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We evaluate the contribution of scalar mesons to the hadronic light-by-light piece of the muon
anomalous magnetic moment, using a warped five-dimensional model and holographic methods. We assess
the contribution of the lightest, sub-GeV scalars σð500Þ, a0ð980Þ, and f0ð980Þ together with their
associated towers of excited states, which the model generates automatically. Our results point at a clearly
negative contribution, overwhelmingly dominated by the σð500Þ meson, that we estimate at

aHLbL;Sμ ¼ −9ð2Þ × 10−11. This number is in very good agreement with the most recent determinations
from dispersive analyses.
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I. INTRODUCTION

Fermilab has recently released a measurement of the
muon anomalous magnetic moment [1], confirming the
previous BNL E871 result [2] and thus the disagreement
with the theory expectation. Compared to the most recent
theory determination [3], based on Refs. [4–23], the
discrepancy is now pushed beyond four standard devia-
tions. The Fermilab result is based on an analysis of the
first data run, with a precision comparable to the one of the
BNL number. In a matter of few years, the precision will
be improved by a factor 4, thereby reaching the projected
0.14 ppm.
On the theory side, the hadronic contributions are cur-

rently the focus of attention. The most pressing issue
concerns the hadronic vacuum polarization contribution,
where one needs to understand how compatible the increas-
ingly precise lattice simulations (see, e.g., Ref. [24]) are with
the data-driven analyses [12,13] and low-energy pheno-
menology [25–28].
The hadronic light-by-light (HLbL) contribution is in a

less critical stage, with a reasonable level of precision and
with overall agreement between the different calculational
techniques. Data-driven dispersive analysis [29,30] and

lattice simulations [22,31] still have room for improvement,
and more precise determinations are expected to come in
the near future.
In parallel, there have been some recent developments

for the HLbL using five-dimensional Lagrangian-based
models with techniques borrowed from the AdS/CFT
correspondence [32–34]. When compactified to four
dimensions, these models can be interpreted as hadronic
models of QCD with an infinite number of states for the
different meson channels, as it is expected in the large-Nc

limit of QCD [35,36]. These models are provided with the
following relevant features:

(i) They u ndergo spontaneous chiral symmetry break-
ing, and thus they contain a pion multiplet, together
with all the consequences of chiral dynamics
built in.

(ii) At high energies, they are conformal invariant and
match the QCD asymptotic behavior of correlators
in the scaleless limit.

(iii) The chiral anomaly is consistently implemented at
all energy scales.

With these ingredients, these toy models are especially
suited to address conceptual issues in simplified but con-
sistent settings, especially issues related to the duality
between hadronic contributions at high energies and QCD
short-distance constraints. This was demonstrated recently
in Refs. [37,38], in which it was shown that a nontrivial
combination of the Goldstone and axial-vector contribu-
tions, mostly dictated by anomaly matching at all energy
scales, naturally resolved a long-standing puzzle [15,21]
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regarding the saturation of short-distance constraints with
hadronic states in the HLbL. Interestingly, the holographic
models also predict a more sizeable axial-meson contribu-
tion than previously estimated (see, e.g., Ref. [39] for a
detailed comparison). This conclusion has been shown to be
solid even in the presence of quark-mass corrections [40].
So far, holographic models have been used to examine

and evaluate Goldstone [41–43], axial-vector [37,38,40],
and massive pseudoscalar [40] contributions. In this paper,
we will apply the same formalism to evaluate the scalar
contributions to the HLbL. There is generalized consensus
that the scalar contributions are rather modest, to a large
extent dominated by the σð500Þ resonance, and with the
opposite sign as the Goldstone- and axial-vector contribu-
tions. Apart from the contribution of the lightest, sub-GeV
scalars, our model allows us to estimate the contribution of
the infinite towers of excited scalar states and thereby get a
rough idea of the uncertainties that can be ascribed to
heavier, not experimentally accessible, scalars.
By construction, our model treats the σð500Þ meson as a

narrow-width state. Regardless of the nature of the σ meson
in the large-Nc limit (see, e.g., Refs. [44,45] for a detailed
discussion), at Nc ¼ 3, its width is simply too big to be
described as a narrow-width resonance. This raises the
question of whether its contribution to the HLbL, as
predicted by the model, is reliable. To estimate the
σð500Þ parameters (e.g., its mass and its decay width into
photons), the most rigorous approach uses dispersive
methods including coupled channels applied to γγ → ππ
(see, e.g., Refs. [46–48]) or, more recently, to γγ → ππ and
γγ → KK data [49,50]. However, it would be inconsistent
to use the values obtained with dispersive methods, which
use a complex pole definition for the σ, in our approach,
which is close to the Breit-Wigner definition. To the best of
our knowledge, the set of values closest to our para-
metrization are the ones provided in Ref. [51] from a fit
to γγ → ππ data. With these values, we estimate the σ
contribution to the HLbL at aμ ∼ −9 × 10−11, in excellent
agreement with the value from the most recent dispersive
analyses [17,52].
The previous conceptual issue has amuchmilder effect for

the a0ð980Þ and f0ð980Þ, which can be considered narrow
states to a good approximation. The values we find for those
states can be jointly estimated as aμ ∼ −0.6 × 10−11, which
are in agreement with Refs. [52,53]. We have also evaluated
the contribution from the excited towers of scalar mesons,
assuming them all as sufficiently narrow, and estimated their
effect on the HLbL asΔaSμ ∼ −0.2ð2Þ × 10−11. Summing up
all the contributions, our final number for the total scalar
contribution reads aSμ ¼ −9ð2Þ × 10−11.
This paper is organized as follows. In Sec. II, we lay out

the details of our setup, which is then used in Sec. III to
derive the expression of the hadronic four-point tensor
entering the HLbL. In Sec. IV, we derive the scalar
transition form factor and the hSVVi correlator from the

model and examine their behavior at low and high energies.
In Sec. V, we discuss our choice of parameters and compute
the inclusive scalar contributions to the muon g − 2.
Conclusions and final remarks are given in Sec. VI.

II. MODEL

In this section, we will introduce the model we will be
using and work out the fundamental ingredients that will be
needed for the determination of the HLbL contribution.
Section II A describes the general features of the model,
while Secs. II B–II D are of a more technical nature and can
be skipped on a first reading.

A. From the five-dimensional action to a theory
of hadrons

The model we will use is a toy model of QCD in the
large-Nc limit, with infinite towers of vector, axial-vector,
scalar, and pseudoscalar mesons. Such a large-Nc realiza-
tion can be constructed in a very efficient and economical
way from a five-dimensional formulation [54–58], by using
the techniques developed in the context of the AdS=CFT
correspondence [32–34]. The action we will use reads

S½LM; RM; X� ¼
Z

d5x
ffiffiffi
g

p
LðLM;RM; XÞ þ SCS; ð1Þ

where

LðLM; RM; XÞ ¼ −λtr½FMN
ðLÞ FðLÞMN þ FMN

ðRÞ FðRÞMN �
þ ρtr½DMX†DMX −m2

XX
†X� þ zδðz − z0ÞVðXÞ

þ ζþtr½X†XFMN
ðRÞ FðRÞMN þ XX†FMN

ðLÞ FðLÞMN �
þ ζ−tr½X†FMN

ðLÞ XFðRÞMN � ð2Þ

and

SCS ¼ c
Z

tr½ω5ðLÞ − ω5ðRÞ�: ð3Þ

The Chern-Simons term makes sure that the model has
all the consequences of the axial anomaly built in. Its
explicit expression in terms of the gauge fields reads
ω5ðLÞ ¼ LF2

ðLÞ þ i
2
L3FðLÞ − 1

10
L5, where the wedge prod-

uct of forms is implicitly understood. The same conven-
tions and definitions apply to the right-handed sector.
We will take the five-dimensional background metric to

be anti-de Sitter,

gMNdxMdxN ¼ 1

z2
ðημνdxμdxν − dz2Þ; ð4Þ

where μ; ν ¼ ð0; 1; 2; 3Þ, M;N ¼ ð0; 1; 2; 3; zÞ and ημν has
a mostly negative signature. For convenience, we have
normalized the AdS curvature to unity. The fifth dimension
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is taken to be compact, with four-dimensional boundary
branes at ðxμ; εÞ and ðxμ; z0Þ.
The first line in Eq. (2) collects the Yang-Mills term for

the gauge fields LM and RM. Together with the Chern-
Simons term, this was the action used in Ref. [38] to
describe the contribution of axials and Goldstone bosons
to the HLbL. In this work, we will adopt the same
conventions, with FðLÞMN ¼ ∂MLN − ∂NLM − i½LM; LN �,
LM ¼ La

Mt
a and trðtatbÞ ¼ 1

2
δab, where ta are the eight

Gell-Mann matrices extended with t0 ¼ 13=
ffiffiffi
6

p
.

The remaining lines in Eq. (2) collect the scalar sector,
with the complex field X ¼ Xata transforming as a bifun-
damental of Uð3ÞL ×Uð3ÞR, X → gLXg

†
R. Accordingly,

DMX ¼ ∂MX − iLMX þ iXRM: ð5Þ

For reasons to be explained below, we have introduced a
potential term, localized on the infrared boundary. As in
Ref. [57], we will take it to be

VðXÞ ¼ 1

2
μ2tr½X†X� − ηtr½ðX†XÞ2�: ð6Þ

The operators in the last line of Eq. (2), of higher
dimension, generate the Sγγ interactions and are therefore
essential to have a scalar contribution to the HLbL.
Note that the nonanomalous part of the Lagrangian is

endowed with a parity symmetry (LM ↔ RM, X ↔ X†),
which will be broken by the infrared boundary terms.
The previous action describes the interactions of vector,

axial, scalar, and pseudoscalar mesons, defined as
LM ¼ VM − AM, RM ¼ VM þ AM, and X ¼ Sþ iP.
Using the AdS/CFT correspondence [32], one can con-
struct the dual four-dimensional field theory on the z ¼ ϵ
boundary, where the fields at the boundary correspond to
external sources [33,34]. With the appropriate choice of
boundary conditions for the gauge fields at z ¼ z0, to be
discussed below, the model can be made to undergo
spontaneous symmetry breaking with the pattern expected
from large-Nc QCD, namely, Uð3ÞL ×Uð3ÞR → Uð3ÞV .
The spectrum of the four-dimensional theory contains
infinite towers of vector, axial, scalar, and pseudoscalar
massive modes, which can be expressed in terms of Vμ, Aμ,
S, and P. In this paper, we will only need to consider the
vector and scalar fields, and accordingly, we will restrict
our discussion to these particular sectors. Their Kaluza-
Klein decomposition is

Vμðx;zÞ¼ fð0ÞV ðzÞVð0Þ
μ ðxÞþ

X
n¼1

VðnÞ
μ ðxÞφV

n ðzÞ;

Sðx;zÞ¼X0ðzÞþfð0ÞS ðzÞSð0ÞðxÞþ
X
n¼1

SðnÞðxÞφS
nðzÞ; ð7Þ

where X0ðzÞ is the vacuum configuration, to be determined
below. The zero modes correspond to non-normalizable

solutions of the quadratic equations of motion and overlap
with the external sources. Through boundary conditions,
one can make sure that they are nondynamical.
If one is interested in computing correlators, it is,

however, more convenient to express the fields in an
alternative way, making the four-dimensional sources
explicit. In the following, we will work in position space
for the compact dimension and in momentum space for the
remaining dimensions. Upper-case letters will be used for
spacelike momenta. One can then write

Vμðz;QÞ ¼ vðz;QÞv̂μðQÞ;
Sðz;QÞ ¼ X0ðzÞ þ sðz;QÞŝðQÞ; ð8Þ

where it is understood that v̂μðQÞ is a transverse vector, i.e.,

v̂μðQÞ ¼
�
ημν −

qμqν
q2

�
v̂νðQÞ: ð9Þ

The hatted quantities v̂μ ¼ v̂aμta and ŝ ¼ ŝata are identified
with the classical sources associated to the chiral currents
jaμ ¼ q̄γμtaq and ja ¼ q̄taq, respectively.
The effective four-dimensional action can be determined

once the functions X0ðzÞ, vðz;QÞ, and sðz;QÞ are known.
At leading order, they result from the solution of the
classical equations of motion. Integrating out the fifth
dimension then simply corresponds to plugging their on-
shell values into the action and performing the correspond-
ing integral over the fifth dimension. The end result is a
four-dimensional generating functional, out of which the
correlators of the theory can be computed. The z ¼ ϵ and
z ¼ z0 branes play the role of ultraviolet and infrared
cutoffs of the four-dimensional theory, respectively.

B. Vacuum configuration

The vacuum of the theory can be found by solving the
equations of motion at p2 ¼ 0, with gauge fields set to zero.
This gives

�
∂z

�
1

z3
∂z

�
−
m2

X

z5

�
X0ðzÞ ¼ 0; ð10Þ

whose solution is

X0ðzÞ ¼ A

�
z
z0

�
αþ þ B

�
z
z0

�
α− ð11Þ

with α� ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

X

p
. The masses of five-dimensional

pj-form fields are fixed by conformal invariance to satisfy

m2
j ¼ ðΔj − pjÞðΔj þ pj − dÞ; ð12Þ

where Δj is the conformal dimension of the currents
associated to the different pj-form fields. For QCD, these
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are the quark bilinears and therefore Δj ¼ 3. Neglecting
anomalous dimensions, this sets the gauge fields to be
massless while m2

X ¼ −3. Within the AdS=CFT correspon-
dence, the values of X0 on the UVand IR branes are linked
to explicit and spontaneous symmetry breaking, respec-
tively [59]. This suggests imposing [55,56]

X0ðϵÞ ¼ ϵMq; X0ðz0Þ ¼ s01; ð13Þ

where Mq is the quark mass matrix and s0 is a function of
the parameters of the scalar sector, which can be deter-
mined by minimizing the action in the vacuum configura-
tion. With these boundary conditions, the solution for the
vacuum configuration reads

X0ðzÞ ¼
Mqz30 − s0ϵ2

z0ðz20 − ϵ2Þ zþ s0 −Mqz0
z0ðz20 − ϵ2Þ z

3: ð14Þ

The parameter s0 can be related to the quark condensate by
matching onto the QCD vacuum. By inspecting the piece of
the vacuum energy linear in Mq in both the model and
QCD, one finds

s0 ¼ −
hq̄qiz30
2ρ

: ð15Þ

In the following, we will work in the chiral limit and set
Mq ¼ 0. The vacuum of the theory then takes the simple
form

X0ðzÞ ¼ s0

�
z
z0

�
3

; ð16Þ

where we have taken the limit ϵ → 0. Minimizing the action
in these limits yields

s20 ¼
μ2 − 6ρ

4η
: ð17Þ

C. Bulk-to-boundary propagators

We now turn our attention to the functions vðx; zÞ and
sðx; zÞ, which are determined by solving the five-
dimensional equations of motion quadratic in the vector
and scalar fields, respectively. They lead to the differential
equations:

�
∂z

�
1

z
∂z

�
−
Q2

z

�
vðz;QÞ ¼ 0;

�
∂z

�
1

z3
∂z

�
−
Q2

z3
−
m2

X

z5

�
sðz;QÞ ¼ 0: ð18Þ

The boundary conditions at z ¼ ϵ define the external
sources. Using Eq. (8), we will accordingly choose

vðϵ; QÞ ¼ 1; sðϵ; QÞ ¼ ϵ: ð19Þ

The boundary conditions at z ¼ z0 have to guarantee the
absence of unwanted boundary terms of infrared origin. For
the vector field, they have to be compatible with the pattern
of symmetry breaking Uð3ÞL ×Uð3ÞR → Uð3ÞV . Both
requirements are achieved with

∂zvðz;QÞ
���
z0
¼ 0;

�
ρ∂z þ

ν

z

�
sðz;QÞ

���
z0
¼ 0; ð20Þ

where ν ¼ 4ηs20 − 3ρ. The solutions are linear combina-
tions of modified Bessel functions,

vðz;QÞ ¼ Qz

�
K1ðQzÞ þ K0ðQz0Þ

I0ðQz0Þ
I1ðQzÞ

�
; ð21Þ

sðz;QÞ ¼ Qz2
�
K1ðQzÞ − ξ

K1ðQz0Þ
I1ðQz0Þ

I1ðQzÞ
�
; ð22Þ

where

ξ ¼ γ − αK
γ þ αI

; αK ¼ Qz0
K0ðQz0Þ
K1ðQz0Þ

;

γ ¼ ρþ ν

ρ
; αI ¼ Qz0

I0ðQz0Þ
I1ðQz0Þ

: ð23Þ

Note that the limit η ≫ 0, μ ≫ 0 with μ2=η ¼ ct., which
corresponds to ν ≫ 0, simplifies the scalar infrared boun-
dary condition to sðz0; QÞ ¼ 0. The corresponding solution
for the scalar function is found by taking the limit ξ ¼ 1.
This limiting case, which reduces the potential to a
constant, was used in Ref. [60]. Here, we will consider
the generic case. In the next subsection, we will show that
the parameter γ controls the position of the scalar meson
masses. This feature will be used in Sec. V to fit the lightest
scalar masses.

D. Scalar wave functions and Green’s function

Next, we examine the normalizable solutions of the
scalar quadratic equations of motion, which describe the
meson interactions and are needed to evaluate the scalar
meson-exchange contribution to the HLbL. The scalar
wave functions are given by the equation

�
∂z

�
1

z3
∂z

�
−
m2

X

z5

�
φS
nðzÞ ¼ −

m2
n

z3
φS
nðzÞ; ð24Þ

subject to the boundary conditions:

φS
nðϵÞ ¼ 0;

�
ρ∂z þ

ν

z

�
φS
nðzÞ

���
z0
¼ 0: ð25Þ

The solution is

φS
nðzÞ ¼ Anz2J1ðmnzÞ; ð26Þ
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where An is a constant, which, from the orthonormalization
condition

ρ

Z
z0

ϵ

dz
z3

φS
nðzÞφS

mðzÞ ¼ δnm; ð27Þ

can be expressed as (ωn ≡mnz0)

A2
n¼

2ωn

ρz20
½ωnðJ20ðωnÞþJ21ðωnÞÞ−2J0ðωnÞJ1ðωnÞ�−1: ð28Þ

The boundary conditions in Eq. (25) determine the position
of the scalar masses, which are implicitly given by the
condition

γJ1ðωnÞ þ ωnJ0ðωnÞ ¼ 0: ð29Þ
With it, the normalization constant can be simplified to

A2
n ¼

2

ρz20J
2
0ðωnÞ

γ2

γ2 þ 2γ þ ω2
n
: ð30Þ

Another quantity of interest is the scalar Green’s func-
tion, which is the solution of the differential equation

�
∂z

�
1

z3
∂z

�
−
Q2

z3
−
m2

X

z5

�
Gðz; z0; QÞ ¼ −

δðz − z0Þ
ρ

; ð31Þ

with the same boundary conditions as the wave functions.
Taking ϵ → 0, the solution is

Gðz; z0;QÞ ¼ z2z02

ρ
I1ðQz0Þ

�
K1ðQzÞ − ξ

K1ðQz0Þ
I1ðQz0Þ

I1ðQzÞ
�

× θðz − z0Þ þ ðz ↔ z0Þ: ð32Þ

Alternatively, the Green’s function can be expressed in
terms of the wave functions, in the form of a spectral
decomposition:

Gðz; z0;qÞ ¼
X∞
n

φS
nðzÞφS

nðz0Þ
m2

n − q2
: ð33Þ

Equation (32) contains the regularized sum of the infinite
tower of scalar mesons, and it is the most convenient form

to determine the inclusive scalar contribution to the HLbL.
The spectral representation is particularly useful to deter-
mine the contribution of single mesons. We will use both
forms in Sec. V.
It only remains to determine the parameters of the model.

Since we are interested in a determination of the HLbL, it is
convenient to fix the parameters by matching to the most
relevant quantities. In the next sections, wewill work out the
expression for the scalar contribution to theHLbL, the scalar
transition form factors, and the hSVVi correlator. The
criteria to fix the parameters will be discussed in Sec. V.

III. HADRONIC LIGHT-BY-LIGHT TENSOR

The fundamental object for the HLbL is the electromag-
netic four-point correlator

Πμνλρðq1; q2; q3Þ ¼ −i
Z

d4x d4y d4z e−iðq1·xþq2·yþq3·zÞ

× h0jTfjμemðxÞjνemðyÞjλemðzÞjρemð0Þgj0i;
ð34Þ

where jμemðxÞ ¼ q̄γμQ̂q, with Q̂ ¼ 1
3
diagð2;−1;−1Þ being

the electromagnetic charge matrix. Our conventions for
momenta are such that q1 þ q2 þ q3 þ q4 ¼ 0.
The hadronic light-by-light tensor satisfies the Ward

identities,

fqμ1; qν2; qλ3; qρ4g × Πμνλσðq1; q2; q3Þ ¼ 0; ð35Þ

which bring the number of 138 independent kinematic
invariants down to 43 gauge-invariant tensor structures
[61,62].
Using projection techniques, the two-loop diagram of

Fig. 1 can be related to the muon anomalous magnetic
moment as [63]

aHLbLμ ¼−
e6

48mμ

Z
d4q1
ð2πÞ4

d4q2
ð2πÞ4Kμνλρ

×

� ∂
∂qρ4Π

μνλρðq1;q2;−q4−q1−q2Þ
�����

q4¼0

; ð36Þ

with

Kμνλρ ¼
trððpþmμÞ½γρ; γσ�ðpþmμÞγμðpþ q1 þmμÞγλðp − q2 þmμÞγνÞ

q21q
2
2ðq1 þ q2Þ2½ðpþ q1Þ2 −m2

μ�½ðp − q2Þ2 −m2
μ�

: ð37Þ

By decomposing the HLbL tensor, one can write Eq. (36) in
a simplified form. In this paper, we will use the formalism
developed in Refs. [17,62] for dispersion analyses, which
has become standard. Building on the strategy outlined
in Refs. [64,65], the hadronic light-by-light tensor can be
decomposed in gauge-invariant tensor structures free from

singularities and zeros, at the expense of enlarging the basis
from 43 to 54 elements:

Πμνλρ ¼
X54
i¼1

T̂μνλρ
i Π̂i: ð38Þ
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Out of these tensors, only 19 structures contribute to aμ. For
the scalar exchange diagrams depicted in Fig. 2, one easily
concludes that only six of the structures are in general
nonzero.
In our model, the computation of the diagrams in Fig. 2

requires solving the scalar equation of motion. From the
action of Eq. (1), this reads

�
∂z

�
1

z3
∂z

�
−
Q2

z3
−
m2

X

z5

�
saðz;QÞ

¼ −
4X0ðz0Þ

z0
ζtr½taðFμνFμν − 2∂z0Vρ∂z0VρÞ�: ð39Þ

where ζ ¼ ζþ þ 1
2
ζ−. The solution can be found perturba-

tively as saðz;QÞ ¼ sað0Þðz; xÞ þ sað1Þðz; xÞ þ � � �, assuming,

as usual, that interaction terms are small corrections to the
kinetic term. The first-order function sað0Þðz; xÞ solves the
homogeneous equation and is nothing else than the bulk-to-
boundary propagator of Eq. (22). The second-order sol-
ution reads

sað1Þðz; xÞ ¼
Z

z0

ϵ
dz0GðaÞðz; z0; xÞ

×

�
4X0ðz0Þ

z0
ζtr½taðFμνFμν − 2∂z0Vρ∂z0VρÞ�

	

ð40Þ
and is the one relevant to generate the diagrams in Fig. 2.
Inserting the previous solution into the action in Eq. (1), the
relevant operators read

LHLbLðscalarÞ
eff ¼

Z
z0

ϵ
dzRðaÞðz; xÞ

×
Z

z0

ϵ
dz0GðaÞðz; z0; xÞRðaÞðz0; xÞ; ð41Þ

where summation over the flavor index a ¼ 0, 3, 8 is
understood and

RðaÞðz;xÞ¼2
ffiffiffi
2

p
ζd̂aγγ

X0ðzÞ
z

�
1

2
FμνFμν−∂zVρ∂zVρ

�
: ð42Þ

The notation d̂abc ¼ tr½taftb; tcg� and d̂aγγ ¼ 2tr½taQ̂2� will
be used henceforth.
The HLbL tensor then takes the form

Πμνλρðq1; q2; q3; q4Þ

¼
Z

z0

ϵ
dz

Z
z0

ϵ
dz0½TμνðaÞ

12 GðaÞðz; z0; sÞTλρðaÞ
34 þ TμλðaÞ

13 GðaÞðz; z0; tÞTνρðaÞ
24 þ TμρðaÞ

14 GðaÞðz; z0;uÞTνλðaÞ
23 �; ð43Þ

where we have used the Mandelstam variables s ¼
ðq1 þ q2Þ2, t ¼ ðq1 þ q3Þ2, u ¼ ðq1 þ q4Þ2. The dynami-

cal tensors TμνðaÞ
ij are defined as

TμνðaÞ
ij ðzÞ ¼ PðaÞ

ij ðzÞPμνðqi; qjÞ þQðaÞ
ij ðzÞQμνðqi; qjÞ; ð44Þ

with the gauge-invariant tensors given by

Pμνðq1; q2Þ ¼ qμ2q
ν
1 − ðq1 · q2Þημν;

Qμνðq1; q2Þ ¼ q22q
μ
1q

ν
1 þ q21q

μ
2q

ν
2 − ðq1 · q2Þqμ1qν2 − q22q

2
1η

μν;

ð45Þ

and

PðaÞ
ij ðzÞ ¼ 8ζd̂aγγ

X0ðzÞ
z

vðz; qiÞvðz; qjÞ;

QðaÞ
ij ðzÞ ¼ 8ζd̂aγγ

X0ðzÞ
z

∂zvðz; qiÞ
q2i

∂zvðz; qjÞ
q2j

: ð46Þ

Notice that in our model the two form factors above stem
from the same combination of five-dimensional operators.
Their expressions are a consequence of Lorentz invariance
in five dimensions and our choice of AdS metric. However,
there is no reason why the form factors should possess this

FIG. 1. The HLbL diagram. The blob represents the HLbL
tensor. In our conventions, photon momenta are pointing inward.

FIG. 2. The three scalar-exchange diagrams contributing to the
HLbL. The dashed line denotes the scalar propagator, and the
black dots denote the scalar transition form factors. Photon
momenta assignments are the same as in Fig. 1; i.e., they point
inward.
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underlying structure. Actually, we will show later on that
these constraints inherited from the structure of the model
are not a property of QCD.
The decomposition of the contribution to the HLbL in

the 19-structure set gives

Π̂4 ¼
Z

z0

ϵ
dz½PðaÞ

12 ðzÞ þ ðQ2
1 þQ2

2 þQ1 ·Q2ÞQðaÞ
12 ðzÞ�

×
Z

z0

ϵ
dz0GðaÞðz; z0; sÞPðaÞ

34 ðz0Þ;

Π̂17 ¼
Z

z0

ϵ
dzQðaÞ

12 ðzÞ
Z

z0

ϵ
dz0GðaÞðz; z0; sÞPðaÞ

34 ðz0Þ; ð47Þ

where the scalar invariants are numbered according to the
notation introduced in Ref. [17]. The remaining four
invariants, namely, Π̂5, Π̂6 and Π̂11, Π̂16 in the same
notation, can be found by symmetric permutation of Π̂4

and Π̂7, respectively. We note, as observed before [53], that
the contributions proportional to the form factor products

QðaÞ
ij ðzÞQðaÞ

kl ðz0Þ do not contribute to aμ.
Five of the integrals in Eq. (36) can be performed

independently of the form of the scalar functions. The
remaining integrals can be written as a master formula for
the HLbL,

aHLbLμ ¼ 2α3

3π2

Z
∞

0

dQ1

Z
∞

0

dQ2

Z
1

−1
dτ

×
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p
Q3

1Q
3
2

X12
i¼1

T̄iðQ1; Q2; τÞΠ̄iðQ1; Q2; τÞ;

ð48Þ

where Qj is a shorthand notation for the moduli of
Euclidean momenta and τ is the cosine of the angle
between Qμ

1 and Qμ
2. The definitions of the generic kernels

T̄iðQ1; Q2; τÞ can be found in Ref. [17]. For the scalar
dynamical functions, we find

Π̄3ðQ1;Q2;τÞ¼
Z

z0

ϵ
dz½PðaÞ

12 þðQ2
1þQ2

2þQ1Q2τÞQðaÞ
12 �

×
Z

z0

ϵ
dz0GðaÞðz;z0;sÞPðaÞ

34 ;

Π̄4ðQ1;Q2;τÞ¼
Z

z0

ϵ
dz½PðaÞ

13 þðQ2
1þQ2

2þQ1Q2τÞQðaÞ
13 �

×
Z

z0

ϵ
dz0GðaÞðz;z0; tÞPðaÞ

24 ;

Π̄8ðQ1;Q2;τÞ¼
Z

z0

ϵ
dzPðaÞ

14

Z
z0

ϵ
dz0GðaÞðz;z0;uÞQðaÞ

23 ;

Π̄9ðQ1;Q2;τÞ¼
Z

z0

ϵ
dzQðaÞ

12

Z
z0

ϵ
dz0GðaÞðz;z0;sÞPðaÞ

34 : ð49Þ

The previous expressions are functions of the quantities
determined in Sec. II, which in turn are functions of the
parameters of the model. Once the parameters are fixed, the
scalar contribution to the HLbL can be straightforwardly
computed. The parameters can be determined by matching
onto some of the properties of the electromagnetic scalar
transition form factor and the three-point correlator hSVVi.

IV. SCALAR TRANSITION FORM FACTORS
AND hSVVi CORRELATOR

The scalar transition from factors for the different scalar
meson with flavor index a are defined as

Γðn;aÞ
μν ðq1; q2Þ ¼ i

Z
d4x e−iq1·xh0jTfjμemðxÞjνemð0ÞgjSani

¼ Fðn;aÞ
1 ðq21; q22ÞPμνðq1; q2Þ

þ Fðn;aÞ
2 ðq21; q22ÞQμνðq1; q2Þ; ð50Þ

where Pμν and Qμν are the gauge-invariant tensors defined
in Eq. (45) and the superscript n labels the excitation mode
of the scalar tower.
In our model, the form factors follow from the operators

in the last line of Eq. (2), by decomposing the vector fields
in terms of electromagnetic field sources, and expanding
the scalar field in terms of its Kaluza-Klein modes, as in
Eq. (7). This yields transition form factors for each scalar
meson, with the following expressions for the dynamical
Lorentz-invariant structures:

Fðn;aÞ
1 ðq21;q22Þ¼ 8ζd̂aγγ

Z
z0

ϵ
dz

X0ðzÞ
z

φS
nðzÞv1ðzÞv2ðzÞ;

Fðn;aÞ
2 ðq21;q22Þ¼ 8ζd̂aγγ

Z
z0

ϵ
dz

X0ðzÞ
z

φS
nðzÞ

∂zv1ðzÞ
q21

∂zv2ðzÞ
q22

:

ð51Þ

The scalar transition form factor predicted by the model
can be compared, for on-shell photons, to the information
that exists at low energies on the partial decay widths of
scalars into two photons which, at least for the lightest
scalars, can be determined from experiment. At high
photon virtualities, the form factor can be instead deter-
mined using the operator product expansion (OPE).

Since Fðn;aÞ
2 ðq21; q22Þ only contributes to processes with

virtual photons, the decay width of the scalar into two

on-shell photons can be expressed in terms of Fðn;aÞ
1 ð0; 0Þ

alone as

Γðn;aÞ
γγ ¼ πα2

4
m3

njFðn;aÞ
1 ð0; 0Þj2: ð52Þ

From Eq. (51), and using that vðz; 0Þ ¼ 1, one finds
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Fðn;aÞ
1 ð0; 0Þ ¼ 8ζd̂aγγ

Z
z0

ϵ
dz

X0ðzÞ
z

φS
nðzÞ

¼ 8s0z20ζd̂
aγγ An

ω5
n

Z
ωn

0

dyy4J1ðyÞ

¼ 8s0z20ζd̂
aγγ An

ω2
n
½4J3ðωnÞ − ωnJ4ðωnÞ�: ð53Þ

The limit of highly virtual photons can be computed by
noting that for large Q, vðz;QÞ ∼QzK1ðQzÞ. It is custom-
ary to define the variables Q2 ¼ 1

2
ðQ2

1 þQ2
2Þ and w ¼

ðQ2
1 −Q2

2ÞðQ2
1 þQ2

2Þ−1, such that Q1;2 ¼ Q
ffiffiffiffiffiffiffiffiffiffiffiffi
1� w

p
. The

model then predicts

lim
Q2→∞

Fðn;aÞ
1 ðQ2

1; Q
2
2Þ ¼

1536

35
ζd̂aγγ

s0
z40

Anωn

Q6
f1ðwÞ;

lim
Q2→∞

Fðn;aÞ
2 ðQ2

1; Q
2
2Þ ¼

1152

35
ζd̂aγγ

s0
z40

Anωn

Q8
f2ðwÞ; ð54Þ

with

f1ðwÞ¼
35

384

ffiffiffiffiffiffiffiffiffiffiffiffi
1−w2

p Z
∞

0

dyy7K1ðy
ffiffiffiffiffiffiffiffiffiffiffi
1þw

p ÞK1ðy
ffiffiffiffiffiffiffiffiffiffi
1−w

p
Þ

¼ 35

32w7

�
30w−26w3−3ðw4−6w2þ5Þlog

�
1þw
1−w

��
;

f2ðwÞ¼
35

288

Z
∞

0

dyy7K0ðy
ffiffiffiffiffiffiffiffiffiffiffi
1þw

p ÞK0ðy
ffiffiffiffiffiffiffiffiffiffi
1−w

p
Þ

¼ 35

12w7

�
−15wþ4w3−

9w2−15

2
log

�
1þw
1−w

��
: ð55Þ

These expressions are regular in the symmetric limit,
w ¼ 0, and normalized such that f1ð0Þ ¼ f2ð0Þ ¼ 1.
We note that the asymptotic behavior of the

scalar transition form factor predicted by the model,

Γðn;aÞ
μν ðq1; q2Þ ∼Q−6Γð∞Þ

μν , with Γð∞Þ
μν a tensorial structure

quadratic in the hard momenta, does not match the one
expected from short-distance QCD, where asymptotically

one finds Γðn;aÞ
μν ðq1; q2Þ ∼Q−4Γð∞Þ

μν [53]. If the comparison
is made at the form factor level, where short-distance QCD
predicts the asymptotic scalings F1ðQ2; Q2Þ ∼Q−2 and
F2ðQ2; Q2Þ ∼Q−4 [53,66], the discrepancy is even more
pronounced. However, the corresponding impact on the
HLbL should be rather modest. In the next section, we will
provide some arguments in this direction. More important
is the fact that Eqs. (54) predict the same sign for both form
factors at large Euclidean momenta. Both these limitations
could in principle be amended with a more sophisticated
action, e.g., the asymptotic sign between the form factors
can be fixed with the addition of higher-derivative operators
in the bulk such as tr½XX†∇AFðLÞAN∇BFBN

ðLÞ�, while the

high-energy behavior can be improved with boundary

operators. In this paper, we will not pursue these exten-
sions, and we will stick to the minimal action.
A similar large-Q2 falloff is found in the model when

one of the photons is on shell and one highly off shell. In
this case,

lim
Q2→∞

Fðn;aÞ
1 ðQ2; 0Þ ¼ 1536ζd̂aγγ

s0
z40

Anωn

Q6
;

lim
Q2→∞

Fðn;aÞ
2 ðQ2; 0Þ ¼ 9216ζd̂aγγ

s0
z40

Anωn
logðQz0Þ

Q8
: ð56Þ

We will now turn our attention to the hSVVi correlator,
defined as

ΓðaÞ
μν ðq2; q2Þ ¼ i2

Z
d4x

Z
d4y e−iðq1·xþq2·yÞ

× h0jTfjμemðxÞjνemðyÞjaSð0Þgj0i
¼ P̄ðaÞðq21; q22ÞPμνðq1; q2Þ
þ Q̄ðaÞðq21; q22ÞQμνðq1; q2Þ: ð57Þ

In the model, the scalar invariants take the form

P̄ðaÞðq21; q22Þ ¼ 8ζd̂aγγ
Z

z0

ϵ

dz
z
X0ðzÞs3ðzÞv1ðzÞv2ðzÞ;

Q̄ðaÞðq21; q22Þ ¼ 8ζd̂aγγ
Z

z0

ϵ

dz
z
X0ðzÞs3ðzÞ

∂zv1ðzÞ
q21

∂zv2ðzÞ
q22

:

ð58Þ

We will first consider the limit when all momenta are much
larger than the confinement scale. To leading order, one can
consider q1 ¼ q2 ¼ 1

2
q3 ≡ q. The expressions above then

yield

lim
q2→∞

ΓðaÞ
μν ðq;qÞ¼ 16s0ζ

z30

d̂aγγ

Q4
ðqμqν−q2ημνÞ

×
Z

∞

0

dyy6K1ð2yÞ½K2
1ðyÞ−K2

0ðyÞ�: ð59Þ

This is to be compared with the QCD result, which
follows from an application of the OPE. The result
reads [67,68]

lim
q2→∞

ΓðaÞ
μν ðq; qÞ ¼ 2d̂aγγ

hq̄qi
Q4

ðqμqν − q2ημνÞ: ð60Þ

As opposed to what happened for the scalar transition form
factors, the model displays the right asymptotic scaling.
However, it is worth noting that, while P̄ðaÞ and Q̄ðaÞ

separately match the momentum scaling predicted by the
OPE, the ratio between the asymptotic coefficients,
P̄ðaÞ∶Q2Q̄ðaÞ, which QCD sets at 3∶1, comes out approx-
imately at 2∶1 and with a relative sign. This sign difference

CAPPIELLO, CATÀ, and D’AMBROSIO PHYS. REV. D 105, 056020 (2022)

056020-8



with the QCD prediction has the same origin as the one

discussed above for Fðn;aÞ
j .

We can also consider the limit where the vector momenta
are hard and the scalar one is soft. In this case, to leading
order, q1 ¼ −q2 ≡ q, and one finds

lim
q2→∞

ΓðaÞ
μν ðq;−qÞ ¼ 64s0ζ

15z30

d̂aγγ

Q4
ðqμqν − q2ημνÞ þOðQ−6Þ:

ð61Þ

Again, the scaling is the one expected from the
OPE [68].
Notice that Eqs. (59) and (60) imply that the combination

s0ζ < 0. This condition is also found at low energies. By
using

sðz; 0Þ ¼ z

�
1 −

γ

γ þ 2

z2

z20

�
; ð62Þ

the first form factor yields

lim
q2j→0

PðaÞðq1; q2Þ ¼ 2ζs0z0d̂
aγγ

�
1 −

2

3

γ

γ þ 2

�
: ð63Þ

The constant on the right-hand side is related to a next-to-
next-to-leading-order coefficient in chiral perturbation
theory, which has been estimated to be negative [67]. It
is easy to prove that the term inside the parentheses above is
positive for the phenomenologically acceptable values of γ,
and therefore that s0ζ < 0.

V. NUMERICAL ANALYSIS AND DISCUSSION

To perform the numerical analysis, we need to define a
strategy to fix the parameters of the model. From the
starting action in Eq. (1), one has nine parameters, namely,
the coefficients of the different bulk operators (λ, c, ρ, ζ�,
mX), the size of the fifth dimension z0, and the parameters
from the scalar boundary potential (μ, η). However, for the
scalar contributions to the HLbL, only a subset of them is

relevant, namely, ρ, z0, the combination ζ ¼ ζþ þ 1
2
ζ−,mX,

and the parameters of the boundary potential, which can be
traded for the quark condensate hq̄qi and γ. As discussed in
Sec. II, in order to have conformal invariance asymptoti-
cally, it is convenient to fix the five-dimensional scalar
mass mX to the value dictated by the AdS/CFT correspon-
dence, m2

X ¼ −3.
We are therefore left with five independent parameters.

The analysis of the previous section shows a possible
strategy to fix them. We will require that ζ and ρ match the
hSVVi short-distance constraint of Eq. (60) and the decay
width of the lowest-lying scalars into two photons, accord-
ing to Eqs. (52) and (53), where one should keep in mind
that the constant An depends on ρ [see Eq. (30)].
Note, however, that our starting action is flavor sym-

metric. This means, in particular, that the lowest-lying
scalar mesons come out degenerate in mass and they have
the same decay width into two photons. Experimentally, the
partial decay widths of the f0ð980Þ and a0ð980Þ are well
known and given by [69]

Γðf0Þ
γγ ¼ 0.29þ0.11

−0.06 keV; Γða0Þ
γγ ¼ 0.30ð10Þ keV: ð64Þ

For the σð500Þ, however, rescattering effects are dominant,
and the determination is less precise. The most recent

analyses suggest ΓðσÞ
γγ ¼ ð1.3–2Þ keV [47,50,70].

To be able to evaluate the scalar contributions to the
HLbL in a realistic way, we need to introduce flavor
breaking. We will adopt the strategy followed in Ref. [38]
for the Goldstone and axial-vector towers and generate
independent copies of the original Lagrangian for each of
the different light scalar states. Accordingly, the parameters
will in general have a flavor index. We will therefore have a
threefold set of parameters associated to the three neutral
scalar towers, whose lightest states are the σð500Þ, a0ð980Þ,
and f0ð980Þ.
The dynamical functions listed in (49) can then be

expressed, using the spectral decomposition of the Green’s
function in Eq. (33), as

Π̄3ðQ1; Q2; τÞ ¼
Z

z0

0

dz
Z

z0

0

dz0½PðaÞ
12 ðzÞ þ ðQ2

1 þQ2
2 þQ1Q2τÞQðaÞ

12 ðzÞ�GðaÞðz; z0; sÞPðaÞ
34 ðz0Þ

¼
X
n

½Fðn;σÞ
1 ðQ1; Q2Þ þ ½Q2

1 þQ2
2 þQ1Q2τ�Fðn;σÞ

2 ðQ1; Q2Þ�
1

m2
n;σ þQ2

3

Fðn;σÞ
1 ðQ3; 0Þ

þ
X
k

½Fðk;a0Þ
1 ðQ1; Q2Þ þ ½Q2

1 þQ2
2 þQ1Q2τ�Fðk;a0Þ

2 ðQ1; Q2Þ�
1

m2
k;a0

þQ2
3

Fðk;a0Þ
1 ðQ3; 0Þ

þ
X
j

½Fðj;f0Þ
1 ðQ1; Q2Þ þ ½Q2

1 þQ2
2 þQ1Q2τ�Fðj;f0Þ

2 ðQ1; Q2Þ�
1

m2
j;f0

þQ2
3

Fðj;f0Þ
1 ðQ3; 0Þ; ð65Þ
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This result can be easily extended to the remaining
functions in (49).
For simplicity, we will assume a flavor-invariant

quark condensate. The model is insensitive to the scale
dependence of this quantity, and we will choose
hq̄qi ¼ ð−260 MeVÞ3, which is consistent with the phe-
nomenological determinations at 1 GeV. The size of the
fifth dimension can be shown to be inversely proportional
to the vector meson mass scale as [55]

z0 ¼
γ0;1
mρ

; ð66Þ

where γ0;1 is the first root of the Bessel function J0ðxÞ. We
will fix z0 ¼ ð322 MeVÞ−1, which guarantees that the first
vector multiplet lies at mρ ¼ 775 MeV.
The remaining parameters, namely, γ, ρ, and ζ, will be

flavor dependent. Using Eq. (29), γ can be fixed by the
mass of the lightest scalars through

γj ¼ −mjz0
J0ðmjz0Þ
J1ðmjz0Þ

; ð67Þ

where mj ¼ mσ , mf0 , ma0 . In Fig. 3, we show the depend-
ence of γ with the scalar masses, where we have used
ma0 ¼ 980ð20Þ MeV and mf0 ¼ 990ð20Þ MeV together
with the conservative range mσ ¼ ð450–550Þ MeV [69].
The masses of the excited states are also predicted by
this single parameter. However, the resulting spectrum
for the excited states differs substantially from the physical
one.
The short-distance constraint of Eq. (60) is a flavor-

independent one, meaning that the ratio

ζj
ρj

≃ −
1

4

�Z
∞

ϵ
dyy6K1ð2yÞðK2

1ðyÞ − K2
0ðyÞÞ

�
−1

≃ −7.72

ð68Þ
is flavor universal. Finally, combining Eqs. (52), (53), and
(68), one finds

ρj

ðd̂jγγÞ2 ¼ ð7.72Þ2 8πα2

mjΓjγγ

hq̄qi2z40γ2j
γ2j þ 2γj þ ω2

j

×

�
4J3ðωjÞ − ωjJ4ðωjÞ

J0ðωjÞ
�
2

; ð69Þ

where Γjγγ is the partial decay width of the lightest scalar in
the tower. Note that it is the combination ρjðd̂jγγÞ−2 which
we determine. This means that the specific values of d̂jγγ ,
i.e., the quark structure of the scalar mesons, is not
specified. This is actually one of the advantages of our
strategy for the determination of the free parameters.
Strictly speaking, Eq. (69) only fixes the magnitude of
ρj, but not its sign. From the positivity of the scalar two-
point function and Eq. (68), one expects ρj > 0 and ζj < 0.

This is, however, irrelevant for the HLbL contribution,
which is sensitive only to the square of ρj and ζj.
The model has certainly limitations as a model of scalar

mesons. The parameter ρ, for instance, has been determined
in previous papers [55,57,71] through the asymptotic
behavior of the two-point correlator

δabΠSSðq2Þ ¼ i
Z

d4xeiq·xh0jTfjaðxÞjbð0Þgj0i; ð70Þ

where jaðxÞ ¼ q̄ðxÞtaqðxÞ. At large Euclidean momenta,
the OPE reads

lim
Q2→∞

ΠSSðQ2Þ ¼ Nc

16π2
Q2 log

Q2

μ2
þOðQ−2Þ: ð71Þ

Using the asymptotic expansions for the bulk-to-boundary
propagators in Eqs. (22), our model successfully predicts
the Q2 logQ2 behavior. However, the coefficient would be
matched with ρ ¼ Ncð8πÞ−2, while Eq. (69) would predict
ρj ∼Oð103Þ. Such numerical mismatches at Nc ¼ 3 are,
however, to be expected in a minimal model.1 We already
mentioned above that the predicted spectrum of excited

FIG. 3. Values of the parameter γj for the different scalar
masses. The intersections on the lower curve correspond to the
σð500Þ, a0ð980Þ, and f0ð980Þ states. The intersections on the
upper curve correspond to the first excited states. Similar curves
exist for higher masses, defining the infinite towers of mesons of
the model.

1Similar tensions between low-energy phenomenology and
short-distance constraints have already been pointed out in the
literature, especially for five-dimensional fields that are dual to
nonconserved four-dimensional currents. For a discussion, see
Ref. [72].
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states matches poorly the physical spectrum. Additionally,
the gSPP couplings of the lightest scalars with Goldstone
pairs give results of Oð10 MeVÞ. This is the same range
that was found in Ref. [73] using a similar holographic
model, and it falls short of the experimental results by 2
orders of magnitude. Despite these limitations, the strategy
to fix the parameters is meant to ensure that the model is
phenomenologically sound, at least for a determination of
the scalar contribution to the HLbL.
The previous procedure to determine the parameters is

well defined for the a0ð980Þ and f0ð980Þ, which are rather
narrow resonances. Instead, the σð500Þ cannot be consid-
ered a narrow state, and one could argue that the description
of this state in the model is not reliable. The most rigorous
formalism to extract its parameters combines coupled Roy-
Steiner equations with information from chiral perturbation
theory (see, e.g., Refs. [17,46,47,49,50]). In our formalism,
however, using the values for the mass and partial decay
width extracted with this procedure would be inconsistent.
To the best of our knowledge, the closest parametrization
to our approach is the one of Ref. [51], in which a Breit-
Wigner model was employed to fit γγ → π0π0 data. The
results of two different fitting strategies gave

mσ ¼ 547ð45Þ MeV; Γσγγ ¼ 0.62ð19Þ keV; ð72Þ

mσ ¼ 471ð23Þ MeV; Γσγγ ¼ 0.33ð07Þ keV; ð73Þ

where in the second line constraints from chiral perturba-
tion theory were used. Of course, the interpretation of the
partial widths above should be taken with care, but for our
purposes, this is not of relevance. The important point is
that the parameters above fit the experimental data.
If one uses the strategy outlined above to determine the

model parameters for the σð500Þ contribution, one finds
aSμ ¼ −8.11 × 10−11 and aSμ ¼ −8.42 × 10−11, respectively,
depending on whether one takes Eq. (72) or Eq. (73) as
input. These values are not only compatible with each other
but are on the ballpark of the one obtained from a
dispersion relation analysis, aSμ ¼ −9ð1Þ × 10−11 [17,52].
We take this as a strong indication that our strategy for the
σð500Þ contribution is reliable.
It is difficult to come up with a reasonable estimate of

the uncertainty associated to our number for the σð500Þ
contribution to the HLbL. The mass and partial decay width
in Eqs. (72) and (73) are strongly correlated. However, in
Ref. [51], no information is given of the correlation matrix.
Our estimate

aSμðσÞ ¼ ð−8.5� 2.0Þ × 10−11 ð74Þ

is therefore orientative, but we believe that it correctly
captures the right order of magnitude for the uncertainty.
In Figs. 4 and 5, we have plotted the dependence of the

HLbL on mσ (by keeping Γσγγ ¼ 0.5 keV) and Γσγγ (by

keeping mσ ¼ 500 MeV), respectively. From Fig. 4, it is
clear that HLbL ismost sensitive tomσ in the physical region
(450–500 MeV), while the dependence fades away for
higher values and is rather small for masses above
800 MeV. We stress that the plot is done for fixed Γσγγ ,
which is not a realistic assumption. As a result, the spread of
values for HLbL should not be taken in a quantitative sense.
The plot ismeant to illustrate a qualitative behavior but shows
the importance of a precise determination of mσ and Γσγγ.
Figure 5 simply illustrates the linear dependence of the

HLbL with Γσγγ, something that can be easily inferred from
Eqs. (49), noticing that

Fðn;aÞ
1 ðq21; q22Þ ¼ Fðn;aÞ

1 ð0; 0Þ ω2
n

z50ð4J3ðωnÞ − ωnJ4ðωnÞÞ
×
Z

z0

ϵ
dzz4J1ðmnzÞv1ðzÞv2ðzÞ: ð75Þ

Consequently, one finds that Fðn;aÞ
1 ðq21; q22Þ ∼ ðΓðnÞ

aγγÞ1=2×
fðz0; mn; q21; q

2
2Þ, where f is a function that can be

FIG. 4. σð500Þ contribution to the HLbL as a function of its
mass for Γσγγ ¼ 0.5 keV.

FIG. 5. σð500Þ contribution to the HLbL as a function of Γσγγ

for mσ ¼ 500 GeV.
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computed numerically. A similar conclusion is reached

for Fðn;aÞ
2 ðq21; q22Þ.

Combining the two plots, one can partially understand
the much smaller result found for the σð500Þ contribution
in Ref. [53], at least qualitatively. There, it was taken
as input mσ ¼ 960ð96Þ MeV and Γσγγ ¼ 1.82ð32Þ keV.
Their result, taking into account only Fðn;aÞ

1 ðq21; q22Þ, was
aSμðσÞ ¼ −3.14 × 10−11. With those same input parameters,
our model would yield aSμðσÞ ¼ −1.89 × 10−11, which is
roughly compatible. The main numerical discrepancy
comes from the shape of the form factor, as we will discuss
in the following.
The contributions of a0ð980Þ and f0ð980Þ can be

computed in a less problematic way. The main reasons
for it are (i) both states are rather narrow, so no big
deviations from the different parametrizations are expected
(see, e.g., the comments in Ref. [47]), and (ii) both states
are heavy enough that the uncertainties on the mass are
negligible. The contribution we find for both states is

aSμða0Þ ¼ −0.29ð13Þ × 10−11;

aSμðf0Þ ¼ −0.27ð13Þ × 10−11; ð76Þ

which is in agreement with recent work [52,53] and
compatible with earlier estimates [74,75] (see, however,
the remarks in Ref. [52]).
A comparison between numbers coming from

Lagrangian and dispersive approaches is not straightfor-
ward, and nonpole terms can play a sizeable role, as
emphasized in Ref. [52]. We have checked their impact
by making the substitution ðQ2

1 þQ2
2 þQ1Q2τÞ →

1
2
ðQ2

1 þQ2
2 −m2

nÞ in Eq. (65) and the remaining scalar
functions. This would yield aSμða0Þ ¼ −0.24ð9Þ × 10−11

and aSμðf0Þ ¼ −0.22ð11Þ × 10−11, which is a rather modest
shift. This can be understood by the numerical suppression

of Fð1;aÞ
2 with respect to Fð1;aÞ

1 that our model exhibits.
In Fig. 6, we compare the shape of the form factors for

f0ð980Þ, normalized to their value at zero momenta, with
those used in Refs. [52,53]. in the left and right panels, we

plot Fðf0Þ
j ðQ2; 0Þ and Fðf0Þ

j ðQ2; Q2Þ, respectively, in the
region Q2 ≤ 3 GeV2. Discrepancies beyond that point are
pinched by the HLbL kernels, which are rather peaked
at very low Q2. The relative impact of the form factors

Fðn;aÞ
j ðq21; q22Þ was gauged in Ref. [53] through the param-

eter jκSj ¼ m2
f0
FS
2ð0; 0Þ½FðSÞ

1 ð0; 0Þ�−1. In our model, we
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FIG. 6. Comparison of the normalized form factors F̂ðn;aÞ
j ðq21; q22Þ≡ Fðn;aÞ

j ðq21; q22Þ½Fðn;aÞ
j ð0; 0Þ�−1 from our model (solid line),

Ref. [53] (dashed line), and Ref. [52] (dot-dashed line).
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find jκf0 j ¼ 0.33, while in Ref. [52], one would find
jκf0 j ¼ 0.65. Reference [53] gave as benchmark points
κS ¼ 0 and κS ¼ 1. In Fig. 6, we have used the latter for
illustration. The curves look very much alike, but our form
factors are systematically smaller. This can be attributed to
their short-distance behavior, which is more suppressed
than the one of QCD, as already discussed in the previous
section. This short-distance behavior is imprinted in the
minimal action of Eq. (1). As discussed in Sec. IV, it could
be improved with a more sophisticated action, something
that is beyond the scope of the present paper.
To gauge the potential impact of short distances within

the minimal action, we will modify the vacuum expectation
value to X0 ¼ Bz=z0, where B is a constant. According to
the AdS/CFT correspondence, this behavior is expected
when quark masses are present. Here, we will take this as
an ad hoc prescription and fix the parameters in order to
make sure that Γ½f0 → γγ� and Eq. (60) are fulfilled. With
this prescription, the form factors scale asymptotically as
F1ðQ2;Q2Þ∼Q−4 and F2ðQ2;Q2Þ∼Q−6, which is still
unlike QCD but improved with respect to the model
predictions. The results we find show a slight increase to
aSμða0Þ ¼ −0.38ð18Þ × 10−11 and aSμðf0Þ ¼ −0.36ð18Þ×
10−11. Interestingly, the function f1ðwÞ would now agree
with the one derived in Ref. [66], but not f2ðwÞ. Given the
generic structure of the form factors, no matter the form of
X0, the model predicts f1ðwÞ ≠ f2ðwÞ, in contrast to the
results of Ref. [66].
The model also provides a prediction for the contribution

of the whole tower of scalar excitations. The results for the
first excitation states together with the total contributions of
the three scalar towers are shown in Table I. They amount to
an overall 3% correction to the sub-GeV scalar contribution.
Interestingly, when one considers X0 ¼ Bz=z0, this number
is actually 1 order of magnitude smaller, despite the fact that
the asymptotic behavior is enhanced.This can be traced back
to the interplay of the form factors. We have already
mentioned in the previous section that one of the limitations

of the present model is that asymptotically Fðn;aÞ
2 ðq21; q22Þ

comes outwith the same sign asFðn;aÞ
1 ðq21; q22Þ, as opposed to

what QCDpredicts. However, the relative sign andweight at
intermediate and low energies depends on the excitation
mode. In Fig. 7, we illustrate this feature for the f0ð980Þ and
the first two excitation states. With the choice X0 ¼ Bz=z0,
the contribution of the first excited state turns out to be
extremely suppressed. The remaining states have a negli-
gible contribution.
The numerical impact of the asymptotic region can also be

evaluated by comparing the contribution of thewhole towers
with the sum over discrete states. The scalar functions
defined in Eqs. (47) scale asymptotically as Π̂4 ∼Q−14 and
Π̂17 ∼Q−16 for each single-particle scalar contribution.
When the whole towers are taken into account, the behavior
gets enhanced to Π̂4 ∼Q−10 and Π̂17 ∼Q−12. These scalings

are still suppressed with respect to the single-particle
expressions used in Refs. [52,53] and to the OPE results
reported in Refs. [20,76,77]. However, they can be a
guidance to understand how much enhancement one could
expect from changing the large-Q2 behavior. In Table I, ones
sees that the contribution of the tower is mostly saturated by
the first two states. We therefore conclude, as could be
expected from the peaked shape of the kinematical kernels,
that the behavior of the dynamical functions beyond a few
GeV is of little numerical importance.
Taking all the previous points into account, we estimate

the scalar contribution to the HLbL at

aSμ ¼ −9ð2Þ × 10−11; ð77Þ

with roughly 90% of this number coming from the σð500Þ.
The error budget is likewise dominated by the σð500Þ,
whereas scalar states above the GeV scale contribute no
more than 15% to the total uncertainty. This number is
compatible with the one estimated with the Nambu-Jona-
Lasiniomodel, aSμ ¼ −7ð2Þ × 10−11 [78,79], with dispersive
analyses [52], and also in agreement with the values reported
in Refs. [80–82].

VI. CONCLUSIONS

In this paper, we have provided an estimate of the scalar
contribution to the HLbL, including the σð500Þ, a0ð980Þ,
and f0ð980Þ states together with an infinite tower of excited
scalar states with a toy model. This toy model of hadronic
QCD is most easily built with a five-dimensional setting
using holographic techniques.
Our final result reads aSμ ¼ −9ð2Þ × 10−11, where a

conservative estimate for the uncertainty is given. This
includes the uncertainty on the σð500Þ parameters, which
overwhelmingly dominate, together with the effects of the
other light sub-GeV states together as well as the infinite
towers of excited states. Our result agrees with previous
inclusive scalar estimates and points at a neatly negative
contribution for the scalar contribution to the HLbL.
One of the advantages of themodel is that it isminimal and

accordingly has a small number of free parameters. However,
this also entails some limitations. The most prominent of
these affect the scalar transition form factors, with some
mismatches with QCD expectations. We have argued that

TABLE I. Results for the scalar contributions to aHLbLμ × 1011

for the set of values described in the main text.

n ¼ 1 n ¼ 2 Total

aSμðσÞ −8.5ð2.0Þ −0.07ð2Þ −8.7ð2.0Þ
aSμða0Þ −0.29ð13Þ −0.025ð10Þ −0.32ð14Þ
aSμðf0Þ −0.27ð13Þ −0.025ð9Þ −0.29ð14Þ
aSμ −9ð2Þ −0.12ð4Þ −9ð2Þ
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these shortcomings have a limited impact on the HLbL and
are in any case taken into account in the final error band.
The estimate of the contribution of scalar resonances

beyond 1 GeV is in general hindered by the rather uncertain
knowledge of their couplings to two photons. For themodel,
both the poles and couplings of the whole spectrum are
determined only by two parameters, which are generated by
the lowest-lying resonance on each flavor channel. This
leads to a rather poor description of the states populating the

1–2 GeVenergy window, and one cannot exclude that these
states contribute in a more significant way than the one
estimated in this paper. Additionally, the spectrum of the
excited scalar states in the model is more sparse than the
QCD one, which also points at a possible enhanced con-
tribution. These limitations of the model are also considered
in the final error band.
It is tempting to add the value reported here for the scalar

contributions to the one obtained in Ref. [38] for the
Goldstone and axial-vector contributions using a similar
approach. If these numbers are added naively, and the errors
are added linearly, one would find aHLbLμ ¼116ð17Þ×10−11,
which is in agreement with all the recent estimates of the
HLbL. However, this number has to be taken with care, at
least for two reasons. First, the previous estimate does not
contain the pion and kaon loop contributions, together
with other 1=Nc-suppressed contributions. With the
Goldstone loops taken from Refs. [17,83,84], our estimate
for the HLbL would instead hover around aHLbLμ ¼
100ð17Þ × 10−11. The second point to take into consid-
eration is that the five-dimensional model used in Ref. [38]
contained only the gauge sector. The addition of scalar
fields into the action, as we did in this paper, not only
affords an estimate of the scalar-exchange contributions,
but it also has an effect on the axial-vector and Goldstone
sectors. In particular, the presence of a scalar sector makes
it possible to have realistic values for both the Goldstone
decay constants and mρ, something that could not be
achieved in Ref. [38]. This will affect the estimate of the
axial-vector and Goldstone contributions to the HLbL
reported in Ref. [38], and it calls for a reanalysis of
Goldstone, axial-vector, and scalar exchange using the
action of Eq. (1). This is left for a future publication.
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