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Loop diagram calculations typically rely on reduction to a finite set of master integrals in 4 − 2ϵ
dimensions. It has been shown that for any problem, the masters can be chosen so that their coefficients are
finite as ϵ → 0. I propose a definition of renormalized ϵ-finite master integrals, which incorporate
ultraviolet divergence subtractions in a specific way. A key advantage of this choice is that in expressions
for physical observables, expansions to positive powers in ϵ are never needed. As an example, I provide the
subtractions for general three-loop self-energy integrals. The differential equations method is used to
compute numerically the renormalized ϵ-finite master integrals for the arbitrary external momentum
invariant, in special cases with internal masses equal to a single scale or zero. These include the ones
necessary for the three-loop QCD corrections to the self-energies of the W, Z, and Higgs bosons.
In principle, the same method should provide for the numerical computation of general three-loop self
energies with any masses.
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I. INTRODUCTION

Precision calculations of radiative corrections in relativ-
istic quantum field theory in the modern era almost always
make use of dimensional regularization [1–6] to

d ¼ 4 − 2ϵ ð1:1Þ
dimensions in order to deal with ultraviolet (UV) and
sometimes infrared (IR) divergences. The integration by
parts (IBP) method [7,8] can then be used to reduce the
expressions to linear combinations of so-called master
integrals, with coefficients that are rational expressions in
ϵ, the propagator squared masses, and the external momen-
tum invariants. There are an infinite number of IBP relations,
but only a finite number [9] of master integrals are needed to
express the results for any given problem. In principle, the
method of Ref. [10] can always be used to solve the IBP
relations. However, in practice, the reduction process can
have formidable memory and computing time requirements,
which has prompted the development of various advanced
algorithms and computer codes [11–23] to solve theproblem.
The choice ofmaster integrals is not unique, and there are at

least three distinct criteria one might use to choose them. One
goal might be to simplify as much as possible the task of the
reduction of a general integral to the masters. A second

possible criteria could be to simplify the analytic or numerical
calculation of themaster integrals themselves. A third criteria
might be to simplify as much as possible the presentation of
results for physical observables. These criteria need not
coincide, and can naturally lead to quite different choices
for themaster integrals. Someproposals for how to choose the
master integrals invarious contexts are given inRefs. [24–35].
In the present paper, I will be interested in the specific

goal of making the presentation of physical observables in
terms of the master integrals as simple as possible. First,
one often has to deal with the issue of “spurious” poles in ϵ,
which occur not in the master integrals themselves but in
the coefficients multiplying the master integrals in some
physical quantity of interest. These can be a quite common
occurrence when propagator masses vanish, and lead to the
following problem. If the coefficient of a master integral
has a pole 1=ϵn, then one will need the expansion of the
master integral itself up to order ϵn in order to obtain a
correct expression in the ϵ → 0 limit.
Fortunately, it was shown by Chetyrkin, Faisst, Sturm,

and Tentyukov in Ref. [24] that for any problem one can
always make a choice of the master integrals, called an
ϵ-finite basis, so that the coefficients multiplying them are
finite as ϵ → 0. The choice of an ϵ-finite basis1 is neither
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1Note that it is only the coefficients that are finite as ϵ → 0, not
the master integrals. If the propagator squared masses are all
nonzero and generic, then any basis without explicit factors of ϵ is
ϵ finite. Also, in practice, the “basis” chosen might actually be
overcomplete, either because not all linear relations between
them are known, or because imposing some of the known linear
relations would cause unwelcome complexity in coefficients.
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unique nor obvious in general, but the existence proof also
provides a simple algorithm for its construction. Moreover,
for a given diagram topology class, this property of ϵ
finiteness is independent of the physical observable being
calculated.
However, even after choosing an ϵ-finite basis for a given

fixed loop order, there is another problem to be considered.
Suppose one is doing a calculation at l-loop order in
perturbation theory, using master integrals at every loop
order k, with 1 ≤ k ≤ l. Then, when computing a renor-
malized quantity, each k-loop order master could be
multiplied by an (l − k)-loop-order counterterm, and can
also occur in factorized integrals multiplied by other master
integrals whose loop order totals l − k. In both cases,
k-loop order master integrals will be multiplied by poles as
severe as 1=ϵl−k. This would seem to suggest that for an
l-loop order calculation, even with an ϵ-finite basis, the
expansion of masters of lower loop order k will be needed
for all positive powers up to ϵl−k.
In this paper, I emphasize that the last problem is also

avoided if one expresses results in terms of what I will call
renormalized ϵ-finite master integrals. As explained in
more detail in the next section, these are obtained from
the ϵ-finite masters by subtracting UV subdivergences in a
specific way, and then taking the limit as ϵ → 0. The key
point is that when presenting results for the calculations of
renormalized observables, by organizing the results in
terms of renormalized ϵ-finite masters, it is never necessary
to expand to positive powers in ϵ. This remains true even if
the calculation is later extended to an arbitrary higher loop
order. A heuristic justification for why this pleasant feature
is not completely unexpected is that in the calculation of
renormalized physical observables, one could, in principle,
employ some other regulator not based on dimensional
continuation at all, in which case there would be no
essential reason for the appearance of higher moments
of the integrals continued away from d ¼ 4.
In this sense, the renormalized ϵ-finite masters provide

an optimal way of expressing and numerically computing
physical results, since the components with positive powers
of ϵ do not appear and will never be needed. The essential
reason for this is that the necessary renormalization of UV
divergences automatically works together with the counter-
terms included within the definitions of the masters
themselves, while IR divergences and other kinetic singu-
larities must cancel if the calculated quantity is indeed an
observable. This has already been verified for a variety of
effective potential, tadpole, and self-energy calculations up
to (now) three-loop order, as detailed below.
The rest of this paper is organized as follows. In the next

section, I give a definition of renormalized ϵ-finite master
integrals. In Sec. III, I explicitly provide the necessary
definitions for three-loop self-energy (and vacuum) func-
tions, which are the focus of the rest of the paper. In Sec. IV,
I review the results for the case of internal propagators that

are all massless, and in Sec. V for the case that all internal
propagators have the same nonzero mass. Sections VI and
VII treat the case of integrals that arise in the three-loop
QCD contributions to the self-energies of the W boson and
the Z,H bosons in the Standard Model, respectively. These
have one nonzero propagator mass (that of the top quark)
and other internal masses (for gluons and other quarks)
vanishing. Those results, obtained in the pure MS tadpole-
free scheme, will appear in a separate paper [36]. In each
case, a method for straightforward numerical computation
of the renormalized ϵ-finite master integrals (valid even for
the range of the external momentum invariant such that the
expansions around zero and infinite external momenta do
not converge) is given, based on the differential equations
method [37–50]. Section VIII contains some concluding
remarks.

II. RENORMALIZED ϵ-FINITE
MASTER INTEGRALS

Consider an l-loop scalar integral I in d ¼ 4 − 2ϵ
dimensions, which depends on some propagator squared
masses and external momentum invariants. Suppose that I
is a member of an ϵ-finite basis, as in Ref. [24]. Let us
define the corresponding renormalized integral I accord-
ing to

I ¼ lim
ϵ→0

�
I −

Xl

k¼0

Ik;div
�
; ð2:1Þ

where the UV k-loop subdivergences Ik;div have been
subtracted. More specifically,

Ik;div ¼
X
Jk

Jk
Xk
n¼1

1

ϵn
cðnÞJk

; ð2:2Þ

where the Jk are the integrals obtained from I by collapsing
UV-divergent k-loop subdiagrams to a point and eliminat-
ing the corresponding momentum integrations. Thus, each
Jk is an (l − k)-loop integral, and, in particular, Jl ¼ 1. The
sum over Jk is obtained by considering all of the comple-
mentary collapsed k-loop subdiagrams that contain UV

poles. The counterterm coefficients cðnÞJk
are polynomials in

the propagator squared masses and the external momentum
invariants, chosen so that I is free of UV divergences. Here,
the UV divergences are defined to be those obtained for
generic propagator squared masses and external momen-
tum invariants. All remaining poles in ϵ are called IR here,
although it might be more precise to say “non-UV.”2 In the
self-energy and vacuum integral cases studied explicitly
below, each renormalized ϵ-finite master integral I is well

2Integrals evaluated at thresholds can have non-UV poles in ϵ
that are also not IR divergences but are treated in the same way.
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defined and finite for ϵ → 0, and so is independent of ϵ, but
for more external legs it might be useful to keep remaining
poles as 1=ϵnIR.
One can also expand the original integral I in powers ϵn,

starting from the leading pole at n ¼ −l:

I ¼
X∞
n¼−l

ϵnIðnÞ: ð2:3Þ

However, I propose that physical (renormalized) results
should always be presented in terms of the integrals I, and
not in terms of the integrals Ið0Þ, which are different except
in the case that I is already finite. If one uses the Ið0Þ
integrals, then master integrals found at lower loop order
will have to be expanded to positive powers in ϵ. Instead,
organizing the results in terms of the integrals I avoids this,
and is most convenient for extensions of the calculation to
higher orders.
Renormalized ϵ-finite masters have already been defined

exactly as above and employed in various self-energy
calculations through two-loop order in Refs. [51–58],
and in the calculation of the effective potential through
three-loop order in Refs. [59–61]. In those previous
examples, the “renormalized” part of the definition of
the masters was paramount, ensuring that positive powers
in ϵ for one-loop and two-loop masters were not needed.
The ϵ finiteness did not really play a role, simply because
IR divergences were regulated by giving small regulator
masses to gauge bosons, Goldstone bosons, and chiral
fermions, rather than giving them exactly zero mass from
the start. In this paper, I will treat the case of self-energy
functions and vacuum integrals up to three-loop order, with
applications to QCD corrections to weak boson self-
energies in which gluons and the quarks other than the
top quark will be treated as exactly massless from the start.
These results appear in a companion paper [36], and
illustrate the thematic property that expansions of the
one-loop, two-loop, and three-loop masters to positive
powers in ϵ are never needed.

III. SELF-ENERGY INTEGRALS

A. General conventions

In this section I establish the notations and conventions
to be used below. Momentum integrals are defined in
terms of their Wick-rotated Euclidean versions in d ¼
4 − 2ϵ dimensions. In diagrams below, each line carrying
4-momentum kμ and with squared mass x represents a
propagator factor of 1=ðk2 þ xÞ, and the loop-momentum
integration measure is

Z
k
≡ ð16π2Þ μ2ϵ

ð2πÞd
Z

ddk: ð3:1Þ

The regularization scale μ is then traded for a scaleQ (equal
to the renormalization scale if the MS scheme [62,63] is
adopted) according to

Q2 ¼ 4πe−γμ2; ð3:2Þ

in terms of the Euler constant γ ¼ 0.5772156649…. Now
define

Lx ≡ lnðxÞ≡ lnðx=Q2Þ; ð3:3Þ

where the second notation was used in Refs. [48–50]
and the first notation will be used below. The external
momentum invariant for self-energy functions is defined
to be

s≡ −p2 þ iε; ð3:4Þ

with a Euclidean (or signature −þþþ) metric, so that

L−s ≡ lnð−sÞ ¼ lnðsÞ − iπ; ð3:5Þ

where the last equation holds for positive (physical) s.
Below, s and Q will always be suppressed as function
arguments, because they are always the same for all self-
energy functions in a given expression or equation.

B. One-loop and two-loop self-energy integrals

The master integrals for one-loop and two-loop scalar
self-energy integrals are as shown in Figure 1, following
the same notations and conventions as in Refs. [48–50].
Thus the (nonrenormalized) master integrals at one
loop are

AðxÞ ¼
Z
k

1

k2 þ x
; ð3:6Þ

Bðx; yÞ ¼
Z
k

1

½k2 þ x�½ðk − pÞ2 þ y� ; ð3:7Þ

and at two loops,

Iðx; y; zÞ ¼
Z
k

Z
q

1

½k2 þ x�½q2 þ y�½ðkþ qÞ2 þ z� ; ð3:8Þ

Sðx; y; zÞ ¼
Z
k

Z
q

1

½k2 þ x�½q2 þ y�½ðkþ q − pÞ2 þ z� ;

ð3:9Þ

Tðx; y; zÞ ¼
Z
k

Z
q

1

½k2 þ x�2½q2 þ y�½ðkþ q − pÞ2 þ z� ;

ð3:10Þ
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Uðw; x; y; zÞ ¼
Z
k

Z
q

1

½k2 þ w�½ðk − pÞ2 þ x�½q2 þ y�½ðkþ q − pÞ2 þ z� ; ð3:11Þ

Mðv; w; x; y; zÞ ¼
Z
k

Z
q

1

½k2 þ v�½q2 þ w�½ðk − pÞ2 þ x�½ðq − pÞ2 þ y�½ðk − qÞ2 þ z� : ð3:12Þ

Note that the dot on a propagator in the diagram indicates that the propagator is doubled.

Derivatives of the above master integrals with respect to
the squared mass arguments are useful. For the one-loop
integrals and the two-loop vacuum integral:

∂
∂xAðxÞ ¼ ð1 − ϵÞAðxÞ=x; ð3:13Þ

∂
∂xBðx; yÞ ¼

1

Δsxy
½ð1 − 2ϵÞðx − y − sÞBðx; yÞ

þ ð1 − ϵÞfðxþ y − sÞAðxÞ=x − 2AðyÞg�;
ð3:14Þ

∂
∂x Iðx; y; zÞ ¼

1

Δxyz
½ð1 − 2ϵÞðx − y − zÞIðx; y; zÞ

þ ð1 − ϵÞfðx − yþ zÞAðxÞAðyÞ=x
þ ðxþ y − zÞAðxÞAðzÞ=x − 2AðyÞAðzÞg�;

ð3:15Þ

where the triangle function is

Δxyz ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz: ð3:16Þ

For the two-loop self-energy integrals, the simplest deriva-
tive is

∂
∂xSðx; y; zÞ ¼ −Tðx; y; zÞ; ð3:17Þ

since it is merely a definition. The other derivatives of
two-loop integrals with respect to squared mass arguments
are somewhat more complicated, and so the complete set of
squared mass derivatives of A, B, I, S, T, U, and M are
provided in electronic form in Ref. [64] for generic
values of the squared masses. Also provided in that
file are the derivatives with respect to s, which can be
obtained from the squared mass derivatives by dimensional
analysis.
Following the protocols given in the Introduction, the

renormalized one-loop master integrals are now defined by
subtracting the UV-divergent parts and taking the limit:

AðxÞ ¼ lim
ϵ→0

½AðxÞ þ x=ϵ� ¼ xLx − x; ð3:18Þ

Bðx; yÞ ¼ lim
ϵ→0

½Bðx; yÞ − 1=ϵ�

¼ −
Z

1

0

dt ln½txþ ð1 − tÞy − tð1 − tÞs�: ð3:19Þ

The first of these equations allows us to trade AðxÞ for Lx at
will, while the second can be easily evaluated analytically.
For the two-loop three-propagator renormalized master
integral, define [following the general form of Eqs. (2.1)
and (2.2)]

Sðx; y; zÞ ¼ lim
ϵ→0

½Sðx; y; zÞ − S1;divðx; y; zÞ − S2;divðx; y; zÞ�;
ð3:20Þ

FIG. 1. Topologies for one-loop and two-loop self-energy and vacuum master integrals in Eqs. (3.6)–(3.12), following the same
conventions and notations used in Refs. [48–50]. The integer labels on the internal lines denote the ordering of internal propagator
squared mass arguments.
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with contributions from one-loop and two-loop UV
subdivergences:

S1;divðx; y; zÞ ¼ 1

ϵ
½AðxÞ þAðyÞ þAðzÞ�; ð3:21Þ

S2;divðx; y; zÞ ¼ 1

2ϵ2
ðxþ yþ zÞ þ 1

2ϵ
ðs=2 − x − y − zÞ:

ð3:22Þ

The renormalized integrals Iðx; y; zÞ and Tðx; y; zÞ follow
immediately from the above, as

Iðx; y; zÞ ¼ Sðx; y; zÞjs¼0; ð3:23Þ

Tðx; y; zÞ ¼ −
∂
∂x Sðx; y; zÞ: ð3:24Þ

Next, define for the four-propagator renormalized integral

Uðw; x; y; zÞ ¼ lim
ϵ→0

½Uðw; x; y; zÞ −U1;divðw; x; y; zÞ
−U2;divðw; x; y; zÞ�; ð3:25Þ

where the one-loop and two-loop UV subdivergence
contributions are

U1;divðw; x; y; zÞ ¼ 1

ϵ
Bðw; xÞ; ð3:26Þ

U2;divðw; x; y; zÞ ¼ −
1

2ϵ2
þ 1

2ϵ
: ð3:27Þ

Finally, the five-propagator two-loop self-energy master
integral is free of UV subdivergences, so

Mðv; w; x; y; zÞ ¼ lim
ϵ→0

Mðv; w; x; y; zÞ: ð3:28Þ

The derivatives of the renormalized integrals A, B, I, S,
T, U, M, with respect to each of their squared mass
arguments, and s, can all be found in Ref. [48]. For
convenience, they are also all provided in Ref. [64].
Also, the implicit dependences of the renormalized inte-
grals on Q are given by

Q2
∂

∂Q2
AðxÞ ¼ −x; ð3:29Þ

Q2
∂

∂Q2
Bðx; yÞ ¼ 1; ð3:30Þ

Q2
∂

∂Q2
Iðx;y;zÞ¼AðxÞþAðyÞþAðzÞ−x−y− z; ð3:31Þ

Q2
∂

∂Q2
Sðx;y;zÞ¼AðxÞþAðyÞþAðzÞ−x−y− zþ s=2;

ð3:32Þ

Q2
∂

∂Q2
Tðx; y; zÞ ¼ −AðxÞ=x; ð3:33Þ

Q2
∂

∂Q2
Uðw; x; y; zÞ ¼ 1þ Bðw; xÞ; ð3:34Þ

Q2
∂

∂Q2
Mðv; w; x; y; zÞ ¼ 0: ð3:35Þ

It is also often convenient to define

Vðw; x; y; zÞ ¼ −
∂
∂xUðw; x; y; zÞ: ð3:36Þ

Strictly speaking, this is not a master integral unless one of
the squared masses vanishes, as it can be expressed in terms
of the others (see Ref. [64], or Eqs. (3.22)–(3.28) of
Ref. [48], for the explicit form). However, using it often
simplifies expressions in practice. Moreover, if one of the
squared masses vanishes, then Tð0; x; yÞ has a doubled
massless propagator and is therefore IR divergent, so it is
not available as an ϵ-finite master integral. However, it can
be replaced by either of the ϵ-finite integrals Vðx; y; 0; yÞ or
Vðy; x; 0; xÞ, or by the integral defined by the finite limit in
which the mass-regulated IR divergence is subtracted:

T̄ð0; x; yÞ ¼ lim
z→0

½Tðz; x; yÞ þ LzBðx; yÞ�: ð3:37Þ

The relation between T̄ð0; x; yÞ and Vðx; y; 0; yÞ is given by
(see the Appendix of Ref. [51], which contains some
similar identities)

T̄ð0; x; yÞ ¼ 2y

�
Vðx; y; 0; yÞ þ ð2 − LyÞ

∂
∂yBðx; yÞ

�

þ Tðy; 0; xÞ þ LyBðx; yÞ: ð3:38Þ

For the special case y ¼ x in Sec. VII of the present paper, I
will choose to use Vðx; x; 0; xÞ as one of the master
integrals. The program TSIL [49] can be used for fast
and accurate numerical evaluation of the renormalized
ϵ-finite master integrals A; B; I; S; T; T̄; U; V;M for any
desired values of the arguments.
There are already several calculations that show by

explicit example that the renormalized ϵ-finite master
integrals are the only ones needed to express renormalized
two-loop self-energy observables in a general theory. These
include the self-energies of scalars in Refs. [51–54],
fermions in Refs. [55,56], and the Standard Model W
and Z vector bosons in Refs. [57,58]. One might perhaps
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have thought that the integrals AϵðxÞ and Bϵðx; yÞ
defined by

AðxÞ ¼ −
x
ϵ
þ AðxÞ þ ϵAϵðxÞ þ ϵ2Aϵ2ðxÞ…; ð3:39Þ

Bðx;yÞ¼1

ϵ
þBðx;yÞþϵBϵðx;yÞþϵ2Bϵ2ðx;yÞþ… ð3:40Þ

might be necessary. However, this is not the case. In fact, it
proved a useful check on the calculations listed above to
observe the complete cancellation of Aϵ and Bϵ in the
expressions for renormalized quantities. In a similar way,
I have checked explicitly in Ref. [36] that in the three-loop
calculation of scalar and vector boson self-energy func-
tions, one does not need Aϵ2 or Bϵ2, or the coefficients
of positive powers of ϵ in the two-loop functions I, S,
T, U, M, either.3 All occurrences of them cancel. Among
the one-loop and two-loop integral functions, only
A;B; I; S; T; U;M (and either T̄ or V if a squared mass

vanishes) are needed for the self-energy expressed in terms
of renormalized couplings and masses, even at three-loop
order. A similar statement holds for the general three-loop
effective potential, as shown explicitly in Ref. [61]. This is
presumably true at all orders in perturbation theory. It
should also hold in on-shell and hybrid type renormaliza-
tion schemes, since they can be related to the modified
minimal subtraction scheme by redefinitions involving
renormalized physical quantities.

C. Three-loop self-energy integrals

Consider scalar self-energy functions at three-loop order,
which can have the topologies in Fig. 2, with denominators
arising from arbitrary powers of the propagators shown,
and numerators that are polynomials in scalar products of
the external 4-momenta pμ, and the loop integration
momenta qμ, kμ, rμ. In this paper, I define “candidate
master” three-loop scalar self-energy integrals as follows.

First, we have three eight-propagator scalar integrals

I8aðx1; x2; x3; x4; x5; x6; x7; x8Þ ¼
Z
q

Z
k

Z
r
f½q2 þ x1�½k2 þ x2�½r2 þ x3�½ðr − pÞ2 þ x4�

× ½ðq − pÞ2 þ x5�½ðq − kÞ2 þ x6�½ðk − rÞ2 þ x7�½ðr − qÞ2 þ x8�g−1 ð3:41Þ

I8bðx1; x2; x3; x4; x5; x6; x7; x8Þ ¼
Z
q

Z
k

Z
r
f½q2 þ x1�½k2 þ x2�½r2 þ x3�½ðr − pÞ2 þ x4�

× ½ðq − pÞ2 þ x5�½ðq − kÞ2 þ x6�½ðk − rÞ2 þ x7�½ðk − pÞ2 þ x8�g−1 ð3:42Þ

I8cðx1; x2; x3; x4; x5; x6; x7; x8Þ ¼
Z
q

Z
k

Z
r
f½q2 þ x1�½k2 þ x2�½r2 þ x3�½ðr − pÞ2 þ x4�

× ½ðq − pÞ2 þ x5�½ðq − kÞ2 þ x6�½ðk − rÞ2 þ x7�½ðqþ r − k − pÞ2 þ x8�g−1; ð3:43Þ

as depicted in the top row of Fig. 2. The last of these has a nonplanar topology.

Besides the eight-propagator integrals, it is necessary to
also include all integrals obtained from them by removing
one or more of the scalar propagator factors, as shown in
the remaining rows of Fig. 2. In particular, this figure
defines the seven-propagator integrals labeled I7a, I7b, I7c,
I7d, and I7e, the six-propagator integrals shown in the third
and fourth rows, the five-propagator integrals in the fifth
row, and the four-propagator integrals in the sixth row. In
each case, the ordering of the squared mass arguments
x1; x2;…, is indicated by the integer labels. The external
momentum invariant s and the renormalization scale Q are

the same in each case, so they are not included explicitly in
the list of arguments.
However, the integrals just defined (with unit numerator,

and denominators with only single powers of propagators)
are not sufficient. In addition, the list of candidate master
integrals includes all integrals obtained from the ones
shown by doubling one of the propagators, which is the
same as taking the negative of the derivative with respect to
the corresponding squared mass argument. This is indicated
by adding the corresponding integer to the end of the
subscript in the integral name, for example,

I41ðw; x; y; zÞ ¼ −
∂
∂w I4ðw; x; y; zÞ; ð3:44Þ

I5a1ðv; w; x; y; zÞ ¼ −
∂
∂v I5aðv; w; x; y; zÞ; ð3:45Þ

3In the particular cases of AðxÞ and Bðx; yÞ, the expansions to
all orders in ϵ are known; see Ref. [65] for the latter in terms of
Nielsen polylogarithms. The point being made here is that these
should never be needed.
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I6c5ðu; v; w; x; y; zÞ ¼ −
∂
∂y I6cðu; v; w; x; y; zÞ: ð3:46Þ

However, for the eight-propagator integrals, I find that
derivatives of I8a and I8b are never necessary, and only
one of the two distinct derivatives of I8c is necessary, which
can be chosen to be I8c1. Besides the preceding, a few
other integrals are useful in the general case. For the

four-propagator topology only, define an integral with both
of the first two propagators doubled:

I412ðw; x; y; zÞ ¼
∂2

∂w∂x I4ðw; x; y; zÞ; ð3:47Þ

and one with the first propagator tripled:

I411ðw; x; y; zÞ ¼
1

2

∂2

∂w2
I4ðw; x; y; zÞ: ð3:48Þ

FIG. 2. Topologies for three-loop self-energy and vacuum scalar integrals. The integer labels on the internal lines denote the ordering
of the propagator squared mass arguments adopted in this paper. The vacuum integrals F, G, and H follow the conventions also used in
Refs. [50,61]. For the self-energy integrals with names containing I, the first (integer) subscript in the name is the number of internal
propagator lines. Not shown are topologies that factorize into products of one-loop and two-loop integrals.
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Finally, for the nonplanar eight-propagator topology (8c) only, it is evidently necessary (see, for example, the
case of all masses equal, considered in Sec. V below) to define a master integral with p · k in the integrand numerator:

Ipk8c ðx1; x2; x3; x4; x5; x6; x7; x8Þ ¼
Z
q

Z
k

Z
r
p · kf½q2 þ x1�½k2 þ x2�½r2 þ x3�½ðr − pÞ2 þ x4�

× ½ðq − pÞ2 þ x5�½ðq − kÞ2 þ x6�½ðk − rÞ2 þ x7�½ðqþ r − k − pÞ2 þ x8�g−1: ð3:49Þ

Together with products of one-loop and two-loop integrals,
this concludes4 the listing of the three-loop candidate
master self-energy integrals. Not all of these will be linearly
independent, so the number of actual master integrals will
always be smaller, depending on the choice of squared
mass arguments. Also, integrals with IR divergences
cannot be ϵ-finite masters. The IR divergent cases include
any integral with a doubled massless propagator, and
also integrals I7dðx1; 0; 0; 0; 0; 0; 0Þ for any x1, and
I8að0; 0; 0; x4; x5; 0; 0; 0Þ for any x4 and x5. The choice
of the masters from among the candidate masters is not
unique. Furthermore, the possibility of identities that could
eliminate one or more of the putative masters is not always
easy to rule out. However, it does no harm (except, in some
cases, some avoidable complication) to include extra
masters beyond a minimal set. In some cases, including
extra masters may lead to more compact expressions.
I now proceed to define the renormalized ϵ-finite

masters. First, for the vacuum integrals Fðw; x; y; zÞ,
Gðv; w; x; y; zÞ, and Hðu; v; w; x; y; zÞ, the definitions have
already been provided in Sec. II of Ref. [50], and also
coincide with the definitions given below for I41ðw; x; y; zÞ,
I5aðv; w; x; y; zÞ, and I6dðu; v; x; w; z; yÞ with s ¼ 0. The
program 3VIL provides for the fast and accurate evaluation
of the functions F, G, and H with arbitrary arguments,
including various special cases given originally in
Refs. [66–81]. For another approach to the numerical
calculation of three-loop vacuum and self-energy integrals
with general masses, see Refs. [82,83], respectively.
For the four-propagator self-energy integral [compare to

the general form of Eqs. (2.1) and (2.2)]:

I4ðw;x;y;zÞ¼ lim
ϵ→0

½I4ðw;x;y;zÞ−I1;div4 ðw;x;y;zÞ
−I2;div4 ðw;x;y;zÞ−I3;div4 ðw;x;y;zÞ�; ð3:50Þ

where the one-loop, two-loop, and three-loop UV sub-
divergence subtractions are

I1;div4 ðw; x; y; zÞ ¼ 1

ϵ
½AðwÞAðxÞ þAðwÞAðyÞ þAðwÞAðzÞ

þAðxÞAðyÞ þAðxÞAðzÞ
þAðyÞAðzÞ�; ð3:51Þ

I2;div4 ðw;x;y;zÞ¼
��

1

2ϵ2
−
1

2ϵ

�
ðxþyþzÞ

þ 1

4ϵ
ðsþwÞ

�
AðwÞþðthree permutationsÞ;

ð3:52Þ

I3;div4 ðw; x; y; zÞ ¼ s2

36ϵ
þ
�

1

6ϵ2
−

1

8ϵ

�
sðwþ xþ yþ zÞ

þ
�

1

6ϵ2
−

3

8ϵ

�
ðw2 þ x2 þ y2 þ z2Þ

þ
�

1

3ϵ3
−

2

3ϵ2
þ 1

3ϵ

�
ðwxþ wyþ wz

þ xyþ xzþ yzÞ: ð3:53Þ
The expressions for the renormalized integrals I41, I411, and
I412 are easily obtained from the above by taking derivatives
with respect to the squared mass arguments, following from
Eqs. (3.44), (3.47), and (3.48), by making use of Eq. (3.13).
The remaining renormalized masters are constructed in

an entirely analogous way. For the five-propagator inte-
grals, the subtractions before taking the limit ϵ → 0 are

I1;div5a ðv; w; x; y; zÞ ¼ 1

ϵ
½Sðv; w; xÞ þ Sðv; y; zÞ�; ð3:54Þ

I2;div5a ðv; w; x; y; zÞ ¼ −
1

ϵ2
AðvÞ þ

�
1

2ϵ
−

1

2ϵ2

�
½AðwÞ þAðxÞ þAðyÞ þAðzÞ�; ð3:55Þ

I3;div5a ðv; w; x; y; zÞ ¼
�
−

1

6ϵ2
þ 1

12ϵ

�
sþ

�
−

1

6ϵ3
þ 1

2ϵ2
−

2

3ϵ

�
ðwþ xþ yþ zÞ þ

�
−

1

3ϵ3
þ 1

3ϵ2
þ 1

3ϵ

�
v; ð3:56Þ

4Integrals that would be redundant by symmetry are not included; for example, there is no I5a3, because I5a3ðv; w; x; y; zÞ would be
the same as I5a2ðv; x; w; y; zÞ.
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and

I1;div5b ðv; w; x; y; zÞ ¼ 1

ϵ
½Sðv; w; xÞ þ Iðv; y; zÞ�; ð3:57Þ

I2;div5b ðv; w; x; y; zÞ ¼ −
1

ϵ2
AðvÞ þ

�
1

2ϵ
−

1

2ϵ2

�

× ½AðwÞ þAðxÞ þAðyÞ þAðzÞ�;
ð3:58Þ

I3;div5b ðv;w;x; y; zÞ ¼
�
−

1

12ϵ2
þ 5

24ϵ

�
s

þ
�
−

1

6ϵ3
þ 1

2ϵ2
−

2

3ϵ

�
ðwþ xþ yþ zÞ

þ
�
−

1

3ϵ3
þ 1

3ϵ2
þ 1

3ϵ

�
v; ð3:59Þ

and

I1;div5c ðv; w; x; y; zÞ ¼ 1

ϵ
Bðv; wÞ½AðxÞ þAðyÞ þAðzÞ�;

ð3:60Þ

I2;div5c ðv;w;x;y;zÞ¼−
1

4ϵ
AðvÞ

þ
�
1

2ϵ
−

1

2ϵ2

�
½AðxÞþAðyÞþAðzÞ�

þ
��

1

2ϵ2
−
1

2ϵ

�
ðxþyþzÞþ 1

4ϵ
w

�
Bðv;wÞ;

ð3:61Þ

I3;div5c ðv; w; x; y; zÞ ¼ −
1

12ϵ
sþ

�
−

1

6ϵ2
þ 3

8ϵ

�
ðvþ wÞ

þ
�
−

1

3ϵ3
þ 2

3ϵ2
−

1

3ϵ

�
ðxþ yþ zÞ:

ð3:62Þ

Again the corresponding expressions for I5a1; I5a2;… are
obtained from the above by taking derivatives with respect
to the appropriate squared mass arguments in the obvious
way, making use of Eqs. (3.13)–(3.15) and (3.17).
The subtractions for the six-propagator three-loop self-

energy integrals are given by

I1;div6a ðu; v; w; x; y; zÞ ¼ 1

ϵ
½Uðu; v; w; xÞ þ Uðu; v; y; zÞ�;

ð3:63Þ

I2;div6a ðu; v; w; x; y; zÞ ¼ −
1

ϵ2
Bðu; vÞ; ð3:64Þ

I3;div6a ðu; v; w; x; y; zÞ ¼ 1

3ϵ3
−

1

3ϵ2
−

1

3ϵ
; ð3:65Þ

and

I1;div6b ðu; v; w; x; y; zÞ ¼ 1

ϵ
½Uðu; v; y; zÞ þ Uðv; u; w; xÞ�;

ð3:66Þ

I2;div6b ðu; v; w; x; y; zÞ ¼ −
1

ϵ2
Bðu; vÞ; ð3:67Þ

I3;div6b ðu; v; w; x; y; zÞ ¼ 1

3ϵ3
−

1

3ϵ2
−

1

3ϵ
; ð3:68Þ

and

I1;div6c ðu; v; w; x; y; zÞ ¼ 1

ϵ
Uðu; v; w; xÞ; ð3:69Þ

I2;div6c ðu; v; w; x; y; zÞ ¼
�
1

2ϵ
−

1

2ϵ2

�
Bðu; vÞ; ð3:70Þ

I3;div6c ðu; v; w; x; y; zÞ ¼ 1

6ϵ3
−

1

2ϵ2
þ 2

3ϵ
; ð3:71Þ

and

I1;div6d ðu; v; w; x; y; zÞ ¼ I2;div6d ðu; v; w; x; y; zÞ ¼ 0; ð3:72Þ

I3;div6d ðu; v; w; x; y; zÞ ¼ 2ζ3=ϵ; ð3:73Þ

and

I1;div6e ðu; v; w; x; y; zÞ ¼ 1

ϵ
Uðv; w; u; xÞ; ð3:74Þ

I2;div6e ðu; v; w; x; y; zÞ ¼
�
1

2ϵ
−

1

2ϵ2

�
Bðv; wÞ; ð3:75Þ

I3;div6e ðu; v; w; x; y; zÞ ¼ 1

6ϵ3
−

1

2ϵ2
þ 2

3ϵ
; ð3:76Þ

and

I1;div6f ðu; v; w; x; y; zÞ ¼ 1

ϵ
Bðu; vÞBðw; xÞ; ð3:77Þ

I2;div6f ðu; v; w; x; y; zÞ ¼
�
1

2ϵ
−

1

2ϵ2

�
½Bðu; vÞ þ Bðw; xÞ�;

ð3:78Þ

I3;div6f ðu; v; w; x; y; zÞ ¼ 1

3ϵ3
−

2

3ϵ2
þ 1

3ϵ
: ð3:79Þ
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Again the corresponding expressions for I6a1; I6a3;… are
obtained from the above by taking derivatives with respect
to the appropriate squared mass arguments, making use of
Eq. (3.14) and the corresponding formulas for the deriv-
atives of U, which can be found in Ref. [64].
For the seven-propagator three-loop integrals, only I7c

and I7e have UV divergences. The corresponding sub-
tractions are

I1;div7c ðt; u; v; w; x; y; zÞ ¼ 1

ϵ
Mðt; u; w; v; xÞ; ð3:80Þ

I2;div7c ðt;u;v;w;x;y;zÞ¼ I3;div7c ðt;u;v;w;x;y;zÞ¼ 0; ð3:81Þ

and

I1;div7e ðt; u; v; w; x; y; zÞ ¼ 1

ϵ
Mðt; w; u; v; xÞ; ð3:82Þ

I2;div7e ðt;u;v;w;x;y;zÞ¼ I3;div7e ðt;u;v;w;x;y;zÞ¼ 0: ð3:83Þ

The corresponding expressions for I7c1; I7c3;… are
obtained by making use of the formulas for the derivatives
of M with respect to its squared mass arguments, as given
in Ref. [64].
There are no UV divergences, and therefore no sub-

tractions, for the seven-propagator candidate masters I7a,

I7b, I7d, and the eight-propagator integrals I8a, I8b, I8c,
and Ipk8c . The renormalized ϵ-finite candidate masters I7a,
I7b, I7d, I8a, I8b, I8c, and Ipk8c are therefore just the ϵ → 0

limits of the bold-faced integrals. The same holds for
arbitrary derivatives of them with respect to their squared
mass arguments.
The renormalized masters that required UV subtractions

depend on the scale Q, although this dependence is
suppressed from the list of arguments. The results for
Q ∂

∂Q are determined by the above definitions, and are given
in Ref. [64].
One approach is to treat all squared masses as completely

generic, in which case IR divergences are regularized by the
nonzero values assigned to gauge bosons and chiral fer-
mions, which can be sent to zero at the end of calculation. If,
on the other hand, we impose special relations among the
masses (typically, that some of them vanish, and/or that
others are equal to each other) then expressions can bemuch
simpler but it is not completely trivial to choose an ϵ-finite
basis for themaster integrals.Wewill do this in some notable
special cases in Secs. IV, V, VI, and VII.
To conclude this section, note that the relationship

between the original (bold-faced) and renormalized inte-
grals can of course be inverted, in an expansion in ϵ. For
example, for the four-propagator self-energy integral, one
can write

I4ðw; x; y; zÞ ¼
1

ϵ3
Ið−3Þ4 ðw; x; y; zÞ þ 1

ϵ2
Ið−2Þ4 ðw; x; y; zÞ þ 1

ϵ
Ið−1Þ4 ðw; x; y; zÞ þ Ið0Þ4 ðw; x; y; zÞ þ… ð3:84Þ

where

Ið−3Þ4 ðw;x;y;zÞ¼ðwxþwyþwzþxyþxzþyzÞ=3; ð3:85Þ

Ið−2Þ4 ðw; x; y; zÞ ¼ −sðwþ xþ yþ zÞ=12 − ðw2 þ x2 þ y2 þ z2Þ=12þ ðwxþ wyþ xyþ wzþ xzþ yzÞ=3
− ½ðxþ yþ zÞAðwÞ þ ðwþ yþ zÞAðxÞ þ ðwþ xþ zÞAðyÞ þ ðwþ xþ yÞAðzÞ�=2; ð3:86Þ

Ið−1Þ4 ðw; x; y; zÞ ¼ s2=36 − sðwþ xþ yþ zÞ=8 − 3ðw2 þ x2 þ y2 þ z2Þ=8þ ðwxþ wyþ wzþ xyþ xzþ yzÞ=3
þ ðsþ w − 2x − 2y − 2zÞAðwÞ=4þ ðsþ x − 2w − 2y − 2zÞAðxÞ=4þ ðsþ y − 2w − 2x − 2zÞAðyÞ=4
þ ðsþ z − 2w − 2x − 2yÞAðzÞ=4þ AðwÞAðxÞ þ AðwÞAðyÞ þ AðwÞAðzÞ þ AðxÞAðyÞ þ AðxÞAðzÞ
þ AðyÞAðzÞ − ðxþ yþ zÞAϵðwÞ=2 − ðwþ yþ zÞAϵðxÞ=2 − ðwþ xþ zÞAϵðyÞ=2
− ðwþ xþ yÞAϵðzÞ=2; ð3:87Þ

Ið0Þ4 ðw; x; y; zÞ ¼ I4ðw; x; y; zÞ þ s½AϵðwÞ þ AϵðxÞ þ AϵðyÞ þ AϵðzÞ�=4þ AðwÞ½AϵðxÞ þ AϵðyÞ þ AϵðzÞ� þ AðxÞ½AϵðwÞ
þ AϵðyÞ þ AϵðzÞ� þ AðyÞ½AϵðwÞ þ AϵðxÞ þ AϵðzÞ� þ AðzÞ½AϵðwÞ þ AϵðxÞ þ AϵðyÞ�
− ðxþ yþ zÞ½AϵðwÞ þ Aϵ2ðwÞ�=2 − ðwþ yþ zÞ½AϵðxÞ þ Aϵ2ðxÞ�=2 − ðwþ xþ zÞ½AϵðyÞ þ Aϵ2ðyÞ�=2
− ðwþ xþ yÞ½AϵðzÞ þ Aϵ2ðzÞ�=2þ ½wAϵðwÞ þ xAϵðxÞ þ yAϵðyÞ þ zAϵðzÞ�=4: ð3:88Þ
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However, I emphasize that integral functions like Ið0Þ4 , which
occur as the coefficient of ϵ0 in the expansion of the original
integrals, are quite suboptimal for expressing results for
renormalized physical quantities. This is because writing
three-loop results in terms of such integrals requires that the
expressions will also include AϵðxÞ, Aϵ2ðxÞ, as can be seen
from Eq. (3.88). Similarly, for quantities with five or more
propagators, Bϵðx; yÞ, Bϵ2ðx; yÞ, Sϵðx; y; zÞ etc. will appear,
which involve the coefficients of positive powers of ϵ from
integrals at lower loop order than the calculation being
performed. The big advantage of organizing results in terms
of the renormalized ϵ-finite integrals like I4ðw; x; y; zÞ is that
such coefficients of positive powers of ϵ are never needed.
This property should persist to arbitrary loop order.

D. Numerical evaluation by differential equations

For the case of self-energy renormalized ϵ-finite master
integrals, the derivatives with respect to s can be expressed
as linear combinations of them:

d
ds

Ij ¼
X
k

cjkIk; ð3:89Þ

where the coefficients cjk are rational functions of s and the
internal propagator squared masses. (Note that the cjk do
not depend on ϵ in this approach, since the Ij are
independent of ϵ by construction.) Once these coefficients
have been found, as we will do below in various special
cases, then one can solve the coupled first-order differential
equations numerically, using a Runge-Kutta or similar
algorithm.
The initial boundary conditions for the numerical inte-

gration of the differential equations can be obtained at or
near s ¼ 0. If s ¼ 0 is not a threshold for any of the master
integrals under consideration, then the initial boundary
conditions can typically be set at s ¼ 0 in terms of the
vacuum integral masters, available in the notation of the
present paper from Ref. [50], incorporating some original
analytic calculations for special cases from Refs. [66–81].
If s ¼ 0 is a threshold for one or more of the masters, then
one can instead choose an initial boundary condition at
some small s0. To do so, the self-energy masters can be
written as a series expansion in small s, with coefficients
obtained using the same differential equations (3.89) and
expressed in terms of the vacuum integral masters. The
initial conditions are then evaluated at an appropriate s ¼
s0 within the radius of convergence of the series.
In order to obtain the correct imaginary parts of the

masters, one can follow the strategy introduced in
Refs. [45,46] by using a contour in the upper-half complex
plane for the Runge-Kutta integration, thus avoiding branch
cuts and other special points on the Im½s� ¼ 0 line, as
shown in Fig. 3. This procedure is the one used by the

program TSIL [49], to find the two-loop self-energy
renormalized masters for general squared masses.
I have constructed a similar (but not particularly well-

optimized) mathematica program to compute the three-loop
master integrals for the special cases considered in
Secs. V, VI, and VII below. (It is left as an exercise for
the reader to do the same.) In principle, this should be
straightforward in more general cases, although the coef-
ficients will be considerably more complicated and
some optimization (including partial fraction decomposi-
tion of coefficient functions, and certain specialized Runge-
Kutta routines designed to minimize numerical problems
and improve calculation speed near thresholds) may be
needed.
There are several advantages of the numerical evaluation

method outlined above. First, all of the masters descended
from a given topology are obtained simultaneously as the
result of a single calculation. Second, the Runge-Kutta
method (and refinements thereof) tends to be faster and
more accurate than multidimensional integral methods.
Third, changing the contour in the upper-half complex s
plane allows for consistency checks and numerical error
estimates.

IV. THE CASE OF MASSLESS
INTERNAL PROPAGATORS

In this section, I review the case that all internal masses
vanish, where the integrals are all known analytically. This
will help to illustrate the connection between the general
notation and the known results in this special case.
With all vanishing masses, the renormalized ϵ-finite

master integrals do not include doubled propagators, as
these are IR divergent. The scalar integrals for the topol-
ogies I7d and I8a are also easily seen to be IR divergent,
despite not having doubled massless propagators. By using
the IBP relations and known results [7,8,84–87], one finds

FIG. 3. Path in the complex s plane for numerical integration of
first-order coupled differential equations for the master integrals.
The integration starts at s ¼ s0 chosen within the domain of
convergence of the small-s series expansion. The contour avoids
singular points in the differential equations (shown here as
occurring at s ¼ 4t, 9t, and 16t, as in Sec. V) by proceeding
in the upper-half complex plane, giving the correct branch cut for
an infinitesimal imaginary part of s at the end of the path.
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that there are only four independent renormalized ϵ-finite
master integrals. They can be chosen to be B, M, I6d, and
I7a, although there are clearly other equally valid choices.
In terms of them, the renormalized ϵ-finite candidate master
scalar integrals are (suppressing all internal squared mass
arguments in this section, since they all vanish)

B ¼ 2 − L−s; ð4:1Þ

S ¼ sðB=2þ 5=8Þ; ð4:2Þ

U ¼ B2=2þ Bþ 3=2; ð4:3Þ

M ¼ −6ζ3=s; ð4:4Þ

I4 ¼ s2ðB=12þ 35=216Þ; ð4:5Þ

I5a ¼ sðB2=2þ 3B=2þ 47=24Þ; ð4:6Þ

I5b ¼ sðB2=4þ 5B=4þ 103=48Þ; ð4:7Þ

I5c ¼ −sðB=4þ 13=24Þ; ð4:8Þ

I6a ¼ B3=3þ B2 þ 2Bþ 2ζ3=3þ 5=3; ð4:9Þ

I6b ¼ B3=3þ B2 þ 2B − 4ζ3=3þ 5=3; ð4:10Þ

I6c ¼ B3=6þ B2 þ 7B=2 − 2ζ3=3þ 14=3; ð4:11Þ

I6d ¼ 3ζ4 þ 6ζ3B; ð4:12Þ

I6e ¼ B3=6þ B2 þ 7B=2 − 14ζ3=3þ 14=3; ð4:13Þ

I6f ¼ B3=3þ B2 þ Bþ 14ζ3=3 − 7=3; ð4:14Þ

I7a ¼ I7b ¼ −20ζ5=s; ð4:15Þ

I7c ¼ I7e ¼ −6ζ3B=s; ð4:16Þ

I8b ¼ I8c ¼ 20ζ5=s2; ð4:17Þ

Ipk8c ¼ −5ζ5=s: ð4:18Þ

Alternatively, the independent master integral quantities
can be taken to be L−s ≡ lnðsÞ − iπ from one-loop order, ζ3
at two-loop order, and ζ4 and ζ5 at three-loop order.
The integrals I7d and I8a can also be evaluated with the

results

sI7d ¼ −s2I8a ¼ 3ζ4 þ ζ3

�
2

ϵIR
þ 6B − 12

�
: ð4:19Þ

Here the 1=ϵIR poles remain uncanceled (there are no UV
subdivergences, and thus no counterterms, for I7d and I8a),

reflecting the aforementioned IR divergences in each case.
In expressions for physical observables, the fact that IR
divergences must be absent ensures that these integrals can
always be eliminated in favor of the ϵ-finite master
integrals. More generally, ζ4 (or equivalently I6d) also
cancels from the self-energy function contributions from
massless particles in gauge theories; the amusing absence
of ζn with even n has been noted in various contexts in,
e.g., [87–92].

V. THE CASE OF ALL INTERNAL
PROPAGATOR MASSES EQUAL

Next, consider the case that all of the internal propa-
gators have the same squared mass, which will be called t.
In this case, there are no IR divergences, so all renormalized
candidate masters are ϵ finite. By applying the IBP
relations, I find that all renormalized self-energy integrals
(including those with arbitrary momentum polynomials in
the numerators) up to three-loop order can be written in
terms of the following renormalized ϵ-finite masters:

I1 ¼ fA; Bg; ð5:1Þ

I2 ¼ fI; S; T; U;Mg; ð5:2Þ

I3 ¼ fG;H; I4; I41; I411; I5a; I5a1; I5a2; I5b; I5b1; I5b2; I5c;

I6a; I6b; I6c; I6d; I6d1; I6e; I6e1; I6f;

I7a; I7a1; I7a3; I7b; I7b1; I7b2; I7b4; I7c;

I7c1; I7d; I7d1; I7e; I7e3;

I8a; I8b; I8c; I8c1; I
pk
8cg: ð5:3Þ

The squared mass arguments are suppressed again in this
section, because they are all equal. The remaining candi-
date master integrals

fF; I412; I5b4; I5c1; I5c2; I5c3; I6a1; I6a2; I6a3; I6b1; I6b3; I6c1;
I6c2; I6c3; I6c4; I6c5; I6d2; I6d6; I6e2; I6e3; I6e4; I6e5;

I6f1; I6f5; I7a5; I7a7; I7b6; I7c5; I7c6; I7d2; I7d3; I7d7; I7e1;

I7e2; I7e4; I7e5; I7e6g ð5:4Þ

are solved in terms of the masters, with results given in
Ref. [64]. The derivatives s d

ds of the masters are also
provided in Ref. [64]. The choice of masters above is
somewhat arbitrary, but has been made in such a way as to
make denominators simple, with factors of s − 4t, s − 9t,
and s − 16t corresponding to the threshold singularities
from two-particle, three-particle, and four-particle cuts
respectively. However, also present in a few cases in the
expressions for s d

ds of the masters and for the solved
integrals are denominator factors s − t, s − 3t, sþ 8t, and
s2 − 8stþ 4t2, which do not correspond to true thresholds.
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(These denominator factors could be eliminated at the
expense of increasing the set of masters to a larger over-
complete set with some algebraic identities relating them,
but there is no great advantage gained by doing so.)
It is now straightforward to obtain series solutions to the

first-order differential equation in s, using boundary con-
ditions given at s ¼ 0 by the known vacuum integrals,

Iðt; t; tÞ ¼ t

�
3cI −

15

2
þ 6Lt −

3

2
L2
t

�
; ð5:5Þ

Fðt; t; t; tÞ ¼ t

�
53

12
þ 13

4
Lt − 4L2

t þ L3
t

�
; ð5:6Þ

Gðt;t;t;t;tÞ¼ t

�
12cI−

97

3
þ6ζ3þð26−6cIÞLt−8L2

t þL3
t

�
;

ð5:7Þ

Hðt; t; t; t; t; tÞ ¼ cH þ 6ζ3ð1 − LtÞ; ð5:8Þ

with

cI ≡
ffiffiffi
3

p
Im½Li2ðe2πi=3Þ� ¼ 1.1719536193…; ð5:9Þ

cH ≡ 16Li4ð1=2Þ − 17ζ4 þ
2

3
ln2ð2Þ½ln2ð2Þ − π2� − 3c2I

¼ 17.2476198987…: ð5:10Þ

Defining r ¼ s=t, I have obtained power series solutions
convergent for jrj < 4. (The physical reason for this range
of convergence is that the point r ¼ 4 corresponds to the
lowest two-particle cut threshold.) The series results up to
order r36, for the masters in Eqs. (5.1)–(5.3) as well as the
solved integrals in Eq. (5.4), are given in Ref. [64]. The
coefficients in these series involve only rational numbers
and the constants ζ3, cI , and cH. The only appearances of
the constant cH are in H itself and in the r0 term in the
expansion of I6d.
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FIG. 4. Sample results, for the dimensionless integrals I411, I5a2, I6d, and I6f, with all propagator squared masses and the
renormalization scale Q set equal to unity (t ¼ Q2 ¼ 1), as a function of the external momentum invariant s. The results were obtained
by numerical solution of the coupled first-order differential equations in s as provided in Ref. [64], starting from the series solution
provided in Ref. [64]. In each case, the blue (heavier) line is the real part, and the red (lighter) line is the imaginary part. The lowest
threshold is at s ¼ 16 (four-particle cut) for I411, at s ¼ 9 (three-particle cut) for I5a2 and I6d, and at s ¼ 4 (two-particle cut) for I6f.
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For general s, which is not necessarily small compared to
4t, a numerical integration of the coupled first-order
differential equations for the integrals in Eqs. (5.1)–
(5.3), starting from the series solution at s ¼ 0.5 (for
example) as the initial condition, is sufficient to quickly
obtain accurate numerical results, as explained in
Sec. III D. As a check, I have verified numerically that
the results for s ≫ t indeed asymptotically approach those
given in Eqs. (4.1)–(4.18) in the previous section. A few
examples of results for dimensionless (six-propagator)
integrals as a function of s are shown in Fig. 4, for the
case t ¼ Q2 ¼ 1. The integral I6f has a two-particle cut
threshold at s ¼ 4, leading to cuspy behavior near that
point. The integrals I5a2 and I6d have three-particle cut
thresholds at s ¼ 9. The integral I411 has a relatively
smooth four-particle cut threshold at s ¼ 16. (The large
s asymptotic limits of the previous section for I6d and I6f
are accurately realized only for s, which is much larger than
the ranges shown in the figures.)
Another way of obtaining numerical results for general s

for integrals with a single internal mass scale is to make
series expansions (in general, with square root and loga-
rithmic factors) about the threshold points s ¼ 4t (two
massive particle cut) and 9t (three massive particle cut) and
16t (four massive particle cut) and ∞. The coefficients in
these series expansions can then be determined by match-
ing at points within the common range of a convergence of
pairs of series, starting from the analytically known series
coefficients for the expansion about s ¼ 0. However, it
does not seem so easy to generalize this method to the case
of arbitrary different internal propagator squared masses for
all s, and so the results will not be pursued here.

VI. INTEGRALS WITH ODD THRESHOLDS

In any unbroken gauge theory (such as QED or QCD)
with massive and massless fermions and massless gauge
bosons, the allowed interaction vertices have an even

number of massive lines. Consider a self-energy diagram
topology with a single internal propagator squared mass
scale called t (in honor of the top quark), with the other
internal propagators massless. The cuts of the diagram will
correspond to thresholds at s ¼ n2t, where the n are either
all even integers n ¼ 0, 2, 4, or else all odd integers n ¼ 1,
3. Furthermore, it is easy to see that all descendants of the
diagram obtained by removing internal propagators will
have the same property.
In this section, I consider three-loop self energy integrals

with possible thresholds only at s ¼ t and/or s ¼ 9t, which
are referred to here as “odd-threshold” integrals. These are
the ones that can arise in QCD corrections to the self
energies of the W boson in which the W boson couples to
t, b, with the bottom quark treated as massless. They arise
from diagram topologies corresponding to the scalar
integrals

I8að0; 0; 0; t; t; 0; 0; 0Þ; I8aðt; t; t; 0; 0; 0; 0; 0Þ;
I8aðt; 0; t; 0; 0; t; t; 0Þ; I8að0; t; 0; t; t; t; t; 0Þ;
I8bð0; 0; 0; t; t; 0; 0; tÞ; I8cð0; 0; 0; t; t; 0; 0; tÞ; ð6:1Þ

as depicted in Fig. 5, and their descendants obtained by
removing internal lines in all possible ways. Note that these
six eight-propagator topologies are linked by a variety of
common descendants.
Applying the IBP identities, I find that all scalar self-

energy functions with these topologies can be expressed in
terms of the one-loop, two-loop, and three-loop renormal-
ized ϵ-finite master integrals:

I ð1Þ ¼ fAðtÞ; Bð0; tÞg; ð6:2Þ

I ð2Þ ¼ fSð0; 0; tÞ; Sðt; t; tÞ; Uðt; 0; t; tÞ;Mð0; 0; t; t; 0Þg;
ð6:3Þ

FIG. 5. The odd-threshold single-mass three-loop self-energy topologies considered (along with their descendants) in Sec. VI. The
heavy solid internal lines represent propagators with squared mass t, and the dashed lines represent massless propagators.
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I ð3Þ ¼ fHð0; 0; t; 0; t; tÞ; Hð0; t; t; t; 0; tÞ; I4ð0; t; t; tÞ; I5aðt; 0; 0; t; tÞ; I5b1ðt; t; t; 0; tÞ; I6aðt; 0; 0; 0; t; tÞ; I6b1ðt; 0; 0; t; t; tÞ;
I6dð0; 0; t; 0; t; 0Þ; I6dð0; 0; t; t; 0; tÞ; I6dðt; 0; 0; 0; 0; 0Þ; I6dðt; 0; 0; t; t; tÞ; I6dðt; t; t; t; t; 0Þ; I6d1ðt; t; t; t; t; 0Þ;
I6eð0; 0; t; t; t; tÞ; I6eð0; t; 0; 0; 0; tÞ; I6eðt; 0; t; 0; 0; tÞ; I6eðt; t; 0; t; t; tÞ; I6fð0; t; t; 0; 0; tÞ; I6f1ðt; 0; 0; t; 0; tÞ;
I7að0; 0; 0; 0; t; t; tÞ; I7að0; 0; t; t; 0; 0; 0Þ; I7að0; t; t; 0; 0; t; 0Þ; I7aðt; t; 0; 0; t; t; 0Þ; I7aðt; t; t; t; 0; 0; tÞ;
I7a5ðt; t; 0; 0; t; t; 0Þ; I7bð0; 0; t; 0; t; 0; 0Þ; I7bðt; 0; 0; 0; t; 0; tÞ; I7bðt; t; t; 0; t; t; 0Þ; I7cð0; 0; t; t; 0; 0; 0Þ;
I7dð0; t; 0; t; 0; t; 0Þ; I7dð0; t; 0; t; t; 0; tÞ; I7eð0; t; t; 0; 0; 0; 0Þ; I7eð0; t; t; 0; 0; t; tÞ; I8að0; t; 0; t; t; t; t; 0Þ;
I8bð0; 0; 0; t; t; 0; 0; tÞ; I8cð0; 0; 0; t; t; 0; 0; tÞ; Ipk8c ðt; t; t; 0; 0; 0; 0; 0Þg: ð6:4Þ

For the other candidate master integrals, the solutions (obtained from repeated use of the IBP relations) in terms of the
masters above are given in Ref. [64]. The complete5 list of such solved renormalized ϵ-finite candidate master integrals is

fIð0; t; tÞ; Tðt; 0; 0Þ; Tðt; t; tÞ; Uð0; t; 0; tÞ; Uðt; 0; 0; 0Þ; Fðt; 0; 0; tÞ; Fðt; t; t; tÞ; Gð0; 0; 0; t; tÞ; Gð0; t; t; t; tÞ; Gðt; 0; t; 0; tÞ;
I4ð0; 0; 0; tÞ; I41ðt; 0; 0; 0Þ; I41ðt; 0; t; tÞ; I411ðt; 0; 0; 0Þ; I411ðt; 0; t; tÞ; I412ðt; t; 0; tÞ; I5að0; 0; t; 0; tÞ; I5aðt; 0; 0; 0; 0Þ;
I5aðt; t; t; t; tÞ; I5a1ðt; 0; 0; 0; 0Þ; I5a1ðt; 0; 0; t; tÞ; I5a1ðt; t; t; t; tÞ; I5a2ð0; t; 0; 0; tÞ; I5a2ðt; t; t; 0; 0Þ; I5a2ðt; t; t; t; tÞ;
I5bð0; 0; t; 0; 0Þ; I5bð0; 0; t; t; tÞ; I5bðt; 0; 0; 0; tÞ; I5bðt; t; t; 0; tÞ; I5b1ðt; 0; 0; 0; tÞ; I5b2ð0; t; 0; 0; 0Þ; I5b2ð0; t; 0; t; tÞ;
I5b2ðt; t; t; 0; tÞ; I5b4ð0; 0; t; t; tÞ; I5b4ðt; 0; 0; t; 0Þ; I5b4ðt; t; t; t; 0Þ; I5cð0; t; 0; 0; tÞ; I5cð0; t; t; t; tÞ; I5cðt; 0; 0; 0; 0Þ;
I5cðt; 0; 0; t; tÞ; I5c3ð0; t; t; 0; 0Þ; I5c3ð0; t; t; t; tÞ; I5c3ðt; 0; t; 0; tÞ; I5c2ð0; t; 0; 0; tÞ; I5c2ð0; t; t; t; tÞ; I5c1ðt; 0; 0; 0; 0Þ;
I5c1ðt; 0; 0; t; tÞ; I6að0; t; 0; t; 0; tÞ; I6aðt; 0; 0; 0; 0; 0Þ; I6a1ðt; 0; 0; 0; 0; 0Þ; I6a1ðt; 0; 0; 0; t; tÞ; I6a2ð0; t; 0; t; 0; tÞ;
I6a3ð0; t; t; 0; 0; tÞ; I6a3ðt; 0; t; t; 0; 0Þ; I6bð0; t; 0; 0; 0; tÞ; I6bð0; t; t; t; 0; tÞ; I6b1ðt; 0; 0; t; 0; 0Þ; I6b3ð0; t; t; t; 0; tÞ;
I6b3ðt; 0; t; 0; 0; 0Þ; I6b3ðt; 0; t; 0; t; tÞ; I6cð0; t; 0; t; 0; tÞ; I6cð0; t; t; 0; 0; 0Þ; I6cð0; t; t; 0; t; tÞ; I6cðt; 0; 0; 0; 0; 0Þ;
I6cðt; 0; 0; 0; t; tÞ; I6cðt; 0; t; t; 0; tÞ; I6c1ðt; 0; 0; 0; 0; 0Þ; I6c1ðt; 0; 0; 0; t; tÞ; I6c1ðt; 0; t; t; 0; tÞ; I6c2ð0; t; 0; t; 0; tÞ;
I6c2ð0; t; t; 0; 0; 0Þ; I6c2ð0; t; t; 0; t; tÞ; I6c3ð0; t; t; 0; 0; 0Þ; I6c3ð0; t; t; 0; t; tÞ; I6c3ðt; 0; t; t; 0; tÞ; I6c4ð0; t; 0; t; 0; tÞ;
I6c4ðt; 0; t; t; 0; tÞ; I6c5ð0; t; 0; t; t; 0Þ; I6c5ð0; t; t; 0; t; tÞ; I6c5ðt; 0; 0; 0; t; tÞ; I6c5ðt; 0; t; t; t; 0Þ; I6d1ðt; 0; 0; 0; 0; 0Þ;
I6d1ðt; 0; 0; t; t; tÞ; I6d2ð0; t; 0; 0; t; tÞ; I6d2ð0; t; 0; t; 0; 0Þ; I6d2ðt; t; t; 0; 0; tÞ; I6d2ðt; t; t; t; t; 0Þ; I6d6ð0; 0; t; t; 0; tÞ;
I6d6ðt; 0; 0; t; t; tÞ; I6eð0; 0; t; t; 0; 0Þ; I6e1ðt; 0; t; 0; 0; tÞ; I6e1ðt; t; 0; t; t; tÞ; I6e5ð0; 0; t; t; t; tÞ; I6e5ð0; t; 0; 0; t; 0Þ;
I6e5ðt; 0; t; 0; t; 0Þ; I6e5ðt; t; 0; t; t; tÞ; I6e2ð0; t; 0; 0; 0; tÞ; I6e2ðt; t; 0; t; t; tÞ; I6e4ð0; 0; t; t; 0; 0Þ; I6e4ð0; 0; t; t; t; tÞ;
I6e4ðt; t; 0; t; t; tÞ; I6e3ð0; 0; t; t; 0; 0Þ; I6e3ð0; 0; t; t; t; tÞ; I6e3ðt; 0; t; 0; 0; tÞ; I6fð0; t; 0; t; 0; 0Þ; I6fð0; t; 0; t; t; tÞ;
I6f5ð0; t; 0; t; t; tÞ; I6f5ð0; t; t; 0; t; 0Þ; I6f1ðt; 0; t; 0; 0; 0Þ; I6f1ðt; 0; t; 0; t; tÞ; I7a1ðt; 0; 0; t; t; 0; 0Þ; I7a1ðt; t; 0; 0; t; t; 0Þ;
I7a1ðt; t; t; t; 0; 0; tÞ; I7a3ð0; 0; t; t; 0; 0; 0Þ; I7a3ð0; t; t; 0; 0; t; 0Þ; I7a3ðt; t; t; t; 0; 0; tÞ; I7a5ð0; 0; 0; 0; t; t; tÞ;
I7a5ðt; 0; 0; t; t; 0; 0Þ; I7a7ð0; 0; 0; 0; t; t; tÞ; I7a7ðt; t; t; t; 0; 0; tÞ; I7b1ðt; 0; 0; 0; t; 0; tÞ; I7b1ðt; t; t; 0; t; t; 0Þ;
I7b2ð0; t; 0; t; 0; 0; 0Þ; I7b2ðt; t; t; 0; t; t; 0Þ; I7b2ðt; t; t; t; 0; 0; tÞ; I7b4ð0; t; 0; t; 0; 0; 0Þ; I7b4ðt; 0; 0; t; 0; t; 0Þ;
I7b4ðt; t; t; t; 0; 0; tÞ; I7b6ðt; 0; 0; t; 0; t; 0Þ; I7b6ðt; t; t; 0; t; t; 0Þ; I7cð0; 0; t; t; 0; t; tÞ; I7c1ðt; t; 0; 0; 0; 0; 0Þ;
I7c1ðt; t; 0; 0; 0; t; tÞ; I7c6ð0; 0; t; t; 0; t; tÞ; I7dðt; 0; 0; 0; t; t; tÞ; I7d1ðt; 0; 0; 0; t; t; tÞ; I7d2ð0; t; 0; t; 0; t; 0Þ;
I7d2ð0; t; 0; t; t; 0; tÞ; I7d3ð0; t; t; 0; 0; t; tÞ; I7d3ð0; t; t; 0; t; 0; 0Þ; I7d3ðt; 0; t; t; 0; 0; tÞ; I7d7ð0; t; 0; t; t; 0; tÞ;
I7d7ðt; 0; 0; 0; t; t; tÞ; I7eðt; 0; 0; t; 0; 0; tÞ; I7e1ðt; 0; 0; t; 0; 0; tÞ; I7e2ð0; t; t; 0; 0; 0; 0Þ; I7e2ð0; t; t; 0; 0; t; tÞ;
I7e3ð0; t; t; 0; 0; 0; 0Þ; I7e3ð0; t; t; 0; 0; t; tÞ; I7e4ðt; 0; 0; t; 0; 0; tÞ; I7e6ð0; t; t; 0; 0; t; tÞ; I7e6ðt; 0; 0; t; 0; t; 0Þ;
I8aðt; 0; t; 0; 0; t; t; 0Þ; I8aðt; t; t; 0; 0; 0; 0; 0Þg: ð6:5Þ

5Although they do not have doubled massless propagators, I8að0; 0; 0; t; t; 0; 0; 0Þ and I7dðt; 0; 0; 0; 0; 0; 0Þ are IR divergent, and are
not candidates for renormalized ϵ-finite master integrals.
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Furthermore, the derivatives of the master integrals in
Eqs. (6.2)–(6.4) with respect to s can be expressed in
terms of that same set of masters. The results for the
derivatives s d

ds acting on all of the master integrals are
provided in Ref. [64].
For practical numerical evaluation, I have derived the

series solutions to the differential equations in r ¼ s=t,
convergent for jrj < 1, using as boundary conditions the
limits of the integrals at s ¼ 0. These boundary conditions
involve known vacuum integrals, using the notation of
Ref. [50]:

F̄ð0; t; t; tÞ¼ t

�
cFþð3cI −3=2ÞLtþ

3

2
L2
t −

1

2
L3
t

�
; ð6:6Þ

Gðt; 0; 0; t; tÞ ¼ t

�
cG þ ð15þ ζ2 − 3cIÞLt − 5L2

t þ
2

3
L3
t

�
;

ð6:7Þ

Hð0; t; t; t; 0; tÞ ¼ c0H þ 6ζ3ð1 − LtÞ; ð6:8Þ

Hð0; t; t; t; t; tÞ ¼ c00H þ 6ζ3ð1 − LtÞ; ð6:9Þ

which involve the numerical constants

cF ¼ 1

2
− 3cI þ 6

ffiffiffi
3

p
ðln 3 − Ls3Þ −

π3ffiffiffi
3

p

≈ 9.0968675373; ð6:10Þ

cG ¼ −
52

3
þ 6cI −

π2

3
−

2π3

9
ffiffiffi
3

p −
4

3
ζ3

≈ −19.1723294414; ð6:11Þ

c0H ¼ 32Li4ð1=2Þ −
11π4

45
þ 4

3
ln2ð2Þ½ln2ð2Þ − π2�

≈ −13.2665092775; ð6:12Þ

c00H ¼ 7π4

30
− 2c2I þ 4πLs3 − 6Ls04 −

26

3
lnð3Þζ3

≈ −15.4292012365; ð6:13Þ

where

Ls3 ≡ −
Z

2π=3

0

dx ln2½2 sinðx=2Þ�

≈ −2.1447672125694944; ð6:14Þ

Ls04 ≡ −
Z

2π=3

0

dx xln2½2 sinðx=2Þ�

≈ −0.4976755516066472: ð6:15Þ

Note that F̄ð0; t; t; tÞ is defined in Ref. [50] as

F̄ð0; t; t; tÞ ¼ lim
x→0

½Fðx; t; t; tÞ þ LxIðt; t; tÞ�; ð6:16Þ

and can also be evaluated in terms of other renormalized
ϵ-finite vacuum integrals as

F̄ð0; t; t; tÞ ¼ 1

3
ð1þ LtÞIðt; t; tÞ þ t

�
19

3
− Lt − 2L2

t þ
2

3
L3
t

− 2
d
dx

Gðx; t; t; 0; tÞ
				
x¼t

�
: ð6:17Þ

The series expansions for the renormalized ϵ-finite three-
loop odd-threshold self-energy integrals are given in
Ref. [64] in terms of powers of r ¼ s=t up to r36, with
coefficients that involve Lt, cF, cG, c0H, c

00
H as well as ζ2, ζ3,

ζ4 and rational numbers. These series converge for jrj < 1,
and easily suffice for the relevant Standard Model physical
value r ¼ m2

W=m
2
t .

For larger values of s, as explained in Sec. III D, it is
straightforward to numerically integrate the first-order
coupled linear differential equations for the master integrals
as a function of the dependent variable s, starting from, for
example, s0 ¼ 0.5t where the numerical values can be
obtained using the series solution. A few examples of results
for some dimensionless (six-propagator) integrals as a
function of s are shown in Fig. 6, for fixed t ¼ Q2 ¼ 1.
Here, I6að1; 0; 0; 0; 1; 1Þ has a threshold at s ¼ 1, with a
logarithmic singularity. The integrals I6eð0; 0; 1; 1; 1; 1Þ and
I6dð1; 0; 0; 0; 0; 0Þ remain finite at the thresholds at s ¼ 1.
Both I6að1; 0; 0; 0; 1; 1Þ and I6eð0; 0; 1; 1; 1; 1Þ also have
visibly conspicuous three-particle-cut thresholds at s ¼ 9.
For I6dð1; 1; 1; 1; 1; 0Þ, the only threshold is at s ¼ 9.

VII. INTEGRALS WITH EVEN THRESHOLDS

Consider the three-loop self energy integrals correspond-
ing to the topologies shown in Fig. 7:

I8aðt; t; t; t; t; 0; 0; 0Þ; I8bðt; t; t; t; t; 0; 0; tÞ;
I8cðt; t; t; t; t; 0; 0; tÞ; I8aðt; 0; t; t; t; t; t; 0Þ;
I8bðt; 0; t; t; t; t; t; 0Þ; I8bð0; 0; t; t; 0; 0; t; 0Þ;
I8að0; t; 0; 0; 0; t; t; 0Þ; ð7:1Þ
and their descendants obtained by removing internal lines
in all possible ways. Note that these eight-propagator
topologies are linked by various common descendants.
They have possible thresholds at s¼0, s¼4t, and/or
s¼16t, but never at s¼ t or s¼9t, and so are referred
to here as “even threshold” integrals. These, along with
the all-massless integrals of Sec. IV, arise in QCD correc-
tions to the self-energies of the Z and Higgs bosons.
The QCD corrections to the W self-energy in which the W
couples to massless quarks also include descendants
of I8að0; t; 0; 0; 0; t; t; 0Þ.
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FIG. 7. The even-threshold single-mass three-loop self-energy topologies considered (along with their descendants) in Sec. VII. The
heavy solid internal lines represent propagators with squared mass t, and the dashed lines represent massless propagators.
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FIG. 6. Sample results, for some dimensionless (six-propagator) odd-threshold integrals, with all internal propagator squared masses
and the renormalization scale Q set equal to unity (t ¼ Q2 ¼ 1), as a function of the external momentum invariant s. The results were
obtained by numerical solution of the coupled first-order differential equations in s as provided in Ref. [64], starting from the series
solution provided in Ref. [64] evaluated at s0 ¼ 0.5 as the initial condition. In each case, the blue (heavier) line is the real part, and the
red (lighter) line is the imaginary part. The lowest threshold is at s ¼ 1 for I6að1; 0; 0; 0; 1; 1Þ (with a logarithmic singularity) and
I6eð0; 0; 1; 1; 1; 1Þ and I6dð1; 0; 0; 0; 0; 0Þ, with the first two also having visibly conspicuous thresholds at s ¼ 9. For I6dð1; 1; 1; 1; 1; 0Þ,
the only threshold is at s ¼ 9.
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Applying the IBP identities, I find that the resulting renormalized ϵ-finite masters at one-loop, two-loop, and three-loop
orders can be chosen as [omitting the analytically known Bð0; 0Þ and Mð0; 0; 0; 0; 0Þ, found in Sec. IV]

I1 ¼ fAðtÞ; Bðt; tÞg; ð7:2Þ

I2 ¼ fVðt; t; 0; tÞ;Mð0; t; 0; t; tÞ;Mðt; t; t; t; 0Þg; ð7:3Þ

I3 ¼ fHð0; 0; t; 0; t; tÞ; Hð0; t; t; t; 0; tÞ; I4ðt; t; t; tÞ; I5aðt; 0; t; 0; tÞ; I5bð0; t; t; t; tÞ; I5cðt; t; t; t; tÞ; I6cðt; t; t; 0; t; tÞ;
I6c2ðt; t; t; 0; 0; 0Þ; I6dð0; 0; 0; t; t; tÞ; I6dð0; t; t; t; t; 0Þ; I6dðt; 0; t; 0; t; 0Þ; I6dðt; 0; t; t; 0; tÞ; I6eð0; 0; 0; 0; t; tÞ;
I6eð0; t; t; t; 0; tÞ; I6eðt; t; t; 0; t; tÞ; I6e1ðt; t; t; 0; 0; 0Þ; I6fð0; 0; 0; 0; t; tÞ; I6f5ð0; 0; 0; 0; t; tÞ; I7að0; 0; t; t; t; t; tÞ;
I7aðt; t; 0; 0; 0; 0; tÞ; I7að0; t; 0; t; 0; t; 0Þ; I7a3ðt; 0; t; 0; t; 0; 0Þ; I7aðt; t; t; t; t; t; 0Þ; I7a3ðt; t; t; t; t; t; 0Þ;
I7bð0; t; t; t; t; 0; 0Þ; I7bðt; 0; t; 0; 0; 0; tÞ; I7bðt; 0; t; t; t; t; 0Þ; I7b4ðt; 0; t; t; t; t; 0Þ; I7b4ðt; t; 0; t; t; 0; tÞ;
I7cðt; t; t; t; 0; 0; 0Þ; I7dðt; t; 0; t; 0; t; 0Þ; I7dðt; t; 0; t; t; 0; tÞ; I7eð0; 0; 0; 0; 0; t; tÞ; I7eð0; 0; t; t; t; 0; 0Þ;
I8aðt; 0; t; t; t; t; t; 0Þ; I8aðt; t; t; t; t; 0; 0; 0Þ; I8bðt; 0; t; t; t; t; t; 0Þ; I8bð0; 0; t; t; 0; 0; t; 0Þ; I8bðt; t; t; t; t; 0; 0; tÞ;
I8cðt; 0; t; t; t; t; t; 0Þ; Ipk8c ðt; t; t; t; t; 0; 0; tÞg: ð7:4Þ

For the other candidate master integrals, the solutions (obtained from the IBP relations) in terms of the masters are given in
Ref. [64]. The complete list of such solved ϵ-finite candidate master integrals is (omitting the analytically known massless
integrals Sð0; 0; 0Þ and Uð0; 0; 0; 0Þ, found in Sec. IV)

fIð0; t; tÞ; Sð0; t; tÞ; Tðt; 0; tÞ; Uð0; 0; t; tÞ; Uðt; t; 0; tÞ; Fðt; 0; 0; tÞ; Fðt; t; t; tÞ; Gð0; 0; 0; t; tÞ; Gð0; t; t; t; tÞ; Gðt; 0; t; 0; tÞ;
I4ð0; 0; t; tÞ; I41ðt; 0; 0; tÞ; I41ðt; t; t; tÞ; I411ðt; 0; 0; tÞ; I411ðt; t; t; tÞ; I412ðt; t; 0; 0Þ; I412ðt; t; t; tÞ; I5að0; 0; 0; t; tÞ;
I5að0; t; t; t; tÞ; I5a1ðt; 0; t; 0; tÞ; I5a2ð0; t; t; 0; 0Þ; I5a2ð0; t; t; t; tÞ; I5a2ðt; t; 0; 0; tÞ; I5bð0; 0; 0; t; tÞ; I5bð0; t; t; 0; 0Þ;
I5bðt; 0; t; 0; tÞ; I5b1ðt; 0; t; 0; tÞ; I5b2ð0; t; t; 0; 0Þ; I5b2ð0; t; t; t; tÞ; I5b2ðt; t; 0; 0; tÞ; I5b4ð0; 0; 0; t; tÞ; I5b4ð0; t; t; t; tÞ;
I5b4ðt; 0; t; t; 0Þ; I5cð0; 0; 0; t; tÞ; I5cðt; t; 0; 0; tÞ; I5c3ð0; 0; t; 0; tÞ; I5c3ðt; t; t; 0; 0Þ; I5c3ðt; t; t; t; tÞ; I5c2ðt; t; 0; 0; tÞ;
I5c2ðt; t; t; t; tÞ; I5c1ðt; t; 0; 0; tÞ; I5c1ðt; t; t; t; tÞ; I6að0; 0; 0; 0; t; tÞ; I6að0; 0; t; t; t; tÞ; I6aðt; t; 0; t; 0; tÞ; I6a1ðt; t; 0; t; 0; tÞ;
I6a2ðt; t; 0; t; 0; tÞ; I6a3ð0; 0; t; t; 0; 0Þ; I6a3ð0; 0; t; t; t; tÞ; I6a3ðt; t; t; 0; 0; tÞ; I6bð0; 0; 0; 0; t; tÞ; I6bð0; 0; t; t; t; tÞ;
I6bðt; t; 0; t; 0; tÞ; I6b1ðt; t; 0; t; 0; tÞ; I6b3ð0; 0; t; t; 0; 0Þ; I6b3ð0; 0; t; t; t; tÞ; I6b3ðt; t; t; 0; 0; tÞ; I6cð0; 0; 0; 0; t; tÞ;
I6cð0; 0; t; t; 0; tÞ; I6cðt; t; 0; t; 0; tÞ; I6cðt; t; t; 0; 0; 0Þ; I6c1ðt; t; 0; t; 0; tÞ; I6c1ðt; t; t; 0; 0; 0Þ; I6c1ðt; t; t; 0; t; tÞ;
I6c2ðt; t; 0; t; 0; tÞ; I6c2ðt; t; t; 0; t; tÞ; I6c3ð0; 0; t; t; 0; tÞ; I6c3ðt; t; t; 0; 0; 0Þ; I6c3ðt; t; t; 0; t; tÞ; I6c4ð0; 0; t; t; 0; tÞ;
I6c4ðt; t; 0; t; 0; tÞ; I6c5ð0; 0; 0; 0; t; tÞ; I6c5ð0; 0; t; t; t; 0Þ; I6c5ðt; t; 0; t; t; 0Þ; I6c5ðt; t; t; 0; t; tÞ; I6d1ðt; 0; t; 0; t; 0Þ;
I6d1ðt; 0; t; t; 0; tÞ; I6d2ð0; t; t; 0; 0; tÞ; I6d2ð0; t; t; t; t; 0Þ; I6d2ðt; t; 0; 0; t; tÞ; I6d2ðt; t; 0; t; 0; 0Þ; I6d6ð0; 0; 0; t; t; tÞ;
I6d6ðt; 0; t; t; 0; tÞ; I6eðt; 0; 0; t; 0; tÞ; I6eðt; t; t; 0; 0; 0Þ; I6e1ðt; 0; 0; t; 0; tÞ; I6e1ðt; t; t; 0; t; tÞ; I6e5ð0; 0; 0; 0; t; tÞ;
I6e5ð0; t; t; t; t; 0Þ; I6e5ðt; 0; 0; t; t; 0Þ; I6e5ðt; t; t; 0; t; tÞ; I6e2ð0; t; t; t; 0; tÞ; I6e2ðt; t; t; 0; 0; 0Þ; I6e2ðt; t; t; 0; t; tÞ;
I6e4ð0; t; t; t; 0; tÞ; I6e4ðt; 0; 0; t; 0; tÞ; I6e3ð0; t; t; t; 0; tÞ; I6e3ðt; t; t; 0; 0; 0Þ; I6e3ðt; t; t; 0; t; tÞ; I6fð0; 0; t; t; 0; tÞ;
I6fðt; t; t; t; 0; 0Þ; I6fðt; t; t; t; t; tÞ; I6f5ð0; 0; t; t; t; 0Þ; I6f5ðt; t; t; t; t; tÞ; I6f1ðt; t; 0; 0; 0; tÞ; I6f1ðt; t; t; t; 0; 0Þ;
I6f1ðt; t; t; t; t; tÞ; I7a1ðt; 0; t; 0; t; 0; 0Þ; I7a1ðt; t; 0; 0; 0; 0; tÞ; I7a1ðt; t; t; t; t; t; 0Þ; I7a3ð0; 0; t; t; t; t; tÞ; I7a5ð0; 0; t; t; t; t; tÞ;
I7a5ðt; 0; t; 0; t; 0; 0Þ; I7a5ðt; t; t; t; t; t; 0Þ; I7a7ð0; 0; t; t; t; t; tÞ; I7a7ðt; t; 0; 0; 0; 0; tÞ; I7b1ðt; 0; t; 0; 0; 0; tÞ;
I7b1ðt; 0; t; t; t; t; 0Þ; I7b2ð0; t; t; t; t; 0; 0Þ; I7b2ðt; t; 0; 0; 0; t; 0Þ; I7b2ðt; t; 0; t; t; 0; tÞ; I7b4ð0; t; t; t; t; 0; 0Þ;
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I7b6ðt; 0; t; t; t; t; 0Þ; I7b6ðt; t; 0; 0; 0; t; 0Þ; I7cð0; 0; 0; 0; 0; t; tÞ; I7cðt; t; t; t; 0; t; tÞ; I7c1ðt; t; t; t; 0; 0; 0Þ;
I7c1ðt; t; t; t; 0; t; tÞ; I7c6ð0; 0; 0; 0; 0; t; tÞ; I7c6ðt; t; t; t; 0; t; tÞ; I7dð0; 0; 0; 0; t; t; tÞ; I7d1ðt; t; 0; t; 0; t; 0Þ;
I7d1ðt; t; 0; t; t; 0; tÞ; I7d2ðt; t; 0; t; 0; t; 0Þ; I7d2ðt; t; 0; t; t; 0; tÞ; I7d3ð0; 0; t; t; 0; 0; tÞ; I7d3ðt; t; t; 0; 0; t; tÞ;
I7d3ðt; t; t; 0; t; 0; 0Þ; I7d7ð0; 0; 0; 0; t; t; tÞ; I7d7ðt; t; 0; t; t; 0; tÞ; I7eð0; 0; t; t; t; t; tÞ; I7eðt; t; t; t; 0; 0; tÞ;
I7e1ðt; t; t; t; 0; 0; tÞ; I7e2ðt; t; t; t; 0; 0; tÞ; I7e3ð0; 0; t; t; t; 0; 0Þ; I7e3ð0; 0; t; t; t; t; tÞ; I7e3ðt; t; t; t; 0; 0; tÞ;
I7e4ð0; 0; t; t; t; 0; 0Þ; I7e4ð0; 0; t; t; t; t; tÞ; I7e4ðt; t; t; t; 0; 0; tÞ; I7e5ð0; 0; t; t; t; 0; 0Þ; I7e5ð0; 0; t; t; t; t; tÞ;
I7e6ð0; 0; 0; 0; 0; t; tÞ; I7e6ð0; 0; t; t; t; t; tÞ; I7e6ðt; t; t; t; 0; t; 0Þ; I8að0; t; 0; 0; 0; t; t; 0Þg: ð7:5Þ

Furthermore, the derivatives with respect to s of the
master integrals in Eqs. (7.2)–(7.4) can be reexpressed in
terms of the same set of masters. The results for s d

ds acting
on all of the master integrals listed are provided
in Ref. [64].

For numerical evaluation, I have derived the series
solutions to the differential equations in s, using as
boundary conditions the values of the integrals at s ¼ 0,
which can be obtained from the results for the vacuum
integrals, including Eq. (6.8) and
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FIG. 8. Sample results, for some dimensionless (six-propagator) even-threshold integrals, with all internal propagator squared masses
and the renormalization scale Q set equal to unity (t ¼ Q2 ¼ 1), as a function of the external momentum invariant s. The results were
obtained by the numerical solution of the coupled first-order differential equations in s as provided in Ref. [64], starting from the series
solution provided in Ref. [64] evaluated at s0 ¼ 0.5 as the initial condition. In each case, the blue (heavier) line is the real part, and the
red (lighter) line is the imaginary part. The lowest threshold is at s ¼ 0 (two-particle cut, with logarithmic singularity) for
I6fð0; 0; 0; 0; 1; 1Þ, at s ¼ 0 (three-particle cut) for I6dð0; 0; 0; 1; 1; 1Þ, and at s ¼ 4 for I6dð1; 0; 1; 0; 1; 0Þ and I6eð0; 1; 1; 1; 0; 1Þ.
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Hð0; 0; t; 0; t; tÞ ¼ −9ζ4 þ 6ζ3ð1 − LtÞ; ð7:6Þ

using the notation of Ref. [50]. The series results, up to
order r36, for all of the integrals listed in Eqs. (7.2)–(7.4)
and (7.5) are given in Ref. [64], in terms of r ¼ s=t,
Lt ¼ lnðtÞ, and L−s ¼ lnðsÞ − iπ and the constants ζ3, ζ4,
c0H, and other coefficients that are rational numbers. These
series solutions converge for jrj < 4, which is sufficient for
evaluating the three-loop leading QCD corrections to the
Higgs and Z boson pole masses in the Standard Model
with r ¼ m2

Z=m
2
t .

As explained in Sec. III D, for larger values of s, one can
numerically integrate the first-order coupled linear differ-
ential equations for the master integrals as a function of the
dependent variable s, starting from, e.g., s0 ¼ 0.5t where
the numerical values can be obtained using the series
solutions. As one numerical consistency check, I have
verified that the results for s ≫ t reproduce those given in
Eqs. (4.1)–(4.18). Some examples of results for dimension-
less (six-propagator) integrals as a function of s are
shown in Fig. 8, for fixed t ¼ Q2 ¼ 1. The function
I6fð0; 0; 0; 0; 1; 1Þ has a threshold due to a two-particle
cut at s ¼ 0, with a logarithmic singularity there. The
function I6dð0; 0; 0; 1; 1; 1Þ has a three-particle cut thresh-
old at s ¼ 0, with no singularity. The functions
I6dð1; 0; 1; 0; 1; 0Þ and I6eð0; 1; 1; 1; 0; 1Þ have their lowest
thresholds at s ¼ 4, where the latter has a sharp cusp but
remains finite.

VIII. OUTLOOK

In this paper, I have formalized the concept of renor-
malized ϵ-finite master integrals, in which UV subdiver-
gences are subtracted. These have the advantage that the

expansions of the master integrals to positive powers of ϵ
never appear. (One hand-wavy way of understanding why
this is not totally unexpected is that the calculations of
renormalized observables could, in principle, employ some
other regulator, not based on dimensional continuation at
all, in which case there would be no reason for the
expansions of the integrals for finite ϵ.) The necessary
subtractions were given explicitly for three-loop self-
energy integrals in Sec. III C.
I also carried out the solution of the IBP relations for the

cases with one internal mass scale (and some vanishing
propagator masses), and provided the results needed for
fast and accurate numerical evaluation of the renormalized
ϵ-finite masters. The results obtained here are applied to the
calculation of the three-loop QCD corrections to the
physical masses of the Standard Model W, Z, and Higgs
bosons in the pure MS tadpole-free scheme in Ref. [36].
The same methods can be applied to numerically calculate
three-loop self-energy integrals for arbitrary masses,
although the coefficients will be significantly more com-
plicated in the general case, and the number of distinct
master integrals will of course be much larger.
In this paper, I have not attempted to specifically address

situations with more than two external legs. In that case,
non-UV singular contributions involving virtual massless
particles require cancellation with the contributions from
real emission diagrams at lower loop order, but the same
principle of incorporating the UV counterterms within the
ϵ-finite master integrals should be beneficial.
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