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Threshold and infrared divergences are studied as possible mechanisms of particle production and are
compared to the usual decay process in a model quantum field theory from which generalizations are
obtained. A spectral representation of the propagator of the decaying particle suggests that decay, threshold,
and infrared singularities while seemingly different phenomena are qualitatively related. We implement a
nonperturbative dynamical resummation method to study the time evolution of an initial state. It is manifestly
unitary and yields the asymptotic state and the distribution function of produced particles. Whereas the
survival probability in a decay process falls off as e−Γt, for threshold and infrared divergent cases it falls off

instead as e−
ffiffiffiffiffiffi
t=t�

p
and t−Δ, respectively, with Γ;Δ ∝ ðcouplingÞ2, whereas 1=t� ∝ ðcouplingÞ4. Despite the

different decay dynamics, the asymptotic state is qualitatively similar: a kinematically entangled state of the
daughter particles with a distribution function which fulfills the unitarity condition and is strongly peaked at
energy conserving transitions but broadened by the “lifetime” 1=Γ; t� for usual decay and threshold
singularity, whereas it scales with the anomalous dimension Δ for the infrared singular case. Threshold and
infrared instabilities are production mechanisms just as efficient as particle decay. If one of the particles is in a
dark sector and not observed, the loss of information yields an entanglement entropy determined by the
distribution functions and increases upon unitary time evolution.

DOI: 10.1103/PhysRevD.105.056012

I. INTRODUCTION

Most particles in the standard model decay, quarks and
gluons are confined, and charged particles interacting with
gauge fields are dressed by a cloud of soft massless gauge
fields. Therefore, of all the particles in the standard model
perhaps only neutrinos and photons appear as asymptotic
single particle states in the S-matrix. The dressing of
charged particles by massless gauge bosons results in
infrared divergences in radiative corrections as a conse-
quence of the emission and absorption of the soft gauge
quanta. Understanding these infrared phenomena and the
infrared finiteness of the S-matrix has been [1–9] and
continues to be [10–17] the focus of a substantial body of
work motivated by precision calculations of physical
observables for collider experiments [18–20]. Infrared
phenomena also play a fundamental role in quantum
aspects of gravity as a consequence of emission and
absorption of gravitons [21,22].

Prior to the discovery of the Higgs boson, early work
[23,24] recognized that the S-matrix approach to describing
particle decay breaks down when the mass of the particle
approaches the multiparticle threshold [23–26]. In particu-
lar, Refs. [23–26] recognized a singularity in the self-
energy of the particle as its mass approaches the threshold
from below, and as a consequence the particle no longer
appears as an asymptotic state in the S-matrix.
Notably this situation is similar to the case of infrared

singularities in gauge theories that arise because the mass of
the charged particle coincides with the multiparticle thresh-
old suggesting that, perhaps, threshold and infrared singu-
larities, although quantitatively different, are manifestations
of similar phenomena suggesting a generalized decay of the
particle.

A. Motivations and objectives

Extensions beyond the standard model posit the exist-
ence of new particles as possible explanations of the origin
of dark matter in cosmology. Some of these extensions
introduce light or ultralight particles [27–33], and an
important question in these models is to identify and
assess the production mechanism for these dark matter
candidates. A recent study [34] revealed certain univer-
sality of infrared phenomena in the sense that infrared
divergences associated with emission and absorption of
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massless quanta feature similar dynamics and asymptotic
states in bosonic, fermionic, and (Abelian) gauge theories.
This study also revealed that the infrared divergences
could be an effective production mechanism of soft
massless particles, and was extrapolated to the realm of
production of light dark matter or dark radiation during a
radiation dominated cosmology [35]. In this article we
extend the study of Ref. [34] to compare and contrast the
dynamics of decay, threshold, and infrared divergences to
identify hitherto unexplored production mechanisms that
could be relevant in early universe cosmology and also,
perhaps, of some phenomenological interest in particle
physics.
As windows beyond the standard model open to explore

possible explanations of dark matter and/or dark radiation,
our study is motivated by its possible impact in identifying
and assessing alternative production mechanisms available
in the dark sector, but also to explore fundamental aspects
of the dynamics of particle decay, threshold, and infrared
divergences that could be of a more overarching phenom-
enological and theoretical interest.

B. Objectives

Our objectives in this study are the following: (i) to
compare and contrast the dynamical aspects of particle decay
and threshold and infrared divergences within a model
quantum field theory and draw more general conclusions
on the time evolution of initial toward asymptotic states;
(ii) to understand threshold and infrared singularities as
possible production mechanisms and to explore a qualitative
similarity between these seemingly different phenomena;
(iii) to understand the time evolution that leads from the
initial to the final asymptotic state and to characterize the
properties of the latter; and (iv) to understand that for
threshold and infrared divergences the usual decay rates
vanish, and therefore understanding the time evolution of
initial states will clarify the dynamics of relaxation toward
equilibrium in these cases.
Our study does not address the important issues of the

infrared finiteness of the S-matrix, a far broader subject of
much current interest [17–20]. It is much more narrowly
focused on understanding the time evolution of states and
the emerging asymptotic states in the case of threshold and
infrared divergences. A reassessment [36] of the Lehmann,
Symanzik, and Zimmermann reduction formula for asymp-
totic states beginning with a finite time analysis and
extending it to the infinite time limit has highlighted the
subtleties of this limit.
Our study in this article may provide complementary

further insights into asymptotic theory in cases in which
threshold and infrared divergences substantially modify the
asymptotic long time dynamics, and may contribute to the
fundamental understanding of the asymptotic states emerg-
ing from these processes.

C. Brief summary of results

We study decay, threshold, and infrared phenomena
within a simple model of a real scalar field Φ coupled
to two other scalar fields of different masses that effectively
captures the different phenomena by varying the various
masses. The Kallen-Lehmann representation of the propa-
gator of the Φ field including radiative corrections illus-
trates how decay, threshold, and infrared phenomena,
although seemingly disparate are qualitatively related.
Furthermore, it clearly shows the breakdown of a Breit-
Wigner approximation as the mass of the particle
approaches threshold.
A dynamical resummation method [34,37] is imple-

mented to study the time evolution of an initial single
particle state of theΦ field toward the final asymptotic state
in all cases. This method is manifestly unitary and
complementary to the dynamical renormalization group
[38,39]. It not only yields the time evolution of the initial
state but also describes the emergence of the asymptotic
state during the evolution and its properties.
We find that whereas the time evolution of the survival

probability of a single particle state in a typical decay
process is e−Γt, in the cases of threshold and infrared
singularities the usual decay rate vanishes; however, we
find that the survival probability of the initial state indeed
decays: in the case of threshold divergence it evolves as

e−
ffiffiffiffiffiffi
t=t�

p
and for infrared divergences as ∝ t−Δ. Whereas Γ

and the anomalous dimension Δ are of Oðg2Þ with g the
coupling, the relaxation timescale t� ∝ 1=g4 as a conse-
quence of the threshold singularity.
We find that despite the different time evolution, the

asymptotic state is qualitatively similar: a kinematically
entangled state of the daughter particles with pair corre-
lations. We obtain the probabilities of these pairs, show that
they satisfy the unitarity condition and identify them as the
distribution function of the produced particles which are
obtained in each case. Although these are peaked at energy
conserving transitions, they are much narrower in the case
of threshold divergences as a consequence of a longer
“lifetime” of the initial state and feature a scaling behavior
with the anomalous dimension Δ in the case of infrared
divergences.
A corollary of this result is that threshold and infrared

singularities are just as efficient production mechanisms
as decay.
These asymptotic states are very different from those

postulated in quantum electrodynamics [3,5,8,16] as solu-
tions to the infrared problem, but are unambiguously
obtained from the unitary time evolution of an initial state.
We argue that the pair correlations in the asymptotic state, in
other words the entanglement of the daughter particles,
imply the same distribution function for each, which we
obtain from the time evolution in all cases. If either one of
the daughter particles is not measured for example in the
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“invisible decay” into a dark matter particle, the information
loss leads to an entanglement entropy, which is shown to
grow during the time evolution from the initial to the
asymptotic state.

II. KALLEN-LEHMANN SPECTRAL
REPRESENTATION

We consider a model of a massive real scalar field Φ
coupled to two other real scalar fields, χ1 and χ2, to
illustrate the main phenomena within a simpler setting, with
the objective of drawing more general conclusions. Such a
model has previously been investigated within the context
of threshold singularities in Refs. [24,26]. It is described by
the following Lagrangian density:

L ¼ 1

2
∂μΦ∂μΦ −

1

2
M2Φ2 þ 1

2
∂μχ1∂μχ1 −

1

2
m2

1χ
2
1

þ 1

2
∂μχ2∂μχ2 −

1

2
m2

2χ
2
2 − λΦχ1χ2: ð2:1Þ

This Lagrangian density provides a simple arena to study
the main aspects of our focus in this article: (i) if
M < ðm1 þm2Þ, a single Φ particle is stable; (ii) when
M > ðm1 þm2Þ, a Φ particle is unstable and decays into a
pair of χ1, χ2 particles; (iii) when M ¼ ðm1 þm2Þ, the
mass of the Φ particle is exactly at threshold, and this case
is a manifestation of the threshold singularity, studied
originally in Ref. [24]; and (iv) infrared singularity when
M ¼ m1, m2 ¼ 0 arising from the emission and absorption
of massless quanta. In this case again the mass of the
particle Φ coincides with the multiparticle threshold. This
latter case features the same infrared singularities as that of
a charged field coupled to a massless field studied in
Ref. [34] within a bosonic model with Lagrangian density

L ¼ ∂μΦ†∂μΦ −M2Φ†Φþ 1

2
∂μχ∂μχ − λΦ†Φχ: ð2:2Þ

In this model the infrared singularity emerges in the self-
energy of the Φ field as a consequence of the emission and
absorption of massless quanta Φ ↔ Φχ. In Ref. [34] it is
shown that the infrared behavior of this model is similar to
that of a Dirac fermion Yukawa coupled to a massless scalar
(a renormalizable theory), and in turn is similar to the
infrared divergence of the fermionic self-energy in quantum
electrodynamics. Hence, the Lagrangian (2.1) furnishes a
simple quantum field theory that allows one to study all
four cases: (i) stable, (ii) unstable, (iii) threshold singularity,
and (iv) infrared divergence within the same model by
adjusting the masses appropriately. Figure 1 depicts the
interaction vertex in the theory described by (2.1), and
Fig. 2 shows the one-loop self-energy of the field Φ in the
theory described by (2.2) which features an infrared
divergence. This self-energy is the same as that obtained
from (2.1) replacing χ1 → Φ; χ2 → χ.

The Lagrangian density (2.1) describes a superrenorma-
lizable theory; however, because we are interested in
infrared and long time phenomena which we expect to
be insensitive to the ultraviolet behavior of the theory, this
model is expected to capture the long time dynamics
reliably. This expectation is confirmed by the study of
Ref. [34] where infrared phenomena and long time dynam-
ics were shown to be the same for a superrenormalizable
and a renormalizable model. Furthermore, in Ref. [37] it
has been shown that ultraviolet divergences contribute to
very early transients that do not affect the long time
dynamics and can be safely absorbed into a renormalization
of the initial amplitude. This is a consequence of the wide
separation of timescales between the ultraviolet early
transients and the long time infrared phenomena. Taken
together the results of these previous studies serve as
anchors that allow us to draw more general conclusions
on the long time dynamics from the simple model described
by Eq. (2.1).
We begin by studying the Kallen-Lehmann spectral

representation [40] of the single Φ particle propagator
including a Dyson resummation of the one-loop self-energy
shown in Fig. 2. The propagator is given by

GðP2Þ ¼ 1

P2 −M2 − ΣðP2Þ þ iϵ
; ð2:3Þ

the self-energy is calculated in dimensional regularization
in dimensionD ¼ 4 − ε, and introducing a renormalization
scale μ we find

ΣðP2Þ ¼ −
λ̃2

ð4πÞ2 Lþ λ̃2

ð4πÞ2 IðP
2=M2Þ; ð2:4Þ

where

FIG. 1. Interaction vertex in the theory defined by the Lagran-
gian density (2.1).

FIG. 2. One-loop self-energy of the Φ field in the theory
defined by the Lagrangian density (2.2).
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λ̃ ¼ λμ−ε=2; L ¼ 2

ε
− γE þ lnð4πÞ − ln

�
M2

μ2

�
ð2:5Þ

with γE the Euler-Mascheroni constant and

IðP2Þ ¼
Z

1

0

ln

�
m2

2

M2
þm2

1 −m2
2

M2
x

−
P2

M2
xð1 − xÞ − iϵ̃

�
dx; ϵ̃ → 0þ: ð2:6Þ

Separating the real and imaginary parts of the self-energy

ΣðP2Þ ¼ ΣRðP2Þ þ iΣIðP2Þ; ð2:7Þ

we find

ΣRðP2Þ ¼ −
λ̃2

ð4πÞ2 Lþ λ̃2

ð4πÞ2
Z

1

0

ln

×

���� m2
2

M2
þm2

1 −m2
2

M2
x −

P2

M2
xð1 − xÞ

����dx; ð2:8Þ

ΣIðP2Þ ¼ −π
λ̃2

ð4πÞ2
��

1 −
ðm1 þm2Þ2

P2

�

×

�
1 −

ðm1 −m2Þ2
P2

��
1=2

ΘðP2 − ðm1 þm2Þ2Þ:

ð2:9Þ

Subtracting the real part of the self-energy at P2 ¼ M2
p at

which the real part of the inverse propagator vanishes,
namely

ΣRðP2Þ ¼ ΣRðP2 ¼ M2
pÞ þ Σ̃RðP2Þ; ð2:10Þ

where

M2
p ¼ M2 þ ΣRðP2 ¼ M2

pÞ; ð2:11Þ

and to leading order in the coupling replacing M → Mp in
the expression for the real and imaginary parts of the self-
energy (2.8), it follows that

GðP2Þ ¼ 1

P2 −M2
p − Σ̃RðP2Þ − iΣIðP2Þ þ iϵ

: ð2:12Þ

The Kallen-Lehmann spectral function is given by [40]

σðP2Þ ¼−
1

π
ImGðP2Þ

¼ 1

π

−ΣIðP2Þþ ϵ

½P2−M2
p − Σ̃RðP2Þ�2þ½−ΣIðP2Þþ ϵ�2 ; ð2:13Þ

it contains the information on the asymptotic properties of
the quanta of the real scalar fieldΦ, and it obeys the sum rule

Z
σðP2ÞdP2 ¼ 1: ð2:14Þ

A single particle pole below threshold, namely for
P2 < ðm1 þm2Þ2, for which ΣIðP2Þ ¼ 0, yields

σpðP2Þ ¼ ZδðP2 −M2
pÞ; ð2:15Þ

where

Z−1 ¼ 1 −
∂Σ̃RðP2Þ
∂P2

����
P2¼M2

p

: ð2:16Þ

The wave function renormalization constant yields the
amplitude of the single particle pole and determines
the overlap between the bare single particle state and
the asymptotic renormalized state of a stable particle that
has been dressed by quantum fluctuations. Therefore,
when the single particle pole is below threshold, the
particle is stable and

σðP2Þ ¼ ZδðP2 −M2
pÞ þ σcðP2Þ; ð2:17Þ

where σcðP2Þ is the contribution from the multiparticle
continuum above threshold. In this case the sum rule
(2.14) yields

Z þ
Z
P2
T

σðP2ÞdP2 ¼ 1; P2
T ¼ ðm1 þm2Þ2; ð2:18Þ

whereas if the particle decays and the single particle pole
is embedded in the continuum, there is no single particle
pole below threshold and the sum rule (2.14) yields

Z
∞

P2
T

σðP2ÞdP2 ¼ 1; ð2:19Þ

namely it is saturated by the continuum “background” and
the single particle quanta of the Φ field are not asymptotic
states.

III. DECAY, THRESHOLD, AND INFRARED
SINGULARITIES

A. Decay and threshold singularities

In order to discuss both cases of decay and threshold
singularities we consider the simpler case of equal masses
m1 ¼ m2 ≡m when the two particle threshold is at
P2 ¼ 4m2; furthermore, it is convenient to introduce the
dimensionless variables
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s ¼ P2

M2
p
; r ¼ 4m2

M2
p
;

g ¼
�

λ̃

4πMp

�
2

; Δðs; rÞ ¼
ffiffiffiffiffiffiffiffiffiffi
1 −

r
s

r
: ð3:1Þ

In terms of these variables the spectral density becomes

M2
pσðs;rÞ¼

gΔðs;rÞΘðs−rÞþϵ

½s−1−gDðs;rÞ�2þ½πgΔðr;sÞΘðs−rÞþϵ�2 ;

×ϵ→0þ; ð3:2Þ

where

Dðs; rÞ ¼ Δðs; rÞ ln
�
1þΔðs; rÞ
1−Δðs; rÞ

�
−Δð1; rÞ ln

�
1þΔð1; rÞ
1−Δð1; rÞ

�
:

ð3:3Þ

We study the cases r > 1 (stable particle) and r < 1
(unstable decaying particle) separately to highlight both
differences and similarities.

1. Case I: Stable particle 4m2 > M2
p (r > 1)

In this case the propagator features an isolated single
particle pole at s ¼ 1 below the two particle threshold at
r > 1 and for s < r

M2
Pσðs; rÞ ¼ ZðrÞδðs − 1Þ; s < r ð3:4Þ

with Z−1 given by Eq. (2.16) for which we find

ZðrÞ ¼ 1

½1þ g½ð 1
δ̄ðrÞ þ δ̄ðrÞÞatanð 1

δ̄ðrÞÞ − 1� ;

δ̄ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
r − 1

p
: ð3:5Þ

The full spectral density in this case when the particle pole
is below the two particle threshold is given by

M2
pσðs; rÞ ¼ ZðrÞδðs − 1Þ

þ gΔðs; rÞΘðs − rÞ
½s − 1 − gDðs; rÞ�2 þ ½πgΔðr; sÞΘðs − rÞ�2 :

ð3:6Þ

For r > 1 the particle is present as an asymptotic state with
probability ZðrÞ < 1. However, we note that asM2

p → 4m2,
namely as the position of the single particle pole
approaches the threshold from below, or r → 1 from above,
the residue at the isolated pole below threshold vanishes as

ZðrÞ⟶
r→1

1

1þ gπffiffiffiffiffiffi
r−1

p ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

M2
p
− 1

q
πg

; ð3:7Þ

with a square root singularity, and very sharply in weak
coupling, obviously this behavior is strongly nonperturba-
tive. Furthermore, we find that while the continuum
contribution to the spectral density vanishes at threshold,
it becomes sharply peaked near threshold as r → 1 from
above (or M2

p → 4m2 from below). Figure 3 displays the
spectral density for r > 1, namely the case of a stable
particle described by an isolated pole below threshold.
Defining the contribution from the two particle con-

tinuum above threshold as

CðrÞ ¼
Z

∞

r
M2

pσðs; rÞds; ð3:8Þ

we have confirmed numerically that the sum rule (2.18)

ZðrÞ þ CðrÞ ¼ 1 ð3:9Þ

is fulfilled. As r → 1 from above, the residue at the pole
vanishes, but the continuum contribution saturates the sum
rule. Figure 4 shows ZðrÞ and CðrÞ, and it clearly displays
that ZðrÞ vanishes sharply and CðrÞ rises sharply as M2

p →
4m2 from below (r → 1þ), in agreement with the sum rule
(3.8) which can be confirmed from the figure.
Precisely at M2

p ¼ 4m2 when the mass shell coincides
with the multiparticle threshold, there is a singularity in the
sense that the amplitude of the single particle pole vanishes
and the spectral density at P2 ¼ 4m2 diverges in such a way
as to maintain the sum rule. This behavior has been
described as a threshold singularity [24]. What is clear in
the case when M2

p ¼ 4m2 is that the single particle “dis-
solves” into the continuum and is not an asymptotic state
since its residue, namely the overlap of the bare and
asymptotic state vanishes. However, the particle does not
“decay” in the usual manner because the imaginary part of
the self-energy vanishes at P2 ¼ M2

p ¼ 4m2; hence, the

FIG. 3. M2
pσðsÞ for r ¼ 1.1, 1.2, 1.3 and g ¼ 0.01 describing a

stable particle with an isolated pole below threshold. s ¼
P2=M2

P; r ¼ 4m2=M2
p.
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“decay rate” Γ ∝ ΣIðP2 ¼ M2
pÞ=Mp vanishes identically

when M2
p ¼ 4m2.

2. Case II: Unstable particle M2
p > 4m2 (r < 1)

In this case the particle “pole” moves off the physical
sheet into the second (or higher) Riemann sheet, becoming
a decaying resonant state which is not an asymptotic state in
the S-matrix. The spectral density only has support above
the two particle threshold

M2
pσðs; rÞ ¼

gΔðs; rÞΘðs − rÞ
½s − 1 − gDðs; rÞ�2 þ ½πgΔðr; sÞΘðs − rÞ�2 ;

ð3:10Þ

where Dðs; rÞ is given by Eq. (3.3). It is displayed in Fig. 5
for r ¼ 0.3, 0.6, 0.96 for g ¼ 0.05, a moderately large
coupling to exhibit the behavior as the position of the
resonance approaches the threshold from above as com-
pared with the cases where it is far above threshold.

In this case the sum rule (3.9) is saturated by the
contribution above threshold since there is no support
below threshold, and we have confirmed numerically in
all cases that CðrÞ ¼ 1 with CðrÞ given by Eq. (3.8).
When the distance between threshold and the position of

the resonance (pole) is much larger than the width Γ, the
propagator and the spectral density may be very well
approximated by a Breit-Wigner Lorentzian function in
the narrow width approximation,

M2
pσbwðs; rÞ ¼

Zbw

π

γ

½s − 1�2 þ γ2
; ð3:11Þ

with

γ ¼ gπZbwΔð1; rÞ; ð3:12Þ

where the wave function renormalization Zbw is given by
(2.16) but now above threshold, withM2

P > 4m2 and given
by

Z−1
bw ¼ 1 − gr

�
1

2Δð1; rÞ ln
�
1þ Δð1; rÞ
1 − Δð1; rÞ

�
þ 1

1 − Δ2ð1; rÞ
	
:

ð3:13Þ

We note that in contrast to the case whenM2
P < 4m2, in this

case as M2
P → 4m2 from above it is straightforward to

confirm that Zbw remains finite in agreement with the
conclusion in Ref. [24]. However, when the particle is
unstable, Zbw does not have the interpretation of the
amplitude of the renormalized single particle state in the
asymptotic state. It is clear from Eq. (3.11) that the Breit-
Wigner approximation of the spectral density is only
reliable for very weak coupling as it does not obey the
sum rule CðrÞ ¼ 1 since Zbw ≠ 1.
When the position of the resonance (pole) is far away

from threshold and for a narrow width, the propagator may
be approximated by a Breit-Wigner distribution which in
the narrow width approximation becomes

GðP2Þ ¼ Zbw

½P2 −M2
p þ iMpΓ�

; ð3:14Þ

with Zbw given by Eq. (3.13) and

Γ ¼ −Zbw
ΣIðP2 ¼ M2

pÞ
Mp

; ð3:15Þ

to leading order in the weak coupling g, we can set Zbw ¼ 1
and recognize Γ as the decay rate at rest obtained from the
lowest order S-matrix approach, namely

FIG. 5. M2
PσðsÞ vs s ¼ P2=M2

p, for an unstable, decaying
particle with M2

P > 4m2 (r < 1) for r ¼ 0.3; 0.6; 0.96; g ¼ 0.05.

FIG. 4. ZðrÞ and CðrÞ vs r ¼ 4m2=M2
p, for g ¼ 0.01. The sum

rule ZðrÞ þ CðrÞ ¼ 1 is confirmed numerically.
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Γ ¼ πgMp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

M2
p

s
: ð3:16Þ

The long time dynamics of the retarded propagator is
obtained from the Fourier transform of the Breit-Wigner
propagator (3.14), namely

GretðtÞ ¼ i
Z

∞

−∞

dp0

2π
GðPÞe−ip0t; t > 0; ð3:17Þ

yielding

GretðtÞ ¼ Zbw
e−iEpt

2Ep
e−Γpt=2;

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þM2

p

q
; Γp ¼ Mp

Ep
Γ ð3:18Þ

from which we interpret Zbw not as the amplitude of the
single particle in the asymptotic state but as the weight of
the resonance contribution to the spectral density as evident
from Eq. (3.11).
As Fig. 5 clearly shows, when M2

p → 4m2 from above
(r → 1 from below), although Γ → 0, the spectral density
can no longer be described as a narrow width Breit-Wigner
Lorentzian and the resonance cannot be described as a
complex pole in the second (or higher) Riemann sheet. In
this limit we find that as s → 1þ and for weak coupling

M2
Pσðs; 1Þ ≃

1

gπ2
ffiffiffiffiffiffiffiffiffiffi
s − 1

p ; ð3:19Þ

displaying a square root singularity at threshold in agreement
with Fig. 5. In this case the narrow width Breit-Wigner
approximation is neither valid nor useful to describe the
resonance near threshold as the spectral density diverges as
the threshold is approached. However, this singularity
notwithstanding, we confirmed numerically the sum rule
Cð1Þ ¼ 1, but the interpretation of a finite Zbw as a wave
function renormalization associated with the resonance is no
longer useful as a description of the asymptotic state.
As M2

p → 4m2 from below the single particle state is no
longer an asymptotic state; however, its amplitude does not
decay in time with the usual exponential decay law because
the decay rate Γ → 0 when the pole coincides with the two
particle threshold. Furthermore, as is clear from Fig. 5 and
from Eq. (3.19) the Breit-Wigner approximation breaks
down as Mp → 4m2 from above and the time evolution of
the resonant state is not an exponential as in the case (3.18)
but a more complicated function determined by the square
root branch cut beginning at threshold. This time evolution
will be studied in detail in the next section.

B. Infrared singularity

The infrared singularity is associated with the emission
and absorption of a massless particle by a massive one.
Such is the case, for example, in quantum electrodynamics
where the one-loop fermion self-energy features an infrared
divergence on the fermion mass shell. Whereas in gauge
theories care must be taken to maintain gauge invariance
and satisfy Ward identities, the simpler model of a charged
scalar field in interaction with a neutral massless field,
described by the Lagrangian density (2.2) features the same
infrared divergence [34]. In turn, we can study the infrared
divergence within the framework of the model described by
(2.1) by taking m1 ¼ M;m2 ¼ 0. However, in order to
display the emergence of the infrared singularity more
clearly, let us consider the case m2 ¼ 0; m1 ¼ m, and we
will explore the limit Mp → m where the infrared diver-
gence becomes manifest.
In this case, in terms of the variables s; g introduced in

Eq. (3.1) along with the ratio

R ¼ m
Mp

; ð3:20Þ

the spectral density is given by

M2
pσðsÞ ¼

gðs−Rs ÞΘðs − RÞ þ ϵ

½s − 1 − Iðs; RÞ�2 þ ½gπðs−Rs ÞΘðs − RÞ þ ϵ�2 ;

× ϵ → 0þ; ð3:21Þ

where

Iðs; RÞ ¼ g

��
s − R
s

�
ln

���� s − R
R

���� − ð1 − RÞ ln
���� 1 − R

R

����
	
:

ð3:22Þ

For R > 1 the Φ particle is stable, and we find

M2
pσðsÞ ¼ ZirðRÞδðs − 1Þ þM2

pσcðsÞ; ð3:23Þ

where

ZirðRÞ ¼
1

1þ gR½lnð R
R−1Þ − 1

R�
; ð3:24Þ

and M2
pσcðsÞ is the contribution from the two particle

continuum above threshold, given by Eq. (3.21) for s > R.
Equation (3.24) clearly shows that as R → 1þ the wave
function renormalization vanishes; namely there is no
longer an isolated single particle pole, and again the particle
dissolves into the continuum as its (renormalized) mass
approaches the threshold from below. This behavior is
displayed in Fig. 6 which shows ZirðRÞ vs R for g ¼ 0.01.
Again we have confirmed numerically the validity of the

sum rule ZirðRÞ þ
R∞
R M2

pσcðsÞds ¼ 1, therefore when the
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single particle pole approaches the threshold from below,
the sum rule is saturated from the continuum contribution
M2

pσcðsÞ which is displayed in Fig. 7 showing a sharp rise
near threshold as it absorbs the normalization of the single
particle pole when it merges with threshold.
We conclude that in the infrared limit R ¼ 1 when the

single particle pole merges with the threshold, the single
particle dissolves into the continuum and is no longer an
asymptotic state. However, as in the case of threshold
singularity, the particle does not decay in the usual sense
because the decay rate vanishes when the pole mass
coincides with the two particle threshold.
The infrared singularity for the case R ¼ 1 is the same as

that studied in the model of a charged scalar field coupled
to a massless real scalar field [34]. This previous study also
revealed an emerging universality of infrared phenomena
and showed that the amplitude of an initial single particle
state decays with a power law with anomalous dimension.
The infrared singularities in this model field theory are the
same as in the general Lagrangian density (2.1), replacing
χ1 → Φ; χ2 → χ and m1 ¼ M, m2 ¼ 0.

The lesson that we draw from this analysis based on the
Kallen-Lehmann representation is that threshold and infra-
red divergences result in the probability that the single
particle state vanishes, transferring the normalization to the
multiparticle continuum. This “flow” of probability from
single particle to multiparticle states is a manifestation of
particle production, and we refer to these cases as gener-
alized decay, because, indeed, the single Φ particle does
decay into the multiparticle continuum despite the fact that
the S-matrix decay rate Γ formally vanishes, because the
imaginary part of the self-energy vanishes at threshold.
Furthermore, although there are quantitative differences
between threshold and infrared divergences, for example in
the manner that Z vanishes as the threshold is approached
and the sharp rise of the continuum contribution near
threshold, qualitatively the two phenomena are rather
similar as evidenced by the figures displaying Z and σc
in both cases.
In the next section we study this flow or generalized

decay from the point of view of the time evolution of an
initial single particle state toward an asymptotic state.

IV. TIME EVOLUTION: DYNAMICAL
RESUMMATION METHOD

We now obtain the asymptotic state by following the
time evolution of an initial single Φ particle state. For this
purpose we now introduce a method that implements a
dynamical resummation directly in time [34,37] and is
complementary to the dynamical renormalization group
[38,39]. We briefly revisit here the main aspects of this
method for coherence and completeness of presentation,
referring the reader to previous studies [34,37] for more
details.
Consider a system whose Hamiltonian is H ¼ H0 þHI

with HI a perturbation. The time evolution of states in the
interaction picture of H0 is given by

i
d
dt

����ΨIðtÞi ¼ HIðtÞjΨIðtÞi; ð4:1Þ

where the interaction Hamiltonian in the interaction picture
is

HIðtÞ ¼ eiH0tHIe−iH0t: ð4:2Þ

The Schrödinger Eq. (4.1) has the formal solution

jΨIðtÞi ¼ Uðt; t0ÞjΨIðt0Þi; ð4:3Þ

and the time evolution operator in the interaction picture
Uðt; t0Þ obeys

FIG. 6. ZirðRÞ vs R, for the infrared case for R ¼ m=Mp and
g ¼ 0.01.

FIG. 7. M2
PσcðsÞ vs s, for the infrared case for R ¼ m=Mp ¼

1.01 and g ¼ 0.01.
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i
d
dt

Uðt; t0Þ ¼ HIðtÞUðt; t0Þ: ð4:4Þ

Now we can expand the time evolved state as

jΨIðtÞi ¼
X
n

CnðtÞjni; ð4:5Þ

where jni are eigenstates of the unperturbed Hamiltonian,
H0jni ¼ Enjni, and form a complete set of orthonormal
many particle states. From Eq. (4.1) one finds the exact
equation of motion for the coefficients CnðtÞ, namely

_CnðtÞ ¼ −i
X
m

CmðtÞhnjHIðtÞjmi: ð4:6Þ

Although this equation is exact, it generates an infinite
hierarchy of simultaneous equations when the Hilbert space
of states spanned by fjnig is infinite dimensional.
However, this hierarchy can be truncated by considering
the transition between states connected by the interaction
Hamiltonian at a given order in HI .
Specifically, for the model under consideration here,

consider the situation depicted in Fig. 8 where the single
particle state, j1Φ

k⃗
i, couples to the two particle state

j1χ1p⃗ ; 1χ2q⃗ i, which couples back to j1Φ
k⃗
i via the interaction

Hamiltonian

HIðtÞ ¼ λ

Z
d3xΦðx⃗; tÞχ1ðx⃗; tÞχ2ðx⃗; tÞ; ð4:7Þ

where the fields are in the interaction picture.
Consider that at the initial time t ¼ 0 a single Φ particle

state with momentum k⃗ is prepared, upon time evolution
the interaction Hamiltonian connects this state with a two
particle state of the χ1, χ2 fields; therefore, the time evolved
state is given by

jΨIðtÞi ¼ CΦ
k⃗
ðtÞj1Φ

k⃗
i þ

X
p⃗

Cχ

p⃗;k⃗
ðtÞj1χ1p⃗ ; 1χ2q⃗ i þ � � � ;

q⃗ ¼ k⃗ − p⃗; ð4:8Þ

where the dots stand for multiparticle states that connect to
j1Φ

k⃗
i in higher order in HI , and we have explicitly used

momentum conservation which is justified by the matrix

elements obtained in Appendix A. In what follows we use
q⃗ ¼ k⃗ − p⃗ to simplify notation.
The hierarchy of Eqs. (4.6) lead to the following coupled

equations for the amplitudes

_CΦ
k⃗
ðtÞ ¼ −i

X
p⃗

h1Φ
k⃗
jHIðtÞj1χ1p⃗ ; 1χ2q⃗ iCχ

p⃗;k⃗
ðtÞ; ð4:9Þ

_Cχ

p⃗;k⃗
ðtÞ ¼ −iCΦ

k⃗
ðtÞh1χ1p⃗ ; 1χ2q⃗ jHIðtÞj1Φk⃗ i: ð4:10Þ

The initial value problem in which at time t ¼ 0
the initial state is a single Φ particle state, namely
jΨðt ¼ 0Þi ¼ j1Φ

k⃗
i, and the vacuum for the other fields

corresponds to the initial conditions

CΦ
k⃗
ð0Þ ¼ 1; Cχ

p⃗;k⃗
ð0Þ ¼ 0: ð4:11Þ

We solve Eq. (4.10) with these initial conditions and input
the solution into Eq. (4.9) to find

Cχ

p⃗;k⃗
ðtÞ ¼ −i

Z
t

0

h1χ1p⃗ ; 1χ2q⃗ jHIðt0Þj1Φk⃗ iCΦ
k⃗
ðt0Þdt0; ð4:12Þ

_CΦ
k⃗
ðtÞ ¼ −

Z
t

0

ΣΦðt; t0ÞCΦ
k⃗
ðt0Þdt0; ð4:13Þ

where

ΣΦðt; t0Þ ¼
X
p⃗

h1Φ
k⃗
jHIðtÞj1χ1p⃗ ; 1χ2q⃗ ih1χ1p⃗ ; 1χ2q⃗ jHIðt0Þj1Φk⃗ i

¼
X
p⃗

eiðE
Φ
k −E

χ1
p⃗
−Eχ2

q⃗
Þðt−t0Þjh1Φ

k⃗
jHIð0Þj1χ1p⃗ ; 1χ2q⃗ ij2

ð4:14Þ

and we used Eq. (4.2). It is convenient to write ΣΦðt; t0Þ in a
spectral representation, namely

ΣΦðt; t0Þ ¼
Z

∞

−∞
ρΦðk0Þe−iðk0−EΦ

k Þðt−t0Þdk0; ð4:15Þ

where we have introduced the spectral density

ρΦðk0Þ ¼
X
p⃗

jh1Φ
k⃗
jHIð0Þj1χ1p⃗ ; 1χ2q⃗ ij2δðk0 − Eχ1

p⃗ − Eχ2
q⃗ Þ;

ð4:16Þ

which is obtained for the general case described by the
Lagrangian density (2.1) in Appendix A [see Eq. (A3)].
The integro-differential equation with memory (4.13)

yields a nonperturbative solution for the time evolution of
the amplitudes and probabilities. It provides a resummation in
real time of the one-particle irreducible self-energy correc-
tions, akin to the Dyson (geometric series) resummation ofFIG. 8. Transitions j1Φ

k⃗
i ↔ j1χ1p⃗ ; 1χ2q⃗ i in first order in HI .
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similar terms in the Fourier transform of the single particle
propagator.
Inserting the solution for CΦ

k⃗
ðtÞ into Eq. (4.12) one

obtains the time evolution of amplitudes Cχ

p⃗;k⃗
ðtÞ from

which we can compute the time dependent probability to
populate the two particle state j1χ1p⃗ ; 1χ2q⃗ i, namely jCχ

p⃗;k⃗
ðtÞj2.

The Hermiticity of the interaction Hamiltonian HI and
Eqs. (4.9) and (4.10) yields

d
dt

�
jCΦ

k⃗
ðtÞj2 þ

X
p⃗

jCχ

p⃗;k⃗
ðtÞj2

�
¼ 0; ð4:17Þ

which together with the initial conditions in Eq. (4.11)
yields the unitarity relation

jCΦ
k⃗
ðtÞj2 þ

X
p⃗

jCχ

p⃗;k⃗
ðtÞj2 ¼ 1: ð4:18Þ

This is the statement that the time evolution operator
Uðt; 0Þ is unitary, namely

hΨIðtÞjΨIðtÞi ¼ jCΦ
k⃗
ðtÞj2 þ

X
p⃗

jCχ

p⃗;k⃗
ðtÞj2

¼ hΨð0ÞU†ðt; 0ÞUðt; 0ÞΨð0Þi
¼ hΨð0ÞjΨð0Þi ¼ 1: ð4:19Þ

The integro-differential equation (4.13) can be solved
exactly via Laplace transform [37]; however, finding the
time evolution from the inverse transform involves a
technically difficult integral with branch cut singularities.
Instead, recognizing that for weak coupling there is a
separation of timescales, we invoke the dynamical resum-
mation method introduced in Ref. [34] which hinges on a
separation of timescales warranted for weak coupling and
provides a nonperturbative resummation directly in real time
equivalent to the dynamical renormalization group [38,39].
The time evolution of CΦ

k⃗
ðtÞ determined by Eq. (4.13) is

slow in the sense that the timescale is determined by a weak
coupling kernel Σ which is second order in the coupling.
This allows us to use an approximation in terms of a
consistent expansion in time derivatives of CΦ

k⃗
ðtÞ. Let us

define

W0ðt; t0Þ ¼
Z

t0

0

ΣΦðt; t00Þdt00 ð4:20Þ

so that

ΣΦðt; t0Þ ¼
d
dt0

W0ðt; t0Þ; W0ðt; 0Þ ¼ 0: ð4:21Þ

Integrating by parts in Eq. (4.13) we obtain

Z
t

0

ΣΦðt;t0ÞCΦ
k⃗
ðt0Þdt0 ¼W0ðt;tÞCΦ

k⃗
ðtÞ

−
Z

t

0

W0ðt;t0Þ
d
dt0

CΦ
k⃗
ðt0Þdt0: ð4:22Þ

The second term on the right-hand side is formally of fourth
order in HI suggesting how a systematic approximation
scheme can be developed. Setting

W1ðt; t0Þ ¼
Z

t0

0

W0ðt; t00Þdt00;

⇒
d
dt0

W1ðt; t0Þ ¼ W0ðt; t0Þ; W1ðt; 0Þ ¼ 0; ð4:23Þ

and integrating by parts again, we findZ
t

0

W0ðt; t0Þ
d
dt0

CΦ
k⃗
ðt0Þdt0 ¼ W1ðt; tÞ _CΦ

k⃗
ðtÞ þ � � � ð4:24Þ

leading toZ
t

0

ΣΦðt; t0ÞCΦ
k⃗
ðt0Þdt0 ¼ W0ðt; tÞCΦ

k⃗
ðtÞ

−W1ðt; tÞ _CΦ
k⃗
ðtÞ þ � � � : ð4:25Þ

This process can be implemented systematically result-
ing in higher order differential equations. Since W1 ≃H2

I

and also _CA ≃H2
I the second term in (4.25) is ≃H4

I . We
consistently neglect this term because to orderH4

I the states
j1χ1p⃗ ; 1χ2q⃗ i also have nonvanishing matrix elements with

multiparticle states other than j1Φ
k⃗
i. These are the multi-

particle states denoted by the dots in Eq. (4.8) and the
hierarchy would have to include these other states, there-
fore yielding contributions of OðH4

I Þ. Hence up to order
≃H2

I Eq. (4.13) becomes

_CΦ
k⃗
ðtÞ ¼ −W0ðt; tÞCΦ

k⃗
ðtÞ; ð4:26Þ

and from Eqs. (4.15) and (4.20) we find

W0ðt; tÞ ¼
Z

∞

−∞
ρΦðk0Þ

�
1 − e−iðk0−E

Φ
k Þt

iðp0 − EΦ
k Þ

�
dk0; ð4:27Þ

yielding

CΦ
k⃗
ðtÞ ¼ e−itδE

ΦðtÞe−
γðtÞ
2 ; ð4:28Þ

where we used the initial condition CΦ
k⃗
ð0Þ ¼ 1, with

δEΦðtÞ¼
Z

∞

−∞

ρΦðk0Þ
ðEΦ

k −k0Þ
�
1−

sinððEΦ
k −k0ÞtÞ

ðEΦ
k −k0Þt

�
dk0; ð4:29Þ

and
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γðtÞ ¼ 2

Z
∞

−∞
ρΦðk0Þ

½1 − cosððEΦ
k − k0ÞtÞ�

ðEΦ
k − k0Þ2

dk0: ð4:30Þ

With this solution we find the time evolution of the
coefficients of the multiparticle states from Eq. (4.12)

Cχ

p⃗;k⃗
ðtÞ ¼ −ih1χ1p⃗ ; 1χ2q⃗ jHIð0Þj1Φk⃗ i

×
Z

t

0

e−iðE
Φ
k −E

χ1
p⃗
−Eχ2

q⃗
Þt0e−it0δEΦðt0Þe−

γðt0Þ
2 dt0; ð4:31Þ

from which we obtain the probability of the multiparticle
states in the time evolved state, and in particular the
asymptotic state as t → ∞.
The survival probability of the initial state is given by

jh1Φ
k⃗
jΨðtÞij2 ¼ jCΦ

k⃗
ðtÞj2 ¼ e−γðtÞ: ð4:32Þ

In the long time limit we find

δEΦðtÞ⟶
t→∞

δEΦ
∞ ¼

Z
∞

−∞
P

ρΦðk0Þ
ðEΦ

k⃗
− k0Þ

dk0; ð4:33Þ

where P stands for the principal part, yielding a renorm-
alization of the bare frequency of the state j1Φ

k⃗
i, namely

EΦ
k⃗
þ δEΦ

∞ ¼ EΦ
k⃗;R

, whereas the long time limit of γðtÞ
yields the decay law of the initial state.
It is illuminating to write the energy renormalization

using the explicit form of the spectral density given by
Eq. (4.16), namely

δEΦ
∞ ¼

X
p⃗
0 jh1Φk⃗ jHIð0Þj1χ1p⃗ ; 1χ2q⃗ ij2

EΦ
k⃗
− Eχ1

p⃗ − Eχ2
q⃗

; ð4:34Þ

where the principal part in Eq. (4.33) removes the region in
momenta when the denominator vanishes denoted by the
superscript prime in the sum. This is the usual quantum
mechanical result for the second order energy shift.

A. Stable particles

Before we analyze the time evolution of the coefficients
CΦ
k⃗
ðtÞ, we can understand their asymptotic behavior for the

case of stable particles. The spectral density ρΦðk0Þ
vanishes for k0 < k0T where k0T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðm1 þm2Þ2

p
corresponds to the two particle threshold [see Eq. (A3)].
In the case of a stable particle EΦ

k < k0T the denominator in
γðtÞ, Eq. (4.30), never vanishes and the cosine term
averages out in the long time limit. Therefore in the case
of a stable particle with energy below the two particle
threshold energy it follows that

γðtÞ⟶
t→∞

2

Z
∞

k0T

ρΦðk0Þ
ðEΦ

k − k0Þ2
dk0 ≡ 2z: ð4:35Þ

Hence, in the case of a stable particle for which the single
particle energy is below the two particle threshold (neglect-
ing renormalization to lowest order) the time evolution of
the initial single Φ particle amplitude yields the asymptotic
result

CΦ
k⃗
ð∞Þ ¼ e−itδE

Φ
∞e−z; ð4:36Þ

namely, the probability of finding the initial (bare) single
particle state in the asymptotic state jΨIð∞Þi is

jh1Φ
k⃗
jΨIð∞Þij2 ¼ jCΦ

k⃗
ð∞Þj2 ¼ e−2z ≡ Z; ð4:37Þ

and the unitarity condition (4.18) implies the sum rule

Z þ
X
p⃗

jCχ

p⃗;k⃗
ð∞Þj2 ¼ 1; ð4:38Þ

and we show how this relation is fulfilled in Sec. V
[see Eq. (5.13)].
For the case m1 ¼ m2 ¼ m, it is straightforward to find

that as M2 → 4m2, namely as EΦ
k → k0T , the integral in

(4.35) yields z ∝ ð4m2 −M2Þ−1=2 displaying the threshold
divergence that results in the vanishing of the overlap
between the asymptotic state and the initial single particle
state, namely Z → 0.
As we discuss below this is a consequence of taking the

infinite time limit too soon in the limit when the single
particle energy approaches the two particle threshold.
It is illuminating to understand the timescale over which

the integral (4.30) approaches its asymptotic limit (4.35). In
the case of a stable particle, with Ek < k0T as mentioned
above, the denominator in (4.30) does not vanish in the
domain of integration k0 ≥ k0T ; therefore, we can separate
the time dependent cosine term from the expression for
γðtÞ. Hence, consider the integral

IðtÞ ¼
Z

∞

k0T

ρΦðk0Þ
cosððEΦ

k − k0ÞtÞ
ðEΦ

k − k0Þ2
dk0; ð4:39Þ

where in the long time limit the cosine averages out and this
integral vanishes by dephasing, on a timescale

tdp ≃
1

k0T − EΦ
k

ð4:40Þ

since k0T − Ek is the smallest frequency contributing to the
integral, which, in turn dominates the long time limit.
Therefore as the single particle energy approaches the
threshold from below the dephasing timescale tdp diverges,
and as discussed above the overlap Z vanishes. This is the
case of threshold divergences, the dynamics of which will
be studied in detail below.
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B. Decaying particle

In this case the (renormalized) single particle energy is
above the two particle threshold, EΦ

k > k0T , and the
denominator in (4.30) vanishes within the domain of
integration; therefore, the cosine term cannot be separated.
Let us consider the case of equal masses m1 ¼ m2 ¼ m in
which case we find from Eqs. (4.30) and (A3) that

γðtÞ¼ g2
M2

EΦ
k

Z
∞

k0T

�
1−

4m2

k20−k2

�
1=2 ½1−cosððEΦ

k −k0ÞtÞ�
ðEΦ

k −k0Þ2
dk0;

k0T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ4m2

p
: ð4:41Þ

Define

ðk0 − EΦ
k Þt≡ x ð4:42Þ

in terms of which

γðtÞ ¼ g2M2

EΦ
k

t
Z

∞

−XðtÞ
ρ̄ðx=MtÞ 1 − cosðxÞ

x2
dx;

XðtÞ ¼ ðEΦ
k − k0TÞt > 0; ð4:43Þ

where for a decaying state with M2 > 4m2 ⇒ EΦ
k > k0T ,

and

ρ̄ðξÞ ¼
�
1 − 4m2

M2 þ 2EΦ
k

M ξþ ξ2

1þ 2EΦ
k

M ξþ ξ2

�
1=2

; ξ ¼ x
Mt

: ð4:44Þ

In the long time limit Mt → ∞; XðtÞ → ∞ we find

γðtÞ → Γktþ 2zd þOð1=tÞ; ð4:45Þ

where

Γk ¼ πg2M

�
1 −

4m2

M2

�
1=2

�
M
EΦ
k

�
¼ 2πρΦðEΦ

k Þ ð4:46Þ

is the correct decay rate (3.16) including the time dilation
factor and is identified with the usual result from Fermi’s
golden rule, and

2zd ¼
g2M
EΦ
k

�
−
2ρ̄ð0Þ
ξ̄

þ
Z

ξ̄

−ξ̄
½ρ̄eðξÞ − ρ̄ð0Þ� dξ

ξ2

þ
Z

∞

ξ̄

ρ̄ðξÞ
ξ2

dξ

	
;

ξ̄ ¼ ðEΦ
k − k0TÞ=M; ð4:47Þ

where ρ̄eðξÞ ¼ ðρ̄ðξÞ þ ρ̄ð−ξÞÞ=2. The details of the der-
ivation of this result are given in Appendix B. We find the
long time behavior

CΦ
k⃗
ðtÞ⟶

t→∞
e−iδE

Φ
∞te−

Γk
2
te−zd ⇒ jCΦ

k⃗
ðtÞj2⟶

t→∞
Zde−Γkt;

Zd ¼ e−2zd ; ð4:48Þ

where δEΦ
∞ is a renormalization of the single particle

energy.

C. Threshold singularity

The expression for γðtÞ, Eq. (4.43) in terms of ρ̄ given by
Eq. (4.44) makes explicit the modification of the decay in
the case of threshold singularity, namelyM2 ¼ 4m2; in this
case,

ρ̄ðξÞ ¼
� 2EΦ

k
M ξþ ξ2

1þ 2EΦ
k

M ξþ ξ2

�
1=2

; ξ ¼ x
Mt

; ð4:49Þ

we note that in this case the decay rate (4.46) Γk ¼ 0, and
the spectral density vanishes with a square root at threshold.

In the limit t → ∞ it follows that ρ̄ → ½2EΦ
k x

M2t �1=2 yielding

γðtÞ ¼ 2
ffiffiffi
π

p
g2

ffiffiffiffiffiffi
M
EΦ
k

s ffiffiffiffiffiffi
Mt

p
; ð4:50Þ

and the survival probability decays as

jCΦ
k⃗
ðtÞj2⟶

t→∞
e−

ffiffiffiffiffiffi
t=t�k

p
; ð4:51Þ

with an effective lifetime

t�k ¼
1

4πg4M
EΦ
k

M
; ð4:52Þ

where EΦ
k =M is the usual time dilation factor. Namely the

decay law changes from e−Γkt → e−
ffiffiffiffiffiffi
t=t�k

p
, as the mass of the

particle approaches the threshold. The square root behavior
is a consequence of fact that the spectral density vanishes as
a square root near threshold.
Furthermore, whereas in the case of decay there is a

constant, time independent contribution in the asymptotic
long time limit of γðtÞ which defines the wave function
renormalization, no such term arises in the case of threshold
singularity. Therefore, at threshold when M2 ¼ 4m2, even
when the usual decay rate (3.16) vanishes, the amplitude of
the initial single particle state decays not as e−Γt but as

e−
ffiffiffiffiffiffi
t=t�

p
with an effective lifetime t� given by Eq. (4.52),

reflecting the square root divergence in both the spectral
density approaching threshold from above and the wave
function renormalization approaching the threshold from
below. This new decay law is in qualitative agreement with
a result found in Ref. [26] and implies that the single
particle state is not an asymptotic state in agreement with a
vanishing wave function renormalization from below, and
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the fact that the continuum contribution of the spectral
density saturates the sum rule.
In order to understand the asymptotic behavior in more

detail it proves convenient to study the case k ¼ 0 and to
introduce the dimensionless combinations r ¼ 4m2=M2

and τ ¼ Mt, in terms of which, for k ¼ 0,

γðtÞ ¼ g2τJðr; τÞ; ð4:53Þ

where

Jðr; τÞ ¼
Z

∞

−ð1−rÞτ

�ð1þ x
τÞ2 − r

ð1þ x
τÞ2

�
1=2 1 − cosðxÞ

x2
dx: ð4:54Þ

Since the factor ð1 − cosðxÞÞ=x2 is localized within a
region of width ≃2π around the origin, for r < 1 the
function Jðr; τÞ approaches its asymptotic limit Jðr;∞Þ ¼
πð1 − rÞ1=2 within a τ scale ≃2π=ð1 − rÞ. As the threshold
is approached from above, namely r → 1 from below, the
asymptotic value becomes smaller and smaller taking a
longer and longer timescale to reach, and for r ¼ 1 the
function Jð1; τÞ ∝ 1=

ffiffiffi
τ

p
for large τ. This behavior is clearly

displayed in Fig. 9 for r ¼ 0.8, 0.9, 0.98, 1.
The crossover between the linear and square root

behavior can be understood quantitatively in the inter-
mediate asymptotic regime for ð1 − rÞ ≪ 1 from the
following argument. Consider first the case k ¼ 0, and
focus on the numerator of the term within brackets in
Jðr; τÞ, Eq. (4.54). In the region ð1 − rÞ ≪ ð2π=τÞ ≪ 1 the
contribution 2x=τ dominates in the numerator yielding
Jðr; τÞ ∝ 1=

ffiffiffi
τ

p
. This behavior continues until ð1 − rÞ ≳

2π=τ at which point there is a crossover and the function
Jðr; τÞ reaches the constant value πð1 − rÞ. As r → 1 from
below, this constant value vanishes on a very long timescale
∝ 1=ð1 − rÞ during which Jðr; τÞ falls off ∝ 1=

ffiffiffi
τ

p
.

Therefore for r < 1 the crossover from the square root
falloff to the asymptotic constant value occurs at a

timescale tx ≃ 2π=Mð1 − rÞ. For k ≠ 0 this timescale is
modified by the time dilation factor EΦ

k =M. In Sec. VI we
comment on the effect of radiative corrections on threshold
behavior.

D. Infrared singularity

The case of infrared singularity corresponds to m1 ¼ M,
m2 ¼ 0, where the spectral density (A3) simplifies to

ρΦðk0Þ¼ g2
M2

2EΦ
k

�ðk0−EΦ
k Þðk0þEΦ

k Þ
k20−k2

�
Θðk0−EΦ

k Þ; ð4:55Þ

vanishing linearly as k0 approaches the threshold
k0T ¼ EΦ

k . This situation must be contrasted with the case
of threshold divergence where the spectral density vanishes
as a square root as k0 approaches threshold. However, in
both cases the usual decay rate Γ given by Eq. (4.46)
vanishes.
It is convenient to introduce the dimensionless combi-

nations

η ¼ k0 − EΦ
k

EΦ
k

; T ¼ EΦ
k t; ð4:56Þ

in terms of which we find in this case

γðtÞ¼
�
gM
EΦ
k

�
2
Z

∞

0

2þη

ðMEΦ
k
Þ2þ2ηþη2

1−cosðηT Þ
η

dη: ð4:57Þ

We note that this integral features a logarithmic divergence
in the region of small η. Following Ref. [34] we write the
above integral as

γðT Þ ¼ I1ðT Þ þ I2ðT Þ; ð4:58Þ

with

I1ðT Þ¼2g2
Z

1

0

1−cosðηT Þ
η

dη

þg2
Z

1

0

� ðMEΦ
k
Þ2−4−2η

ðMEΦ
k
Þ2þ2ηþη2

�
ð1−cosðηT ÞÞdη ð4:59Þ

and

I2ðT Þ ¼
�
gM
EΦ
k

�
2
Z

∞

1

2þ η

ðMEΦ
k
Þ2 þ 2ηþ η2

1 − cosðηT Þ
η

dη:

ð4:60Þ

In the long time limit T ≫ 1 the first integral in I1ðT Þ
features an infrared logarithmic divergence, whereas in the
second integral and in I2ðT Þ the cosine terms average out
yielding in this limit

FIG. 9. The function Jðr; τÞ with r ¼ 4m2=M2; τ ¼ Mt for
r ¼ 0.8, 0.9, 0.98, 1.
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γðtÞ⟶
T →∞

2g2 ln½EΦ
k t� þ 2zir; ð4:61Þ

where

zir ¼
g2

2

�
2γE þ

Z
1

0

� ðMEΦ
k
Þ2 − 4 − 2η

ðMEΦ
k
Þ2 þ 2ηþ η2

�
dη

þ
�
M
EΦ
k

�
2
Z

∞

1

2þ η

ðMEΦ
k
Þ2 þ 2ηþ η2

dη
η

	
; ð4:62Þ

γE is the Euler-Mascheroni constant, and zir is infrared and
ultraviolet finite. Therefore, for the infrared case we find

jCΦ
k⃗
ðtÞj2 ⟶

EΦ
k t≫1

½EΦ
k t�−2g

2

Zir; Zir ¼ e−2zir ; ð4:63Þ

namely the probability of the initial single particle state
decays in time as a power law with anomalous dimension
2g2 and is not an asymptotic state in S-matrix amplitudes.
In summary, we find the following asymptotic long time

limits for the unstable cases in which the “mass shell” of the
particle is above or at threshold,

jCΦ
k⃗
ðtÞj2⟶

t→∞

8>><
>>:

Zde−Γkt above threshold

e−
ffiffiffiffiffiffi
t=t�k

p
at threshold;m2 ≠ 0

Zir½EΦ
k t�−2g

2

infrared;m2 ¼ 0

: ð4:64Þ

V. UNITARITY AND ASYMPTOTIC STATE

A. Unitarity

In all cases of “generalized decay” as described by
Eq. (4.64) the asymptotic state is

jΨIð∞Þi ¼
X
p⃗

Cχ

p⃗;k⃗
ð∞Þj1χ1p⃗ ; 1χ2q⃗ i: ð5:1Þ

The probabilities must obey the sum ruleX
p⃗

jCχ

p⃗;k⃗
ð∞Þj2 ¼ 1; ð5:2Þ

which is the statement of unitarity (4.18) in the asymptotic
long time limit when the amplitude of the initial state
vanishes.
The question that we address is how this sum rule is

fulfilled being that the probabilities jCχ

p⃗;k⃗
ð∞Þj2 are formally

of order g2. In Appendix C we show that for all cases and up
to OðH4

I Þ, the asymptotic probabilities are given by

jCχ

p⃗;k⃗
ð∞Þj2¼ 2

Ω
jh1χ1p⃗ ;1χ2q⃗ jHIð0Þj1Φk⃗ ij2

Z
∞

0

sin½Ωt�e−γðtÞdt;

Ω≡Eχ1
p⃗ þEχ2

q⃗ −EΦ
k ; ð5:3Þ

where EΦ
k in this expression is the renormalized single

particle energy [see Eq. (C8)]. Introducing the spectral
representation (4.16) we finally find the general form valid
up to OðH4

I Þ,
X
p⃗

jCχ

p⃗;k⃗
ð∞Þj2 ¼ 2

Z
∞

0

Z
∞

−∞

ρΦðk0Þ
ðk0 − EΦ

k Þ
sin

× ½ðk0 − EΦ
k Þt�e−γðtÞdtdk0: ð5:4Þ

Armed with this general expression we can now study
the individual cases by considering the different forms of
γðtÞ and spectral densities.

1. Decay

For the case of decay neglecting early time transient
dynamics before the linear secular growth in time in the
exponent, which only yields a perturbative contribution,
γðtÞ is given by (4.45) and ρΦðk0Þ by Eq. (A3) for the case
m1 ¼ m2 ¼ m. In this case the time integral is straightfor-
ward leading to

X
p⃗

jCχ

p⃗;k⃗
ð∞Þj2 ¼ 2Zd

Z
∞

−∞

ρΦðk0Þ
½k0 − EΦ

k �2 þ Γ2
k

dk0: ð5:5Þ

We can confirm the unitarity relation (5.2) to leading
(zeroth) order at this stage by setting Zd ¼ 1 and writing

X
p⃗

jCχ

p⃗;k⃗
ð∞Þj2 ¼ 2π

Γk

Z
∞

−∞
ρΦðk0Þ

1

π

Γk

½k0 − EΦ
k �2 þ Γ2

k

dk0:

ð5:6Þ

In the narrow width limit

1

π

Γk

½k0 − EΦ
k �2 þ Γ2

k

⟶
Γk→0

δðk0 − EΦ
k Þ; ð5:7Þ

yielding

X
p⃗

jCχ

p⃗;k⃗
ð∞Þj2 ¼ 2π

Γk
ρΦðEΦ

k Þ ¼ 1; ð5:8Þ

where we used the result (4.46). To prove unitarity up to
OðH4

I Þ requires a somewhat deeper analysis, which we now
undertake.
Let us introduce the dimensionless variables

ξ¼ k0 −EΦ
k

M
; ε¼ Γk

M
; ξ̄¼ EΦ

k − k0T
M

> 0; ð5:9Þ

it follows that
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X
p⃗

jCχ

p⃗;k⃗
ð∞Þj2 ¼ Zd

g2M
EΦ
k

Z
∞

−ξ̄

ρ̄ðξÞ
ξ2 þ ε2

dξ; ð5:10Þ

with ρ̄ðξÞ given by Eq. (4.44).
Following similar steps as in Appendix B we find

X
p⃗

jCχ

p⃗;k⃗
ð∞Þj2 ¼ Zd

g2M
EΦ
k

�
ρ̄ð0Þ

Z
ξ̄

−ξ̄

1

ξ2 þ ε2
dξ

þ
Z

ξ̄

−ξ̄

½ρ̄eðξÞ − ρ̄ð0Þ�
ξ2 þ ε2

dξ

þ
Z

∞

ξ̄

ρ̄ðξÞ
ξ2 þ ε2

dξ
	
: ð5:11Þ

In the narrow width limit ε ≪ 1 the first integral is
straightforward yielding π=ε − 2=ξ̄þOðεÞ, and for ξ̄ ≫
ε (EΦ

k − k0T ≫ Γk) we can set ε → 0 in the second and third
integrals,1 yielding

X
p⃗

jCχ

p⃗;k⃗
ð∞Þj2 ¼ Zd½1þ 2zd�; ð5:12Þ

where we used the results (B12) and (B13). Therefore, with
Zd ¼ e−2zd ≃ 1–2zd þ � � � we indeed find that the unitarity
relation (5.2) is fulfilled up to OðH4

I Þ consistently with our
main approximation.
From this result we can confirm unitarity also in the

stable case, namely Eq. (4.38), simply by taking Zd → Z,
the amplitude of the single particle contribution in
Eq. (4.37), and the limit Γ → 0 which is nonsingular in
Eq. (5.5) because EΦ

k < k0T . Therefore, for Γ ¼ 0 the
denominator in Eq. (5.5) never vanishes, and furthermore,
only the last term inside the brackets in Eq. (5.11)
contributes in the stable case because EΦ

k < k0T . Γ → 0þ

fulfills the role of a convergence factor in the integral in
(5.3). Including the contribution from the single particle
state with weight Z we find

Z½1þ 2z� ¼ 1; ð5:13Þ

where 2z is given by Eq. (4.35), thus proving the sum rule
(4.38) up to OðH4

I Þ in the stable case.

2. Threshold singularity

In this case γðtÞ is given by Eq. (4.50), and ρΦðk0Þ is
given by Eq. (A3) with m1 ¼ m2 ¼ m; 4m2 ¼ M2. In the
general expression (5.4) we introduce the following var-
iables:

ðk0 − EΦ
k Þ ¼ EΦ

k s; t ¼ πu
2EΦ

k s
;

δ ¼ πg2M
EΦ
k

; βðsÞ ¼ δ

ffiffiffi
2

pffiffiffi
s

p ; ð5:14Þ

obtaining

X
p⃗

jCχ

p⃗;k⃗
ð∞Þj2 ¼ δ

Z
∞

0

�
2þ s

1þ 2ðEΦ
k
M Þ2sþ ðEΦ

k
M Þ2s2

�
1=2 ds

s3=2

×
Z

∞

0

sin

�
πu2

2

�
e−βðsÞuudu: ð5:15Þ

Finally, we rescale the coupling by writing

s≡ δ2y; ð5:16Þ

yielding

X
p⃗

jCχ

p⃗;k⃗
ð∞Þj2 ¼

Z
∞

0

�
2þ δ2y

1þ 2δ2ðEΦ
k
M Þ2yþ δ4ðEΦ

k
M Þ2y2

�
1=2 dy

y3=2

×
Z

∞

0

sin

�
πu2

2

�
e−

ffiffi
2
y

p
uudu: ð5:17Þ

Because δ2 ∝ g4 ∝ H4
I up to this order we can set δ ¼ 0 in

the above expression, and the remaining integrals are
elementary2 yielding

X
p⃗

jCχ

p⃗;k⃗
ð∞Þj2 ¼ 1; ð5:18Þ

thus confirming the unitarity relation (5.2) up to OðH4
I Þ in

this case.

3. Infrared divergence

The fulfillment of the unitarity condition (5.2) in the case
of infrared divergence has been confirmed up to OðH4

I Þ in
Ref. [34] to which the reader is referred for further technical
details. However, for the sake of completeness we here
summarize the main steps to leading (zeroth) order to
compare with the previous cases. In this case, the spectral
density is given by Eq. (A3) in Appendix Awith m1 ¼ M,
m2 ¼ 0, which when combined with the general result (5.4)
and the result (4.61) for γðtÞ and setting zir ¼ 0 to leading
order, yields

1The second integral is finite in this limit because ρ̄eðξÞ −
ρ̄ð0Þ ≃ ξ2 as ξ → 0.

2By a change of variables y−1=2 ≡ x, the resulting integral
yields the Sine Fresnel integral.
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X
p⃗

jCχ

p⃗;k⃗
ð∞Þj2 ¼ 2

Z
ρΦðk0Þ

½k0 − EΦ
k �2

�
k0 − EΦ

k

EΦ
k

�
2g2

dk0

×
Z

∞

0

sin½τ�τ−2g2dτ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼1þOðg2Þ

: ð5:19Þ

Changing variables to s ¼ ðk0 − EΦ
k Þ=EΦ

k we find to lead-
ing order

X
p⃗

jCχ

p⃗;k⃗
ð∞Þj2 ¼ g2

�
M
EΦ
k

�
2
Z

∞

0

�
2þ s

ðMEΦ
k
Þ2 þ 2sþ s2

�
s2g

2 ds
s
;

ð5:20Þ

writing
R
∞
0 ð� � �Þds ¼ R

1
0 ð� � �Þdsþ

R
∞
1 ð� � �Þds and in the

first integral separating the infrared dominant term by
writing

2þ s
ðMEΦ

k
Þ2þ 2sþ s2

¼ 2

ðMEΦ
k
Þ2þ

s
ðMEΦ

k
Þ2
� ðMEΦ

k
Þ2− 4− 2s

ðMEΦ
k
Þ2þ 2sþ s2

�
; ð5:21Þ

the second term in (5.21) above along with the integralR
∞
1 ð� � �Þds yield contributions of order Oðg2Þ, the leading
order term is given by

X
p⃗

jCχ

p⃗;k⃗
ð∞Þj2 ¼ 2g2

Z
1

0

s2g
2 ds
s
¼ 1 ð5:22Þ

confirming the unitarity constraint up to leading order; the
details of the confirmation up to Oðg4Þ are available
in Ref. [34].

B. The asymptotic state

In the cases of decay, threshold, and infrared singularities
discussed above, the asymptotic state after the amplitude of
the initial state has become negligible, features a common
form, namely

jΨIð∞Þi ¼
X
p⃗

Cχ

p⃗;k⃗
ð∞Þj1χ1p⃗ ; 1χ2k⃗−p⃗i; ð5:23Þ

or in the case of the infrared singularity for the model given
by the Lagrangian density (2.2) of a charged scalar field
interacting with a massless scalar, obtained by identifying
χ1 ≡Φ; χ2 ≡ χ, and χ a massless field, namely

jΨIð∞Þi ¼
X
p⃗

CΦχ

p⃗;k⃗
ð∞Þj1Φp⃗ ; 1χk⃗−p⃗i: ð5:24Þ

In the analysis below we will consider the asymptotic state
(5.23) describing all cases with the implicit understanding

that the case of infrared divergence is obtained by the
replacement χ1 → Φ; m1 → M; χ2 → χ; m2 → 0.
In all the cases studied in this article, namely particle

decay and those that feature threshold and infrared
singularities, the initial single particle state decays either
exponentially or with a power law and is not an asymp-
totic state. The asymptotic states that result from the time
evolution of these processes are given by (5.23) and
(5.24); these are correlated kinematically entangled states
of the daughter particles. We highlight this noteworthy
point: particle decay and the processes that feature
threshold and infrared divergences, while quantitatively
different in the details of the dynamical evolution of the
amplitudes, are asymptotically qualitatively similar and
determined by the asymptotic states (5.23) and (5.24)
which characterize the production of the daughter par-
ticles, with the total production probability fulfilling the
unitarity relation, namely

P
p⃗ jCχ

p⃗;k⃗
ð∞Þj2 ¼ 1. Hence, in

conclusion, threshold and infrared singularities result in
the production of the daughter particles, much in the same
manner as the usual decay process.
Out of the pure state (5.23) [or (5.24)], we can construct

the (pure state) density matrix

ϱ ¼ jΨIð∞ÞihΨIð∞Þj; Trϱ ¼ 1; ð5:25Þ

where the identity in the trace is a result of the unitarity
relation (5.2). Consider taking expectation values of oper-
ators that act on the Hilbert space of only one of the fields,
for example an operatorOðχ1Þ that acts solely on the Hilbert
space of the field χ1,

hOðχ1Þi≡ Trχ1;χ2 ½ϱOðχ1Þ�; ð5:26Þ

or similarly, of operators that act solely on the Hilbert space
of the field χ2. In these cases the trace over the “unob-
served” fields yields a reduced density matrix, namely

ϱχ1 ¼ Trχ2ϱ; ϱχ2 ¼ Trχ1ϱ; ð5:27Þ

and the unitarity condition obviously yields

Trχ1ϱχ1 ¼ 1; Trχ2ϱχ2 ¼ 1: ð5:28Þ

From the asymptotic state (5.23) we find

ϱχ1 ¼
X
p⃗

jCχ

p⃗;k⃗
ð∞Þj2j1χ1p⃗ ih1χ1p⃗ j; ð5:29Þ

ϱχ2 ¼
X
p⃗

jCχ

p⃗;k⃗
ð∞Þj2j1χ2

k⃗−p⃗
ih1χ2

k⃗−p⃗
j: ð5:30Þ

These reduced density matrices describe mixed states and
are diagonal in momentum and particle number. In par-
ticular, we identify the distribution function of the produced
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particles in terms of the expectation value of the number
operator for each field N χðp⃗Þ as

hN χ1ðp⃗Þi ¼ Trχ1N χ1ðp⃗Þϱχ1 ¼ jCχ

p⃗;k⃗
ð∞Þj2; ð5:31Þ

hN χ2ðq⃗Þi ¼ Trχ2N χ2ðq⃗Þϱχ2 ¼ jCχ

k⃗−q⃗;k⃗
ð∞Þj2; ð5:32Þ

therefore, as a consequence of entanglement, both daughter
particles share the same distribution function. Furthermore,
as a consequence of unitarity we findX

p⃗

hN χ1ðp⃗Þi ¼
X
q⃗

hN χ2ðq⃗Þi ¼ 1; ð5:33Þ

a result with the clear interpretation that there are in total
one χ1 and one χ2 particles in the asymptotic state, a
physically correct outcome of the generalized decay of a
single Φ particle into one χ1 and one χ2 particles.
The results obtained above allow us to obtain the

distribution function in the cases under consideration from
the general expression (5.3). Denoting the matrix element
squared in (5.3) by Mp⃗;k⃗ we find for the case of decay,
namely EΦ

k > k0T,

jCχ

p⃗;k⃗
ð∞Þj2 ¼

2Mp⃗;k⃗Zd

½Eχ1
p⃗ þ Eχ2

q⃗ − EΦ
k �2 þ Γ2

k

; ð5:34Þ

which can be written as

jCχ

p⃗;k⃗
ð∞Þj2 ¼ 2π

Γk
Mp⃗;k⃗Zd

1

π

Γk

½EΦ
k −Eχ1

p⃗ −Eχ2
q⃗ �2þΓ2

k

: ð5:35Þ

The replacement (5.8) in the narrow width limit yields a
sharp energy conserving delta function; however, a small
but finite width introduces an energy uncertainty in the
distribution of daughter particles as a consequence of the
lifetime 1=Γk of the initial state with a concomitant
broadening of the distribution function.
For the case of infrared singularity, namely m1 ¼

M;m2 ¼ 0 we find

jCχ

p⃗;k⃗
ð∞Þj2 ¼

2Mp⃗;k⃗

½EΦ
k − Eχ1

p⃗ − Eχ2
q⃗ �2

�½Eχ1
p⃗ þ Eχ2

q⃗ − EΦ
k

EΦ
k

�
2g2

:

ð5:36Þ

This distribution function does not feature any particular
scale, although it is peaked at Ω ¼ Eχ1

p⃗ þ Eχ2
q⃗ − EΦ

k ¼ 0,
namely energy conserving transitions. It falls off as a power
law Ω−2ð1−g2Þ consistently with the scale invariance and
anomalous dimension associated with infrared phenomena
found in Ref. [34].
For the case of threshold singularity we can write the

distribution function as

jCχ

p⃗;k⃗
ð∞Þj2¼2ðt�Þ2Mp⃗;k⃗ZirF½w�;

w¼½Eχ1
p⃗ þEχ2

q⃗ −EΦ
k �t�; t� ¼ 1

4πg4M
EΦ
k

M
; ð5:37Þ

where

F½w� ¼
Z

∞

0

sin½wτ�
w

e−
ffiffi
τ

p
dτ: ð5:38Þ

Although there is an analytic expression for this integral in
terms of Fresnel integral functions, a graphical representa-
tion is more illuminating and is displayed in Fig. 10. The
distribution function is sharply peaked at Ω ¼ ½Eχ1

p⃗ þ Eχ2
q⃗ −

EΦ
k � ≃ 0 with a width of the order of 1=t� consistent with the

lifetime of the initial state. Note that this distribution is
narrower than the case of decay because the lifetime t� ∝
1=g4 is longer as compared with 1=Γ ∝ 1=g2.
The reduced density matrices (5.29) and (5.30) describe

mixed states; therefore, there is an associated von Neumann
entropy with each, and this is the entanglement entropy
arising from the loss of information as a result of tracing
over the complementary degree of freedom. This would be
the case for example if one of the particles in the decay
process belongs to a dark sector beyond the standard model
and is not observable, as in an “invisible decay.”
Because the pure state (5.23) is an entangled state of the

χ1, χ2 particles, both subsystems share the same entangle-
ment entropy

SvN ¼ −
X
p⃗

jCχ

p⃗;k⃗
ð∞Þj2 ln½jCχ

p⃗;k⃗
ð∞Þj2� > 0: ð5:39Þ

Since initially the coefficients vanish, the entanglement
entropy vanishes, whereas it is positive asymptotically at
long time since by unitarity jCχ

p⃗;k⃗
ð∞Þj2 < 1. Therefore, the

entanglement entropy SvN grows as a consequence of
unitary time evolution, and its time evolution is completely

FIG. 10. The function F½w� vs w.
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determined by the dynamical resummation Eqs. (4.12)
and (4.13).
The entanglement entropy has also been discussed in the

case of decay in Ref. [41] and for infrared singularity within
the context of quantum electrodynamics in Refs. [16,34,35].
While the entanglement entropy is a corollary of the pair
correlation in the asymptotic state, it is just beginning to
receive attention within particle physics [42].

VI. DISCUSSION

A. General lessons: Common aspects of decay,
threshold, and infrared divergences

Although we have focused our study on a simple quantum
field theory, the results obtained in the previous section
suggest some universality in the asymptotic state arising from
decay, threshold, or infrared singularities in that in all these
cases the asymptotic state is a kinematically entangled
multiparticle state with a probability that saturates the
unitarity constraint. While this is obviously a consequence
of unitary time evolution, the corollary is that threshold
and infrared divergences are just as efficient mechanisms
of particle production as the process of decay. The asym-
ptotic distribution functions jCχð∞Þj2 are peaked at
Ω ¼ Eχ1

p⃗ þ Eχ2
q⃗ − EΦ

k ¼ 0, namely energy conserving tran-
sitions, but broadened. In the case of decay the width of this
distribution isOðΓÞ ∝ g2 consistent with a broadening by the
lifetime ∝ 1=Γ, for threshold singularity the distribution is
narrower, within a width of Oð1=t�Þ ∝ g4 again consistent
with a much longer lifetime, and in the case of infrared
singularity the distribution function features a scaling behav-
ior with anomalous dimensionΩ−2ð1−g2Þ, as a consequence of
the scale invariance and anomalous dimension associated
with infrared phenomena [34].
The detailed analysis of the different cases yield the

following set of criteria on the spectral density ρðk0Þ and
the mass of the particle that determines the time evolution
of the survival probabilities:
(a) If the spectral density does not vanish at k0 ¼ Ek

where Ek is the single particle energy of the “decaying
field,” the survival probability decays as usual ∝ e−Γt

with Γ ¼ 2πρðEkÞ. This is simply the statement of
Fermi’s golden rule and is the S-matrix result for the
decay width at leading order in the coupling.

(b) If Ek coincides with the multiparticle threshold and the
spectral density vanishes at threshold as a square root
∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijk0 − k0T j
p

, this case corresponds to a threshold
singularity. The usual decay rate vanishes but the

survival probability decays as e−
ffiffiffiffiffiffi
t=t�

p
. This result

cannot be obtained within the S-matrix approach,
since the transition probability per unit time in the
infinite time limit, namely the usual decay rate
calculated via S-matrix, vanishes.

(c) If Ek coincides with the multiparticle threshold and the
spectral density vanishes linearly at threshold
∝ jk0 − k0T j, this case corresponds to an infrared
singularity. The usual decay rate vanishes but the
survival probability decays algebraically with an
anomalous dimension t−Δ. Again, this result cannot
be obtained via the usual S-matrix calculation for the
transition probability per unit time in the infinite time
limit; again such a decay rate vanishes.

More generally, if the spectral density vanishes at
threshold as jk0 − k0T jβ, the survival probability decays
as e−Ct

1−β
with C a coupling dependent constant, β ¼ 1 is

the infrared singular case, and it yields a logarithmic
behavior.
Thus, threshold and infrared singularities differ only on

how the spectral density vanishes at threshold: if as a square
root, then the decay is e−

ffiffiffiffiffiffi
t=t�

p
yielding a distribution

function with a breadth ∝ 1=t�; if linearly, the decay is
∝ t−Δ yielding a distribution function with scaling dimen-
sion 2 − Δ.

B. Infrared and threshold divergences as production
mechanism of ultralight particles

Although we have studied the dynamics associated with
infrared divergences for the case in which the χ2 particle is
massless, the results apply to the case of ultralight particles
proposed to be dark matter candidates, from “fuzzy” dark
matter with a mass ≃10−22 eV [31–33] to axions with a
mass ≃10−6 eV [27,28]. Consider that such particles are
coupled to a heavier one, with a mass ≳100 MeV;
the departure from threshold is ≲10−14 of the value of
the threshold position, and this means that although the
threshold is just above the single particle pole, the wave
function renormalization is vanishingly small (see Figs. 4
and 6), thus transferring the normalization to the con-
tinuum. The time evolution—either as a square root or as
logarithmic—lasts for a very long time, thus populating the
asymptotic state with the ultralight degree of freedom. Thus
infrared or threshold divergences are an efficient mecha-
nism for production of ultralight dark matter candidates as
proposed recently in Ref. [35].

C. Fermion loops

Threshold divergences depend crucially on the behavior
of the spectral density at threshold. Whereas for the case of
a bosonic loop the spectral density near threshold vanishes
as ð1 − 4m2=M2Þ1=2 yielding the γðtÞ → ffiffi

t
p

and the decay
law (4.51), a fermion loop yields a spectral density that
vanishes as ð1 − 4m2=M2Þ3=2 yielding γðtÞ → 1=

ffiffi
t

p
, thus

approaching an (ultraviolet divergent) constant at long
time. The lack of a threshold divergence in the case of a
fermion loop has also been recognized in Ref. [24].
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D. Relaxation and thermalization

Both for threshold and for infrared divergences the usual
decay rate vanishes; however, the survival probability
decays either as e−

ffiffiffiffiffiffi
t=t�

p
or as t−2g

2

; in either case the
decay law cannot be described by Fermi’s golden rule or
the S-matrix approach. This observation leads to the
question of how Φ particles would thermalize with a bath
of χ particles under the conditions of threshold or infrared
divergence. In the usual Boltzmann equation, the thermal-
ization rate is directly proportional to the decay rate
obtained from Fermi’s golden rule modified by sponta-
neous emission/absorption factors. This question is of
relevance in cosmology and requires a treatment different
from the Boltzmann equation which directly inputs the
transition probabilities per unit time from S-matrix theory.
These are precisely the relaxation rates from Fermi’s golden
rule which vanish for threshold or infrared divergences. A
related question is how detailed balance emerges between
decay and inverse decay processes, since in the usual
formulation detailed balance is a consequence of explicit
energy conservation and the energy conserving constraint is
not exactly satisfied for threshold and infrared divergences.
This is the reason that the usual decay rate vanishes in these
cases. Work on these aspects is in progress and will be
reported elsewhere [43].

E. Entanglement entropy, correlations, and
thermalization

We have discussed the emergence of the entanglement
entropy upon tracing an “unobserved” degree of freedom
out of the pure asymptotic state density matrix. Such
tracing, or coarse graining, yields a mixed state, and a
concomitant von Neumann entropy as a consequence of the
loss of information in the coarse graining process. The pair
correlations in the pure entangled state entail that the
reduced density matrices ϱχ1 ; ϱχ2 feature the same proba-
bilities [see Eqs. (5.29) and (5.30)] which are identified as
the distribution function of the produced particles, hence
the same entanglement entropy.
A remarkable experiment reported in Ref. [44] shows

that the entanglement entropy as a result of correlations in a
closed system heralds thermalization. It is therefore an
intriguing possibility that in the early universe, indeed a
closed system, the entanglement entropy associated with
cosmological particle production from threshold or infrared
divergences [35] may also herald the onset of a ther-
mal state.
Entanglement plays a fundamental role in the determi-

nation of time reversal and CP violation in neutral meson
systems [45]. Therefore, it is a tantalizing possibility that
correlations of particles produced via threshold or infrared
divergences may prove to also be relevant in experimental
particle physics. The potential relevance of the concept of
entanglement entropy associated with information loss in
the asymptotic final state, in particular if some of the decay

products belong to a dark sector beyond the standard
model, both in cosmology and in particle physics merits
further study.

F. Phenomenological consequences of the lifetime for
threshold divergences

The generalized decay as a consequence of threshold
divergences with a survival probability that decays as

e−
ffiffiffiffiffiffi
t=t�

p
implies that even when the usual decay rate

vanishes (infinite lifetime), there is an intrinsic finite
lifetime t� ∝ 1=g4. This result may have potentially rel-
evant phenomenological implications, as the decay prod-
ucts of this process may feature displaced vertices with a
very long but finite decay length.

G. Radiative corrections: Moving away from threshold

The condition for threshold divergence, namely that the
mass of the particle coincides exactly with the value of the
lowest multiparticle threshold, will most likely not survive
radiative corrections. However, such corrections will be
proportional to a power of a small coupling; thus while not
exactly at threshold, the departure from threshold is
perturbatively small. Let us consider that upon radiative
corrections the mass of the particle moves perturbatively
below threshold so that ð4m2 −M2Þ=M2 ∝ αwith α a small
coupling. In this case the particle has been rendered stable
by radiative corrections; however, asymptotically its prob-
ability in the final state is Z ∝ e−

cffiffi
α

p
with c a constant of

Oð1Þ, hence featuring an essential singularity in the
coupling and for all intent and purpose the particle does
not appear as an asymptotic state. If, on the other hand, the
radiative correction moves the mass above threshold, the

particle is unstable, decaying as e−
ffiffiffiffiffiffi
t=t�

p
during a time ∝

1=α until it begins decaying as e−Γt, and is not an
asymptotic state. In conclusion, radiative corrections while
capable of moving the position of the mass shell away from
threshold perturbatively, the probability of the particle to be
present in the asymptotic state practically vanishes.
For the case of infrared divergence, for example for the

model defined by the Lagrangian density (2.2) in which a
massive charged particle emits and absorbs a massless χ
particle, unless the mass of this particle is protected by
some symmetry radiative corrections will induce a non-
vanishing mass, thus modifying the conclusions. However,
if such a modification is perturbatively small, the mass shell
of the charged particle will be very close to threshold and
the near-threshold behavior will ensue as discussed above.

VIII. CONCLUSIONS

Motivated by the possibility that a dark sector beyond the
standard model could feature ultralight particles as dark
matter candidates, in this article we study threshold and
infrared divergences as hitherto unexplored possible
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production mechanisms that could be relevant in cosmol-
ogy. In the case of threshold and infrared divergences the
usual decay rates vanish; therefore, understanding the time
evolution in these cases will pave the way toward under-
standing the process of thermalization beyond the usual
Boltzmann approach which inputs the transition rates per
unit time in the infinite time limit. Our main objectives are
to compare the usual decay process to the time evolution
and particle production associated with threshold and
infrared divergences and to understand the nature and
characteristics of the asymptotic state. We study these
different mechanisms in a model field theory that provides
a simple arena to explore these phenomena within the same
setting by varying the masses of the various fields yet
allows one to extract more general lessons. An analysis
based on the Kallen-Lehmann representation of the particle
propagator suggests that decay, threshold, and infrared
singularities, while seemingly widely different phenomena
are qualitatively related, and also highlights the breakdown
of a Breit-Wigner approximation to propagators in the
cases of threshold and infrared divergences. A dynamical
resummation method complementary to the dynamical
renormalization group is introduced to study the time
evolution of initially prepared single particle states. This
method is manifestly unitary and yields the asymptotic
state, from which we obtain the distribution function of the
produced particles. We find that whereas in a typical decay
process the survival probability of the initial single particle
state decays as e−Γt, in the case of threshold divergence it

decays as e−
ffiffiffiffiffiffi
t=t�

p
and for the case of infrared divergence

t−Δ, where Γ and Δ are ∝ ðcouplingÞ2 while
t� ∝ 1=ðcouplingÞ4. Although the decay laws are strikingly
different, the asymptotic state is more “universal” in the
sense that it is a kinematically entangled state of the
daughter particles. The probability of the asymptotic state
is shown in each case to satisfy the unitarity condition. The
distribution function of the particles in the asymptotic state
are strongly peaked at energy conserving transitions, but in
the case of the usual decay and of threshold singularity they
are broadened by the lifetime of the decaying state 1=Γ, t�,
respectively, whereas in the case of the infrared divergence
the distribution function falls off with a scaling behavior
with scaling dimension 2 − Δ.
Therefore the results of this study indicate that threshold

and infrared divergences are production mechanisms just as
efficient as the usual particle decay. If either one of the
particles in the final state is not observed as perhaps in an
invisible decay into a dark matter particle, the information
loss leads to an entanglement entropy which grows as a
consequence of unitary time evolution. These alternative
mechanisms may be relevant for production of particles in
the dark sector in cosmology with possible phenomeno-
logical consequences in invisible decays with displaced
vertices and long decay lengths, and also to novel thermal-
ization dynamics, a possibility that merits further study.
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APPENDIX A: SPECTRAL DENSITY

Upon quantization in a volume V in a discrete momen-
tum representation, the relevant matrix element for the
interaction described by the interaction Hamiltonian in the
interaction picture (4.7) is found to be

h1Φ
k⃗
jHIð0Þj1χ1p⃗ ; 1χ2q⃗ i ¼

λ

V1=2

δp⃗þq⃗;k⃗

½8EΦ
k E

χ1
p⃗ E

χ2
q⃗ �1=2

: ðA1Þ

This matrix element makes explicit momentum
conservation.
The spectral density is defined by Eq. (4.16), and with

the matrix elements given by Eq. (A1) and passing to the
continuum limit with 1

V

P
p⃗ →

R d3p
ð2πÞ3 we recognize that

(4.16) is given by

ρΦðk0Þ ¼
λ2

8EΦ
k⃗

Z δðk0 − Eχ1
p⃗ − Eχ2

k⃗−p⃗
Þ

Eχ1
p⃗ E

χ2
k⃗−p⃗

d3p
ð2πÞ3 ; ðA2Þ

which is the Lorentz invariant two body phase space,
finally yielding

ρΦðk0Þ¼ g2
M2

2EΦ
k

��
1−

ðm1þm2Þ2
k20−k2

��
1−

ðm1−m2Þ2
k20−k2

��
1=2

×Θðk20−k2−ðm1þm2Þ2ÞΘðk0Þ: ðA3Þ

To leading order in the coupling we replaced ð λ
4πMÞ2 → g2

where g is the dimensionless coupling introduced
in Eq. (3.1).

APPENDIX B: LONG TIME LIMIT OF γðtÞ IN
DECAY CASE

For the case of decay, γðtÞ is given by Eq. (4.43) with
ρ̄ðx=MtÞ given by Eq. (4.44). Let us write Eq. (4.43) as

γðtÞ ¼ g2M
EΦ
k

ðMtÞIðtÞ; ðB1Þ

where
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IðtÞ ¼
Z

XðtÞ

−XðtÞ
ρ̄ðx=MtÞ 1 − cosðxÞ

x2
dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I1ðtÞ

þ
Z

∞

XðtÞ
ρ̄ðx=MtÞ 1 − cosðxÞ

x2
dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I2ðtÞ

: ðB2Þ

In I1ðtÞ the integration interval is symmetric and the function
ð1 − cosðxÞÞ=x2 is even in x; therefore, only the symmetric
combination ρ̄eðx=MtÞ ¼ ðρ̄ðx=MtÞ þ ρ̄ð−x=MtÞÞ=2 con-
tributes to this integral. Adding and subtracting ρ̄ð0Þ, it
follows that

I1ðtÞ ¼ ρ̄ð0Þ
Z

XðtÞ

−XðtÞ

1 − cosðxÞ
x2

dx

þ
Z

XðtÞ

−XðtÞ
½ρ̄eðx=MtÞ − ρ̄ð0Þ� 1 − cosðxÞ

x2
dx; ðB3Þ

Z
XðtÞ

−XðtÞ

1 − cosðxÞ
x2

dx ¼ 2

�Z
∞

0

1 − cosðxÞ
x2

dx|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
π
2

−
Z

∞

XðtÞ

1 − cosðxÞ
x2

dx

	
; ðB4Þ

in the second integral in (B4) change variables to

x¼ ξMt;⇒XðtÞ¼ ξ̄Mt; ξ̄¼ðEΦ
k −k0TÞ=M>0 ðB5Þ

in terms of which this second integral becomes

1

Mt

Z
∞

ξ̄

1 − cosðξMtÞ
ξ2

dξ ⟶
Mt→∞

1

Mtξ̄
; ðB6Þ

where the cosine term averages out in the long time limit
(Riemann-Lebesgue lemma). Performing the same change
of variables in the second integral in (B3) yields for this
contribution

1

Mt

Z
ξ̄

−ξ̄
½ρ̄eðξÞ − ρ̄ð0Þ� 1 − cosðξMtÞ

ξ2
dξ ðB7Þ

because ρ̄e is even in ξ, and it follows that for ξ ≃ 0 the
numerator is of Oðξ2Þ, therefore canceling the ξ2 in the
denominator. Hence, the region of integration near the origin
yields a vanishing contribution, and the cosine term oscil-
lates averaging out in the Mt → ∞ limit. In this limit the
second integral in (B3) yields

1

Mt

Z
ξ̄

−ξ̄
½ρ̄eðξÞ − ρ̄ð0Þ� dξ

ξ2
: ðB8Þ

Gathering all the terms we find

I1ðtÞ ⟶
Mt→∞

πρ̄ð0Þ − 2ρ̄ð0Þ
Mtξ̄

þ 1

Mt

Z
ξ̄

−ξ̄
½ρ̄eðξÞ − ρ̄ð0Þ� dξ

ξ2
: ðB9Þ

Carrying out the same change of variables in I2ðtÞ in
Eq. (B2) and taking the long time limit Mt → ∞ in which
the cosine term averages out as in the previous integrals
yields

I2ðtÞ ⟶
Mt→∞

1

Mt

Z
∞

ξ̄

ρ̄ðξÞ
ξ2

dξ: ðB10Þ

Including all contributions, we finally find in the long time
limit

γðtÞ ¼ Γktþ 2zd; ðB11Þ

where

Γk ¼
πg2M2

EΦ
k

ρ̄ð0Þ ¼ πg2M2

EΦ
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

M2

r
; ðB12Þ

and

2zd¼
g2M
EΦ
k

�
−
2ρ̄ð0Þ
ξ̄

þ
Z

ξ̄

−ξ̄
½ρ̄eðξÞ− ρ̄ð0Þ�dξ

ξ2
þ
Z

∞

ξ̄

ρ̄ðξÞ
ξ2

dξ

	
;

ξ̄¼ðEΦ
k −k0TÞ=M: ðB13Þ

APPENDIX C: USEFUL IDENTITY

From Eq. (4.12) we find

Cχ

p⃗;k⃗
ðtÞ ¼ −ih1χ1p⃗ ; 1χ2q⃗ jHIð0Þj1Φk⃗ i

Z
t

0

eiΩt
0
CΦ
k⃗
ðt0Þdt0;

Ω≡ Eχ1
p⃗ þ Eχ2

q⃗ − EΦ
k ; ðC1Þ

hence

jCχ

p⃗;k⃗
ðtÞj2 ¼ jh1χ1p⃗ ; 1χ2q⃗ jHIð0Þj1Φk⃗ ij2

×
Z

t

0

Z
t

0

eiΩt1CΦ
k⃗
ðt1Þe−iΩt2ðCΦ

k⃗
ðt2ÞÞ�dt1dt2:

ðC2Þ

Inside the integrals we replace the amplitudes CΦ
k⃗
ðtÞ by

Eq. (4.28). Since at early time the amplitude departs from
CΦ
k⃗
ð0Þ ¼ 1 by a perturbatively small amount, we will

replace them by their long time limit

CΦ
k⃗
ðtÞ ¼ e−iδE∞te−

γðtÞ
2 ; ðC3Þ

where γðtÞ is taken in the long time limit for the different
cases and absorbs δE∞ into a renormalization of EΦ

k .

THRESHOLD AND INFRARED SINGULARITIES: TIME … PHYS. REV. D 105, 056012 (2022)

056012-21



The integrand in the double time integral in (C2) is now
given by (EΦ

k in Ω now stands for the renormalized energy)

Qðt1; t2Þ ¼ eiΩðt1−t2Þe−1
2
ðγðt1Þþγðt2ÞÞ; ðC4Þ

writing the double time integral in (C2) asZ
t

0

Z
t

0

Qðt1; t2ÞðΘðt1 − t2Þ þ Θðt2 − t1ÞÞdt1dt2

¼ 2

Z
t

0

dt1e−
γðt1Þ
2

Z
t1

0

cos½Ωðt1 − t2Þ�e−
γðt2Þ
2 dt2; ðC5Þ

where in the term with Θðt2 − t1Þ on the left-hand side of
(C5) we relabeled t1 ↔ t2 and used that Qðt2; t1Þ ¼
Q�ðt1; t2Þ with γðtÞ being real. Now writing

cos½Ωðt1 − t2Þ� ¼
d
dt2

Z
t2

0

cos½Ωðt1 − t0Þ�dt0; ðC6Þ

in the t2 integral in (C5), we integrate by parts using (C6)
and neglect the term proportional to the time derivative of

γðt2Þ because it is of OðH2
I Þ, and because the modulus

squared of the matrix element in (C2) is of order H2
I ,

neglecting the derivative of γ is consistent with neglecting
terms of OðH4

I Þ in (C2). Therefore, up to OðH4
I Þ we find

that the double integral in (C2) becomes

Z
t

0

Z
t

0

e−iΩt1CΦ
k⃗
ðt1ÞeiΩt2ðCΦ

k⃗
ðt2ÞÞ�dt1dt2

¼ 2

Ω

Z
t

0

sin½Ωt1�e−γðt1Þdt1: ðC7Þ

Inserting this result into Eq. (C2) we find the final
expression for the probabilities valid up to OðH4

I Þ,

jCχ

p⃗;k⃗
ðtÞj2 ¼ 2

Ω
jh1χ1p⃗ ; 1χ2q⃗ jHIð0Þj1Φk⃗ ij2

Z
t

0

sin½Ωt1�e−γðt1Þdt1;

Ω≡ Eχ1
p⃗ þ Eχ2

q⃗ − EΦ
k ; ðC8Þ

and EΦ
k here is the renormalized single Φ particle energy.
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