations,

∂
∂ lnQ2

FqvðX; ζ; Q2Þ ¼ αS
2π

Pqq

�
X
Z
;
X − ζ

Z − ζ
; αS

�
⊗ FqvðZ; ζ; Q2Þ ð96Þ

∂
∂ lnQ2

FΣðX; ζ; Q2Þ ¼ αS
2π

�
Pqq

�
X
Z
;
X − ζ

Z − ζ
; αS

�
⊗ FΣðZ; ζ; Q2Þ þ 2NfPqg

�
X
Z
;
X − ζ

Z − ζ
; αS

�
⊗ FgðZ; ζ; Q2Þ

�
ð97Þ

∂
∂ lnQ2

FgðX; ζ; Q2Þ ¼ αS
2π

�
Pgq

�
X
Z
;
X − ζ

Z − ζ
; αS

�
⊗ FΣðZ; ζ; Q2Þ þ Pgg

�
X
Z
;
X − ζ

Z − ζ
; αS

�
⊗ FgðZ; ζ; Q2Þ

�
; ð98Þ

where the LO kernels were first derived in Refs. [8,34], and
we defined

⊗ →
Z

1

X

dZ
Z

and
X0

Z0 ¼
X − ζ

Z − ζ
:

The definitions and symmetry properties for the flavor NS,
Fqv , and þ distributions, for the flavor singlet, FΣ, and for
the gluon, Fg, described in Sec. II B, are conserved under
evolution.
In summary, putting all together, we find the proton and

neutron CFFs, FN , N ¼ p, n, which can be determined up
to NLO in the coefficient functions by summing over the
Nf active light quark flavors,

FNðζ; t; Q2Þ ¼
X
q¼u;d

ðe2qF q þ e2q̄F q̄Þ þ F g: ð99Þ

Numerical results for evolution are given in Sec. V.
We have described above that the ERBL region is

constructed while observing the symmetries and polyno-
miality properties of the GPD. To perturbatively evolve the
ERBL region of the GPD, one can use the pQCD evolution
equations [4,8,34,47]. The evolved DGLAP region has a
shift of crossover point and area, meaning that the ERBL
region also changes as a result of the DGLAP evolution. We
show in Fig. 13 how the ERBL region area increases as a
function of the evolution scale Q2, while the value of the
GPD at the crossover point between the DGLAP and ERBL
regions, Hðζ; ζ; tÞ, Eq. (61), decreases.

V. NUMERICAL RESULTS

This section highlights the effect of various parameters
which control the behavior of GPDs in different regions
of X, ζ ≈ xBj, t, and Q2. Several plots were generated to

visualize the changes in the different quark flavor and gluon
GPDs, plotted as a function of X, varying their t, ζ, and Q2

dependences. The H and E GPDs for all quark and gluon
components are also summarized in Fig. 8 in Sec. II.

FIG. 13. Calculation of ERBL parameters as a function of the
perturbative evolution scale, Q2. We show how the area of the
ERBL region, Eq. (61), changes as a function of Q2 (top) as well
as the crossover point between the DGLAP and ERBL region
called, Hqðζ; ζ; tÞ, Eq. (8), (bottom) for the u-valence, d-valence,
and gluon unpolarized GPDs H.
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A. Valence quark distributions

The valence quark fits confirm the results of
Refs. [19,20] for the GPDs Hqv , Eqv , and H̃qv (q ¼ u, d).
We added new fit results for the GPD Ẽqv . All results are
summarized in Figs. 14, 15, and 16.
Figure 14 shows the behavior of all four GPDs,Hqv , Eqv ,

H̃qv , and Ẽqv as a function of Q2 at ðζ; tÞ ¼ 0, on the lhs
panels, and as a function of t at ζ ¼ 0 and atQ2 ¼ 4 GeV2,
on the rhs panels, respectively. The lhs panels show a
dramatic effect of Q2 evolution from the initial scale of
Q2

o ¼ 0.1 GeV2 to Q2 ¼ 4 GeV2, albeit evolution slows
down in the multi-GeV region, as we show later on. The
values of t on the rhs panels range from t ¼ 0 (highest
peaked curves) to t ¼ −1 GeV2 (lowest curves).
In Fig. 15, we focus on the GPD Ẽ, calculated for ζ,

t ¼ 0, and Q2 ¼ 4 GeV2, both in the quark sector and for
the gluon (the latter is discussed below).

FIG. 14. Left: GPDs FqðX; 0; 0Þ, where F ∈ ðH;E; H̃; ẼÞ and q ∈ ðuv; dvÞ. We show the initial scale valence quark GPD at Q2
o ¼

0.1 GeV2 and the evolved GPD at a final scale ofQ2 ¼ 4 GeV2. Right: GPDs FqðX; 0; tÞ, where F ∈ ðH;E; H̃; ẼÞ and q ∈ ðuv; dvÞ. All
GPDs are shown at the scaleQ2 ¼ 4 GeV2, for a range of momentum transfer values from −t ¼ 0 GeV2 (upper curves) to−t ¼ 1 GeV2

(lowest curves), and ζ ¼ 0.

FIG. 16. GPDs, Hqv , Eqv , H̃qv , and Ẽqv (q ¼ u, d) evaluated at ζ ¼ 0.18, −t ¼ −tmin ¼ 0.03 GeV2, evolved to Q2 values: 1 (yellow
curve), 4 (purple curve), and 50 (green curve). The latter cover a range of values from Jefferson Laboratory current kinematic settings to
the EIC. The GPDs H̃qv have been multiplied by 10 for ease of presentation.

FIG. 15. We show the GPD Ẽ in the forward limit for the
valence quark distributions and for the gluon distribution
evolved to Q2 ¼ 4 GeV2. The parameters at the initial scale
are described in Table III for the valence quarks and in Table V for
the gluon.
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Figure 16 shows the effect of pQCD evolution for
the GPDs Hqv , Eqv , H̃qv , and Ẽqv (q ¼ u, d), plotted as
a function of X (0 < X < 1), for ζ ¼ 0.18, t0 ≡ tmin ¼
−0.03 GeV2 [Eq. (8)]. The different curves in each panel
are the GPD values evolved to Q2 between 1 and 50 GeV2.
The yellow curve, which is highest in the DGLAP region
and lowest in the ERBL region, corresponds to the lowest
value of Q2 ¼ 1 GeV2; the green curve, which is lowest
in DGLAP and highest in ERBL, corresponds to
Q2 ¼ 50 GeV2. We explain this behavior as follows:
1) Perturbative QCD for X ≥ 0.2 shifts “strength” from
higher X to lower X, resulting in the depletion shown in the
figure from the low to high values of Q2. 2) Because of
polynomiality, or the normalization to the nucleon form
factors, the curves at higher Q2 must peak higher in the
ERBL region (the difference between the yellow and green

peaks is noticeable in the figure). Notice how in the pQCD
evolution framework defined in Sec. IV B the symmetry
around X ¼ ζ=2 is conserved. Overall, the effects of pQCD
evolution of GPDs in the range of current and future
experiments are logarithmic. We therefore expect the Q2

dependence of DVCS-type experiments to be more sub-
stantially influenced by the behavior of the NLO Wilson
coefficient function.

B. Antiquark and gluon distributions

In Fig. 17, the GPDs Fq ¼ FqV þ Fq̄ (q ¼ u, d) are
plotted as a function of X, at Q2 ¼ 4 GeV2, for different
values of ζ and corresponding ranges in t. Similar to
Fig. 17, the GPDs with the smallest values of t (t ¼
t0 ≡ tmin, Eq. (8), are the largest. One can clearly see how
the relative values of the GPDs in the DGLAP region

FIG. 17. GPDs, H, E, H̃, and Ẽ plotted vs X, separated into quark contributions u and d (columns), evaluated at different ζ ≈ xBj
values, ζ ¼ 0.18, 0.25, 0.36, 0.45, 0.57 (rows). In each panel, we show momentum transfer, −t, values: t0 ≡ tmin, Eq. (8) (purple lines),
1 GeV2 (red line), and an intermediate value for each ζ, in the interval ½t0; 1 GeV2� (yellow line). All panels correspond to
Q2 ¼ 4 GeV2. All GPDs are shown in the X range from 0 to 0.8, while the GPDs Ẽq are also rescaled for ease of presentation.
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compared to the ERBL region become increasingly impor-
tant as −t increases. Notice that in this case there is no
symmetry constraint around X ¼ ζ=2. This impacts the
ERBL region where we notice that all GPDs, with the
exception of Ẽ, the symmetric, or − component, Eq. (37),
dominate at the smallest value of ζ ¼ 0.18. As ζ increases,
the DGLAP region shrinks, and in order to preserve
polynomiality, the ERBL gradually becomes dominated
by the þ, antisymmetric distribution, Eq. (38). The tran-
sition can be visualized in Fig. 17, proceeding from the top
panel to the bottom panel. This behavior will be altered as
Q2 increases (cf. Fig. 16).
Results for the gluon GPDs, Hg and Eg, are shown in

Figs. 18, 19, 20, 21, and 22.
All parameters were determined similarly to the quark

case, i.e., implementing the procedure described in
Sec. IVA for either the distributions in X or the Mellin
moments as a function of the momentum transfer t.
To determine the error in the t dependent form factors,

we took the size of the RMSE from the GPD envelope in t to
be equivalent to the error on the dipole fit of the lattice data
moments AgðtÞ and BgðtÞ [23]. As a result, the fit for the
GPDs are consistent with a dipole fit on the lattice results.
For the dependence on the initial scale parameter,

we found two viable sets of values, Q2
o ¼ 0.58 GeV2

and Q2
o ¼ 0.97 GeV2. The parameters for the two initial

scale values are presented in Table IV for the GPD Hg and
in Table V for Eg. Both values are in a range which is higher
than the valence quarks scale, according to the discussion in
Sec. IV, and is also acceptable for perturbative evolution.
The value that better validates our physical picture is
Q2

o ¼ 0.58 GeV2, displayed in Tables II and III, since it
is closer to the fitted valence quarks value of 0.1.
Nevertheless, we use both values to study the various
trends for the gluon GPDs as t, ζ, andQ2 vary. Results from
both fitted initial scales generate the same PDF constraint
for the GPD Hg, shown in Fig. 18 (the curves in the figure
reproduce the LO parametrization from Ref. [33]).
Figure 19 shows the effect of pQCD evolution in a

typical kinematic bin, xBj ≈ ζ ¼ 0.25, t ¼ −0.4 GeV2,
similarly to what shown in Fig. 16 for the valence quarks.
Note that because for gluons we are using a logarithmic

FIG. 19. Q2 dependence of the gluon GPD, Hg, from pQCD
evolution equations at LO in the kinematic bin: xBj ¼ 0.25,
−t ¼ 0.4 GeV2, for Q2 ¼ 1 GeV2 (purple), Q2 ¼ 4 GeV2 (yel-
low), and Q2 ¼ 50 GeV2 (blue). The range in Q2 covers the
kinematics from the present Jefferson Laboratory kinematic
setting to the EIC.

FIG. 20. Upper panel: GPD HgðX; 0; tÞ integrated over X at
ζ ¼ 0, fitted to lattice QCD results from Ref. [23] at
Q2 ¼ 4 GeV2. Parameters are given in Table IV and described
in the text. Lower panel: GPD EgðX; 0; tÞ integrated over X at
ζ ¼ 0, fitted to a dipole form (lattice QCD results from Ref. [23]).
Parameters are given in Table V (first column).

FIG. 18. Q2 dependence of the GPD HgðX; 0; 0Þ.
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scale the ERBL region, X < 0.25, is emphasized, and the
symmetry of the distribution around X ¼ ζ=2 is no longer
evident. One can see that, similarly to what described for
the valence quarks, the highest valued curve in the DGLAP
region (X > 0.25) corresponds to the lowest value of
Q2 ¼ 1 GeV2, the effect of evolution moving strength to
lower X values. As a consequence, in order to satisfy
polynomiality, integrating to the gluon form factor, at
Q2 ¼ 1 GeV2, Hg dips to the negative values; as Q2

increases, the dip decreases, until it changes its concavity
for the highest considered value of Q2 ¼ 50 GeV2. Notice
that in this case the form factors, i.e., the integrated values,
are not constant but they are also Q2 dependent; however,
this dependence is slower.
The fit to AgðtÞ [Eq. (19)] is shown in Fig. 20 (upper

panel). Notice that the parametrization fit differs from
the lattice result at t → 0 (although it is consistent within
errors) because in our case we impose the constraint
HgðX; 0; 0Þ ¼ xgðxÞ at Q2 ¼ 4 GeV2, from the Alekhin
parametrization [33].

1. GPD Eg

The GPD Eg is a more elusive object, being relatively
lesser known from phenomenology. The largest obstacle to a
clear determination of Eg is that, at variance withHg, it lacks

a clear constraint from the forward limit (t ¼ 0 and ζ ¼ 0).
However, similarly to Hg, we can make use of lattice QCD
results to constrain the parametric form’s Mellin moment
(20). The lattice results are shown in Fig. 20, lower panel.
The lattice results are consistent with either a dipole

form,

BgðtÞ ¼
α

ð1 − t=Λ2Þ2 ; ð100Þ

or a constant value, where the parameters α and the
dipole mass Λ were found to be α ¼ 0.0978� 0.0466
and Λ ¼ −2.5578� 2.0849 GeV,

BgðtÞ ¼ 0.075� 0.101:

We denote the dipole GPD parametrization, Eð1Þ
g . The GPD

fitted to the constant value in t, performed starting from the

initial scale, Q2
o ¼ 0.97 GeV2, is denoted by Eð2Þ

g ; the one

starting atQ2
o ¼ 0.58 GeV2 is denoted by Eð3Þ

g . We perform
the fit recursively; that is, the parameters determining the
behavior of the distribution at t ¼ 0; specifically, MX, α,
MΛ, andN are fitted first. Subsequently, the moment of the
distribution is fitted to the lattice values t ≠ 0. Because the
parameters α0 and p easily reproduce the dipole behavior

FIG. 21. Left: the three parametric forms for EgðX; 0; 0Þ, described in the text, namely Eð1Þ
g (top), Eð2Þ

g (middle), and Eð3Þ
g (bottom).

Eð1Þ
g is fitted to a dipole form, whereas Eð2;3Þ

g are fitted to a constant value in t for the gluon form factor from lattice QCD using

different values of the initial scale Q2
o ¼ 0.97 GeV2. Notice the node in Eð2;3Þ

g . The green lines are evolved starting from the blue
lines evaluated at Q2

o, to Q2 ¼ 4 GeV2 in order to match the lattice QCD values [23]. Right: the t-dependence of the GPDs

Eð1Þ
g ðX; 0; tÞ, Eð2Þ

g ðX; 0; tÞ, and Eð3Þ
g ðX; 0; tÞ. Eð1;2;3Þ

g ðX; 0; 0Þ is the topmost curve, shown in blue. As t grows to the value of −2 GeV2,
it becomes more green in the graph.
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(see Sec. IV), we find that their values for Eð2;3Þ
g are

consistent with zero. The fit results shown in Fig. 20 (lower

panel) are for Eð1Þ
g at Q2

o ¼ 0.97 GeV2. The values of all
parameters with their error is shown in Table V.
An important distinction between the dipole and constant

value fits is that the latter supports the presence of a node in
Eg. All three parametrizations are shown in Fig. 21, which
illustrates both the evolution inQ2 on the left panels and the
t dependence of the GPD Eg, on the rhs panels. Notice that,

while Eð1Þ
g displays a “valencelike” behavior Eð2Þ

g and Eð3Þ
g

clearly display a node in their X dependence. An important
consequence of this behavior is that it impacts the Q2

dependence at low X. The GPD Eð3Þ
g is our choice for the

complete parametric form given in Table II, Sec. IV.
In Fig. 21, we juxtapose the GPDs Hg and Eg evolved

to Q2 ¼ 4 GeV2 for a typical Jefferson Laboratory kin-
ematic bin.

VI. CONCLUSIONS

Measuring GPDs in a wide kinematic range in xBj, t, and
Q2 will provide a powerful tool allowing greater insight
into the internal structure of the nucleon by uncovering the
spatial distribution of its constituent quarks and gluons and
shedding light onto the origin of its mass and spin.
A quantitative extraction of GPDs from a global analysis

can be performed in a consistent QCD-parton framework
using experimental data from various deeply virtual exclu-
sive experiments (DVCS, DVMP, and their crossed chan-
nels), along with constraints from inclusive deep inelastic
scattering, and from the elastic form factors. We provide
the first scaffolding of such a framework with a flexible
parametrization for all chiral even GPDs in the valence
quark uv, dv; antiquark ū; d̄; and gluon sectors. These
parametrizations can be readily implemented in theoretical
calculations of various derived observables, codes, and
event generators to evaluate the Compton form factors used
in DVCS and related experiments.

A further application that we are currently pursuing
includes the computation of fast Fourier transforms to
obtain quantitative renderings of partonic transverse spatial
distributions. A specific goal of the analysis is to study the
sensitivity to the ranges in t that are necessary to obtain a
meaningful image in the transverse plane. The availability
of a parametrization such as the one presented here is
mandatory since it allows us to tune several of the GPD
parameters to study the impact of features of the GPD
behavior on the Fourier transform. Furthermore, using
GPDs in the gluon sector is unprecedented, and it provides
an alternative approach complementing recent studies of
diffractive scattering at EIC kinematics [53]. Our future
endeavor will also include a complete analysis at NLO.
Finally, the envelopes of GPDs obtained by appropri-

ately varying different parameters provide an essential
background for generating pseudodata which are a funda-
mental input in a separate machine learning effort [54]. The
latter will ultimately provide the first realistic, model-
independent pictures of the proton at the femtometer scale.
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APPENDIX A: KINEMATICS IN SYMMETRIC
AND ASYMMETRIC FRAMES

p≡
�
pþ;

M2

2pþ ; 0

�
ðA1aÞ

k≡
�
Xpþ;

M2

2pþ −
M2

X þ k2⊥
2ð1 − XÞpþ ;k⊥

�
ðA1bÞ

p0 ≡
�
ð1 − ζÞpþ;

M2 þ Δ2⊥
2ð1 − ζÞPþ ;Δ⊥

�
ðA1cÞ

k0 ≡
�
ðX − ζÞpþ;

M2 þ Δ2⊥
2ð1 − ζÞpþ −

M2
X þ k2⊥

2ð1 − XÞpþ ;k⊥ − Δ⊥
�
:

ðA1dÞ

FIG. 22. Gluon GPDs for parametrization at an initial Q2
o ¼

0.97 GeV2 in Tables IV and V for the kinematics Q2 ¼ 4 GeV2,
ζ ¼ 0.25, and t ¼ −0.1 GeV2.
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In this frame, the proton lies on the z axis. One can easily
translate into the more commonly used symmetric frame,
which uses the (average) sum, P ¼ ðpþ p0Þ=2, and differ-
ence, Δ ¼ p0 − p, of the proton momenta defined as

P≡
�
Pþ;

M2

2Pþ ; 0

�
ðA2aÞ

Δ≡
�
ξð2PþÞ; tþ Δ2

T

2ξPþ ;ΔT

�
: ðA2bÞ

In this case, the vector P lies along the z axis, and the
coordinates of the initial and final proton and parton are,
respectively, given by

p≡
�
ð1þ ξÞPþ;

M2 þ Δ2
T=4

ð1þ ξÞPþ ;
ΔT

2

�
ðA3aÞ

k≡
�
ðxþ ξÞPþ; k−;kT þ ΔT

2

�
; ðA3bÞ

p0 ≡
�
ð1 − ξÞPþ;

M2 þ Δ2
T=4

ð1 − ξÞPþ ;−
ΔT

2

�
ðA3cÞ

k0 ≡
�
ðx − ξÞPþ; k0−;kT −

ΔT

2

�
: ðA3dÞ

APPENDIX B: HELICITY AMPLITUDES
STRUCTURE OF GPDs

GPDs are described in terms of parton-proton helicity
amplitudes [21]. We describe below the detailed structure
of the quark and gluon amplitudes.

1. Quark amplitudes

2HðX; ζ; tÞ ¼ Aþþ;þþ þ Aþ−;þ− þ A−−;−− þ A−þ;−þ
ðB1aÞ

−
Δ1EðX; ζ; tÞ

M
¼ Aþþ;−þ þ Aþ−;−− − A−−;þ− − A−þ;þþ

ðB1bÞ

2H̃ðX; ζ; tÞ ¼ Aþþ;þþ − Aþ−;þ− þ A−−;−− − A−þ;−þ
ðB1cÞ

ξ
Δ1ẼðX; ζ; tÞ

M
¼ Aþþ;−þ − Aþ−;−− − A−−;þ− þ A−þ;þþ:

ðB1dÞ

Parity relations give A−−;−− ¼ A�þþ;þþ, A−þ;−þ ¼ A�þ−;þ−,
A−−;þ− ¼ −A�þþ;−þ, and Aþ−;−− ¼ −A�

−þ;þþ. In the spec-
tator model, one has

AΛ0λ0;Λλ ¼
Z

d2k⊥ϕq�
λ0;Λ0 ðk0; p0Þϕλ;Λðk; pÞ; ðB2Þ

with the following vertex functions (see Fig. 1):

ϕΛ;λðk; pÞ ¼ ΓðkÞ ūðk; λÞUðp;ΛÞ
k2 −m2

ðB3Þ

ϕq�
Λ0λ0 ðk0; p0Þ ¼ Γðk0Þ Ūðp0;Λ0Þuðk0; λ0Þ

k02 −m2
: ðB4Þ

Notice that we use the same form of coupling for the
scalar and axial vector diquark but distinguish the two by
allowing for different mass parameters for the u and d
quarks. This Ansatz was first introduced in parametric
forms in Ref. [36]. It is justified in our case because the
scalar and axial vector couplings give functional shapes
which are similar to one another, while flexibility is
provided by allowing for the mass parameters to vary.
The proton-quark-diquark vertex function is given by [20]

Γ ¼ gs
k2 −m2

ðk2 −M2
ΛÞ2

; Γ0 ¼ gs
k02 −m2

ðk02 −M2
ΛÞ2

; ðB5aÞ

leading to

ϕþþðk; pÞ ¼
1ffiffiffiffi
X

p ðmþMXÞð1 − XÞ2
½ð1 − XÞM2 − k2⊥�2

ðB5bÞ

ϕþþðk0; p0Þ ¼ 1ffiffiffiffiffi
X0p ðmþMX0Þð1 − X0Þ2

½ð1 − X0ÞM02 − k̃2⊥�2
ðB5cÞ

ϕþ−ðk; PÞ ¼
1ffiffiffiffi
X

p ðk1 − ik2Þð1 − XÞ2
½ð1 − XÞM2 − k2⊥�2

ðB5dÞ

ϕþ−ðk0; p0Þ ¼ 1ffiffiffiffiffi
X0p ðk̃1 − ik̃2Þð1 − X0Þ2

½ð1 − X0ÞM02 − k̃2⊥�2
; ðB5eÞ

where we used

ūðk;�ÞUðp;�Þ

¼ 1

4
Trfð=PþMÞð1þ γoÞð1� γ5γ

3Þðk=þmÞg ðB6Þ

ūðk;�ÞUðp;∓Þ

¼ 1

4
TrfðP=þMÞð1þ γoÞðγ1 � iγ2Þðk=þmÞg: ðB7Þ

The denominators from Eq. (B5) are defined as

k2 −m2 ¼XM2 −
X

1−X
M2

X −m2−
k2⊥
1−X

¼M2−
k2⊥
1−X

ðB8Þ
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k02 −m2 ¼ X − ζ

1 − ζ
M2 −

X − ζ

1 − X
M2

X −m2 −
1 − ζ

1 − X

�
k⊥ −

1 − X
1 − ζ

Δ⊥
�

2

¼ M02 −
k̃2⊥

1 − X0 : ðB9Þ

The final expressions entering Eq. (47) are

HMΛ
MX;m

¼ N
1 − ζ=2
1 − X

Z
d2k⊥

½ðmþMXÞðmþMX0Þ þ k2⊥ − ð1 − X0Þk⊥ · Δ⊥�ð1 − XÞ2ð1 − X0Þ2
½ð1 − XÞMðXÞ2 − k2⊥�2½ð1 − X0ÞMðX0Þ2 − k2⊥ þ 2ð1 − X0Þk⊥ · Δ⊥ − ð1 − X0Þ2Δ2⊥�2

þ ζ2

4ð1 − ζÞE
MΛ
MX;m

; ðB10Þ

EMΛ
MX;m

¼ N
1 − ζ=2
1 − X

Z
d2k⊥

− 2Mð1−ζÞ
Δ2⊥

½ðMðX − X0Þk⊥ · Δ⊥ − ðmþMXÞð1 − X0ÞΔ2⊥�ð1 − XÞ2ð1 − X0Þ2
½ð1 − XÞM2 − k2⊥�2½ð1 − X0ÞM2 − k2⊥ þ 2ð1 − X0Þk⊥ · Δ⊥ − ð1 − X0Þ2Δ2⊥�2

ðB11Þ

H̃MΛ
MX;m

¼ N
1 − ζ=2
1 − X

Z
d2k⊥

½ðmþMXÞðmþMX0Þ − k2⊥ þ ð1 − X0Þk⊥ · Δ⊥�ð1 − XÞ2ð1 − X0Þ2
½ð1 − XÞM2 − k2⊥�2½ð1 − X0ÞM2 − k2⊥ þ 2ð1 − X0Þk⊥ · Δ⊥ − ð1 − X0Þ2Δ2⊥�2

þ ζ2

4ð1 − ζÞ Ẽ
MΛ
MX;m

ðB12Þ

ẼMΛ
MX;m

¼ N
1 − ζ=2
1 − X

Z
d2k⊥

− 4Mð1−ζÞ
ζΔ2⊥

½ð2mþMðX þ X0ÞÞk⊥ · Δ⊥ − ðmþMXÞð1 − X0ÞΔ2⊥�ð1 − XÞ2ð1 − X0Þ2
½ð1 − XÞM2 − k2⊥�2½ð1 − X0ÞM2 − k2⊥ þ 2ð1 − X0Þk⊥ · Δ⊥ − ð1 − X0Þ2Δ2⊥�2

: ðB13Þ

From the expressions above, one clearly sees the dependence of the GTMDs on k2⊥, Δ2⊥, and ðk⊥ · Δ⊥Þ.

The integration over the angle ϕ, namely, d2k⊥ ¼
dk⊥k⊥dϕ, in Eqs. (B10), (B11), and (B12) can be carried
out analytically thus obtaining the expressions in Sec. III.

2. Gluon amplitudes

We define the gluon-proton helicity amplitudes similarly
to the quark-proton amplitudes as

Ag
Λ0λ0g;Λλg

¼ 1

P̄þ

Z
dz−

2π
eixP̄

þz−hp0;Λ0jOg
λ0gλg

jp;Λijzþ¼0;

ðB14Þ
where the leading-twist gluon strength field operators,
Oλ0g¼�λg¼�, are

Og
þþ ¼ 1

2
½GþiGi

þ − iGþμG̃μ
þ� ðB15Þ

Og
−− ¼ 1

2
½GþiGi

þ þ iGþμG̃μ
þ� ðB16Þ

Og
−þ ¼ 1

2
½Gþ1G1þ −Gþ2G2þ − iGþ1G2þ − iGþ2G1þ�

ðB17Þ

Og
þ− ¼ 1

2
½Gþ1G1þ −Gþ2G2þ þ iGþ1G2þ þ iGþ2G1þ�

ðB18Þ

with i ¼ 1; 2. By using these operators in Eq. (B14), we
find for the gluon helicity conserving amplitudes,

Aþþ;þþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p �
Hg þ H̃g

2
−

ξ2

1 − ξ2
Eg þ Ẽg

2

�
A−þ;−þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p �
Hg − H̃g

2
−

ξ2

1 − ξ2
Eg − Ẽg

2

�
Aþþ;−þ ¼ −e−iϕ

ffiffiffiffiffiffiffiffiffiffiffi
t0 − t

p
2M

�
Eg − ξẼg

2

�
A−þ;þþ ¼ eiϕ

ffiffiffiffiffiffiffiffiffiffiffi
t0 − t

p
2M

�
Eg þ ξẼg

2

�
: ðB19Þ

The amplitudes observe the following parity relations:

Ag
−Λ0−λ0g;−Λ−λg

¼ ð−1ÞΛ−λg−Λ0þλ0gAg�
Λ0λ0g;Λλg

: ðB20Þ

The gluon-proton helicity amplitude can be written as

AΛ0λ0g;Λλg ¼
Z

d2k⊥
1 − X

X
ΛX

ϕ�ΛX
λ0gΛ0 ðk0; p0ÞϕΛX

λgΛðk; pÞ; ðB21Þ

where we defined the initial and final LC vertex functions,
ϕg
ΛXλgΛðk; pÞ and ϕg�

ΛXλ
0
gΛ0 ðk0; p0Þ, respectively, as
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ϕΛX
λgΛðk; pÞ ¼ ΓðkÞ ŪΛX

ðp − kÞUΛðpÞ
k2 −m2

g
=ϵ�gðkÞ ðB22Þ

ϕ�ΛX
λ0gΛ0 ðk0; p0Þ ¼ ΓðkÞ ŪΛ0 ðp0ÞUΛX

ðp0 − k0Þ
k02 −m2

g
=ϵλ0gðk0Þ; ðB23Þ

where the gluon mass, mg, is present because the gluons
are of shell. Analogous to the quark case, the coupling at
the gluon-proton-octet-proton vertex, ΓðkÞ, contains a form
factor as in the quark-diquark spectator case,

ΓðkÞ≡ g
k2 −m2

g

ðk2 −M2
ΛÞ2

; ðB24Þ

so that k2 −m2
g, cancels out. This coupling is used here as

an ultraviolet regulator in kT ;MΛ sets the mass scale for the
form factor.
By using =PX þMX ¼ P

ΛX
UΛX

ðPXÞŪΛX
ðPXÞ andZ

dk−Pþ i
P2
X −M2

X
fðk−;…Þ ¼ π

ð1 − XÞ fð…ÞjP2
X¼M2

X

ðB25Þ

for the spectator propagator, we find

AΛ0λ0g;ΛλgðX; ζ; tÞ ¼
Z

d2k⊥
1 − X

Ūðp0;Λ0Þ½γνð=PþMXÞγμ�UðP;ΛÞΓðk0ÞΓðkÞϵ�νλg ðk0Þϵ
μ
λg
ðkÞ: ðB26Þ

The gluon polarizations are defined as

ϵ�νλg ðkÞ ¼
1ffiffiffi
2

p ð0;−λg; i; 0Þ ðB27aÞ

ϵ�νλ0g ðk0Þ ¼
1ffiffiffi
2

p ð0;−λ0g; i; 0Þ: ðB27bÞ

Notice that the initial ðk; λgÞ, and final ðk0; λ0gÞ gluon polarizations are both taken with the particles momenta aligned along

the z-axis, even if the final gluon is rotated by the angle cPΔ. Rotating the gluon introduces a higher order correction
in kT=Pþ.
The specific helicity combinations read

Aþþ;þþ ¼ N
ffiffiffiffiffiffiffiffiffiffiffi
1 − ζ

p Z
d2k⊥

k⃗⊥ · ⃗k̃⊥ þ ½ð1 − XÞM −MX�½ð1 − X0ÞM −MX�XX0

ðk2 −M2
ΛÞ2ðk02 −M2

ΛÞ2
ðB28Þ

A−þ;−þ ¼ N
ffiffiffiffiffiffiffiffiffiffiffi
1 − ζ

p Z
d2k⊥

k⃗⊥ · ⃗k̃⊥ð1 − XÞð1 − X0Þ
ðk2 −M2

ΛÞ2ðk02 −M2
ΛÞ2

ðB29Þ

A−þ;þþ ¼ N
ffiffiffiffiffiffiffiffiffiffiffi
1 − ζ

p Z
d2k⊥

ð1 − X0Þ½ð1 − XÞM −MX�ðk̃1 þ ik̃2Þ
X0ðk2 −M2

ΛÞ2ðk02 −M2
ΛÞ2

ðB30Þ

Aþþ;−þ ¼ N
ffiffiffiffiffiffiffiffiffiffiffi
1 − ζ

p Z
d2k⊥

ð1 − XÞ½ð1 − X0ÞM −MX�ðk1 − ik2Þ
Xðk2 −M2

ΛÞ2ðk02 −M2
ΛÞ2

; ðB31Þ

where the normalization factor,N , absorbs all common factors (π; gs, constants). The components of k⃗⊥ are defined relative
to the direction of Δ⃗⊥ so that the integral over angles can be specified by choosing Δ⃗⊥ ¼ Δ⊥x̂ or simply Δ̂⊥.
Inverting Eqs. (B19), we find the expressions in Sec. III C.

APPENDIX C: SUMMARY OF GPD PARAMETRIZATIONS

We present a summary of the parametrization for the GPDs, Hqv , Hq̄, Hg, Eqv , Eg, H̃qv , Ẽqv , that can be easily
implemented in numerical calculations. Note that the GPD Hq ¼ Hqv þHq̄ is obtained as the sum of Eqs. (C1) and (C2).
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The parameters for each component can be read off of Tables I, II, and III. The given parametric forms need to be
perturbatively evolved to the Q2 of the data.
The parametric form for HðX; ζ; tÞ is

HqvðX; ζ; tÞ ¼

8>>>>>><>>>>>>:

HMΛ
MX;m

ðX; ζ; tÞRα;α0
p ðX; tÞ; Eq:ð54Þ ζ ≤ X ≤ 1

a−X2 − a−ζX þHðζ; tÞ; Eq:ð62Þ 0 ≤ X < ζ

0 −1þ ζ ≤ X < 0

ðC1Þ

Hq̄ðX; ζ; tÞ ¼

8>>>>>><>>>>>>:

0 ζ ≤ X ≤ 1

aþX3 − 3
2
aþζX2 þ cX þ d; Eq:ð72Þ 0 ≤ X < ζ

HMΛ
MX;m

ðX; ζ; tÞRα;α0
p ðX; tÞ; Eq:ð68Þ −1þ ζ ≤ X < 0

ðC2Þ

HgðX; ζ; tÞ ¼

8>>>>>><>>>>>>:

HMΛ
MX;m

ðX; ζ; tÞRα;α0
p ðX; tÞ; Eq:ð75Þ ζ ≤ X ≤ 1

agX2 − agζX þHðζ; tÞ; Eq:ð81Þ 0 ≤ X < ζ

0 −1þ ζ ≤ X < 0

: ðC3Þ

The parametric form for EðX; ζ; tÞ is

EqvðX; ζ; tÞ ¼

8>>>>>><>>>>>>:

EMΛ
MX;m

ðX; ζ; tÞRα;α0
p ðX; tÞ; Eq:ð55Þ 0 ≤ X < ζ

aEX2 − aEζX þ Eðζ; tÞ; Eq:ð63Þ ζ ≤ X ≤ 1

0 −1þ ζ ≤ X < 0

ðC4Þ

EgðX; ζ; tÞ ¼

8>>>>>><>>>>>>:

EMΛ
MX;m

ðX; ζ; tÞRα;α0
p ðX; tÞ; Eq:ð80Þ 0 ≤ X < ζ

aEX2 − aEζX þ Eðζ; tÞ; Eq:ð82Þ ζ ≤ X ≤ 1

0 −1þ ζ ≤ X < 0

: ðC5Þ

The parametric form for H̃ðX; ζ; tÞ is

H̃qvðX; ζ; tÞ ¼

8>>>>>><>>>>>>:

H̃MΛ
MX;m

ðX; ζ; tÞRα;α0
p ðX; tÞ; Eq:ð56Þ ζ ≤ X ≤ 1

aþX3 − 3
2
aþζX2 þ cX þ d; Eq:ð73Þ 0 ≤ X < ζ

0 −1þ ζ ≤ X < 0

: ðC6Þ
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The parametric form for ẼðX; ζ; tÞ is

ẼqvðX; ζ; tÞ ¼

8>>>>>><>>>>>>:

ẼMΛ
MX;m

ðX; ζ; tÞRα;α0
p ðX; tÞ; Eq:ð57Þ ζ ≤ X ≤ 1

aþX3 − 3
2
aþζX2 þ cX þ d; Eq:ð74Þ 0 ≤ X < ζ

0 −1þ ζ ≤ X < 0

: ðC7Þ
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