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In this work we investigate the combined finite-size and thermomagnetic effects on the properties of
neutral mesons in a hot medium, in the context of the Nambu–Jona-Lasinio model. In particular, by
using the mean-field approximation and the Schwinger proper time method in a toroidal topology
with periodic and antiperiodic conditions, we evaluate the chiral phase transition, the critical coupling,
the constituent quark mass and meson observables like the π0 and σ meson masses and pion decay
constant under the change of the size, temperature and strength of external magnetic field. The results
indicate that the observables are strongly affected by the conjoint effects of relevant variables and also by
the periodicity of the boundary conditions chosen, and the net result will depend on the balance of these
competing phenomena.
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I. INTRODUCTION

The comprehension of strongly interacting matter under
extreme conditions remains nowadays as one of the major
challenges for the experimental and theoretical particle
physics community. Theoretical studies have predicted its
rich phase structure,with the emergence of a deconfined state
called quark-gluon plasma (QGP), already observed in
heavy-ion collisions [1–3]. However, a complete characteri-
zation of the phase diagram in the regime of intermediate
temperature and chemical potential directly from its under-
lying theory, the quantum chromodynamics (QCD), is a very
hard task. In light of the intrincate mathematical structure of
QCD, effectivemodels that incorporate someof its properties
have been largely employed.
In this sense, four-fermion models, as the Nambu–Jona-

Lasinio (NJL) model, are very useful for the investigation
of dynamical chiral symmetry phase transition when the
system is under extreme conditions [4–9]. It should be
noticed that the properties of the chiral phase transition can
be evaluated from the observables of the hadrons,

especially those of the mesons, when they are in a hot
and dense medium. Mesons are produced abundantly in
collisions, are more susceptible to the medium conditions
and have a direct way of association to the order parameters
of the phase transition.
Another thermodynamic variable relevant for the assess-

ment of the chiral phase diagram is the magnetic field.
In heavy-ion collisions and compact stars, a strong mag-
netic background is produced [10–26]. At RHIC and LHC,
for example, a sizable dependence of the phase transition
with the field strength ω ¼ eH is estimated in the hadronic
scale, i.e. ω ∼ 1–15 m2

π (mπ ¼ 135–140 MeV is the pion
mass). In this environment, interesting phenomena have been
proposed by the use of effective approaches. For instance:
magnetic catalysis (stimulation of broken phase) happens at
smaller temperatures at sufficiently smallω,while the inverse
magnetic catalysis (restoration of chiral symmetry) appears
at higher temperatures or even atT ¼ 0 for intermediate/high
values of field strength [14,16,17,20–22,25].
On the other hand, finite-volume effects play also an

important role on the phase structure of strongly interacting
matter. Estimations suggest that QGP-like systems pro-
duced in heavy-ion collisions have a finite volume of units
or dozens of fm3, depending on the conditions (e.g. nuclei,
energy, and centrality) [27–30]. Therefore, the size depend-
ence of the thermodynamic behavior of quark gas and
meson observables have been discussed largely via distinct
effective approaches of QCD, including the NJL model
[30–65]. The main conclusion is that thermodynamic
properties of strongly interacting matter show dependence
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on finite-size effects. For the case of chiral symmetry phase
transition, in the bulk approximation the system experi-
ences a transition from chiral symmetry broken phase to the
symmetric phase as the temperature and/or baryon chemi-
cal potential increases, with the quark-antiquark scalar
condensate being interpreted as the order parameter.
When the system is restricted to a finite volume, the chiral
symmetric phase is stimulated as well. Thus, one may
wonder about the conditions that an ideal bulk system
seems a good approximation for systems constrained to
boundaries.
As a consequence of these last paragraphs, a natural

discussion emerges: how are the phase structure of a hot
quark gas and the meson properties affected when the
system is simultaneously subject to boundaries and to a
magnetic background. Hence, in the present work we
intend to contribute to this debate and to address these
questions. In particular, we will investigate the conjoint
finite-size and thermomagnetic effects on the properties of
neutral mesons in a hot medium, in the context of the two-
flavor Nambu–Jona-Lasinio model. By using the mean-
field approximation and the Schwinger proper time method
in a toroidal topology with periodic (PBC) and antiperiodic
(APBC) boundary conditions, we analyze the gap equation
solutions and meson observables like the π0 and σ meson
masses and pion decay constant under the change of the
size, temperature and strength of external magnetic field.
The finite size effects are implemented according to the
generalized Matsubara prescription.
We organize the paper as follows. In Sec. II, we calculate

the ðT; L; μ;ωÞ-dependent gap equation, the π0 and σ
meson masses and pion decay constant from the NJL
model in the mean-field approximation, using Schwinger’s
proper-time method and generalized Matsubara prescrip-
tion. The results concerning the phase structure of the
system, the critical coupling, the behavior of constituent
quark mass, the spatial and chiral susceptibilities and the
meson properties are shown and analyzed in Sec. III.
Finally, Sec. IV presents some concluding remarks.

II. THE NJL MODEL WITH BOUNDARIES
AND A MAGNETIC BACKGROUND

A. NJL model and meson properties

We begin presenting the NJL model, whose Lagrangian
density is given by [4–9]

LNJL ¼ q̄ði∂ − m̂Þqþ gs½ðq̄qÞ2 þ ðq̄iγ5τ⃗qÞ2�; ð1Þ

where q ¼ ðu; dÞT denotes the light quark field doublet
ðNf ¼ 2Þ with Nc ¼ 3 color, and q̄ its respective antiquark
field doublet; m̂ ¼ diagðmu;mdÞ is the current quark mass
matrix; gs is the coupling constant of the scalar and
pseudoscalar channel, and τ⃗ are the generators of Uð2Þ

in flavor space (i.e. the Pauli matrices). We assume
henceforth the isospin symmetry on the Lagrangian level,
i.e. mu ¼ md ≡m, and therefore m̂ ¼ m1.
The present study is devoted to the lowest-order estimate

of the phase structure and meson properties, and the
calculations are performed in the context of the mean-field
(Hartree) approximation. Accordingly, the quark condensate
is the only allowed expectation value bilinear in the quark
fields:ϕ≡ hq̄qi. Therefore, the interaction terms inLNJL are
linearized in the presence of ϕ: ðq̄qÞ2 ≃ 2ϕðq̄qÞ − ϕ2; other
terms quadratic in the fluctuations will be neglected, and
those in channels without condensate or nondiagonal in
flavor space are excluded. This allows us to obtain the
following gap equation,

M ¼ mþ 2Nfgsϕ; ð2Þ

where we have introducedM as the constituent quark mass.
The physical solutions of Eq. (2) are determined from the
stationary points of the effective potential, which lead to the
standard expression for the quark condensate,

ϕ≡ hq̄fqfi ¼ i
Z

d4p
ð2πÞ4 TrðSðpÞÞ; ð3Þ

where Tr means the trace over Dirac and color spaces, and
SðpÞ the qf-quark propagator,

SðpÞ ¼ pþM
ðp2 −M2Þ : ð4Þ

The chiral condensate in Eq. (3) can be rewritten in a more
convenient form,

ϕ ¼ 4iNcMI1; ð5Þ

with

I1 ¼
Z

d4q
ð2πÞ4

1

q2 −M2
: ð6Þ

In the context of the NJL model, the mesons can be
interpreted as bound states of a dressed-quark and a
dressed-antiquark, and analyzed via the Bethe-Salpeter
equation (BSE) formalism by making use of the random
phase approximation (RPA) [7]. In this approximation, the
solution to the BSE for a given meson α is given by a two-
body correlation function defined as

DαðpÞ ¼
2gα

1 − 2gαΠαðpÞ
; ð7Þ
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where gα is the appropriate coupling constant and ΠαðpÞ is
the one-loop polarization function for the meson channel
considered, written as

ΠαðpÞ ¼ −i
Z

d4q
ð2πÞ4 Tr½iSðqþ pÞΓαiSðqÞΓα�; ð8Þ

with Γα ¼ ðI4; iγ5τ⃗Þ denoting the adequate combination of
gamma matrices of a specific meson channel of type α.
Focusing attention on the cases of π and σ mesons, then

Γα can be identified as I4; iγ5τ⃗, respectively. Using them in
Eq. (8), after some manipulations the polarization functions
are [19]

ΠσðpÞ ¼ 4iNcNf

�
I1 −

1

2
ðp2 − 4M2ÞIðpÞ

�
;

ΠπðpÞ ¼ 4iNcNf

�
I1 −

1

2
p2IðpÞ

�
; ð9Þ

where IðpÞ means the scalar one-loop two-point function

IðpÞ ¼
Z

d4q
ð2πÞ4

1

½ðqþ pÞ2 −M2�½q2 −M2� : ð10Þ

The mesons masses are identified from the pole mass
position conditions in the respective correlation functions
in Eq. (7), namely:

1 − 2gαΠαðmαÞ ¼ 0: ð11Þ

Besides, the pion decay constant fπ can be calculated
from the vacuum to one-pion axial vector matrix element,
h0jq̄γμγ5 τa

2
qjπbðpÞi ¼ iδabfπpμ. Some manipulations of

this element engender a suitable expression for fπ,

f2π ¼ −4iNcM2Ið0Þ; ð12Þ

with IðpÞ defined in Eq. (10).
Noting that our interest is on the influence of combined

effects of temperature, finite baryon density, magnetic
magnetic and boundaries in the meson properties, it is
convenient to invoke the Schwinger proper-time approach
[66–69] in order to treat the functions I1 and IðpÞ in a
pragmatic manner. First, we consider I1 in Eq. (6). After
performing the Wick rotation, i.e. q ¼ ðqt; q⃗Þ → qE ¼
ðiqτ; q⃗Þ, and applying the standard method of Schwinger,
the integral I1 reads

I1 ¼ −i
Z

d4qE
ð2πÞ4

1

q2E þM2

¼ −i
Z

d4qE
ð2πÞ4

Z
∞

0

dS exp ½−ðq2E þM2ÞS�; ð13Þ

where S is the proper time and q2E ¼ q2τ þ q2x þ q2y þ q2z .
In the case of the function IðpÞ in Eq. (10), starting with

the use of the identity usually called as Feynman para-
metrization,

1

AB
¼

Z
1

0

dx
Z

∞

0

dSSe½ðxAþð1−xÞBÞS�;

it can be expressed as

IðpÞ¼
Z

d4q
ð2πÞ4

Z
1

0

dx
Z

∞

0

dSSe½ðxp2þ2xq·pþq2−M2ÞS�: ð14Þ

In the following, we define p as a time-like vector and
execute the Wick rotation in momenta space, namely
pμ ≡ ðmα; 0⃗Þ → ðimα; 0⃗Þ, yielding

IðmαÞ ¼ i
Z

d4qE
ð2πÞ4

Z
∞

0

dSS
Z

1

0

dxe½−ðx−x2Þm2
αS�

× ef−½ðqτþxmαÞ2þq⃗2þM2�Sg: ð15Þ

Afterwards, we change the variable ðqτ þ xmαÞ → qτ and
make the integral in x, resulting in the expression

IðmαÞ ¼ i
Z

d4qE
ð2πÞ4

Z
∞

0

dSSe

h
−m2

αS
4

i� ffiffiffi
π

p

mα

ffiffiffi
S

p
�

× Erfi

�
mα

ffiffiffi
S

p

2

�
e½−ðq2EþM2ÞS�; ð16Þ

where ErfiðaÞ is the imaginary error function.

B. Generalized Matsubara prescription

Until now the discussion has been devoted to the
situation of the system at zero temperature and baryon
density, as well as in absence of spatial boundaries and a
magnetic background. Now, we can apply the quantum
field theory in a toroidal topology to include finite temper-
ature, density and size effects.
We take the Euclidean coordinates in Eqs. (6) and (10),

denoted by xE ¼ ðxτ; x1; x2; x3Þ, compactified as follows:
xτ ∈ ½0; β� and xj ∈ ½0; Lj� (j ¼ 1; 2; 3), with β ¼ 1=T
being the inverse of temperature T and Lj the length of
the compactified spatial dimensions. Consequently, the
Feynman rules must be modified according to the so-called
generalized Matsubara prescription [70–74],

Z
d4qE
ð2πÞ4 hðqτ; q⃗Þ →

1

βL1L2L3

X∞
fnig¼−∞

hðfω̃nigÞ; ð17Þ

ði ¼ τ; 1; 2; 3Þ such that
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qτ → ω̃nτ ≡
2π

β

�
nτ þ

1

2
− i

μβ

2π

�
;

qj → ω̃nj ≡
2π

Lj
ðnj − bjÞ; ð18Þ

where nτ; nj ¼ 0;�1;�2;…. Due to the fermionic nature
of the system, the Kubo-Martin-Schwinger conditions [70]
require APBC in the imaginary-time coordinates.
Concerning the spatial compactified coordinates, it is

worthy mentioning that there are no conceptual restrictions
regarding their periodicity, as stressed in several works
[35,58,75–77]. This choice depends on the physical inter-
est. That being so, the parameters bj in Eq. (18) can assume
the values 0 or −1=2 for PBC and APBC, respectively, and
reverberate on the physical quantities obtained in the
effective approach. We mention, for instance, the aspect
with respect to the spacetime permutation symmetry: for
APBC in spatial compactified coordinates, the fermionic
nature of the quark field engenders the physical equivalence
of Euclidean space and time directions, keeping the
permutation symmetry among them. As a consequence,
taking the vacuum coupling constants of the model temper-
ature-independent, then permutation symmetry assures that
they do not depend on the size of spatial compactified
coordinates. In the opposite way, the periodic condition
PBC breaks this permutation symmetry, and therefore such
a dependence cannot be eliminated a priori (we refer to
Ref. [58] for a detailed discussion). In the next section the
physical meaning of the boundary conditions on the
thermodynamic properties and the effective masses of
the system will be examined.
To perform the manipulations of Matsubara series in a

more tractable way, we employ the Jacobi theta functions
θ2ðz; qÞ and θ3ðz; qÞ [78,79], given by

θ2ðu; vÞ ¼ 2
X∞
n¼0

vðnþ1=2Þ2 cos½ð2nþ 1Þu�;

θ3ðu; vÞ ¼ 1þ 2
Xþ∞

n¼1

vn
2

cosð2nuÞ: ð19Þ

Therefore, the use of Eqs. (18) and (19) allows to rewrite
Eq. (13) as

I1ðβ; μ; LjÞ ¼ −i
1

βL1L2L3

Z
∞

0

dS exp½−SðM2 − μ2Þ�

× θ2

�
2πμS
β

; exp

�
−
4π2S
β2

��

×
Y3
j¼1

θBC

�
0; exp

�
−
4π2S
L2
j

��
; ð20Þ

where θBC ≡ θ2 or θ3 for APBC or PBC in spatial
coordinates, respectively.

Proceeding similarly with the function IðmαÞ in Eq. (16),
we get

Iðmα; β; μ; LjÞ ¼ i
1

βL1L2L3

Z
∞

0

dSSe

h
−m2

αS
4

i

×

� ffiffiffi
π

p

mα

ffiffiffi
S

p
�
Erfi

�
mα

ffiffiffi
S

p

2

�

× e½−SðM2−μ2Þ�θ2

�
2πμS
β

; e

�
−4π2S

β2

��

×
Y3
j¼1

θBC

�
0; e

�
−4π2S

L2
j

��
: ð21Þ

C. Inclusion of a magnetic background

Here we present the model by considering the system
under the influence of an external magnetic field. The
magnetic background is implemented by means of minimal
coupling prescription, where the ordinary derivative
in Eq. (1) is replaced by the covariant one, that is
∂μ → ∂μ þ iQ̂Aμ, where Aμ is the four-potential associated
to the external magnetic field H ¼ Hẑ, and Q̂ is the
quark charge electric matrix, Q̂ ¼ diagðQu;QdÞe, with
Qu ¼ −2Qd ¼ 2=3. The choice of Landau gauge Aμ ¼
ð0; 0; xH; 0Þ yields a constant magnetic field H along to z
direction. Then, the gap equation in Eq. (2) is reexpressed as

M ¼ mþ 2gs
X
f¼u;d

ϕfðωÞ; ð22Þ

where the magnetic-dependent chiral condensate ϕfðωÞ is
given by

ϕfðωÞ¼ i

�jQfjω
2π

�Z
dq0dq3
2π

X∞
l¼0

X
s¼�1

TrðSfðq;ωÞÞ; ð23Þ

with the quark propagator Sfðq;ωÞ, connected to the inverse
of the eigenvalues of the modified differential operator,
taking the form

Sfðq;ωÞ ¼
=q −Qfe=AþM

½q20 − q2z − jQfjωð2lþ 1 − sÞ −M2� ; ð24Þ

In equations aboveω≡ eH denotes the cyclotron frequency,
s ¼ �1 the spin polarization and l the Landau levels.
Now we can apply the recipe presented in the previous

section. Making the Wick rotation and considering a
Schwinger proper time parametrization, the expression
for the chiral condensate is similar to the one in Eq. (5),
i.e. ϕf ¼ 4iNcMI1fðωÞ, but with I1fðωÞ being the mag-
netic-dependent function
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I1fðωÞ ¼ −i
�jQfjω

2π

�X∞
l¼0

X
s¼�1

Z
d2qE
ð2πÞ2

Z
∞

0

dS

× e½−ðq2EþM2ÞS�e½−jQf jωð2lþ1−sÞS�: ð25Þ

Here qE is defined as qE ¼ ðqτ; q3Þ. To include finite
temperature, chemical potential and size effects, we pro-
ceed analogously to the case without external field derived
before and use Matsubara generalized prescription (18).
The resulting expression can be written, after performing
the sum over the spin polarizations s and the geometrical
series in l, as

I1fðω; β; μ; L3Þ ¼ −i
� jQfjω
2πβL3

�Z
∞

0

dSe½−ðM2−μ2ÞS�

× θ2

�
2πμS
β

; e

�
−4π2S

β2

��

× θBC

�
0; e

�
−4π2S
L2
3

��
coth ðjQfjωSÞ: ð26Þ

Now we take into account the combined thermomagnetic
and finite-size effects on the meson properties. First we
should mention that the polarization functions for pions
include contribution of u; d − ū; d̄ quark-antiquark loops,
and in absence of a magnetic background we have no
distinction among the polarization functions of neutral and
charged mesons. In this sense, in most of the cases the
choice of parameters is done using the neutral mesons. In
the presence of an external magnetic field, the quark loop
structure must be different for the charged mesons, and the
Ππ;ρðpÞ assumes a different form, while in the case of
neutral mesons they are similar to Eq. (9), keeping
the modifications due to the dimensional reduction in
the functions I1 and IðpÞ. Thus, bearing in mind that
our purpose here is a global analysis of the ω, β, μ,
L-dependence of the relevant observables, here we focus on
the neutral mesons.
Therefore, we implement the ω, β, μ, L-dependence in

the polarization functions for the σ; π0 mesons by perform-
ing in Eq. (9) the following substitutions

ðNfI1Þ →
X
f¼u;d

I1fðω; β; μ; L3Þ;

ðNfIðpÞÞ →
X
f¼u;d

Ifðp; α;ω; β; μ; L3Þ; ð27Þ

where I1fðω; β; μ; LzÞ is given in Eq. (26). The function
Ifðω; β; μ; LzÞ is obtained from Eq. (10), first performing
the Wick rotation, Feynman and Schwinger proper time
parametrization, giving

Ifðmα;ωÞ ¼ i

�jQfjω
2π

�X∞
l¼0

X
s¼�1

Z
d2qE
ð2πÞ2

Z
∞

0

dSS

× e½−
m2
αS
4
�
� ffiffiffi

π
p

mα

ffiffiffi
S

p
�
Erfi

�
mα

ffiffiffi
S

p

2

�

× e½−ðq2EþM2ÞS�e½−jQf jωð2lþ1−sÞS�: ð28Þ

After, with the use of the Matsubara prescription and the
sum over the spin polarizations s and the geometrical series
in l, we obtain the final expression

Ifðmα;ω;β;μ;L3Þ ¼ i

� jQfjω
2

ffiffiffi
π

p
βL3

�Z
∞

0

dS
ffiffiffi
S

p
e

h
−m2

αS
4

i

×

�
1

mα

�
Erfi

�
mα

ffiffiffi
S

p

2

�
e½−ðM2−μ2ÞS�

× θ2

�
2πμS
β

;e

�
−π2S

β2

��
θBC

�
0;e

�
−4π2S

L2
3

��

× coth ðjQfjωSÞ: ð29Þ

Finally, the thermal-magnetic-density-size dependence on
the pion decay constant is determined from the expression

f2π ¼ −4iNcM2
X
f¼u;d

Ifð0;ω; β; μ; LzÞ; ð30Þ

with IðpÞ defined in Eq. (29).
A last remark is concerning the regularization procedure

adopted.We dealwith the divergences appearing atS → 0 by
implementing an ultraviolet cutoff Λ in the integral over S
[62,66]

Z
∞

0

hðSÞdS →
Z

∞

1=Λ2

hðSÞdS: ð31Þ

III. RESULTS

In this section we concentrate our attention on how the
relevant quantities introduced above behave with the
change of the thermodynamic variables and, in particular,
on the influence of the boundaries on the behavior of meson
properties. We simplify the present study by fixing Li ¼ L.
Another important ingredient relies on our main intention
of applying our findings to the heavy-ion collision envi-
ronment, which is characterized by a very low μ. Therefore,
we concentrate attention on the influence of thermody-
namic variables T; 1=L and ω.
The NJL model with isospin symmetry in mean-field

parameters is characterized by the following parameters:
the coupling constant gs, the ultraviolet cutoff Λ, and the
current quark mass m or equivalently the constituent quark
mass M. They are set in order to reproduce the observable
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hadron quantities at vacuum values of thermodynamic
characteristics: T; 1=L;ω ¼ 0 (we refer the reader to
Ref. [7] for a detailed discussion; see also [80] for the
3-flavor model). Actually, this limit is reached in our
numerical calculations by taking the region of ðT; 1=L;ωÞ
in which they are sufficiently small to generate the con-
vergence to the vacuum values of the observables
(see discussion in the next subsection). Specifically, the
parameters are fixed by fitting the pion mass mπ ¼
0.135 GeV, and pion decay constant fπ ¼ 0.092 GeV.
So, the values we have obtained and used in the estima-
tions are: M ¼ 0.300 GeV, gs ¼ 5.691 GeV−2, and
Λ ¼ 0.688 GeV. This set engenders the current quark mass
m ¼ 11.7 MeV [81].

A. The critical coupling

We start by analyzing the critical coupling gðcÞs in
parameter space that delimits the regions where the chiral
symmetry is preserved or broken. On this issue we follow
the discussion done in Ref. [85]. In the vacuum, it can be
determined from nontrivial solutions M ≠ 0 of the gap
equation (2) at chiral limit (m ¼ 0). In another perspective,
it might be found from the intersections of the curve fðyÞ ¼
2NfgsϕðyÞ and the line y ¼ M. According to the magni-

tude of gs, it could acquire a critical value g
ðcÞ
s where exists

one more intersection beyond the trivial case M ¼ 0, and
a nontrivial solution M ≠ 0 appears. In this sense, for

gs > gðcÞs at least two intersections are found. Thus,

the value of gðcÞs at which the trivial and nontrivial solu-
tions bifurcate from one another can be identified from
the derivative of the gap equation with respect to M at
M ¼ 0. This recipe for the vacuum scenario gives

gðcÞs ¼ 2π2=ð3NfΛ2Þ.
It is interesting to understand the behavior of critical

coupling by taking thermomagnetic and finite-size effects.
In this case, the condition for criticality is obtained by
applying the prescription described above in the bulk
vacuum to the modified gap equation (22), and reads

1 ¼ 8iNcg
ðcÞ
s

X
f¼u;d

∂
∂M ½MI1fðω; β; LÞ�j

M¼0
; ð32Þ

where I1fðω; β; LÞ is given in Eq. (26), and gðcÞs now
denotes the dressed critical coupling in the thermomagnetic
medium with boundaries for light quarks to have the
constituent quark mass larger than the current quark mass
[85]. Then, Eq. (32) can be interpreted as a self-consistent
relation for the thermodynamic variables ðL; T;ωÞ needed
to break chiral symmetry. Its solution yields the value

gðcÞs ðT; 1=L;ω → 0Þ ≈ 3.46 GeV−2 for the cutoff introduced
at beginning of this Section. But keeping in mind that the
heavy-ion collision ambience is characterized by high
temperatures, then the solution of Eq. (32) for example for

T ¼ 175 MeV gives gðcÞs ðT ¼ 175 MeV; 1=L;ω → 0Þ≈
5.93 GeV−2. As a consequence, the coupling constant we
chose ðgs ¼ 5.691 GeV−2Þ is most likely subcritical in the
regime of high temperatures, where the chiral symmetry is
not broken, in accordance with our purposes of heavy-ion
collision applications.
To have a more accurate comprehension of this point, in

Figs. 1 and 2 we plot the critical curves obtained from
Eq. (32) as a function of the inverse of length 1=L and
cyclotron frequency ω, taking different values of temper-
ature T, in both APBC and PBC cases. Regions above the
curves are the domains corresponding to the chirally broken
region in parameter space, where any value of gs yields
nonvanishing dynamical quark mass. The dependence of

gðcÞs with ω, T is similar to that reported in [85]: the thermal
and magnetic effects compete to suppress or enhance the
chiral broken phase, respectively. As the magnetic field

strength increases, gðcÞs decreases and the critical temper-
ature moves toward higher values, manifesting the expected

FIG. 1. Critical curves obtained from Eq. (32) as a function of
the inverse of length 1=L in APBC case and cyclotron frequency
ω, taking different values of temperature T. The critical coupling is
given in units of GeV−2. The black, red and orange points
represent the results for T ¼ 0, 0.120, and 0.150 GeV, respectively.

FIG. 2. The same as in Fig. 1, but in the PBC case.
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effect in literature known as magnetic catalysis. Looking
especially at the periodicity of the boundaries, we see that
for the APBC situation the critical curves depends on 1=L
analogously to T: there are values of T and 1=L where the
critical coupling diverges, i.e. the critical values of T and
1=L above which there is no chiral symmetry breaking.
This is a consequence of the parallelism between 1=L and T
within the APBC. In this sense, thermal and APBC size
effects concur with magnetic ones. Passing on the PBC

case, the outcome is unlike: gðcÞs diminishes as L decreases,
causing the reinforcement of the chiral broken phase.
Hence, the behavior of the critical coupling presents a
sizable dependence on the selection of the boundary
conditions. In the next subsections we explore the conse-
quences of this issue in more detail.

B. Constituent quark masses and susceptibilities

For the sake of completeness and comparison with other
works, we start with the analysis of the constituent quark
mass under the conjoint effects of boundaries, finite
temperature and a magnetic background. With regard to
other studies (see for example Refs. [19,23–26,52]), which
employed different treatments and methods to account for
the finite volume or thermomagnetic effects, our aim is to
discuss the combination/competition of them in a uni-
fied way.
In Figs. 3 and 4 are plotted the values of M that are

solutions of the gap equation in Eq. (22) as a function of the
different variables, with spatial coordinates in APBC and
PBC cases.We see that at relatively smaller values of T; 1=L
andω there is no appreciable modifications. In this region of
thermodynamic variables, the vacuum mean-field approach
appears as a good approximation. Notwithstanding, M is
hugely alteredwith the increase of any of these variables, and
a strong dependence on the periodicity of boundary con-
ditions appears. We start our analysis with the APBC
situation and at sufficiently small magnetic field: it can be
seen that at higher T (from approximately 100 MeV), μ
(from approximately 100 MeV), 1=L (from approximately
0.3 − 0.5 fm−1), the constituent quark mass start to lower,
and therefore the broken phase is inhibited and a crossover
transition takes place. In particular, at certain values of T and
1=L the dressed mass converges to the current quark mass.
In this scenario, as expected the finite size and temperature
cause similar effects to the chiral phase transition, due to the
equivalent nature between 1=L and T, both using APBC.
On the other hand, while in APBC case the presence of

boundaries disfavors the maintenance of long-range corre-
lations in a similar way to the finite temperature, in PBC
situation the constituent quark masses acquire greater
values with the decreasing of the size, causing a reverse
effect compared to temperature. One can understand this
difference in the phase structure more deeply by examining
the behaviors of the θ-functions in the chiral condensates
shown in Eq. (20) and (26) [76,77]. The generalized

FIG. 3. Top panel: constituent quark mass as a function of
temperature T and cyclotron frequency ω, taking different values
of L in APBC case. The black, purple, red, brown, and orange
points represent the results for L ¼ ∞; 2, 1.5, 1.0 and 0.75 fm,
respectively. Bottom panel: constituent quark mass as a function
of inverse of length 1=L in APBC case and cyclotron frequency
ω, taking different values of temperature T). The black, red, and
orange points represent the results for T ¼ 0, 0.120, and
0.150 GeV, respectively.

FIG. 4. The same as in Fig. 3, but in the PBC case.
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Matsubara prescription (18) states that the fermion fields
with APBC cannot have a momentum less than
ðpj → ω̄nj ≥ π=LjÞ, with pj becoming larger for smaller
values of Lj. Since the infrared contributions are relevant in
the breaking of chiral symmetry, consequently in the chiral
limit the quark condensate ϕf vanishes at a sufficiently
small L and hence the chiral symmetry is restored. On the
other hand, the PBC allow a zero value for pj, which
engenders no restoration of the symmetry as Lj decreases.
In fact, since the quark field qið…; xj;…Þ interacts with
qið…; xj þ Lj;…Þ, in this context a finite Lj yields a
stronger interaction (caused by dimensional reduction), and
the result of all correlations hqið…; xj;…Þqið…; xj þ
Lj;…Þi is a higher value of ϕf with the decreasing of Lj.
It should be mentioned that is more frequent to find in

literature of effective quark models APBC in spatial
compactified directions for the quark fields [77]. On the
other hand, PBC are more often in lattice QCD simulations
due to empirical minimization of finite-volume effects [58]
(see also Ref. [51], which makes use of the ð2þ 1Þ − flavor
Polyakov linear sigma model with a purely mesonic
potential).
Now we analyze the magnetic background effects. The

augmentation of magnetic field strength stimulates the
broken phase. This expected feature is comes from
the magnetic catalysis effect. In the situation of APBC, M
acquires greater values and the increase of field strength
induces even higher values of T and 1=L for the crossover
transition. Accordingly, the combination of finite size with
APBC, finite temperature, finite chemical potential and
magnetic effects generates a competition among them, since
the last one yields its stimulation whereas the other ones
suppress the broken phase. In contrast, whenwe consider the
PBC, both drop of L as well as increasing of ω cause greater
values of M. Thereby, the conjunction of finite-size and
magnetic effects on the phase structure has a hard depend-
ence on the boundary conditions: while for APBC there is a
concurrence between them, since the former inhibits the
broken phase whereas the latter yields its enhancement; for
PBC both effects cause stimulation of broken phase.
To better characterize the phase structure, we also plot in

Figs. 5 and 6 the chiral and spatial susceptibilities, defined
as ∂M=∂T and ∂M=∂ðL−1Þ respectively, taking different
field strengths. Keeping in mind that for the APBC the peak
indicates the point at which the chiral phase transition
occurs, then the increase of ω augments the height of the
peaks as well as the pseudocritical temperature Tc and
pseudocritical inverse of length ðLcÞ−1. Besides, the
decrease of L yields the drop of the height of the peaks
and Tc. In Table I we list some values of Tc and ðLcÞ−1 as
functions of the field strength. In the context of PBC, the
peak in the chiral susceptibility moves to higher temper-
atures with increasing the magnetic field strength and drop
of L. In other words, there is not a critical value of the size

in which the symmetry is restored, since the composite
effect of magnetic background and boundary conditions in
periodic case strengthens the broken phase.
We finish this discussion on the phase structure with the

chiral limit. This limit is achieved by fixing m ¼ 0. Once
this is a conceptual check of the chiral symmetry, without
intention of practical purposes, we keep the values of the
other parameters (effective coupling and ultraviolet cutoff)
unchanged. This choice gives the constituent quark mass
M ¼ 0.285 GeV at T; μ; 1=L;ω ¼ 0. The corresponding
results are showed in Figs. 7 and 8. As it can be seen for the
APBC case, in the chiral limit the dependence of the
dressed quark mass with 1=L and T shows a second order
phase transition. In this situation the mentioned outcome
becomes even more explicit: the increase of field strength
forces the system to higher values of critical temperature
and critical inverse of length. Interestingly, at sufficient ω
the system with a certain L suffers a transition from
unbroken to broken chiral phase (see for example brown

FIG. 5. Top panel: chiral susceptibility of quark gas as a
function of temperature T and cyclotron frequency ω, taking
different values of L in APBC case, at vanishing value of
chemical potential μ. The black, purple, red, brown and orange
points represent the results for L ¼ ∞; 2, 1.5, 1.0, and 0.75 fm,
respectively. Bottom panel: spatial susceptibility of quark gas as a
function of 1=L and ω, taking different values of T, at μ ¼ 0. The
black, red and orange points represent the results for T ¼ 0,
0.120, and 0.150 GeV, respectively.
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points in Fig. 7). By contrast, for PBC higher values of both
ω and 1=L strengthen the broken phase.

C. Meson properties

Now we can move on the properties of mesons propa-
gating in a hot medium in the presence of boundaries and a
magnetic background.
First, we show in Figs. 9 and 10 the behavior of π0 and σ

meson masses as functions of temperature in the case
of absence of magnetic field, for different values of the
length L, with spatial coordinates in APBC and PBC cases.
In the bulk, the meson masses remain unchanged at smaller
temperatures, but they are affected with the increase of T,
suffering a crossover transition from the chiral symmetry
broken phase to the chiral symmetry restored phase, and
becoming degenerate. In particular, the σ mass reaches a
minimum at the critical point of chiral phase transition Tξ

c,
and then rises in the unbroken restored phase. This is in
qualitative agreement with previous findings, as those from
[19,23–26,52]. The finite size effects appear with a con-
siderable dependence on the periodicity of boundary
conditions. For the APBC, at sufficiently small values of

FIG. 6. The same as in Fig. 5, but in PBC case.

TABLE I. Pseudocritical temperature Tc and inverse of pseu-
docritical length ðLcÞ−1 as functions of the field strength ω, at
different L−1 in APBC and T. We adopt the notation as in
Ref. [19]: Tξ

c and ðLξ
cÞ−1 denote the pseudocritical values of the

constituent quark mass M, obtained from the peaks of the chiral
and spatial susceptibilities, respectively. All temperatures are in
GeV, inverse of lengths in fm−1 and ω in GeV2.

L−1 ω Tξ
c T ω ðLξ

cÞ−1
0 0.0 0.153 0 0.0 0.78

0.2 0.156 0.2 0.79
0.4 0.164 0.4 0.84
0.6 0.175 0.6 0.90
0.8 0.185 0.8 0.95
1.0 0.195 1.0 0.99

0.67 0.0 0.150 120 0.0 0.77
0.2 0.153 0.2 0.78
0.4 0.162 0.4 0.83
0.6 0.173 0.6 0.89
0.8 0.183 0.8 0.94
1.0 0.193 1.0 0.98

1.0 0.0 - 150 0.0 0.74
0.2 - 0.2 0.75
0.4 0.144 0.4 0.82
0.6 0.150 0.6 0.86
0.8 0.162 0.8 0.92
1.0 0.175 1.0 0.96

FIG. 7. Top panel: constituent quark mass M in the chiral limit
as a function of T and ω, taking different values of L in APBC
case, at μ ¼ 0. The black, purple, red, brown and orange points
represent the results for L ¼ ∞; 2, 1.5, 1.0, and 0.75 fm,
respectively. Bottom panel: M in the chiral limit as a function
of 1=L and ω, taking different values of T, at μ ¼ 0. The black,
red, and orange points represent the results for T ¼ 0, 0.120, and
0.150 GeV, respectively.
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L the π0 and σ masses are modified in a different way.
While the pion mass grows with the drop of the size, the
mass of σ decreases quite strong, in a phenomenon in which
they become closer. This reflects the inhibition of chiral
symmetry breaking due to reduction of the size of the
system. In this sense, the pseudocritical temperature where
the π0 and σ meson masses start to degenerate also reduces

with the decreasing of L. It is worth remarking that an
analogous effect is reported in Refs. [42,52] by using
distinct treatments. Otherwise, in the context of PBC the π0

(σ) meson mass experiences an decrease (increase) as the
size L diminishes, and the pseudocritical temperature
augments with the drop of L.
Now we focus on the evaluation of combined finite-size

and thermomagnetic effects. In Figs. 11, 12, 13 and 14 are
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FIG. 8. The same as in Fig. 7, but in the PBC case.

FIG. 9. π0 and σ meson masses as functions of temperature in
absence of magnetic field, taking different values of length L in
the APBC case.

FIG. 10. The same as in Fig. 9, but in the PBC case.

FIG. 11. σ and π0 meson masses as functions of temperature,
taking different values of length L in APBC case and magnetic
field strength ω.
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plotted the calculated π0 and σ meson masses a function of
the relevant variables, including the cyclotron frequency ω.
In the cases of spatial coordinates with APBC, the scalar
meson σ mass undergoes a competition between the effects
of finite size and magnetic background: while the former
lowers mσ and the pseudocritical temperature at which mσ

starts to degenerate, the latter enhances them. Conversely,
for the neutral pion the size effects enhance mπ0 but
diminish the pseudocritical temperature at which mπ0

begins to be degenerate, whereas the magnetic background
reduces mπ0 and augments the pseudocritical temperature.
We notice that the dependence on the magnetic field and
size of the neutral pion is weaker when compared to the one
of the σ meson. In the PBC scenario, the combination of the
drop of L and increasing of ω engender higher values for
the scalar meson σ mass and the pseudocritical temperature;
contrarily, the neutral pion mass diminishes.
This analysis complemented with Figs. 15 and 16, where

are plotted the values of the pion decay constant as
functions of the relevant thermodynamic variables with
spatial coordinates in the PBC and APBC cases. In the
context of APBC, fπ is large below the pseudocritical
temperature and inverse of the size and decreases with
increasing T and 1=L. This outcome is in accordance with
that reported in Ref. [42], and it is an symptom of the
restoration of the chiral symmetry, since fπ is proportional

FIG. 12. The same as in Fig. 11, but in the PBC case.

FIG. 13. σ (top panel) and π0 (bottom panel) meson masses as
functions of inverse of length 1=L in APBC case and cyclotron
frequency ω, taking different values of temperature T. The black,
red and orange points represent the results for T ¼ 0, 0.120, and
0.150 GeV, respectively.

FIG. 14. The same as in Fig. 13, but in the PBC case.
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to the divergence of the chiral current Jaμ5 ¼ q̄γμγ5
τa

2
q.

Conversely, fπ acquires higher values with the growth of
the field strength, due to the magnetic catalysis, manifest-
ing its concurrence with the finite size (APBC) and
temperature effects. By contrast, the case of PBC makes
the pion decay constant reach higher values with both
increasing of 1=L and ω. As the other quantities studied
above, the behavior of fπ has a hard dependence on the
periodicity of the boundary conditions.
It is interesting to check the Gell-Mann–Oakes–Renner

(GMOR) relation, which relates the mass and decay
constant of the pion to the current quark mass and quark
condensate, and tells us how the dynamical quantities must
evolve in such a way to satisfy it (see Ref. [19,86] for a
detailed discussion). In the lowest order of chiral expan-
sion, it is given by

f2πm2
π ¼ −2mhq̄qi: ð33Þ

The two flavors are taken into account in the quark
condensate. The influence of the thermodynamic variables
T; 1=L and ω in this relation can be studied through the
ratio [19,86]

r ¼ f2πm2
π

−2mhq̄qi : ð34Þ

At T; 1=L, ω → 0, the GMOR relation is very well
preserved (r ≈ 1), which is a demonstration of the dynami-
cal chiral symmetry breaking. However, if for example
temperature increases the GMOR relation should break
down (r ≠ 1), as the chiral symmetry is restored. To verify
how the ratio r is affected by the finite size and magnetic
effects, in Figs. 17 and 18 are plotted the ration r as a
function of 1=L and ω, taking different values of temper-
ature and with spatial coordinates in the PBC and APBC

FIG. 15. Top panel: pion decay constant fπ as a function of
temperature T and cyclotron frequency ω, taking different values
of L in the APBC case. The black, purple, red, brown and orange
points represent the results in the APBC case for L ¼ ∞; 2, 1.5,
1.0, and 0.75 fm, respectively. Bottom panel: fπ as a function of
1=L and ω, taking different values of T, at μ ¼ 0. The black, red
and orange points represent the results for T ¼ 0, 0.120, and
0.150 GeV, respectively.

FIG. 16. The same as in Fig. 15, but in the PBC case.

FIG. 17. Ratio r defined in Eq. (34) as a function of 1=L in
APBC and ω, taking different values of T. The black, red, and
orange points represent the results for T ¼ 0, 0.120, and
0.150 GeV, respectively.
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cases. As expected, the increase of T up to sufficiently
higher values enforces the breaking down of the GMOR
relation due to the start of the restoration of the chiral
symmetry. But at moderate values of T, ω, and 1=L, the
ratio does not deviate from 1. More interestingly, in the
situation of APBC, there is a range of values of 1=L at
which r reaches local minimum and maximum. This
behavior is similar to the one discussed for finite temper-
ature effects in [19]. So, at enough smaller sizes the GMOR
relation is violated, and this fluctuation can be interpreted
as a sign of the chiral phase transition. In other words, the
presence of antiperiodic boundaries induces the restoration
of dynamical chiral symmetry, analogously to the thermal
effect. This fact reflects the presupposition of the physical
equivalence among antiperiodic compactified spatial and
imaginary time coordinates. We also notice that sufficiently
high field strength affects the region near the critical region
of T and 1=L, yielding higher T and 1=L at which r reaches
local minimum and maximum. In a different way, the
context of PBC does not engenders a region in r with a
local minimum and a maximum; it suffers an augmentation
as 1=L increases.

IV. CONCLUDING REMARKS

In this work we have examined the competition between
the finite volume and magnetic effects on the properties of
neutral mesons in a hot medium, in the context of the
Nambu–Jona-Lasinio model. By using the mean-field
approximation and the Schwinger proper time method in a
toroidal topology with antiperiodic conditions, we have
investigated the gap equation solutions and meson observ-
ables like theπ0 and σmesonmasses andpion decay constant
under the change of the size, temperature and strength of
external magnetic field. Our findings have shown that these
observables are strongly affected by the combined effects of
relevant variables, depending on their range, and also by the
periodicity of the boundary conditions.
We have seen that the conjunction of boundaries with

antiperiodic conditions and magnetic effects generates a
competition among them, since the last one yields an
enhancement of the dynamical breaking of chiral symmetry
(higher values of the constituent quark mass M and

pseudocritical temperature Tξ
c), whereas the former one

favors the restoration of the chiral symmetry (smaller M
and Tξ

c). In contrast, while for APBC there is a concurrence
between finite-size and magnetic effects, for PBC both
effects stimulate the broken phase.
Our evaluation of the conjoint finite-size and thermo-

magnetic effects on the meson properties has revealed two
distinct patterns between the π0 and σ meson masses. In the
APBC, whereas mσ and its pseudocritical temperature
decreases with the presence of boundaries and increases
with a magnetic background, mπ0 is increased at smaller L
and diminishes with the field strength. In other words, we
have found that in an environment with sufficiently
restricted volume (and similarly with high temperatures)
and high magnetic field, the masses of these chiral partners
experience simultaneously the tendency to be nearer each
other due to the boundaries as well as farther because of the
magnetic background, and the net result will depend on
the balance of these competing effects. We have remarked
the neutral pion presents a feeble dependence on these
variables when compared to the σ meson. In the PBC
scenario, the combination of the decrease of L and
increasing of ω engender higher values for the scalar
meson σ mass and the pseudocritical temperature; con-
trarily, the neutral pion mass diminishes. Concerning the
pion decay constant, fπ acquires higher values with the
growth of the field strength, due to the magnetic catalysis,
manifesting its concurrence with the APBC finite size and
temperature effects. Conversely, the case of PBC makes fπ
reach higher values with both increasing of 1=L and ω.
We should notice that the dependence of the findings

obtained above on the regularization procedure, paramet-
rization choice, and finite-size prescription can not be
underrated. Obviously, a different set of parameters con-
sidered as input will alter the magnitudes of the constituent
quark mass, meson properties and ranges of ðT; L;ωÞ
which engender changes on their behavior. Thus, the
comparison with existing literature must be done carefully,
keeping in mind the techniques employed.
Finally, we mention that the findings outlined above can

provide insights on the finite-volume and magnetic effects
that are relevant in the scenario of quark matter produced in
experiments as heavy-ion collisions or in lattice simula-
tions. Subsequent studies are essential to explore the
efficacy of the proposed framework and estimate the range
of size of the system at which the bulk is a reasonable
approximation. Likewise, the inverse magnetic catalysis
will deserve our attention in a future work.
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FIG. 18. The same as in Fig. 15, but in the PBC case.
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