
Gravitational form factors and mechanical properties of a quark at one loop
in light-front Hamiltonian QCD

Jai More,1,* Asmita Mukherjee,1,† Sreeraj Nair,2,3,4,‡ and Sudeep Saha 1,§

1Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
2Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

3School of Nuclear Science and Technology, University of Chinese Academy of Sciences,
Beijing 100049, China

4CAS Key Laboratory of High Precision Nuclear Spectroscopy, Institute of Modern Physics,
Chinese Academy of Sciences, Lanzhou 730000, China

(Received 22 December 2021; accepted 22 February 2022; published 25 March 2022)

We calculate the gravitational form factors (GFFs) and pressure, shear, and energy distributions for a
quark state dressed with a gluon at one loop in QCD. We use the light-front Hamiltonian approach. In the
light-front gauge, we use a two-component formalism to eliminate the constrained fields. The state may be
thought of as a perturbative model for a relativistic spin-1=2 composite system having a gluonic degree of
freedom. We compare the results with model calculations for a nucleon.
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I. INTRODUCTION

One of the major areas of interest in hadron physics and
QCD in recent days is to understand the mechanical proper-
ties like mass, angular momentum, and pressure distribution
inside the nucleon in terms of quarks and gluons [1–3]. The
structure of the nucleon can be studied by bombarding it
with a high energy probe like an electron. The mechanical
properties of the nucleon are encoded in the gravitational
form factors (GFFs), which are the form factors of the
energy-momentum tensor. The GFFs are functions of the
square of the momentum transfer in the process (q2). They
give information on how matter couples to gravity. These
GFFs are related to the generalized parton distributions
(GPDs) that can be accessed in exclusive electron-proton
scattering process, for example deeply virtual Compton
scattering (DVCS). The extensive experimental programs
at HERA [4–6], HERMES [7], COMPASS [8] and JLAB
[9,10] in the recent past have given valuable data as inputs for
the extraction of the GPDs. The upcoming electron-ion
collider (EIC) [11] will also probe the GPDs as well as
give inputs for understanding of the mechanical properties
of the nucleon. There are four GFFs of the proton,

Aðq2Þ; Bðq2Þ; Cðq2Þ, and C̄ðq2Þ. The GFFs Aðq2Þ and
Bðq2Þ are related to the mass and angular momentum
distributions of the proton. Conservation of the energy-
momentum tensor constraints the GFFs Aðq2Þ; Bðq2Þ, and
C̄ðq2Þ, however, Cðq2Þ, also known as the D-term, is not
related to any Poincaré generator and is unconstrained by
such conservation laws. The D-term contributes to the DVCS
process when the skewness ξ is nonzero, or when there is a
longitudinal momentum transfer from the initial state proton
to the final state proton. The pressure distribution inside the
proton is related to the D-term. The pressure distribution is
usually defined in the Breit frame, and it is subject to
relativistic corrections. In Ref. [2] the pressure distribution
is defined in the infinite momentum frame, or equivalently in
the light-front formalism [12]. As the transverse boosts in the
light-front formalism are Galilean, one can describe the two-
dimension pressure distribution of a relativistic system using
overlaps of light-front wave functions (LFWFs) for the GFFs.
The D-term is zero for a free fermion and −1 for a boson. For
an interacting system, in order to ensure stability, the D-term
has to be negative. Recently the D-term has been extracted
from the JLab data, the pressure distribution inside the
nucleon obtained from fits of JLab data is found to be
repulsive near the center and attractive toward the periphery
of the nucleons [13]. At the core, the pressure is even higher
than that inside a neutron star, which is the most dense object
in the universe. The JLab result generated a lot of interest in
this field and in the recent past, quite a lot of theoretical
studies have been performed on the shear and pressure
distributions in the nucleon in different models for example
in the bag model [14], chiral quark soliton model [15–19],
AdS/QCD motivated diquark model [20] as well as a simple
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multipole model [2]. The gravitational form factors for
composite hadrons were calculated using AdS/QCD corre-
spondence in [21]. Lattice results of the pressure distributions
are also available [22–27]. Most of these models are
phenomenological models for the proton and they do not
incorporate any gluonic degree of freedom. However, the
D-term in particular, which is related to the pressure
distribution inside the nucleon involves the light-cone trans-
verse component of the energy-momentum tensor, that
depends on the quark-gluon interactions and hence the
gluons are expected to play a major role here. While it is
nontrivial to incorporate gluons in models for the nucleon,
which is a bound state, it is often interesting to replace the
hadron state by a simpler relativistic spin-1=2 state like a
quark dressed with a gluon at one loop in QCD. This may be
thought of as a perturbative model having a gluonic degree of
freedom. The dressed quark state can be expanded in Fock
space in terms of multiparton LFWFs. These LFWFs can be
calculated analytically using the light-front Hamiltonian. Up
to one loop, this model incorporates the full quark-gluon
interaction. The GPDs can be expressed in terms of overlaps
of these LFWFs. Previously the GPDs as well as the DVCS
amplitudes have been calculated in a similar QED model
[28]. The Wigner functions and spin distributions have
been investigated in [29,30]. In this work, we investigate
the GFFs and the pressure distributions for a quark dressed
with a gluon at one loop. The twist two GPDs as well as the
GFFs Aðq2Þ; Bðq2Þ require a calculation of the “good” light-
cone component of the energy-momentum tensor, whereas
the remaining two GFFs, Cðq2Þ and C̄ðq2Þ requires a
calculation of some of the “bad” components, which include
the interaction terms. In order to calculate the matrix elements
of these terms, we use the two-component formulation of
light-front QCD developed in [31] in light-cone gauge,
Aþ ¼ 0, where Aμ is the gluon field. The bad component
of the fermion field in this case is constrained and can be
eliminated from the operator expressions, which would then
be written only in terms of the dynamical quark and gluon
fields. Matrix elements of these interaction terms in the
operator structures would involve particle number changing
off-diagonal contributions when expressed in terms of the
multiparton LFWFs. There would be diagonal contributions
as well, that does not change the particle number. In this

work, we keep all terms up to Oðg2Þ, where g denotes the
quark-gluon coupling. A similar perturbative model was used
in [32] in QED, where the D-term and the pressure and shear
distribution were calculated for an electron dressed with a
photon at one loop in QED using the Feynman diagram
approach and in the Breit frame.
The plan of the paper is as follows. In Sec. II we

introduce the gravitational form factors in a light-front
dressed quark model, in Sec. III we discuss theD- term and
the pressure distributions. Finally, in Sec. IV we present the
summary and conclusion. Details of the calculation and
useful formulas are given in the Appendixes.

II. GRAVITATIONAL FORM FACTORS
IN A LIGHT-FRONT DRESSED QUARK MODEL

A. Light-front wave function

In this section, we outline the formalism used to calculate
the gravitational form factors (GFFs) for a dressed quark
state, which we call dressed quark model (DQM). Instead
of a proton state, we take a quark dressed with a gluon. This
is a composite spin-1=2 state, which in the light-front (LF)
formalism is treated fully relativistically. To list a few
merits of this formalism:

(i) Due to the presence of gluon dressing, the model
employs a gluonic degree of freedom [33,34].

(ii) The dressed quark state can be expanded in terms of
light-front wave functions (LFWFs). Although the
LFWF of a bound state, like a proton, cannot be
calculated analytically, the LFWF for a dressed
quark can be calculated analytically in perturbation
theory [35].

(iii) One can write the LFWFs in terms of relative
momenta that are frame independent [36]. Thus
LFWFs are boost invariant.

In LF Hamiltonian formalism, the dressed quark state
can be expanded in Fock space, where the contributions
come from a single quark state, a quark and a gluon state,
quark and two gluons state, and so on. However, we
truncate the Fock space expansion up to the two-particle
sector. Such truncation, in the LF framework, is boost
invariant. The dressed quark state is written as [34,37]

jP; λi ¼ ψ1ðP; λÞb†λðPÞj0i þ
X
λ1;λ2

Z
½k1�½k2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3Pþ

q
δ3ðP − k1 − k2Þψ2ðP; λjk1; λ1; k2; λ2Þb†λ1ðk1Þa

†
λ2
ðk2Þj0i;

where ½k� ¼ dkþd2k⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3kþ

p : ð1Þ

In Eq. (1), ψ1ðP; λÞ in the first term, corresponds to a single
particle state with momentum (helicity) P (λ) and is also
responsible for the wave function normalization. The two-
particle LFWF, ψ2ðP; λjk1; λ1; k2; λ2Þ is related to the

probability amplitude of finding two particles namely a
quark and a gluon with helicity λ1 and λ2 inside the dressed
quark state. b† and a† correspond to the creation operator of
quark and gluon, respectively.
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In LF Hamiltonian framework, one uses the constraint
equations in the light-cone gauge to eliminate the redundant
degree of freedom and express the fields in terms of
physically independent degrees of freedom. The quark
fields are decomposed as [31]

ψ ¼ ψþ þ ψ−; ð2Þ

where ψ� ¼ Λ�ψ and Λ� are the projection operators.
We use the two-component framework developed in

[31], where using a suitable representation of the gamma
matrices one can write:

ψþ ¼
�
ξ

0

�
; ψ− ¼

�
0

η

�
; ð3Þ

where, the two-component quark fields are given by

ξðyÞ ¼
X
λ

χλ

Z ½k�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p ½bλðkÞe−ik·y þ d†−λðkÞeik·y�; ð4Þ

ηðyÞ ¼
�

1

i∂þ

�
½σ⊥ · ði∂⊥ þ gA⊥ðyÞÞ þ im�ξðyÞ; ð5Þ

and the dynamical components of the gluon field are
given by

A⊥ðyÞ¼
X
λ

Z ½k�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3kþ

p ½ϵ⊥λ aλðkÞe−ik·yþϵ⊥�
λ a†λðkÞeik·y�:

ð6Þ

Here we have suppressed the color indices.
The LFWFs are written in terms of relative momenta

[34,38] and hence are independent of the momentum of the
bound state. The Jacobi momenta xi, κ⊥i are defined such
that they satisfy the relation x1 þ x2 ¼ 1 and κ⊥1 þ κ⊥2 ¼ 0.

kþi ¼ xiPþ; k⊥i ¼ κ⊥i þ xiP⊥; ð7Þ

where xi is the longitudinal momentum fraction for the
quark or gluon, inside the two-particle LFWF. The boost
invariant two-particle LFWF can be written as,

ϕλa
λ1;λ2

ðxi; κ⊥i Þ ¼
�

xð1 − xÞ
κ⊥2 þm2ð1 − xÞ2

�
gffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞ3
p Taffiffiffiffiffiffiffiffiffiffiffi

1 − x
p χ†λ1

×

�−2ðκ⊥ · ϵ⊥�
λ2
Þ

1 − x
−
1

x
ðσ̃⊥ · κ⊥Þðσ̃⊥ · ϵ⊥�

λ2
Þ

þ imðσ̃⊥ · ϵ⊥�
λ2
Þ 1 − x

x

�
χλψ

λ
1 ð8Þ

where, ϕλa
λ1;λ2

ðxi; κ⊥i Þ ¼
ffiffiffiffiffiffi
Pþp

ψ2ðP; λjk1; λ1; k2; λ2Þ, g is the
quark-gluon coupling. Ta and ϵ⊥λ2 are color SU(3) matrices

and polarization vector of gluon. The quark mass and the
two-component spinor for the quark are denoted by m and
χλ respectively, λ ¼ 1, 2 correspond to helicity up/down.
We have used the notation σ̃1 ¼ σ2 and σ̃2 ¼ −σ1 [35]. It is
customary to define the four momenta in light-front as

Pμ ¼ ðPþ;P⊥; P−Þ: ð9Þ

We choose Drell-Yan frame (DYF), so the longitudinal
momentum transfer qþ ¼ 0. Thus, the initial and the final
state four momenta will be

Pμ ¼
�
Pþ; 0⊥;M

2

Pþ

�
; ð10Þ

P0μ ¼
�
Pþ; q⊥; q

⊥2 þM2

Pþ

�
; ð11Þ

and the invariant momentum transfer

qμ ¼ ðP0 − PÞμ ¼
�
0; q⊥; q

⊥2

Pþ

�
: ð12Þ

In our frame, P⊥ ¼ 0 and q2 ¼ −q⊥2.

B. Energy-momentum tensor and extraction
of gravitational form factors

We start by writing QCD Lagrangian

LQCD ¼ 1

2
ψ̄ðiγμDμ −mÞψ −

1

4
Fμν
a Fa

μν; ð13Þ

where the covariant derivative iDμ ¼ i∂↔ μ þ gAμ and

αði∂↔ μÞβ ¼ i
2
αð∂μβÞ − i

2
ð∂μαÞβ. The field strength tensor

for non-Abelian gauge theory is

Fμν
a ¼ ∂μAν

a − ∂νAμ
a þ gfabcAμ

bA
ν
c: ð14Þ

ψ and Aμ is the fermion and boson field respectively. The
above Lagrangian can be used to obtain the gauge invariant
symmetric energy-momentum tensor [39]

θμν ¼ 1

2
ψ̄i½γμDν þ γνDμ�ψ − FμλaFν

λa þ
1

4
gμνðFλσaÞ2

− gμνψ̄ðiγλDλ −mÞψ : ð15Þ

The last term in Eq. (15) goes to zero when one writes
Lagrangian equation of motion of fermions. We are
interested only in the fermionic part of the energy-
momentum tensor for this work. So, Eq. (15) reduces to

θμνQ ¼ 1

2
ψ̄i½γμDν þ γνDμ�ψ ð16Þ
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The matrix element of totally symmetric energy-momentum
tensor (EMT) encodes the information of GFFs. In order to
calculate the matrix elements, we use the dressed quark state
defined in Eq. (1) and extract the GFFs from the quark part
of the symmetric energy-momentum tensor θμνQ .
For a spin half system, the standard parameterization

used to obtain the four GFFs from the symmetric energy-
momentum tensor up to Oðq2Þ is [40,41]

hP0; S0jθμνi ð0ÞjP;Si ¼ ŪðP0; S0Þ
�
−Biðq2Þ

P̄μP̄ν

M

þ ðAiðq2Þ þBiðq2ÞÞ
1

2
ðγμP̄ν þ γνP̄μÞ

þCiðq2Þ
qμqν − q2gμν

M

þ C̄iðq2ÞMgμν
�
UðP;SÞ; ð17Þ

where P̄μ ¼ 1
2
ðP0 þ PÞμ is the average nucleon four

momentum. ŪðP0; S0Þ, UðP; SÞ are the Dirac spinors and
M is the mass of the target state, i≡ ðQ;GÞ. Ai, Bi, Ci, and
C̄i are the quark or gluon form factors. In the Drell-Yan
frame, as discussed above, there is no momentum transfer
in the longitudinal direction and from Eq. (17), one can
easily extract the form factors AQðq2Þ and BQðq2Þ from the
diagonal component of the energy-momentum tensor θþþ

Q .
Aiðq2ÞðBiðq2ÞÞ is obtained from the sum of the helicity
conserving (flip) states. The outline of the calculation is
briefly described below. The matrix element that one needs
to calculate can be written in the compact form as

Mμν
SS0 ¼

1

2
½hP0; S0jθμνQ ð0ÞjP; Si� ð18Þ

where the Lorentz indices ðμ; νÞ≡ fþ;−; 1; 2g, ðS; S0Þ≡
f↑;↓g is the helicity of the initial and final state. ↑ ð↓Þ
positive (negative) spin projection along z− axis. Using
Eq. (18) we obtain

Mþþ
↑↑ þMþþ

↓↓ ¼ 2ðPþÞ2AQðq2Þ; ð19Þ

Mþþ
↑↓ þMþþ

↓↑ ¼ iqð2Þ

M
ðPþÞ2BQðq2Þ: ð20Þ

The most apt way to extract GFFs CQðq2Þ and C̄Qðq2Þ is
using transverse components (1,2) of the energy-momentum
tensor

M11
↑↓ þM11

↓↑ −M22
↑↓ −M22

↓↑

¼ i

�
BQðq2Þ
4M

−
CQðq2Þ

M

�
ððqð1ÞÞ2qð2Þ − ðqð2ÞÞ3Þ; ð21Þ

M11
↑↓þM11

↓↑þM22
↑↓þM22

↓↑

¼ i

�
BQðq2Þ

q2

4M
−CQðq2Þ

3q2

M
þ C̄Qðq2Þ2M

�
qð2Þ: ð22Þ

Here qðiÞ are the components of q⊥. By knowing the form of
BQðq2Þ from Eq. (20) and from Eq. (21) we obtain the
analytical expression for CQðq2Þ. We can now easily calcu-
late the form of C̄Qðq2Þ. The final expression for the four
independent GFFs are as follows:

AQðq2Þ ¼ 1þ g2CF

2π2

�
11

10
−
4

5

�
1þ 2m2

q2

�
f2
f1

−
1

3
log

�
Λ2

m2

��
ð23Þ

BQðq2Þ ¼
g2CF

12π2
m2

q2
f2
f1

; ð24Þ

DQðq2Þ ¼
5g2CF

6π2
m2

q2
ð1 − f1f2Þ ¼ 4CQðq2Þ; ð25Þ

C̄Qðq2Þ ¼
g2CF

72π2

�
29 − 30f1f2 þ 3 log

�
Λ2

m2

��
; ð26Þ

where

f1 ≔
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

q2

s
; ð27Þ

f2 ≔ log

�
1þ q2ð1þ 2f1Þ

2m2

�
: ð28Þ

CF is the color factor and Λ is the ultraviolet cutoff. The
expression for all the form factors in terms of the overlap of
LFWFs are given in AppendixA. The necessary forms of the
integrals required formomentum integration in the transverse
plane are also shown in Appendix B. Then it is straightfor-
ward to obtain the compact form of the GFFs using Eq. (8)
and integrating over the Jacobi momenta κ⊥ and x. The
transverse momentum integrals of the GFFs BQðq2Þ and
CQðq2Þ are convergent and hence are finite and so is the GFF
DQðq2Þ as it is four times CQðq2Þ. It must also be noted that,
the gravitational form factors are independent of the renorm-
alization scale; in our perturbative model, this is expected for
the total GFFs, where contribution from the gluon part of the
energymomentum tensor is included. As seen above,AQðq2Þ
and C̄Qðq2Þ, calculated only using the quark part, are
dependent on the renormalization scale, which in our
approach comes from the UV cutoff on the transverse
momentum integration, ðΛÞ [34,38]. Calculation of thegluon
contribution to the GFFs for a dressed quark state is part of a
future publication. The longitudinal momentum integral
involved in the calculation of the GFF AQðq2Þ receives a
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contribution from the wave function normalization at x ¼ 1
[34,38], which contributes in the single particle sector upto
the order we are interested in. In this work, we included the
contribution from the two-particle LFWF only, and we have
included a cutoff at x ¼ 1 in the longitudinal momentum
integration when calculating AQðq2Þ.

C. Numerical analysis: Gravitational form factors

In this section, we show the numerical results for the four
GFFs viz Aðq2Þ, Bðq2Þ, Dðq2Þ, and C̄ðq2Þ shown in
Eqs. (23)–(26). We now study the analytical results by
fixing the parameters for all the GFFs: the quark mass
m ¼ 0.3 GeV, the coupling constant g ¼ 1, the color factor
CF ¼ 1 and the UV cutoff Λ ¼ 103 GeV. We choose the
cutoff such thatΛ ≫ M, whereM is the mass of the dressed
quark system. In this work, we take M ¼ m.
In Fig. 1, we plot the GFFs AQðq2Þ and BQðq2Þ as

functions of squared momentum transfer q2. The behavior of
the form factors as q2 → 0 has received substantial interest
in the literature [2,22,42–45]. The light-cone momenta of
the parton is related to Aið0Þ and the total angular momenta
of the parton is Jið0Þ ¼ 1

2
ðAið0Þ þ Bið0ÞÞ. The conservation

of momentum and total angular momentum demands
that Að0Þ þ Bð0Þ ¼ 1 and Jð0Þ ¼ 1

2
ðAð0Þ þ Bð0ÞÞ ¼ 1

2
,

summed over all quarks and gluons [46–48]. We observe
in Fig. 1 that both AQðq2Þ and BQðq2Þ are positive over
the chosen q2 range having their maxima at q2 ¼ 0.
We see that AQð0Þ ¼ 0.7412 for Λ ¼ 103 GeV. The GFF
BQð0Þ ¼ 0.0084 which can be interpreted as the value of the
anomalous gravitomagnetic moment of the quark in the
DQM. One can expect that the contribution coming from
the gluon anomalous gravitomagnetic moment would be
negative such that the total Bð0Þ vanishes [47]. The
calculation of the gluon part of the GFFs and verifying
the sum rules is part of a future publication. BQðq2Þ is related
to the second moment of the helicity flip generalized parton
distribution (GPD) Eðx; q2Þ by the spin sum rule such that
Biðq2Þ ¼

R
dxxEiðx; q2Þ [49]. In the case of QED the first

moment of the GPD Eeðx; 0Þ corresponds to the Schwinger
value for the anomalous magnetic moment

R
dxEeðx; 0Þ ¼

F2ð0Þ ¼ α
2π [28]. Our approach leads Beð0Þ ¼ α

3π for the case
of electron, as expected where α is the fine structure
constant.
In Fig. 2, we show our result for the GFFs DQðq2Þ and

C̄Qðq2Þ as function of q2. We observe that DQðq2Þ is
negative which means that the DQM behaves like a bound
system for the chosen set of parameters. The value of

DQð0Þ ¼ − 5g2CF
72π2

which for our model parameter has

FIG. 1. Plot of the GFFs AQðq2Þ and BQðq2Þ as function of q2, here m ¼ 0.3 GeV and g ¼ 1.

FIG. 2. Plot of the GFFs DQðq2Þ and C̄Qðq2Þ as function of q2, here m ¼ 0.3 GeV and g ¼ 1.
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numerical value of DQð0Þ ¼ −0.007. The GFF C̄Qðq2Þ is
found to be positive for the chosen range of q2 and the value
of C̄Qð0Þ ¼ 0.067. The sum of quark and gluon contribu-
tion for C̄ð0Þ is constrained to be zero. Since we are getting
a positive contribution from the quark, so we expect the
gluon contribution to be negative in accordance with the
constraint.

III. D-TERMAND THE PRESSURE DISTRIBUTION

The fundamental information like mass and spin of a
particle is encrypted in the EMT which couples gravity to
matter [1,50–54]. The EMT, also offers internal mechanical
properties via D-term which is called as the last unknown
global property [1,51,52]. As mentioned in the Introduction,
the D-term is not related to any Poincaré generators and is
unconstrained. The recent experimental extraction of the
quark D-term resulted in the first experimental estimate of
the pressure distribution inside the proton [55].
The electron gravitational form factor Deðq2Þ was

studied in [32] using Feynman diagram approach. It was
found in [32] that the total D-term for a dressed electron is
divergent at q2 ¼ 0, the divergence comes from the photon
part of the QED energy-momentum tensor. A nonzero
photon mass acts as a regulator for this divergence. In order
to compare our result for Deðq2Þ with Metz et al. (MPR)
[32] we use Eq. (25) and set the model parameters to QED
domain such that, m ¼ 0.511 MeV and g2 ¼ 4πα, where α
is the fine structure constant. We observe that our result
obtained in LFWF approach is in excellent agreement with
MPR as seen in the plot in Fig. 3.

A. Pressure and shear forces for a quark dressed
with a gluon

We obtain the D-term from the transverse components of
EMT that in turn is related to the pressure and shear
distributions [1,51,52]. These quantities can be well studied
in the impact parameter space by performing a Fourier
transformation. We work in light-front framework, where

the light-front time is xþ. At xþ ¼ 0, the longitudinal LF
coordinate x− can be integrated out from the EMTand hence
we are left with two transverse coordinates [2]. As the
transverse boosts in the light-front framework are Galilean,
one can define the pressure and shear distributions in 2D,
which are free from relativistic corrections. The light-front
definitions of 2D pressure and shear distributions are related
to the 3D definitions in the Breit frame by Abel trans-
formation [56]. In the Drell-Yan frame, a two-dimensional
Fourier transform of the D-term from the momentum space
q⊥ to impact parameter space b⊥ [57] gives the mechanical
properties like the shear and pressure distributions in the
transverse impact parameter space. The expressions for
pressure and shear distributions in two-dimensions [12] are

pðb⊥Þ ¼ 1

2Mb⊥
d

db⊥

�
b⊥ d

db⊥
DQðb⊥Þ

�
−MC̄Qðb⊥Þ; ð29Þ

sðb⊥Þ ¼ −
b⊥
M

d
db⊥

�
1

b⊥
d

db⊥
DQðb⊥Þ

�
; ð30Þ

where

Fðb⊥Þ ¼ 1

ð2πÞ2
Z

d2q⊥e−iq⊥b⊥F ðq2Þ

¼ 1

2π

Z
∞

0

dq⊥2J0ðq⊥b⊥ÞF ðq2Þ; ð31Þ

where F ¼ ðA;B; C; C̄Þ. J0 is the Bessel function of the
zeroth order and b⊥ represents the impact parameter. M is
the mass of the dressed quark state.
In order to study the spatial distribution, we take wave

packet states in position space centered at origin instead of
plane waves. The most prevalent forms are Gaussian wave
packets [58,59]. The dressed quark state which is confined
in transverse momentum space and has definite longi-
tudinal momentum can be written as

1

16π3

Z
d2p⊥dpþ

pþ ϕðpÞjpþ; p⊥; λi ð32Þ

with ϕðpÞ ¼ pþδðpþ − pþ
0 Þϕðp⊥Þ. We choose a Gaussian

shape for ϕðp⊥Þ in transverse momentum:

ϕðp⊥Þ ¼ e−
p⊥2

2Δ2 ð33Þ

where Δ is the width of Gaussian. Since we choose to work
in LF, the longitudinal and transverse momentum integra-
tion can be done independently.

B. Numerical analysis: Pressure and shear forces

In Fig. 4 we have shown the plot for the pressure
2πb⊥pðb⊥Þ and shear 2πb⊥sðb⊥Þ distributions in the
impact parameter space. We have chosen wave packets

FIG. 3. Plot of electron GFF Deðq2Þ as function of q2, here we
set m ¼ 0.511 MeV, α ¼ 1

137
.
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over the plane waves as it not only yields the Fourier
transformed pressure in the impact parameter space [58] but
also gives smooth plots for the distribution. The spread of
the distribution depends on the width of the Gaussian Δ.
So, we study the dependence of Δ in Fig. 4 by plotting the
distributions for two different values of Δ.
In our model, pressure distribution is in accordance with

the von Laue condition [12,60] which is a stability
condition such thatZ

∞

0

d2b⊥pðb⊥Þ ¼ 0: ð34Þ

The stability condition requires the presence of at-least
one node in the pressure distribution which is seen in
Fig. 4 (left panel). The pressure profile shows a central
positive core which becomes negative toward the tail
region. The repulsive central pressure in contrast with the
confining pressure in the outer region maintains the
stability of the system [13]. We observe that the shear
distribution is non-negative in the b-space. This behavior
of the shear force distributions is also observed in stable
hydrostatic systems [1]. We also observe that as the width
of the Gaussian wave packet, Δ increases the peak value
of the distribution decreases and shifts away from the
center in the impact parameter space.
The combination of pressure and shear defines the

normal and the tangential forces experienced by a ring
of radius b⊥:

Fnðb⊥Þ ¼ 2πb⊥
�
pðb⊥Þ þ 1

2
sðb⊥Þ

�
; ð35Þ

Ftðb⊥Þ ¼ 2πb⊥
�
pðb⊥Þ − 1

2
sðb⊥Þ

�
: ð36Þ

In Fig. 5 we show the plot for the normal force Fn, and the
tangential forces Ft in the impact parameter space. We see
that the normal force is positive. The positive nature

of the normal component of the force ensures stability
against collapse [1]. We observe that the tangential force
is positive for smaller b⊥ and has a negative peak at
around b⊥ ¼ 0.03 fm (b⊥ ¼ 0.1 fm) for Δ ¼ 0.2 GeV
(Δ ¼ 0.5 GeV), while for larger b⊥ it is zero. The
presence of both positive and negative regions maintains
stability in the tangential direction.
The pressure and shear distributions for a dressed

electron in QED in Breit frame were calculated in [2].
The pressure and shear distributions coming from the
fermionic part of the QED EMT is negative and approaches
zero near the periphery. The 2D pressure and shear
distribution for the proton in the Drell-Yan frame has been
calculated in [61] in a light-front diquark model with inputs
from AdS/QCD. The behavior is similar as seen here in the
DQM. The qualitative behavior is also similar as calculated
in the light-cone sum rule approach [3] and that extracted
from JLab data for the nucleon [13]. Qualitative behavior of
the normal and tangential force is similar to that observed in
phenomenological models for the nucleon [2,61].

C. The energy density and pressure
distributions in DQM

We also calculate the Galilean energy density, radial
pressure, tangential pressure, isotropic pressure, and pres-
sure anisotropy, which are defined in Ref. [2]

μiðb⊥Þ ¼ M
�
1

2
Aiðb⊥Þ þ C̄iðb⊥Þ þ

1

4M2

1

b⊥
d

db⊥

×

�
b⊥ d

db⊥

�
1

2
Biðb⊥Þ − 4Ciðb⊥Þ

���
; ð37Þ

σri ðb⊥Þ ¼ M

�
−C̄iðb⊥Þ þ

1

M2

1

b⊥
dCiðb⊥Þ
db⊥

�
; ð38Þ

σtiðb⊥Þ ¼ M

�
−C̄iðb⊥Þ þ

1

M2

d2Ciðb⊥Þ
db⊥2

�
; ð39Þ

FIG. 4. Plots of (left panel) the pressure distribution 2πb⊥pðb⊥Þ and (right panel) the shear force distribution 2πb⊥sðb⊥Þ as a
function of b⊥.
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σiðb⊥Þ ¼ M

�
−C̄iðb⊥Þ þ

1

2

1

M2

1

b⊥
d

db⊥

�
b⊥ dCiðb⊥Þ

db⊥

��
;

ð40Þ

Πiðb⊥Þ ¼ M

�
−

1

M2
b⊥ d

db⊥

�
1

b⊥
dCiðb⊥Þ
db⊥

��
: ð41Þ

In this section, we study five 2-dimensional distributions
in impact parameter space b⊥. We first take the Fourier
transform of all the GFFs from momentum space to impact
parameter space as defined in Eq. (31). For all the two-
dimensional distributions we choose a suitable value for the
Gaussian width Δ ¼ 0.2 GeV.
The radial pressure, tangential pressure, and isotropic

pressure are related to the form factor C and C̄ only. The
relation between radial pressure, tangential pressure, and
isotropic pressure is evident from Eqs. (38) to (40)

σQ ¼ ðσrQ þ σtQÞ
2

; ð42Þ

We can also infer from Eq. (38), (39), and (41) the relation
between pressure anisotropy, radial pressure and tangential
pressure as

ΠQ ¼ σrQ − σtQ: ð43Þ

Therefore, from Eq. (42) we can corroborate that three
pressure must show similar behavior. One can clearly
anticipate that from Eq. (43) that the nature of pressure
anisotropy will have a bell shape.

D. Numerical analysis: The energy density
and pressure distributions

In this section we discuss, the distributions listed in
Eqs. (37)–(41). The Galilean energy density is nothing but
the combination of diagonal components (from the way
we extract the GFFs) of the EMT which encapsulates all
the GFFs that can be seen from Eqs. (19)–(22) and

Eq. (37). In Fig. 6, we observe that the Galilean energy
density increases till a peak value around b⊥ ¼ 0.04 fm
and then decreases at the periphery. The energy density
shows unphysical behavior (negative) for b⊥ ≤ 0.02 fm,
which is different from phenomenological models for the
nucleon [2,61].
Fig. 7 shows the plot of three pressure distributions. The

radial pressure is always positive and is governed by the
quark contribution. The tangential pressure flips the sign
slightly away from the center. The total tangential force
near the central region up to about 0.02 fm is repulsive and
after that, it becomes attractive till the outer region. This
gives the signature that quark contribution dominates in the
central region while the gluon contribution can be man-
ifested in the small negative region away from the central
region toward the periphery [2]. The isotropic pressure
shows a slight negative region.
Figure 8 shows the plot of pressure anisotropy. Typically,

it is expected that the total pressure anisotropy should vanish
at the center that is one of the reasons for the radial pressure
to be greater than tangential pressure. However, in our
model, for the quark case, the pressure anisotropy shows a
slight negative contribution around the central region. To
understand this, it will be interesting to study the effect of the
gluonic part of the EMT. Then, it becomes zero slightly away

FIG. 5. Plots of (left panel) the normal force Fnðb⊥Þ, and (right panel) the tangential force Ftðb⊥Þ as a function of b⊥.

FIG. 6. Plot the 2D Galilean energy density ð2πb⊥μQðb⊥ÞÞ as a
function of b⊥. We choose the Gaussian width Δ ¼ 0.2 GeV.
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from the center and further, we observe that anisotropy
increases monotonically till about 0.03 fm and then again
decreases. Overall, for a broad range of b⊥, the 2D pressure
anisotropy behaves in a similar way as in a quark diquark
model and in a multipole model for the nucleon [2].

IV. CONCLUSION

In this work, we have investigated the GFFs and the
mechanical properties like the pressure, shear, and the energy
distributions for a composite spin-1=2 system, namely a
quark dressed with a gluon at one loop in QCD. The GFFs
and the mechanical properties of the proton in terms of its
quark and gluon content have attracted a lot of interest in
recent days. There are a lot of theoretical studies in
phenomenological models of the nucleon, there are also
lattice calculations. Most of these theoretical models for
the nucleon do not include gluons. The C form factor, or the
D-term, that gives the pressure distribution inside the
nucleon, in particular, is related to the nonlight-cone (plus)
component of the energy-momentum tensor, and therefore
depends on the quark-gluon interaction. In this work, we
replace the nucleon state by a composite spin-1=2 state,
namely a quark dressed with a gluon at one loop in QCD, in

order to calculate the GFFs. This may be thought of as a
perturbative model that incorporates quark-gluon interaction.
Our approach based on light-front Hamiltonian perturbation
theory treats such a state fully relativistically. The LFWFs of
the state can be calculated analytically in perturbation theory,
and the GFFs are expressed in terms of overlaps of LFWFs.
We have used the LF two-component formalism to eliminate
the constrained fields in light-cone gauge. In order to verify
the correctness of the approach, we have compared with the
existing results for the D-term for a dressed electron at one
loop, in QED. The pressure and shear distributions as well as
the 2D energy density are calculated in the Drell-Yan frame
when there is no momentum transfer in the longitudinal
direction. We have compared our results with the results for
the nucleon calculated in phenomenological models. Overall
we have observed a qualitatively similar behavior, however,
the magnitude of the results in DQM cannot be compared
with that of a nucleon, which is expected. In this work, we
presented the GFF and the mechanical properties due to the
fermionic part of the EMT. An interesting study would be to
calculate the contributions coming from the gluonic part, this
is part of ongoing work.
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APPENDIX A: GFFs IN TERMS OF LFWFs

Mμν
SS0 ¼

X
λ2λ

0
1

g
Z ½xκ⊥�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞ3ð1−xÞ
p ½ψ�

1χ
†
S0O

μν
1 χλ0

1
ϕS
λ0
1
;λ2
ðx;κ⊥Þ�

þ
X
λ2λ

0
1

g
Z ½xκ⊥�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞ3ð1−xÞ
p ½ϕ�S

λ0
1
;λ2
ðx;κ⊥Þχ†λ0Oμν

2 χSψ1�

þ
X
λ1λ2λ

0
1

Z
½xκ⊥�½ϕ�S0

λ1;λ2
ðx;κ0⊥Þχ†λ0

1
Oμν

3 χλ0
1
ϕS0
λ0
1
;λ2
ðx;κ⊥Þ�;

ðA1Þ

where

½xκ⊥� ¼ dxd2κ⊥
8π3

; ðA2Þ

FIG. 7. Plot of the 2D radial pressure ð2πb⊥σrQ), tangential
pressure ð2πb⊥σtQÞ, isotropic pressure ð2πb⊥σQÞ, as a function of
b⊥. We choose the Gaussian width Δ ¼ 0.2 GeV.

FIG. 8. Plot of the 2D pressure anisotropy ð2πb⊥ΠQÞ as a
function of b⊥. We choose the Gaussian width Δ ¼ 0.2 GeV.
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Oþþ
1 ¼ Oþþ

2 ¼ 0; ðA3Þ

Oþþ
3 ¼ 2Pþ2x; ðA4Þ

Oij
1 ¼ ðσ̃iqjÞðσ̃⊥ · ϵ⊥λ2Þ

4
þ ðσ̃⊥ · ϵ⊥λ2Þðσ̃ið2κj þ qjÞÞ

4x

þ ðσ̃iϵjλ2Þðσ̃⊥ · κ⊥ þ imÞ
2x

þ ðσ̃⊥ · q⊥ − imÞðσ̃iϵjλ2Þ
2

;

ðA5Þ

Oij
2 ¼ ½σ̃ið2κj − ð1 − 2xÞqjÞ�ðσ̃⊥ · ϵ⊥�

λ2
Þ

4x
þ ðσ̃⊥ · ϵ⊥�

λ2
Þðσ̃iqjÞ

4

þ ðσ̃⊥ · ðκ⊥ þ xq⊥Þ − ið1 − xÞmÞðσ̃iϵj�λ2 Þ
2x

; ðA6Þ

Oij
3 ¼ σ̃ið2κj þ qjÞðσ̃⊥ · κ⊥Þ þ σ̃⊥ · ð2κ⊥ þ q⊥Þσ̃ið2kj þ qjÞ:

ðA7Þ

In the following subsections, the diagonal (nondiagonal)
contribution is indicated by subscript D (ND).

1. Extraction of AQðq2Þ
The diagonal contribution from the one-particle sector is

given by

½Mþþ
↑↑ þMþþ

↓↓ �1;D ¼ 2Pþ2jψ1j2: ðA8Þ

The diagonal contribution from the two-particle sector is
given by

½Mþþ
↑↑ þMþþ

↓↓ �2;D ¼ 2Pþ2g2CF

Z
½xκ⊥� x

ð1 − xÞ
½m2ð1 − xÞ4 þ ð1þ x2Þðκ⊥2 þ ð1 − xÞκ⊥ · q⊥Þ�

D1D2

jψ1j2: ðA9Þ

The total nondiagonal contribution comes from the overlap
of one particle and two-particle sectors. Here it vanishes:

½Mþþ
↑↑ þMþþ

↓↓ �ND ¼ 0: ðA10Þ

2. Extraction of BQðq2Þ
The single particle sector does not contribute:

½Mþþ
↑↓ þMþþ

↓↑ �1;D ¼ 0: ðA11Þ
From the two-particle sector there are diagonal contributions:

½Mþþ
↑↓ þMþþ

↓↑ �2;D ¼ iqð2ÞPþ22g2CF

Z
½xκ⊥�mx2ð1 − xÞ2

D1D2

:

ðA12Þ

The total nondiagonal contribution from the overlap of one
particle and two-particle sectors vanishes:

½Mþþ
↑↓ þMþþ

↓↑ �ND ¼ 0: ðA13Þ

3. Extraction of CQðq2Þ and C̄Qðq2Þ
The single particle sector does not contribute:

½M11
↑↓ þM11

↓↑�1;D ¼ 0: ðA14Þ

Contributions from the two-particle sector can be diagonal
or nondiagonal:

½M11
↑↓ þM11

↓↑�2;D ¼ ig2CFqð2Þ
Z

½xκ⊥�mð1 − xÞð2κð1Þ þ qð1ÞÞ½ð2 − xÞκð1Þ þ ð1 − xÞqð1Þ�
D1D2

; ðA15Þ

½M11
↑↓ þM11

↓↑�ND ¼ −ig2CFqð2Þ
Z

½xκ⊥�mð1 − xÞ
D1

: ðA16Þ

Similarly for the other component

½M22
↑↓ þM22

↓↑�1;D ¼ 0; ðA17Þ
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½M22
↑↓ þM22

↓↑�2;D ¼ −
ig2CF

2

Z
½xκ⊥�mðx − 1Þð2κð2Þ þ qð2ÞÞ½ð2κð1Þ þ ð1 − xÞqð1ÞÞqð1Þ − ð2κð2Þ þ qð2ÞÞqð2Þ�

D1D2

; ðA18Þ

½M22
↑↓ þM22

↓↑�ND ¼ 0; ðA19Þ

where

jψ1j2 ¼ 1 − g2CF

Z
½xκ⊥�

κ⊥2ð1þx2Þ
ð1−xÞ þm2ð1 − xÞ3

D2
1

; ðA20Þ

D1 ≔ κ⊥2 þm2ð1 − xÞ2; ðA21Þ

D2 ≔ ðκ⊥ þ ð1 − xÞq⊥Þ2 þm2ð1 − xÞ2: ðA22Þ

APPENDIX B: INTEGRALS USED TO
CALCULATE GFFs

The following integrals are used to calculate the ana-
lytical forms of the GFFs

Z
d2κ⊥ 1

D1

¼ π log

�
Λ2 þm2ð1 − xÞ2

m2ð1 − xÞ2
�
; ðB1Þ

Z
d2κ⊥ 1

D1D2

¼ π

ð1 − xÞ2
1

q2
f2
f1

; ðB2Þ

Z
d2κ⊥ κðiÞ

D1D2

¼ −
π

ð1 − xÞ
qðiÞ

q2
f2
2f1

; ðB3Þ

Z
d2κ⊥ κ

ð1Þκð2Þ

D1D2

¼ π
qð1Þqð2Þ

q2

�
−1þ

�
1þ 2m2

q2

�
f3
2f1

�
; ðB4Þ

Z
d2κ⊥ ðκðiÞÞ2

D1D2

¼ π

�
−f1f3 þ

1

2
þ ðqðiÞÞ2

q2

×

��
1þ 2m2

q2

�
f3
2f1

− 1

�

þ 1

2
log

�
Λ2

m2ð1 − xÞ2
��

; ðB5Þ

where, i ¼ ð1; 2Þ and

D1 ≔ κ⊥2 þm2ð1 − xÞ2; ðB6Þ

D2 ≔ ðκ⊥ þ ð1 − xÞq⊥Þ2 þm2ð1 − xÞ2; ðB7Þ

f1 ≔
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

q2

s
; ðB8Þ

f2 ≔ log

�
1þ q2ð1þ 2f1Þ

2m2

�
; ðB9Þ

f3 ≔ log

�
1þ 2f1
−1þ 2f1

�
: ðB10Þ
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