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We study the transverse polarization of hyperons produced in semi-inclusive deep inelastic scattering,
ep — eATX, in the framework of the collinear twist-3 factorization. The cross section from the twist-3
distribution functions and the twist-3 quark fragmentation functions is computed in the leading order with
respect to the QCD coupling constant. The constraint relations among the twist-3 FFs are taken into
account to simplify the formula. The formula is relevant to large-Py hyperon production in the future

Electron Ion Collider experiment.
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I. INTRODUCTION

Transverse polarization of hyperons produced in unpo-
larized collisions have been observed in many high-
energy inclusive processes such as pp — ATX,
ete” = ATX, and ep — eATX." This phenomenon is
an example of transverse single spin asymmetries
(SSAs) in which only one particle appearing in the process
is transversely polarized. The SSAs associated with the
initial state spin such as p'p — hX and ep! — ehX
(h=mK,n,...) have also been observed. The parton
model or perturbative QCD at twist-2 level fails to
produce large SSAs [1], and its description in terms of
QCD has been a challenge in QCD spin physics. In the
collinear factorization of perturbative QCD, the SSAs
occur as a twist-3 observable, which reflects multiparton
correlations either in the initial nucleon or in the frag-
mentation processes [2—4]. Derivation of the twist-3 cross
sections for SSAs required lots of technical development.
By now the collinear twist-3 formalism for all kinds of the
twist-3 distribution functions (DFs) and the fragmentation

lThroughout this paper we collectively denote spin-1/2 hyper-
ons as A.
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functions (FFs) has been well established in the leading
order (LO) with respect to the QCD coupling constant [5—
20]. Those functions are, in general, not independent from
each other but obey some constraint relations based on the
operator identities. The complete set of those relations
have been also derived [21,22], which are crucial to obtain
the frame-independent expressions for the twist-3 cross
sections [21-23]. There have been also some attempts to
extend the twist-3 calculation to the next-to-leading order
level [24-26].

In this paper, we study the transverse polarization of
hyperons produced in semi-inclusive deep inelastic scat-
tering (SIDIS), ep — eA'X, in the LO collinear twist-3
factorization. As for the case of pp — ATX [20,27-30],
two kinds of the twist-3 cross sections contribute. One is
from the twist-3 DF in unpolarized proton combined with
the “transversity” FF for the polarized A. The other one is
from the twist-3 polarized FFs for A combined with the
unpolarized parton DFs in the proton. In the latter
contribution, both twist-3 quark FFs [30] and twist-3
gluon FFs [20] contribute due to the chiral-even nature of
the FFs and DFs. Here we report the LO twist-3 cross
section formula for ep — eATX from the twist-3 DFs and
the twist-3 quark FFs. This is relevant for the large-Pr
polarized hyperon production in the future Electron-
Ion-Collider (EIC) experiment. The contribution from
twist-3 purely gluonic FFs will be reported in a separate
publication [31].
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The remainder of this paper is organized as follows: In
Sec. II, we summarize the twist-3 DFs and FFs relevant to
the present study. In Sec. III, after summarizing the
kinematics of ep — eA'X (Sec Il A), we present the
cross section from the twist-3 DFs (Sec. III B) and from
the twist-3 quark FFs (Sec. III C). Section IV is devoted to a
brief summary of the present study.

II. TWIST-3 QUARK DFS AND FFS

In this section, we summarize the twist-3 distribution
function (DF) and the fragmentation functions (FF),
which are necessary to calculate the polarized cross section
for ep — eA'X. For the twist-3 distribution, we need only
one function E(x,x,) in an unpolarized proton, which is
defined from the quark-gluon correlation function as [32]

F(x1,x2) / / et gin(v2= <P|‘/7j(0)

x [0, un]gF*" (un)lpun, Anly;(An)|p)

M
- _TNeaﬂnp(Vs}’ﬁlj)ijEF(xlvx2) +oe (1)

where My is the nucleon mass, |p) is the nucleon state
with momentum p which can be regarded as lightlike,
n is another lightlike vector satisfying p-n =1, and i, j
denotes the spinor indices. We use the convention for the
e-tensor as €”'2 = 1 and the notation "7 = e**n, p, is
used. [un, An] =P explig [} dvn - A(zn)] is the gauge link
operator, which makes the correlation function color gauge
invariant. From P, T-invariance, one has Ep(x{,x;) =
Ep(xy,x1). The support of Ep(x;,xp) is |xjo] <1
and |x; — x| < 1. The antiquark or “charge-conjugated”
distribution Ep(x;,x,) for Ep is defined by y — Cy,
w — —y C! (C is the charge conjugation matrix) and
Fop — —F[;in (1) and it satisfies the relation E(x;, x;) =
EF(_XZ’ _xl)'

We need several kinds of FFs, which are summarized
below using the notation in [21]. The simplest ones are
defined from the light cone correlation functions of quark

fields:
ok

Fz) Z Zl

Dir(z.21)

Z [ e 0lloow. OO} (2. 51)%)
X ((Py S )X [ (w) v, oow][0)
= <J’5$¢ I?) H, (2) + Me™S2Ph(y,),;

Dr(z) Gr(z)
z z

+ My (rs81);; o (2)

where |h(P,, S| )) denotes the hyperon state with mass M/,
momentum P, and the transverse spin vector S, normal-
ized as S3 = —1. Since we are interested in the twist-3
cross section, we treat P, as lightlike, and w is another
lightlike vector satisfying P, -w = 1. H,(z) is the twist-2
transversity FF, D7 (z) and G7(z) are twist-3 and are called
intrinsic twist-3 FFs. Dy(z) is naively T-odd, while G(z)
is naively T-even. In (2), gauge link operator [Aw, cow|=
P expig [ dvw - A(tw)], is inserted, which makes the
correlation function gauge invariant.

The next one is the twist-3 kinematical FFs which are

defined as

x <h<Ph, S1)X[ir; (3w) [ow, cow][0) "
1(1)

Afi(2) = (0] [cow. O]y; (0) (P S 1) X)

. D Z
= —iM "5 (Pn)ij 712 )
GL(I) z
+ M, ST (vsPn) i Z()-i----, (3)

where each FF is defined to be real, and they are related to

k%/M3;-moment of the transverse-momentum-dependent

(TMD) FFs [33]. GILT(I)(Z) is naively T-even, while

DILTU)(z) is naively T-odd and contributes to the hyperon

polarization.
Next we introduce the twist-3 dynamical FFs which are
defined from the three parton correlation function as:

—1— —m T <O|l//l( )|h(Ph,SL)X><h(Ph’ Sl)X|l/7j(/1W)gF“w(ﬂW)|0>

Gir(z.21)

:Mh€“SLWP”(Ph)ijT’_iMhSi(hPh)ijf"’"', (4)

where the gauge link is suppressed for simplicity. The
dynamical FFs Dyr(z,z;) and Gpr(z.z;) are complex
functions and their complex conjugates are defined in
(4). The real parts of these functions are naively 7-even,
while the imaginary parts are naively 7-odd and contribute

|

to the hyperon polarization. Replacing gF"*(uw) by
the covariant derivative D*(uw) = 0% — igA*(uw), one
can define another set of the twist-3 FFs, Dpr(z,z;) and
Gpr(z.2;), by the same tensor decomposition as above.
But they can be related to the above functions [17,19]:
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a 1 N
SDpt(z,21) = P——S3Dgr(2, 2
o1(2.21) = P77 3Der(z.2)

1

Pm&SGFT(Z, Zl)- (6)

RNVGDT(Z,ZO =

Three kinds of twist-3 FFs (2)—(4) are not independent,
but are subject to the EOM relation and the Lorentz
invariance relations (LIRs). Here we quote those relations
from [21]. The EOM relation involving the naively 7-odd
FFs is given by

°°dZ1 1 ~ A
— ———— (SDgr(z,21) = SGpr(2. 2
| B (Den(e ) = MG 2)

=219 4 piie) g

and the LIR reads

_%/‘”dh 3Dpr(z.21) _DT(Z>+d(D1L7("])(Z)/Z)_ (8)

z). 2 (Nz-1/22 2 d(1/z)

It has been shown that these relations are crucial to
guarantee the gauge invariance and the frame independence
of twist-3 cross sections for various processes [21,23,30].
In addition to those in (4), there is another type of
dynamical FFs defined from the matrix elements like
~(0|gF2"|hX)(hX|pt*y|0) with t* the generator of color
SU(3). They are, however, related to the purely gluonic
twist-3 FFs by the EOM relations and the LIRs as was
shown in [22]. It has been also shown that the combination
of the contributions from the twist-3 purely gluonic FFs and
these dynamical FFs gives the gauge and frame indepen-
dent cross section for pp — A'X thanks to the LIR s and
the EOM relations [20]. Therefore we will discuss those
contributions together in a separate publication [31].

III. TWIST-3 CROSS SECTION FOR ¢p — eAlX

A. Kinematics

Here we summarize the kinematics for
e(?)+p(p) = e(@) + AT (P, S +X,  (9)

where £, £/, p and Py, are the momenta of each particle, and
S, is the transverse spin vector of the produced A'. To
derive the cross section for this process, we define the
following five Lorentz invariants:

ol

FIG. 1. Hadron frame in which g and p are collinear. The
angles ¢ and y are, respectively, the azimuthal angles for the
lepton plane and the hadron plane (measured from a certain
reference plane), and @y is the azimuthal angle of the transverse

spin vector of AT, S |, measured from the hadron plane.

Sep = (p+7)7,
Q2
T 2p g
QZ — _qZ — —(f— f/)Z’
. :P'Ph
T pq
qr = \/—4qi. (10)

where the spacelike four momentum ¢, is defined by

w_ o Prna P-q
qgr = q" — -
p-Py PPy

which satisfies ¢, - p = ¢, - P, = 0.

We work in the hadron frame [34], in which the momenta
of the virtual photon and the initial proton are collinear as
shown in Fig. 1. In this frame those momenta take

P Py, (11)

g" = (¢°.4) = (0,0.0,-0Q), (12)
_ (2 9
P (bej’o’ o 2xbj)' (13)

We define the azimuthal angles of the hadron plane and the
lepton plane as y and ¢, respectively. With these angles, P/,
can be written as

2 2 2 2
P} :% <1 +§,gcosx,gsin;(,—l +§> (14)

which implies the transverse momentum of Al is P,; =
zpqr- For this P),, w* in (2) takes the following form:

1 ar  2qr
wH = 1+—-—,———cosy,
z,0(1 +Q%/Q2)2< 0 0
2 2
—gsinx,l—§>. (15)
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The initial and the scattered lepton momenta are, respec-
tively, given by

o = %(coshy/, sinhy cos ¢, sinhy singp, —1),  (16)
O = %(coshw, sinhy cos ¢, sinhy sin ¢, 1), (17)
with
2x,;S,
coshw:%—l. (18)

In order to calculate the cross section, we introduce the
following four vectors orthogonal to each other [34],

1
" zé(qﬂ+2xbjp") = (1,0,0,0), (19)
1 (P 9>
XH—— _h_q _<1+—T>x p”}:(O,cos;g,sin)g,O),
QT{Zf 0? "
(20)
"
2”2—52(0,0,0,1), (21)

Y = e"°T X, Z, = (0,—siny,cosy,0). (22)

The polar angle 0 of P_)h measured from the Z-axis can be
written as

th_q%_Qz

cosf = —== = , 23
\P,| a7+ O (23)

sing = Dir _ 2412 (24)
P, ar+Q

where Py = /P35 + P%y. The transverse spin vector S
of the hyperon resides in the plane which is orthogonal to

f’h, and we define the azimuthal angle of S | measured from

the hadron plane around f’h as @, (See Fig. 1). Then §| can
be written as

§'| = cos@cos DgX¥ + sinDgY* —sinfcos DgZF.  (25)
The polarized cross section for (9) can be written as

1 &P, B et
25.,(2m)2P0 (27)324'04°

dAg: Lﬂp(l’l/)wﬂu(p?q?Ph)’

(26)

where W, is the hadronic tensor and L is the unpolarized
leptonic tensor defined by

LW, 0) = 2(ME" + £26%) — QPg™.  (27)

Using the kinematic variables introduced in (10), the
differential cross section can be written as

d°Ac - Aoy
dxy;dQ*dzpdgrdpdy — 1287*S2,x3,0?

x L6, 6" )W, (p.q. Pp).  (28)

where a,,, = €%/ (4x) is the fine structure constant in QED.
The hadronic tensor W, satisfies the current conservation
¢"W,, = ¢"W,, = 0 and can be expanded by the following
six tensors, Vi [34]:

V¥ = XFXY + YY",

V/;U — g;u/ + ZﬂZlI,

VB = THXY + XFTV,

Vi = XHXY — YrYY,

V§© = TrYY + YFTY,

Vo = XFYY + YFXY. (29)
In order to calculate LW, in (26), we introduce the
inverse tensors Vi* for V"

- 1
VI = 5 (2T*TY + X' XY + YHYY),
Vi =TrT,

- 1

V= =5 (T"X¥ + XUT*),

Vi =< (XMXY - YrYY),

N[ =

VY = —% (THY" + Y#TY),
Vi = % (XFYY + YHXY). (30)
With these V{* and V", one obtains LW, as
LW, = Y LWV, ]

—0 3 Ap-0W, ) (D)

k=1,...9

where A (@) (0 =¢ —y, k=1,...,4, 8, 9) is defined by

Ak((p) = LyuvZU/sz (32)

and they are calculated to be
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Ai(p) =1+ coshzz,//,

Ay (p) =

A3 (p) = —cos ¢ sinh 2y,

Ay (@) = cos 2gsinh?y,

Ag(p) = —sin @ sinh 2y,

Ag(p) = sin 2¢sinh?y. (33)

Corresponding to A, (¢ — y) (k = 1,2...9), the cross sec-
tion for (9) consists of five components with different
dependences on the azimuthal angle ¢ — y.

B. Contribution from unpolarized twist-3 distribution
and the transversity fragmentation function

In this section we calculate the twist-3 cross section for
ep — eATX which arises from the twist-3 DF in the
nucleon. The method of the calculation is described in
detail in [6], which developed the formalism for a similar
twist-3 process ep! — exX. At leading order with respect
to the QCD coupling constant, only the dynamical twist-3
DF in the nucleon Eg(x,x,) defined in (1) contributes
together with the transversity FF H,(z) for AT, which is
schematically shown in Fig. 2. Since the original calcu-
lation in [6] overlooked some of the diagrams for the hard
part [11,35], we shall also include those new diagrams
below. The cross section occurs as pole contributions from
the hard part, which are classified into the hard pole (HP),
soft-gluon-pole (SGP) and soft-fermion-pole (SFP). For the
SFP contribution, the new type of diagrams found in [11]
cancel the contribution from the quark’s SFP function
Er(0,x) paired with the quark’s transversity FF arising
from the SFP diagrams considered in [6]. Accordingly, in
the present case, the SFP contribution occurs from the left
four diagrams in Fig. 1 of [35] in which the lower quark line
(for anti-quark) crossing the final state cut fragments into
A%, together with the diagrams obtained by reversing the
arrows on the quark lines. Therefore the SFP contribution
survives only for the antiquark’s transversity FF paired with
the quark’s SFP DF or the quark’s transversity FF paired
with the antiquark’s SFP DF [35]. We expect these

contributions involving the FF or SFP functions for an
antiquark should be much smaller compared with those
from the SGP and HP ones. Hence we will not consider
them below. It was also found in [35] that there are some
other HP diagrams not considered in [6]. We will also
include those new types of HP contributions below.

Using (28) and (31), and factorizing the twist-2 trans-
versity FF H(z) from the hadronic tensor, one can write
this cross section as

d6 AGth —dist

S Al
dx,;d dezqu%d(ﬁd;( 1287r4S§px%jk

< [ Sl

where the summation over quark flavors as well as the
factor associated with the quark’s fractional electric charge
is omitted. Applying the formalism described in [6], we
obtain w,, in (34) in terms of the gauge-invariant corre-
lation function M%(xy,x,) in (1) as

;w p q»Ph/Z)VM ]

(34)

W (P, q, Py/z) :/dxl/d&Tf{iwaﬁM/;(xhxz)

p(f
] b
ki=x;p

(35)

« 8S?5{/SGP(kl ’ k27 q, Ph/z)
ks

where w”; = g% — p®ny and the summation over color

indices is implicit. S?,Z{,SGP is the partonic hard part

corresponding to the original nucleon matrix element
Me(ky, ky) ~ FT {p|lwgA°y|p). Although we start from
[ d*ky [ d*kyM(ky, ky)S,(ky, ky) for the cross section,
reorganization of the collinear expansion using the Ward
identity allows us to convert the gauge field into the field
strength in the correlation function and leads to the gauge
invariant expression for the twist-3 cross section as shown
in (35) (see [6] for the details).

FIG. 2. Twist-3 distribution function contribution to ep — eA"X. The top blob indicates the fragmentation correlator for H,(z), the
bottom one represents the correlation function for Ey(x;, x,) and the middle one corresponds to the partonic hard part.
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The LO diagrams for P u are glven in Fig. 2 of [6] and
the left two diagrams of Fig. 2 of [35].% The LO diagrams
for S3GP are given in Fig. 8 of [6]. We remind the reader that
the hard part for the HP contribution satisfies the following

relation owing to the Ward identity [6],

asg/]jb(kl ) k2, q., Ph/z)pg
kS

1
= S (x1p. X2p. q, Py/2), (36)

ki=x;p

X1 — X3

and thus one can obtain the HP contribution without
calculating the derivative in (35). The hard part contains
|

the §-function corresponding to the on-shell condition for
the final unobserved parton, which takes

ze(e=(-3)(-3)

5((xp+q—Py/2)*) =

(37)
where the variables X and Z are defined as
o _ Ybj .~ Zf
=2, =, 38
b= t=- (38)

Calculating the LO diagrams for the hard part, we have
obtained the HP contribution as

d°Act? ana, —My dz dx[ 2 4  ANQ*(x-1)
B 5 = 2 2 0 _HI(Z) — —AEF(xbjax) - 34
dxy;dQ dzpdqrdgpdy  167°S,,x;,,0 4 Z x |[1-% Nqr qrx

x sinh?y sin {®g + 2(¢p — x) }-+Er(xp;. Xp; — < > {

8(1 —x
N (A ;C)Q
2qT

(G- (-9)(-2)

sinh 2y sin(®,

s+ —x)+

1 + cosh?y) sin @g

)

~ X0 by sin (@ + 2(g -]
Xzq

(39)

where a, = ¢?/(4x) is the strong coupling constant. The E(x;, x) contribution occurs from the diagrams in Fig. 2 of [6]
and the Ep(x,;, x,; — x) contribution is from the left two diagrams of Fig. 2 of [35]. We note that k = 3, 8 and k = 4, 9

terms can be, respectively, combined into the single sin forms ~ sin (®, + ¢

—y) and ~sin {®; +2(¢p — x)}.

For the LO calculation of the SGP contribution we found the method using the master formula [10] is convenient. The

result reads

d® AcSCP anag —My dz dx (-1
2 2 T 16252 2. 02 2 HI(Z) - \on
dxydQPdzdqidpdy ~ 162°52,52,0° \ 4 Q x \2N
) 2% dEp(x, x 1+2)0> 2%
X {—8(1 + cosh?y) sm(I)S{l 5\ Fd(x )—Ep(x,x)>+<( Eq%) +1 _56>EF(x,x)}
. ) 2x0 dEg(x,x) > 0 <Q2 ) }
+ 8sinh2 O+ ¢ — — Ep(x, —-—— =5 +1)Ep(x,
sinh 2y sin(®Dg + ¢ ;(){(1 %0 <x . F(x,x) 20\ F(x,x)
25307 dEp(x,
— 8sinh?y sin {®g + 2(¢ —;()}{ x? 5 <x Plxx) Ep(x, x)>
(1-2)q7 dx

(5 )o@

)(-)

It turned out that the LO SGP cross sections for k = 3, 8 and k = 4, 9 can be also transformed into the single sin forms as in

the HP contribution.

To summarize this subsection, the cross section in (34) is given by the sum of (39) and (40).

*Since both E; and H, are chiral-odd, right two diagrams in the same figure vanish.
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! Spcn %i’if| \\ Sgpo-(z z) Sgo’p(z z)*

p = fi(z) =—— = fi(z) —_ == fi(z) ——

() (b) (©

FIG. 3. Twist-3 quark fragmentation function contribution to ep — e A" X. The top blob represents the fragmentation correlator, the
bottom one indicates the unpolarized quark DF, and the middle one corresponds to the partonic hard part. The contribution from the
unpolarized gluon DF should also be included.

C. Contribution from twist-3 quark ep! — exX. This contribution is diagrammatically shown
fragmentation function in Fig. 3. From Eq. (54) of [17], one can write the twist-3
The formalism for calculating the twist-3 quark FF  quark FF contribution to (9) as
contribution has been developed in [17] for the process
|

d6 A O.tw3—frag

acm 2 A bt
dx,;dQ%dz drddy — 1287722, Sg,,QZZfQ 2489 d¢—x) [ i)

i o
x [ [STia@s, @+, | %Tr[Ag(z) Spelt)

I

cl.
dz [ d? 1 .
@ [ 5 [P (ot ) ST Sk 2+ o | @)

where Q% = ¢*5 — Pfwy, f1(x) denotes the twist-2 unpolarized quark or gluon distribution function, and the summation
over quark flavors as well as the factor associated with the quark’s fractional electric charge is omitted. In (41), S ,,(k) and

SL ,5(2',z) are the partonic hard parts originally associated, respectively, with the fragmentation matrix elements

> x Oy |hX) (hX|@|0) and > (Olw|hX)(hX|wgA%|0). Inserting (2)—(4) into (41), one can obtain the twist-3
FF contribution to the cross section as’

6 tw3—fra; 2
d°Ac & azmo(

dz 1 1
— Ax( )S 1) I—— )| 1-<
dxbdezdzqu%dqﬁd;( 1672 xbj Z {9 =1)5 fl( )/ z (Q2 < X) ( 2))
L(1) /
DT(Z)Ak d Dip (2)] .« (1) /dz !
ko _ =D P{———
- { e Ty 2 Jkm TR ()i + 2 \1/z=1/7
o 2 1 . 7, 171 1 -
X {;SDFT(Zv ZI) |:G]k)F3 _E (1/Z _ 1/ZI) alk)F4 +zo-]k)Fl +Z (?_ (1 _ qZT/QZ)Zf> 61]5F2:|

A 2 1 7 1/1 1 -1
SGer(2.7) 663 == 7= )0 S| 8¢ )
+3Gpr(z,2) |:O-GF3 p (1/Z—1/Z) 0Grat+ Z"GFl +Z <Z/ 1 —q%/Qz)z) GGF2:| H (42)

[
where  Sj,34 =sin®g  and Sgg =cos®g, and  the cross section for the dynamical FFs, and introduced the
6k 6% |, - etc. represent the partonic hard cross sections.  z’-independent p;}rtonic hard cross section, 6;’131;1, 68 s
In (42) we have explicitly separated the z'-dependence of  6K.., 6K, for SDgp(z,7'), and likewise for IGgr(z, 7).

From actual calculation, it is easy to find

The T-even functions Gr(z)in (2) and Gngﬂ(z) in (3) do not ko ak 56— 43
contribute to the symmetric part of the hadronic tensor. ODF3 = ~OGF3> OGrs = Y- (43)
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Thanks to these relations, the EOM relation (7) and the LIR

(8) allow one to absorb the contribution from the dynamical 8]iD = ‘A’iml - 5]13F4, (45)
FFs with, 685, 655, 655, and 65, into those from the
intrinsic and the kinematical FFs. Defining the new
partonic hard cross sections, 6li = 6-@112 - 6]ISF3’ (46)
Ak
&7 = 8jy + 6ps + 8ppa (44)  one can rewrite (42) in the following form:
|
d® AgtV3—Trag aZna(—=My) dx dz 1 1
. 5 = hZZAkﬁb X)Sk fl(x)/ o= (1-5)(1-3
dxy,;dQ dzququ’)d)( 1672 xb/ Q X z Q x Z
Dr(z) d DIT( )(Z) N L)y Ak
- —_— -D
x { p or d1/z)  z Olip 17 (2)67

dz 1 ) 7 1/1 1 -
v [ Vsher(n )| Bek, +o () sk
/z/2 (1/z—1/Z’>{ FT(ZZ)[Z 7pr Z(Z’ (l_qu/Qz)Zf) 7D

Z\Z

a 7 1/1
+SGFT(Z,Z/)[ZGGF1+— =

=) )] @

This is the final form we use to present the twist-3 quark FF contribution to ep — eA'X shown in Fig. 3.
In order to present the partonic hard cross sections in (47), it is convenient to introduce the quark FF contribution to the

twist-2 unpolarized cross section for ep — eAX. It reads

d6o.unpol
dxbdezdzqu%dqbd;(

aema

QZZA"

1677 xb]

where D, (z) denotes the twist-2 unpolarized quark FF, and
Cro%, represents the partonic hard cross sections which
depend on whether f(x) = g(x) (quark DF) or f(x) =
G(x) (gluon DF). We will see below that some of the hard
cross sections in (47) are related to 8’{,3.

Below we give LO Feynman diagrams for the hard part
and the results for the hard cross sections 67, and
6pF1.GF1.0F2.GF2- Which are the functions of Q, g7, X =
xpi/x and 2 = z¢/z.

(1) yg — qg channel:

The diagrams for the hard part in this channel are
shown in Fig. 4. It is convenient to present some of
the hard cross sections in (47) in the following form:

11-2
= Cpét —— Gk 49
or Y g7z U (49)
R 11-2,
Glj_D = N qu ]lcf (50)
8’i = Cpo63, (51)
. . Cr 1\,

T [ o

(e (Dt

Cr 1
(o= Ak
( Z)<1—5c—2 2N2)63’

where 67;s are the unpolarized partonic cross sec-
tions introduced in (48) for the unpolarized quark

66 (53)

e
-

S
\

FIG.4. LO diagrams in the yg — gg channel contributing to the
hard parts S,,(k) and S% ,,(z',z) in (41). A cross in an oval in
each diagram represents the fragmentation insertion. For
8% ,6(2'.2), an extra gluon line connecting the cross in the oval
and each dot in the diagram should be added.
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distribution f/(x) = ¢(x) and 84, ; are newly introduced partonic cross sections, and hence specification of &%,
&]f.2,3’ 6pr1 and 65y determines the cross sections in (47). We shall now give those in the yg — ¢g channel.
(a) Twist-2 unpolarized cross section:

2(2 = 2% 4+ &% + 2(=2 + 8% — 632) + 2%(1 — 6% + 632))

Al
v =90 -3%) |
67, = 8% 2,
5, = 4 -2+ 2(-1+23)
dr
61 =4%2. (54)

&%’ = 0 is understood in (49) and (50).

(b) k= 1:
o A(1—9% + 1432 — 68 4 22%(1 — 6% + 6%7) + 2(—4 + 23% — 30%% + 12%7))
o, = S
! gr(=1 +3)(=1+2+2%)
5 — CA((=1+3) =32(=1 + R (=1 +28) +2°(1 - 6% + 6%%) + 22(=3 + 16% — 1832 + 6%°)) 7
qgr(-14+2)(-1+ %) (-1 +2+%)
5= A1+ 3)P =321+ 2P (=1 + 25();1— 23 (1 = 6% + 63%) + 22(=3 + 143 — 183> + 63%)) ’
qr(=1+2)(-1+2)(-1+2+%)
s 12(=1+ (=14 2)%)
DF1 N QTQ(_I—F)%) 5

12(1+ (-1+2)%)
—— 55
GFl N gri(-1+23%) (53)

() k=2
5 16(=1 +28)%
dr
163 2
7= q);z’
162 %
5=- qzrx’
321)1:1 =0,
56r =0 (56)
d) k=3
53 BR((S1 427 +23(=4 + 8%) +22%(5 = 108 +48%) — 22(3 - 73 + 4%°))
1 O +2) (-1 +%)(-1 +2+%) ’
g3 AR H )7 4 2(2447) 4 2(5 - 8% 4 48))
? O(-1+2)(-1+3)(-14+2+4%) ’
5 _4e(=2(-1 + %)%+ 22(=2 +4%) + 2(3 — 8% + 432))
’ G(-1+2+7%) :
. 1 2%
O] ==,
DF1 NO(=1 +%)
1 2%
~3 X (57)

% = TNGCT )
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(e) k=4
84:4(4fc:7‘,2—2(—1+5c)x+2(1—65c+45c2))
! gr(=1+2+3%) ’
642‘:_42(1—&-2(—14-2)5(—1—2562),
qgr(=1+2+%)
6g:_42(—1+2(—1+2)5c+222)
qr(—14+24+3%)
12
~4 _ - =
GDFI_NqT’
12
G =———. 58
GF1 NCIT ( )
) k=8:

43(=(=1+4 %)% +22(=1 + &)> + 232?)

&% =
! O(-142)(-1+&)(-1+2+3)
8 4322
05 = — ,
2 0(-1+2)(-14x)(-1+2+%)
5 420
g (-l+z+5)
p L — _li
DF1 — NQ(1—2)7
1 2%
A8 - = 5
OGF1 NQ(I—.%) ( 9)
(8) k=9
o _Mat2v242(-1+ )%
! gr(-1+2+23) ’
o 4z
: qr(=1+2+4%)
o 42
gr(-1+2+5)
12
1 :Na7
12
OGr1 = “Nar (60)

g
| g
Y
|
FIG.5. LO diagrams in the yg — g channel contributing to the
hard parts S,,(k) and S% ,,(z',z) in (41). A cross in an oval in
each diagram represents the fragmentation insertion. For

SL ,6(z'.2), an extra gluon line connecting the cross in the oval
and each dot in the diagram should be added.

(2) yg = qg channel:
Diagrams for the hard part in this channel are
shown in Fig. 5. It is convenient to present some of
the hard cross sections in (47) in the following form:

sk = & —Nzl_ 1 1q;;&§,, (61)
R ML @)
Sbro 1 2;%_Z (1 :iz N21— 1)85’ (63)
88”21—2:—2(1 i;f2+N21— 1>6§’ (64)

A

where 6’{]’5 are the unpolarized partonic cross sec-

tions in (48) for the unpolarized gluon distribution

f1(x) = G(x), and 6} , ; are newly introduced here.

We will give 61, 6 , 5, 8%, 65, and 65, below.
(a) Twist-2 unpolarized cross sections:

&y

6% = 168(1 — %),

5 = 8kgr(1 - 22)(1-2%)
o(1-2)

& = 8%(1 — %),

where 6%’ = 0 is understood in (61) and (62).

! — 2% +28% = 22(1 — 63 + 63%) + 22%(1 — 6% + 63%)
B 2(1-2)

bl

(65)
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(b) k=1
5 = C2(=1 4+ ) {2+ 58 =387 + 22(=1 +68%) +2(4 - 115c+658)}’
qr2* (=1 +2+%)
2
&) = & -1 +224(1 - 63 + 63%) 4 2%(4 — 30% + 5582 — 243"
(-1 + )2 (-1 + 2+ % t ( )+ )

)
+2(=1 4 5% — 1582 + 933) + 33(=5 + 37% — 5432 + 183%)},
1 2(32(1 =2%)% + 2(1 4+ &) +22(1 — 6% + 63?))
ODFI T T N2 ] g1
1 2(3(5-63)% + (-1 + %)%+ 22(1 — 63 + 63%))
76 = T NT qr2?

9’

’

1
8 = m{(q +2)2(=142%) = 32(=1 + 2)> (=1 + 4%) + 2°(1 — 6% + 632) + 32%(=1 + 7% — 103> + 4%%)},
T
—(=1+ %)% +32(=1 +%)? +2%(-3 + 9% — 6%%) + 23(1 — 63 + 63?) (66)
AnD .
qrXz

%GR T T2 0’
= o

4qT)?2
2= o (67)

>
[S1 )

s

(o}

d) k=3

23(=4(=1 + &) +22(3 — 4k + 32) + 22(=1 — 23 + 432))

6 =— ,
! O(-1+2)2(-1+2+%)
3 28(—1—3% 42872 423 (-4 4 8%) + 2(-3 + 168 — 108?) 4 2*(9 — 26% + 12%?))
o, = s
L O(=1+2)z2(-1+2+2%)
a1 2R(=1 =28+ 2(=2+47))
ODFI T T N7 03 ’
oL 2(=1428)%(=1+28)
7er = TN 0z ’
3 3 TR —4R% 4 22(-2 4 4%) +22(3 — TR + 487)
0y = 0z R
o —1=22(=1+2%) + & +22(-2 + 4%)
63 = E ) (68)
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(e) k=4:
5 _ 2(=1+2)(1 =3% +2(1 +2)3?)
oI qri(—=1+2+3%) ’
& _2(-1+y)(+( —82+422)x+(—2+62)22)’
o 21 12(—1+5c)(—1—|:2(—1+2)5c)’
- qr<
- _N21 12(—1 +3)(1 +A2(—1 + 2)2)’
- qrz
a0 ar(1+2(=2+2)% + 482)
0'2 = Q2 s
o qr(—-1+2%2)
o= 69
3 Q2 ( )
) k=8:
8?:_22(—2( 1+ %)% 4 42(— 1+5c)2+22(—1+25c))’
O(-14+2)z(-1+2+3)
& — - 2%(1 -z - :i— 22 (- 1—|—2x)),
O(-1+2)z(-1+2+%)
) 1 %
OpfFl — N2 _1 12Q2’
" 1 %
OGFL T T N2 N2 1203
s (C1+22)(=1+3)
02 = - Q2 s
w (—1+22)(-1+%)
68 = 0 : (70)
(& k=9
5 :_2(—1+5c)(1+(—5+22)5€+45cz)’
! qri(=1+2+3)
59 C2(=14+8)(=1 + 3 +22%)
7L qri(=1+2+3%)
69 1 qT'%
DFl — 2_ 12Q2(_1 +2)’
59— _ 1 qrx
orl N?—120%*(-1+3%)°
A9 QT(_I +25C)
0'2 = — Q2 s
R qr(—1+2%)
62 = Q2 (71)

This completes the specification of all partonic hard cross sections in (47) and (48).
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IV. SUMMARY

In this paper, we have studied the twist-3 cross section
for the transversely polarized hyperon production in SIDIS
ep — eA'X in the framework of collinear factorization.
The cross section consists of five structure functions with
different dependences on the azimuthal angles. We have
presented the LO cross section which occurs from the twist-
3 DF in the initial proton combined with the transversity FF
for AT and the twist-3 quark FFs for A" combined with the
unpolarized DF in the proton for all five structure functions.
The derived cross section is relevant for the large-Pr A"
production in the future EIC experiment. For completeness
the contribution from the twist-3 purely gluon FFs as well

as another ggg-FF of the type ~(0|gF*"|hX)(hX|pw|0)
needs to be included (as discussed at the end of Sec. II),
which will be reported in a separate paper [31].
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