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The Landau-Lifshitz equation is obtained from the Lorentz-Abraham-Dirac equation through “reduction
of order.” It is the first in a divergent series of approximations that, after resummation, eliminate
runaway solutions. Using Borel plane and transseries analysis we explain why this is, and show that a
nonperturbative formulation of reduction of order can retain runaway solutions. We also apply transseries
analysis to solutions of the Lorentz-Abraham-Dirac equation, essentially treating them as expansions in
both time and a coupling. Our results illustrate some aspects of such expansions under changes of variables
and limits.
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I. INTRODUCTION

Radiation reaction (RR) continues to attract attention in
classical and quantum electrodynamics, both experimen-
tally [1,2] and theoretically [3–5] with a particular focus on
intense laser fields where RR forces compare to or
dominate the Lorentz force [6–8]. RR in strong fields is
also relevant in gravitational physics, first clearly observed
in the Hulse-Taylor binary pulsar [9], and studied theo-
retically in, e.g., Refs. [10–13].
Recently many authors have applied resummation

[14–21] and resurgence and transseries concepts [22–24]
in classical and quantum electrodynamics in strong
backgrounds. (For introductions to and reviews of these
concepts, see Refs. [25–31].) As a prominent example all-
orders, resummed results [17,18] have been vital to
progress on the Ritus-Narozhny conjecture [32,33] of the
breakdown of Furry picture perturbation theory.
In this paper we use the Lorentz-Abraham-Dirac (LAD)

equation of motion for radiation reaction [34–36] as a “test
bed” for transseries analysis. It is a natural choice of a
simple setting in which to explore transseries structures,
essentially because we know that they must be there and
their physical interpretation. They are the “unwanted”
features of the LAD equation, preacceleration and runaway
solutions, that are explicitly nonperturbative in τ0, the time
scale of radiation reaction. Indeed these are not seen in
perturbative approaches, including reductive procedures

which lead to e.g., the Landau-Lifshitz [37] (LL) equation,
at any order [20]. We will see that the time-dependent
nature of our problem means that even though the physics
is quite simple, the formal structure can still be rich.
We extend our previous work [20], which iterated

“reduction of order” ad infinitum in a constant crossed
field (CCF) to obtain the all-orders (in τ0) equation of
motion LL∞ by showing that this procedure eliminates
nonperturbative transseries structure at the level of the
equation of motion. We also show that the same holds in a
circularly polarized monochromatic plane wave. The elimi-
nation of nonperturbative terms is, however, dependant
on an “initial condition” matching to the Lorentz force at
vanishing field. Other “initial conditions” keep nonpertur-
bative terms and lead to runaway solutions of the order-
reduced equation of motion. We then consider inserting a
hard cutoff into a constant field; this is the simplest time
dependence which allows us to unambiguously investigate
preacceleration and its transseries structure.
This paper is organised as follows. We begin in Sec. II

by reviewing reduction of order as applied to the LAD
equation, and LL∞. We show that nonperturbative con-
tributions to LL∞ are large as the coupling goes to zero, and
lead to runaway solutions if kept. Next, in Sec. III we solve
the two equations of motion in a step field profile, finding
on the level of solutions to LAD instanton terms that are
precisely the preaccelerating and runaway solutions. We
conclude in Sec. IV.

II. LL∞: REDUCTION OF ORDER AND
TRANSSERIES

A. Conventions and notations

We will consider the momentum pμ of a particle of
charge e and mass m in a CCF given by
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fμν ≔
e
m
Fμν ¼ Emn½μϵν� ð1Þ

where E is the dimensionless field strength, nμ is lightlike
and ϵ2 ¼ −1 with n · ϵ ¼ 0. As we will only be concerned
with one species of particle we henceforth use units where
m ¼ 1, although we will restore m in places for clarity.
We will use light-front coordinates p� ¼ p0 � pz; p⊥ ¼
ðp1; p2Þ, with the z axis aligned such that pþ ¼ n · p.
The LAD equation reads, using an overdot for a

derivative with respect to proper time,

_pμ ¼ fμνpν þ τ0Pμνp̈ρ ð2Þ

where Pμν ¼ gμν − pμpν is the projector orthogonal to pμ

and

τ0 ≔
2α

3m
; ð3Þ

with α being the fine-structure constant; for an electron
τ0 ≈ 6.2 × 10−24 s. Nonperturbative effects in the solutions
to the LAD equation occur on time scales of τ0, but
radiation reaction has observable effects over much longer
time scales. The interaction is characterized by an energy
parameter,

δ2 ¼ τ20pμfμνfνρpρ ¼ ðτ0EpþÞ2: ð4Þ

When working at the level of the solution, the initial value
δ0 will play the role of a coupling. Note that δ ¼ τ0χ where
χ is the quantum nonlinearity parameter [5,38]; they are
related in the sameway that the classical electron radius and
the Compton length are. This means that values δ≳ 1 are
deeply in the quantum regime, and mainly relevant for
classical electrodynamics as a formal theory.

B. Reduction of order and LL∞

The LL equation [37] is obtained from the Lorentz-
Abraham-Dirac equation by reduction of order: we apply
d=dτ to both sides of Eq. (2), substitute for _u according to
Eq. (2) itself, and discard terms of order τ20. This yields,
in general,

_pμ ¼ fμνpν þ τ0½ðPf2Þμνpν þ pρ∂ρfμνpν�; ð5Þ

although the final, gradient, term of course vanishes for
a CCF.
The reduction of order procedure as just described

reduces the order in time, but the procedure can be iterated
any number of times to any order in τ0 [39,40]. We will
therefore refer to the first iteration (5) as LL1. If reduction
of order is iterated ad infinitum, i.e., to all orders in τ0, it
yields the equation of motion LL∞,

_pμ ¼ AðδÞfμνpν þ τ0BðδÞðPf2Þμνpν; ð6Þ

as discussed in a previous paper [20]. Here the functions A
and B are solutions of the ordinary differential equations
(ODEs)

�
δ3B dA

dδ ¼ 1 −A − 2δ2AB;

δ3B dB
dδ ¼ −B − 2δ2B2 þA2;

ð7Þ

and the initial conditions that recover the first-order
Landau-Lifshitz equation are

Að0Þ ¼ Bð0Þ ¼ 1: ð8Þ

The functions A, B encode how the RR force varies with
energy, vaguely analogous to a running coupling.
We emphasize here that when A, B verify Eq. (7) the

solution of LL∞ is a solution of the LAD equation.
Explicitly, differentiating Eq. (6) we obtain

p̈μ ¼
dA
dδ

dδ
dτ

fμνpν þAfμν _pν þ τ0

�
dB
dδ

dδ
dτ

ðPf2Þμνpν þ BððPf2Þμν _pν − _pμðpþEÞ2 − pμð _pf2pÞÞ
�
: ð9Þ

Now by dotting nμ into the LAD equation, it reads

n · _p ¼ τ0ðn · p̈ − pþp · p̈Þ ¼ −τ20

�
dB
dδ

dδ
dτ

ðpþÞ3E2 þ 2Bpþð _pf2pÞ þ Bðn · _pÞðpþEÞ2
�
− τ0Apþðpf _pÞ − τ20p

þBð _pf2pÞ:

ð10Þ

It follows from Eq. (6) that pf _p ¼ AðpþEÞ2 and _pf2p ¼
−τ0BðpþEÞ4; we also have dδ

dτ ¼ τ0 _pþE ¼ −τ20BðpþEÞ3.
Substituting these into the rhs of Eq. (10), writing out the
lhs according to Eq. (6), and dividing by τ0ðpþÞ3E2 it
becomes

−B ¼ ðτ0pþEÞ3B dB
dδ

þ 2ðτ0pþEÞ2B2 −A2; ð11Þ

which is one of the ODEs (7). Hence the þ component of
the LAD equation will be satisfied if Eq. (6) holds, where B
is a solution to Eq. (7). A similar calculation shows that the
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transverse components of the LAD equation will be
satisfied if Eq. (6) holds and A is a solution to Eq. (7).
The remaining component is fixed by the mass-shell
condition.
As LL∞ is obtained from reduction of order in a small

parameter, it is essentially a resummed perturbative expan-
sion. It is therefore entirely possible that the procedure
could miss nonperturbatively small terms in the expansion
parameter. We will here investigate the possible presence of
such terms.
That is, Eqs. (7)(8) can be solved as perturbative series

A ∼ 1–2δ2 þ…;B ∼ 1 − 6δ2 þ � � � Although divergent,
these series can be resummed with the Borel-Padé (see,
e.g., Chapter 8 of Ref. [25]) or “educated match” [41]
methods. As pointed out in Ref. [20], LL∞ remains causal
and free of runaways after such a resummation of pertur-
bative terms. This is in contrast to the nonrelativistic case
studied in Ref. [42], where these nonperturbative effects
appear precisely after performing a Borel resummation.
The question is thus raised whether nonperturbative effects
appear from solutions of a more general transseries form

�
A

B

�
∼

X
k;l≥0

�
Ak;l

Bk;l

�
δ2ke−lκ=δ

λ
; ð12Þ

(for some κ, λ to be determined) which are not found by
perturbative expansion or numerics. We use ∼ rather than
an equality here and treat, for now, the expansion (12)
formally: the space of such transseries is closed under
algebraic operations and differentiation.
To determine the parameters κ, λ we linearize around

ðA;BÞ ¼ ð1; 1Þ and δ ¼ 0; the general solution of the
linearization is

A ¼ 1 − 2δ2 þ c1
1

δ2
e1=2δ

2 þOðδ3Þ; ð13aÞ

B ¼ 1 − 6δ2 þ c1
1

δ4
e1=2δ

2 þ c2
1

δ2
e1=2δ

2 þOðδ3Þ ð13bÞ

for arbitrary constants c1, c2. We see that there are indeed
nonperturbative terms depending exponentially on 1=δ2,
but these are large for real δ. The only solution that is finite
as δ↘0 has c1 ¼ c2 ¼ 0, and hence lacks a nonperturbative
part (its perturbative expansion is, we stress, divergent and
must be resummed, though). We return to this at the end of
this section.
We can strengthen our argument through the interpre-

tation of κ ¼ −1=2 as the location of the convergence-
limiting singularity in the complex Borel plane. Borel
singularities, and the overall transseries structure, are
intimately related to the large-order growth of the pertur-
bative coefficients [43]. In our case this can be determined
to be, to leading order,

Ak; Bk ∼ ð−2Þkk! ð14Þ

by computing many coefficients using the recursion
relations in Ref. [20]. We compute a normalized Borel
transform

Borel½A�ðtÞ ¼
X
k

Ak

2kk!
tk: ð15Þ

The transform cancels the factorial growth of the An,
producing a series with finite radius of convergence, which
can be analytically continued. With this normalization we
expect the leading singularity to appear at t ¼ −1.
The convergence-limiting singularity of the analytical

continuation can now be probed using Padé approxim-
ants. The Padé method can struggle to identify multiple
branch cuts, as it must accumulate poles along a cut to
approximate it. This difficulty can be circumvented with
a conformal map [30,31,44,45], making it also possible
to identify singularities beyond the leading [24,43] and
increase the accuracy of resummations [15,46,47]. Even
without conformal mapping, though, there is a clear
accumulation of Borel-Padé poles along the ray t ≤ −1,
seen in Fig. 1.
A fairly large number of terms are needed to see the

structure in 1. The reason for this is that while

Bk

kBk−1
!k→∞ 1

κ
¼ −2; ð16Þ

there are slowly decaying subleading corrections. Even
after applying high-order Richardson extrapolation (see
Chapter 8.1 of Ref. [25]), the slow convergence persists.
Experimentally, this is because the subleading large-order
behavior of the coefficients is logarithmic

Bk

kBk−1
≈ −2

�
1þ Λ

k
ðlog kÞ2 þOððlog kÞ2=k2Þ

�
; ð17Þ

FIG. 1. Borel-Padé poles accumulating along the negative real
axis, indicating the presence of a branch cut.
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and so not eliminated by standard Richardson extrapola-
tion. Modifying Richardson extrapolation to account for
logarithmic corrections (see Ref. [43] and Appendix B), the
convergence is improved significantly, as shown in Fig. 2.
Instead of a Padé approximant, we can use a hyper-

geometric approximant in the Borel plane [48]. With
perturbative data up to order N ¼ 2M þ 1 a hypergeomet-
ric Mþ1FMð� � � ; � � � ; t=κ̂MÞ can be fitted; it has a built-in
branch cut at κ̂M. Figure 3 shows an example 2F1

approximant for Borel½B�ðtÞ, and Fig. 4 shows how κ̂M
converges to κ ¼ − 1

2
.

We now return to the question of the sign of κ. While
having exponentially large terms seems to be against the
spirit of perturbation theory, in a purely formal treatment
there is no “wrong sign” for κ, which may even be complex.
An instructive example (discussed in detail in Sec. 2 of
Ref. [26]) is the Airy functions, which have expansions

2 AiðzÞ; BiðzÞ ∼ z−1=4ffiffiffi
π

p e∓2
3
z3=2ð1þOðz−3=2ÞÞ ð18Þ

as z → þ∞ along the real axis. The exponentially large Bi
is a valid solution to the Airy equation; it just does not
match the boundary condition fðþ∞Þ ¼ 0. As z → −∞
both Ai and Bi become oscillatory, corresponding to an
imaginary κ. This is the eponymous phenomenon first
studied by Stokes [49,50] in precisely the context of the
Airy functions. (For a physical example with imaginary κ,
see Ref. [24].)
For the LAD equation the initial acceleration is to be

specified, while for LL∞ it is determined by the initial
momentum and A, B at δ0 ¼ τ0Ep

þ
0 . Only the ODEs (7)

need to hold for a solution of LL∞ to be a solution to the
LAD equation; hence the choice of initial condition for
the ODEs (7) determines which, among all solutions of the
LAD equation with a given initial momentum, is picked out
by LL∞.
By dotting nμ into and squaring Eq. (6), respectively,

we find that LL∞ implies

_pþ ¼ −τ0pþBðδÞδ2 ð19Þ

and

τ20 _p
2 ¼ −AðδÞ2δ2 − BðδÞ2δ4: ð20Þ

With the Lorentz initial condition (8) the resummed
perturbative Apert;Bpert are positive and approach 1
smoothly as δ → 0. This means that δ → 0 and thence
_p2 → 0 as τ → ∞. The solution of LL∞ is therefore the
physical, nonrunaway, solution of the LAD equation,
shown in Fig. 5. In other words, LL∞ with the Lorentz
initial condition (8) determines the critical acceleration
(a concept first introduced in Ref. [51])

FIG. 2. Slow convergence of θk ¼ − Bk
kBk−1

− 2 as k → ∞, even
applying order-eight Richardson extrapolation (R8), due to
subleading logarithmic corrections. The modified extrapolations

Rð2;3Þ
K are accurate up to order ðlog kÞð1;2Þ=n−K.

FIG. 3. Hypergeometric 2F1 approximant to Borel½B�ðtÞ. The
built-in branch cut along the negative real axis is evident as a
discontinuity in the coloring. At this low order the estimate for the
branch point is not very accurate, but this improves at higher
order, cf. Fig. 4.

FIG. 4. Estimates of the branch point using a hypergeometric
approximant based on perturbative coefficients up to order
2M þ 1.
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_pμ
crit ≔ Apertðδ0Þfμνpν

0 þ Bpertðδ0ÞðPf2Þμνpν
0 ð21Þ

that, for a given field strength and initial momentum, leads
to the physical solution of the LAD equation.
As the purely perturbative solution of Eq. (7) leads to the

physical solution to the LAD equation, the remaining,
nonperturbative, solutions must lead to the runaways. We
cannot find nonperturbative solutions with an initial con-
dition at δ ¼ 0, but we can equally well set the initial
condition at δ0 ¼ τ0Ep

þ
0 . Again using the Airy functions to

illustrate, with the boundary condition fðþ∞Þ ¼ 0 we
discard Bi, but setting a condition at finite argument retains
it. The solution of Eq. (7) satisfying

Aðτ0Epþ
0 Þ ¼ Apertðτ0Epþ

0 Þ ð22aÞ

Bðτ0Epþ
0 Þ ¼ Bpertðτ0Epþ

0 Þ þ
τ0
δ20

ε ð22bÞ

will give us a solution to the LAD equation with an initial
longitudinal acceleration differing from the critical by ε; we
expect this solution to be a runaway.
The general solution (13) with c1 ¼ 0; c2 ¼ −τ0εe−1=2δ

2
0

verifies the initial condition (22). This is only the leading
term at first nonperturbative order, but it will be sufficient.
This gives us for the longitudinal acceleration

dpþ

dxþ
¼ −

δ2

τ0
BðδÞ

¼ −
δ2

τ0

�
1 − 6δ2 þ…þ ε

δ2
exp

�
1

2δ2
−

1

2δ20

��
: ð23Þ

After a short time δðxþÞ ≈ δ0 þ xþEτ0
dpþ
dxþ and using this to

expand we have

dpþ

dxþ
¼ −

δ20
τ0

�
Bpertðδ0Þ þ

τ0ε

δ20
e

xþ
τ0p

þ
0 þ…

�
ð24Þ

omitting some inessential terms. Clearly the second term
inside the brackets is a runaway over a proper time τ0, and it
is only seen because we included nonperturbative terms
in B.
It is clear from Eq. (20) that if Bðδ0Þ > 0 and B remains

positive as δ decreases we have a runaway in the −ẑ
direction. Likewise if Bðδ0Þ < 0 and keeps its sign as δ
increases we have a runaway in the þẑ direction. It is less
obvious what happens if B should cross 0. This is relevant
because we can imagine perturbing _pμ

crit in theþẑ direction,
seeding a runaway instability. Initially, then, pþ is decreas-
ing, but after some time the instability begins to dominate
and pþ increases. If the dynamics are indeed described by
LL∞, B must change sign when this happens.
Figure 6(a) shows the perturbative solution, as well as

two solutions with initial conditions

A�ð1Þ ¼ Apertð1Þ; B�ð1Þ ¼ ð1� εÞBpertð1Þ: ð25Þ

Of these, B− runs away to þ∞ as δ decreases, and so gives
the −ẑ runaway, while instead Bþ approaches 0 at a finite
argument δ̃. Now, B ¼ 0 is a singular point of Eq. (7), but to
leading order around it the system reads

�
0 ¼ 1 −A;

δ3B dB
dδ ¼ A2;

ð26Þ

with the two solutions

B ≈�jAðδ̃Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=δ̃2 − 1=δ2

q
: ð27Þ

These “branches” are both shown in Fig. 6(b). What
happens, then, for the þẑ runaway is that we start out
on the upper branch, but as _pþ becomes 0 and the runaway

(b)

(a)

FIG. 5. Longitudinal (a) and transverse (b) momentum com-
ponents across a step. LL∞ is seen to agree with the physical
solution of the LAD equation after the step, while the latter
exhibits preacceleration. The preacceleration occurs over a few τ0
worth of proper time ∼xþ=pþ.
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instability begins to dominate, the dynamics continue to be
described by LL∞, but now on the lower branch.
To verify this we solve the LAD equation numerically

with the initial accelerations as implied by LL∞, using
A�;B�. Plotting pz in Fig. 7 we find that the respective
initial conditions indeed lead to the runaways we expect
from Fig. 6(a). We also observe the switching between
branches by plotting pþ and its derivative for the þẑ
runaway and comparing with LL∞; see Fig. 8. We stress
that in Figs. 7 and 8 we have solved the LAD equation
forward in time: because the initial acceleration is either the
critical or very close to it, the instability remains suppressed
for several τ0 worth of proper time.
We end this section by noting that the form of Eq. (6) is

fully determined by there being only two possible tensor
structures and one scalar invariant (δ) in the CCF geometry.
Another highly restricted geometry is a circularly polarized
monochromatic plane wave, and it is possible to derive
equations similar to Eq. (7), and hence LL∞ also in that

case. It can be studied with the Borel plane methods we
have applied to the CCF in this section; as the details are
very similar, we defer them to Appendix A.
In either case, we obtain that reduction of order elim-

inates nonperturbative terms on the level of the equation of
motion when a physical boundary condition—matching to
the Lorentz force at vanishing field intensity—is imposed.
We therefore now turn to how nonperturbative preacceler-
ating and runaway solutions arise on the level of solutions
to the LAD equation.

III. THE LAD EQUATION AND LL∞ IN A
CROSSED STEP FIELD

We will now consider the LAD equation and LL∞ in a
field with a step profile, i.e.,

FIG. 7. z component of momentum for three solutions of the
LAD equation with initial accelerations given by LL∞, using
either Apert;Bpert (blue) or A�;B� (gold, green). The latter two
are runaway solutions in the∓ ẑ direction, respectively, while the
first is the physical solution.

FIG. 8. Longitudinal momentum pþ (blue) and acceleration
(gold) for a runaway solution of the LAD equation in the þẑ
direction. The dashed and dotted curves indicate the LL∞
acceleration ∝ Bðτ0EpþÞ, using the upper and lower branches
for B, respectively; cf. Fig. 6(b). It is seen that as the longitudinal
acceleration becomes zero it switches between the two branches.

(a)

(b)

FIG. 6. (a) Three solutions to the ODEs (7). The solid curves
represent the resummed perturbative solution smoothly approach-
ing 1 as δ → 0; the dotted and dashed curves represent non-
perturbative solutions, with the former blowing up exponentially
at small δ, and the latter approaching the singular point B ¼ 0.
(b) At the singular point B ¼ 0 the solution is nonunique. There is
an “upper” (solid) and a “lower” branch (dashed), characterized

by B ≈�jAðδ̃Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=δ̃2 − 1=δ2

p
, respectively, near the singularity.
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a0μ ¼ EθðxþÞϵμ: ð28Þ

That the field is off for an interval of time will allow an
unambiguous identification of preacceleration.
For the LAD equation we are faced with the problem of

matching solutions before and after the step. The integro-
differential form of the LAD equation [52–54], however,
shows that the acceleration is continuous across a step, and
so we should use the critical acceleration (21).

A. Exact solution to the free LAD equation

Before the step, with the field turned off, all the
equations of motion can be solved exactly. For LL1 and
LL∞ the solution is just uniform motion, while for the LAD
equation we make an ansatz in terms of proper time τ and
the rapidity ζ,

pμðτÞ ¼ coshðζðτÞÞpμ
0 þ sinhðζðτÞÞ _pμ

0ffiffiffiffiffiffiffiffiffi
− _p2

0

p ; ð29Þ

where the subscript 0 indicates values at τ ¼ 0. The LAD
equation then implies an initial-value problem for ζ,

τ0ζ̈ ¼ _ζ ζð0Þ ¼ 0 _ζð0Þ ¼
ffiffiffiffiffiffiffiffiffi
− _p2

0

q
; ð30Þ

with the solution

ζ ¼ τ0

ffiffiffiffiffiffiffiffiffi
− _p2

0

q
ðeτ=τ0 − 1Þ: ð31Þ

We see that the pre-step solution is preaccelerating unless
_pμ
0 ¼ 0. Viewed forwards in time this solution generalizes

the well-known nonrelativistic runaway in that the expo-
nential runaway is in the rapidity, rather than in the velocity.
To the best of our knowledge, the covariant solution
matched to the initial conditions, Eqs. (29)(31), has not
previously appeared in the literature [55].
The solution has the form of a transseries in τ0

with, expanding the hyperbolic functions, nonperturbative
instanton terms of all orders. For τ > 0 these become large
as τ0 → 0, corresponding to faster runaways; for τ < 0 they
become small in this limit, corresponding to the preaccel-
eration occurring in a “boundary layer” of width ≈1=τ0.
Note, though, that the solution is analytic in the proper

time τ: the prefactor of each elτ=τ0 term is some power
series in τ0, cf. Eq. (21). In fact τ only appears as τ=τ0 and
after a change of variables ðτ; τ0Þ → ðτ̃; τ0Þ ¼ ðτ=τ0; τ0Þ the
solution is analytic in both variables. This can be traced to
that in the free LAD equation, or equivalently Eq. (30) the
only scale is τ0, which can be eliminated by rescaling.
There is then no coupling in which to do perturbation
theory, but the equation can be solved as a power series in
rescaled time; τ0 reenters when substituting for the initial
condition (21).

This is a simple demonstration that the character of a
transseries in two variables can change dramatically with a
nonlinear change of variables. Such nonlinear transforma-
tions can in effect perform partial resummations in one of
the variables, a point previously discussed in the contexts of
a unitary matrix model [56] and radiation reaction [21]. As
a consequence there can be subtleties in how (e.g., in which
order) limits are taken; we will return to this shortly. (See
also Refs. [57,58] for another example in strong-field
physics where the manner of taking a limit matters.)
The above discussion has been in terms of proper time

only while the rest of this paper uses light-front time. We
therefore conclude this subsection with a short discussion
of the solution of the free LAD equation in the light-front
parametrization. In light-front time the equation for the
rapidity retains factors of cosh ζ; sinh ζ and cannot be
solved analytically. Alternatively we can obtain the light-
front time by quadrature,

xþðτÞ ¼
Z

τ

0

dσpþðσÞ: ð32Þ

While this integral does have an analytic expression in
terms of Eið·Þ, it gives only an implicit relation for τðxþÞ. It
can, though, be expanded to next-to-leading order (NLO)
τ=τ0 to find

τ=τ0 ¼ pþ
0 x

þ=τ0 −
τ0
2
_pþ
0 ðxþ=τ0Þ2 þOððxþ=τ0Þ3Þ: ð33Þ

Inserting this back into Eqs. (29)(31) yields another
example of a nonlinear transformation strongly modifying
the two-variable transseries structure.

B. Transseries solution of the LAD equation

We now come to the transseries structure of solutions to
the LAD equation in a constant crossed field. This was
briefly studied in Ref. [21] and we are mainly concerned
with working out some implications of the results therein.
Using notation slightly different from Ref. [21], we can
formulate the LAD equation in a CCF as

g0 ¼ δ½∂uðgg0Þ þ g2P�; ð34aÞ

h0 ¼ 1þ δ½∂uðgh0Þ þ ghP�;

P ¼ ðg0Þ2 − ðh0Þ2 þ 2g0∂u
1þ h2 − g2

2g
: ð34bÞ

Here g and h are normalized longitudinal and transverse
components respectively [59],

g ≔ pþ=pþ
0 ; ð35aÞ

h ≔ gp1
0 − p1; ð35bÞ
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the prime is a derivative with respect to a normalized light-
front time u ≔ Exþ, and δ2 ¼ τ20p0f2p0, i.e., we drop the
subscript on δ0 from the previous section.
Reference [21] solved these equations iteratively by

noting that if g, h have series expansions in δ, with the
coefficients being functions of time,

�
g

h

�
∼
X
n

δn
�
gnðuÞ
hnðuÞ

�
ð36Þ

the order n terms of the rhs are determined by terms of
strictly lower order, so gn, hn can be found iteratively by
simple integration. The zeroth order starting point is
g0 ¼ 1; h0 ¼ u, corresponding to the Lorentz force. The
coefficients are polynomials in u, with the first few being as
follows:

gðuÞ ¼ 1 − uδþ u2δ2 þ ð6u − u3Þδ3
þ ð−18u2 þ u4Þδ4 þOðδ5Þ; ð37aÞ

hðuÞ ¼ u −
1

2
u2δþ

�
−2uþ u3

2

�
δ2 þ

�
6u2 −

u4

2

�
δ3

þ
�
20u −

41u3

3
þ u5

2u

�
δ4 þOðδ5Þ: ð37bÞ

Notably g0ð0Þ; h0ð0Þ have precisely the same perturbative
expansion as one would find using LL∞ for _pμ

0.
The solution (37) also illustrates the care needed in

taking limits in a formal, divergent expansion. At each
order in δ the leading behavior in u of g is ð−uδÞn, the series
has a finite radius of convergence, and can be resummed
into 1=ð1þ uδÞ, which is the exact solution of LL1 [39,60].
This has a single pole in the complex plane [61] and its
Borel transform (e−δt) is analytic everywhere. For any fixed
u the linear term ∼n!u will always win over un, though,
meaning that the u → ∞ limit must be taken inside the sum
in Eq. (36).
If this iterative method is applied to the free LAD

equation [which corresponds to striking the constant term
on the rhs of Eq. (34b)], only the “trivial” solution of
uniform motion is found. It is to be expected that solutions
are lost as the method is only sensitive to initial conditions
for the momentum, not the acceleration. In either case, the
generated perturbative solution is the physical solution (but
must be resummed), and we must introduce nonperturba-
tive transseries terms to capture preacceleration and
runaways.
To find all solutions, including preaccelerating and

runaway solutions, instead of a simple series in δ, then,
we should use a transseries ansatz [21],

gðuÞ ∼
X
n;l

δnelu=δgn;lðuÞ: ð38Þ

We will refer to terms with l ≥ 1 as instanton terms by
analogy with quantum theory [64], even though their origin
is different. Note again that the coefficients are functions of
time; as in the previous subsection this is an expansion in
two variables. The operator ∼δ d2

du2 on the rhs of Eq. (34)
lowers by 1 the degree in δ of any term with l ≥ 1. Thus
we no longer have that g0n;l is determined by simply
integrating lower-order coefficients, but rather by coupled
first-order ODEs.
The expansion (38) is also lacking in that the initial

conditions for the gn;l are grossly underdetermined, as we
only have

gð0Þ ¼ 1 ∼
X
n

δn
X
l

gn;lð0Þ and

hð0Þ ¼ 0 ∼
X
n

δn
X
l

hn;lð0Þ ð39Þ

and similar initial conditions for the acceleration,

g0ð0Þ ∼
X
n

δn−1
X
l

g0n−1;lð0Þ þ lgn;lð0Þ: ð40Þ

Since the zeroth and first derivatives of g, h at 0
determine all higher derivatives at 0 through the LAD
equation (34), there is in principle an infinite hierarchy of
constraints resolving the underdetermination. However,
each rung of the ladder involves instanton terms of all
orders, so we cannot proceed iteratively. (The system is not
“triangular,” so to speak.)
We are thus unable to iteratively determine fully self-

consistently the precise transseries form of a specified
runaway or preaccelerating solution. We can however
truncate the system to one-instanton terms and assume
that their initial amplitudes areOðεÞ, which will be accurate
to Oðε2e2u=δÞ. To make contact with the preceding section
we will look for a solution such that

g0ð0Þ ¼ þ ε

δ
− δBpertðδÞ; ð41aÞ

h0ð0Þ ¼ ApertðδÞ: ð41bÞ

This again corresponds to a runaway with initial accel-
eration ε different from the critical. (This is for concreteness
only; the ODEs for the instanton coefficients are linear and
other initial conditions pose no greater problems.)
At n ¼ 0;l ¼ 0, we have g0;0 ¼ 1þ ε; h0;0 ¼ u, keep-

ing an integration constant that was implicitly dropped
in the perturbative solution in order to account for instan-
tonic contributions to the initial momentum. This implies
order ε corrections to the following perturbative terms,
beginning with g1;0¼−2ε−u;h1;0¼þε−u2

2
ðεþ1Þ. The

n ¼ 0;l ¼ 1 components [21] verify
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d
du

�
g0;1
h0;1

�
¼
�
g̃1;0 þ u −2
1þ 2u2 g̃1;0 − 3u

��
g0;1
h0;1

�

⇒

�
g0;1ðuÞ
h0;1ðuÞ

�
¼ −εeu2=2

�
cos2u

u cos2u− sin2u

�
:

ð42Þ
For any initial acceleration other than the critical the

instanton coefficients g0;1; h0;1 grow superexponentially,
i.e., we have a runaway solution.
This procedure can in principle be iterated to any

instanton order and any order in δ, although expand-
ing the rhs of Eq. (34) becomes progressively costlier.
At order δnelu=δ the instanton coefficients take the form
εlRe½Pn;lðuÞelðu2=2−2iuÞ� for some complex polynomial
Pn;l of degree n. We have calculated Pn;1 up to n ¼ 16,
for which the constant terms and leading coefficients
grow factorially and exponentially, respectively. Hence
just like the perturbative series, the instanton series must
also be resummed for small u, but are convergent when the
limit u → ∞ is taken inside the sum. We stress that this
result, as well as Eqs. (37) and (42), agrees with Ref. [21].
The Gaussian form can be understood as the instanton

coefficients reconstructing the nontrivial dependence
τðxþÞ. For the free solution,

τ

τ0
≈

xþ

τ0p
þ
0

−
ðxþÞ2 _pþ

0

τ0ðpþ
0 Þ3

¼ u
δ
þ u2

2
þOðu3δÞ ð43Þ

when the initial acceleration is (close to) the critical.
Because the quadratic term is independent of δ it appears
separately at each order and the modification to the
exponent can be read off directly. The next term in the
exponent, going like u3δ, cannot be identified at a single
order in δ, but would appear in an explicit resummation.

IV. CONCLUSIONS

We have used the Lorentz-Abraham-Dirac equation for
radiation reaction as a “laboratory” setting in which to
probe nonperturbative physics using transseries methods.
Our choice of the LAD equation for this purpose is
motivated both by a large current interest in radiation
reaction [3–5,10–13,18–21], and the fact that the LAD
equation features known, nonperturbative physics:
preacceleration and runaway solutions. It is also a time-
dependent problem, allowing us to study double expan-
sions (in a time and a coupling), while most applications
have looked at expansions in a coupling only
[15,17,18,24,43,46] (but see Refs. [19,21,56]).
Extending our previous work on reduction of order and

RR [20] we have shown that the nonperturbative runaway
solutions are eliminated by reduction of order only when an
essentially perturbative initial condition is applied. We
illustrate this with the toy model (similar examples are
found in several textbooks, e.g., Chapter 7 of Ref. [25])

z ¼ 1 − εz2 ð44Þ

for a small parameter ε. The two solutions to this
equation are

z� ¼ 1

2ε

	
−1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ε
p 


¼
�
1 − εþ 2ε2 − 5ε3 � � � ;
− 1

ε − 1þ ε − 2ε2 þ 5ε3 � � � : ð45Þ

If reduction of order is initiated with z0 ¼ 1þOðεÞ only
the purely perturbative solution zþ is seen. If on the other
hand an ansatz z0 ¼ c1=εþ c2 þOðεÞ including a possible
nonperturbative term is made, one finds two branches
ci;þ ¼ ð0; 1Þ and ci;− ¼ ð−1;−1Þ. These generate zþ and
z−, respectively. We see that it is not reduction of order
itself that eliminates nonperturbative terms, but reduction
of order combined with an initial condition on the purely
perturbative branch. When nonperturbative terms are large,
as is the case for the toy model (44) and the LAD equation,
this is the only branch smoothly connected to vanishing
expansion parameter. Thus we had to set an initial con-
dition (22) at nonzero expansion parameter to keep non-
perturbative runaway solutions with reduction of order.
We then considered the transseries structure of solutions

to the LAD equation. We showed that to generate a solution
of the LAD equation with a given initial (or final, for
preaccelerating solutions) acceleration, instanton terms of
all orders must, in general, be kept and their initial (final)
coefficients must be chosen consistently with the LAD
equation to the desired accuracy. The one exception to this
is when the initial acceleration leads to the physical,
nonrunaway solution; then all instanton terms vanish,
and the solution is entirely perturbative.
As time-dependent quantities, solutions to the LAD

equation exemplify that expansions in two variables can
display strikingly different behavior in different regions of
the variable plane and limits [56], and under nonlinear
transformations. First, the solution to the free LAD equa-
tion contains nonperturbative terms of all instanton orders
in one set of variables, but in another set these are
transmuted into perturbative terms. Second, in a field, both
the perturbative series and the instanton series are divergent
and must be resummed at small times, but are convergent
for large times.
The coupling parameter δ is smaller than the quantum

nonlinearity parameter χ by a factor of α. Our results for
δ≳ 1 should therefore be read as being about classical
electrodynamics as a formal theory. It would however
be interesting to consider, e.g., quantifying how much
closer LL∞, predicting less radiation reaction than LL1, is
to QED. Calculating to the necessary order in strong field
QED remains extremely challenging, but recent progress
on QED resummations and the Ritus-Narozhny conjecture
[17–19,65] offers some encouragement.
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Our results highlight that understanding the singularity
structure of the Borel transform of a series is important for
efficiently resumming it [30,47,48]. The series (37) is
difficult to resum at large, finite, times because it “looks”
convergent, with an analytic Borel transform, whereas the
Padé approximant has poles. Reference [21] found that a
nonlinear transformation effectively performed a partial
resummation in one variable leading to an expansion
divergent at all times, and therefore well-suited to Borel-
Padé resummation. We take this and our results as a strong
indication that a more thorough understanding of multi-
variable divergent expansions, Borel transforms, and
transseries would be highly useful to guide resummations
in time-dependent problems and other expansions in
multiple parameters.
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APPENDIX A: LL∞ IN A MONOCHROMATIC
PLANE WAVE

A circularly polarized monochromatic plane wave is
characterized by the wave vector kμ ¼ ωnμ, and the
invariants η ¼ k · p=m2 and δ2 ¼ τ20pf

2p. There are only
three possible tensor structures that can enter into LL∞,
essentially f; f2; ðp · ∂Þf, Because of the circular polari-
zation δ=η≕ a0 is a constant and the form of LL∞ must be

_pμ ¼ A1ðδÞfμνpν þ τ0A2ðδÞðPf2Þμνpν

þ τ0A3ðδÞfμν;ρpνpρ: ðA1Þ

Applying reduction of order leads to the fixed-point
condition analogous to Eq. (7),

8>><
>>:

−δ3A2A0
1 − 2δ2A1A2 − δ2

a2
0

A3 þ 1 ¼ A1;

−δ3A2A0
2 þA2

1 − 2δ2A2
2 þ δ2

a2
0

A2
3 ¼ A2;

−δ3A2A0
3 − 2δ2A2A3 þA1 ¼ A3:

: ðA2Þ

Note that a0 enters as a parameter, but there are only
derivatives with respect to δ, as a0 is constant. If
a0 ↦ ∞;A3 ↦ 0 the first two equations form Eq. (7)
after renaming. In this limit of a constant field, the third
equation drops out: it is the coefficient in the equation of
motion of the fμν;ρpνpρ term, which is then not present.
Starting with Ai ¼ 1þOðδ2Þ it is straightforward to

derive perturbative expansions in δ2. The δ2n coefficient is a
degree n polynomial in 1=a20; for A1;2 the a00 term recovers
the factorially divergent perturbative expansions of A, B
from the main text. We therefore expect the same Borel
singularity structure, and such is straightforwardly supported
with the experimental, graphical methods in the main text.
To analytically determine the nonperturbative exponent

we linearize the fixed-point equations (A2) around
Ai ¼ 1; 1=δ2 ¼ z ¼ ∞, resulting in

d
dz

0
B@

Ã1

Ã2

Ã3

1
CA ¼ 1

2

0
B@

1 0 0

−2 1 0

−1 0 1

1
CA

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
M

0
B@

Ã1

Ã2

Ã3

1
CAþ 1

2a20z

0
B@

2a20 −1 1

0 1þ 2a20 −2
0 0 2a20

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N

0
B@

Ã1

Ã2

Ã3

1
CAþ 1

2a20z

0
B@

1þ 2a20
−1þ 2a20

2a20

1
CA: ðA3Þ

The linearization is solved by writing Ai ¼ exp½Mz�ijBj which leads to the equation for Bi,

dBi

dz
¼

	
e−Mz N

z
eMz



ij
Bj þ

1

2a20
e−Mz

0
B@

1þ 2a20
−1þ 2a20

2a20

1
CA ¼ 1

z

0
B@

B1

ð1þ 1
2a2

0

ÞB2

B3

1
CAþ e−z=2

0
B@

1 0 0

z=a20 1 0

z=2a20 0 1

1
CA
0
B@

1þ 2a20
−1þ 2a20

2a20

1
CA;

ðA4Þ

and the general solution,

0
B@

Ã1

Ã2

Ã3

1
CA ¼ eMz

0
B@

c1z

c2z1þ1=2a2
0

c3z

1
CAþAi;p ¼ ez=2

0
B@

1 0 0

−z 1 0

−z=2 0 1

1
CA
0
B@

c1z

c2z1þ1=2a2
0

c3z

1
CA −

1

z

0
B@

2þ 1=a20
6þ 1=a20
4þ 1=a20

1
CA: ðA5Þ
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We see that the same nonperturbatively large exponen-
tial e1=2δ

2

appears as for the CCF. One of the powers has an
a0 dependence not seen for the CCF; this corresponds to
subleading, a0-dependant large-order behavior of the per-
turbative coefficients.

APPENDIX B: MODIFIED RICHARDSON
EXTRAPOLATION FOR LOGARITHMIC

CORRECTIONS

Richardson extrapolation (see Chapter 8.1 of Ref. [25])
can be used to accelerate the convergence of a quantity

fn ∼
X
k≥0

akn−k ⟶
n→∞

a0 ðB1Þ

from Oð1=nÞ to Oðn−K−1Þ for large n. Specifically letting
ðΔnfÞ ≔ fnþ1 − fn it holds that (in this Appendix all
asymptotic statements are as n → ∞)

RK½fn� ¼
1

K!
ðΔK

n nKfnÞ ¼ a0 þOðn−K−1Þ: ðB2Þ

However as discussed in Ref. [43], if the quantity fk has
logarithmic corrections, viz.,

fk ∼
X
k≥0

akn−k þ log n
X
k≥1

bkn−k ðB3Þ

the acceleration is spoiled. This was solved in Ref. [43] by
applying RK twice such that

RK½RK½fn�� ¼ a0 þOðn−K−1 log nÞ: ðB4Þ
There is an intuitive explanation for this. The operatorΔn

acts like a derivative: it lowers the degree of polynomials by
1, annihilates constants, and satisfies a quasi-Leibniz rule.
Furthermore Δn log n ¼ logð1þ 1=nÞ ¼ Oð1=nÞ. Hence
in the leading term with a logarithm in Eq. (B3),
nK−1 log n, the “derivative” ΔK

n has to act on log n at least
once to produce something nonzero. Acting another K − 1

times produces something that goes like n−1. This is why
logarithmic corrections spoil accelerated convergence, but
RK½fk� is itself free of logarithms. Thus simply applying RK

again kills subleading terms to order n−K−1, as desired.
Suppose now that there are subleading terms with

powers of log n, viz.,

fk ∼
X
k≥0

akn−k þ
Xp
l¼1

ðlognÞl
X
k≥1

bl;kn−k: ðB5Þ

Similarly to before, ΔK
n has to act on at least one

logarithmic factor in n−K−1ðlog nÞp to contribute, and
consequently ΔK

n nKfk goes like n−1ðlog nÞp−1. Iterating
we realize that Rp

k ½fn� is free of logarithms, and

Rpþ1
k ½fn� ¼ a0 þOðn−K−1ðlognÞpÞ: ðB6Þ
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