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Minimal extensions of the Standard Model (SM), such as the so-called two-Higgs-doublet model
(2HDM), can possess several accidental discrete symmetries whose spontaneous breakdown in the early
Universe usually lead to the formation of domain walls. We extend an earlier work [R. A. Battye et al.,
J. High Energy Phys. 01 (2021) 105.] on this topic by studying in more detail the analytic properties of
electrically charged and CP-violating kink solutions in the Z2-symmetric 2HDM. We derive the complete
set of equations of motion that describe the 1D spatial profile of both the 2HDM vacuum parameters and
the would-be Goldstone bosons G1;2;3 of the SM. These equations are then solved numerically using the
gradient flow technique, and the results of our analysis are presented in different parametrizations of the
Higgs doublets. In particular, we show analytically how an electrically charged profile should arise in 1D
kink solutions when asymmetric boundary conditions are imposed on the Goldstone mode G2 at spatial
infinities, i.e. as x → �∞. If asymmetric boundary conditions are selected at x → �∞ for the Goldstone
mode G3 or the longitudinal mode θ corresponding to a would-be massive photon, the derived kink
solutions are then shown to exhibit CP violation. Possible cosmological implications of the electrically
charged and CP-violating domain walls in the 2HDM are discussed.
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I. INTRODUCTION

The Standard Model (SM) of particle physics has been
tested in many different low-energy and collider experi-
ments [1–5], and some of its predictions have been verified
to a high degree of accuracy. Nevertheless, we still believe
that the SM is not a complete theory, since it is unable to
explain certain cosmological phenomena, such as the origin
of dark matter and the matter-antimatter asymmetry in our
Universe. For the latter,CP violation is necessary to explain
why there is morematter than antimatter in our Universe [6].
Although signatures of CP violation have been observed in
particle physics experiments [7–11] in fairly good agree-
ment with SM predictions, this CP violation in the electro-
weak sector is deemed to be insufficient to explain the
observed baryon asymmetry in the Universe (BAU) [12,13].
Many models that extend the particle content of the SM

have been proposed in the literature, with the aim to address
the cosmological problems mentioned above. One such
minimal and well-studied extension of the SM is the

so-called two-Higgs-doublet model (2HDM) [14]. The
2HDM adds one more complex scalar doublet to the
SM, and so predicts the existence of five physical scalar
particles, one of which can be identified with the SM Higgs
boson which was observed at the LHC [4]. The 2HDM
potential could provide new sources of CP violation [15–
19] that would be needed to account for the BAU [20].
There are several accidental symmetries that the 2HDM

can acquire if certain parameter choices are met [21–24].
The breaking of these symmetries can lead to topological
defects in the model, such as domain walls, vortices
and global monopoles [23,25,26]. The nature of the defect
can be determined by the topology of the vacuum
manifold [27]. Here we will focus on the discrete
symmetry Z2, even though our approach can apply equally
well to the other two discrete symmetries, such as the
standard CP symmetry and its descendent symmetry CP2.
Domain walls are formed when the Z2 symmetry is broken
during a phase transition of our Universe. In this case, the
vacuum manifold consists of disconnected regions of
minima. During symmetry breaking, regions in space
that are causally disconnected can fall into different
minima of the potential. As a consequence, domains
are formed and the boundary surfaces separating them
are called domain walls.
Domain walls are of some concern because they can

have detrimental cosmological implications. In the early
universe, discrete symmetries of a scalar potential are
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generically restored for sufficiently high temperatures.
However, as the universe cools while possibly undergoing
a series of symmetry breaking phase transitions, domain
walls can form. Subsequently, the energy density of the
domain walls decreases as the universe expands. We may
naively estimate the rate of decrease using a self-scaling
argument. Within a Hubble radius r, the total energy of the
domain walls is proportional to Er2, where E is the energy
per unit area of a domain wall. Then, the energy density of
the domain wall ρdw, which is the energy per unit volume,
follows the relation ρdw ∝ Er−1. Since the horizon expands
at the speed of light, we have ρdw ∝ Et−1. Therefore, the
energy density of domain walls scales as ðtimeÞ−1.
However, the energy densities of matter and radiation scale
down much faster as ðtimeÞ−2 in their respective epochs
[28]. Consequently, domain walls would grow relative to
matter and radiation, and eventually dominate the energy
density of the Universe [29,30]. Today we do not observe
domain walls and as such, their absence indicates the
possible existence of a mechanism, like inflation, or entails
a specific choice of model parameters that renders them
harmless [31,32].
Recently, it was found in numerical simulations [33] that

1D kink solutions obtained in 2HDMs may violate both the
electric charge and CP, when asymmetric boundary con-
ditions at spatial infinities, x → �∞, are imposed on the
would-be Goldstone (longitudinal) modes, G1;2;3 and θ,
related the SM gauge bosons,W� and Z, and to a would-be
massive photon. The asymmetric boundary conditions on
the Goldstone modes represent a general pragmatic choice
that one has to make in order to realistically describe the
formation of domain walls and their evolution starting from
initial random field configurations.
In this paper, we complement the earlier work of [33] by

studying in more detail the analytic properties of charged
and CP-violating kink solutions in the Z2-symmetric
2HDM. We first derive the equations of motion for all
the parameters defining the vacuum manifold of the
2HDM, including the Goldstone modes. We use a nonlinear
representation of the two Higgs doublets, where the
rotation angles are the would-be Goldstone bosons after
electroweak symmetry breaking [34]. In particular, we
show analytically how self-consistency of the kink solu-
tions with asymmetric boundary conditions for the
Goldstone modes necessarily implies the occurence of
charged and CP-violating domain walls. These findings
are confirmed by solving numerically the pertinent equa-
tions of motion using the gradient flow technique, and they
are in good agreement with the earlier study in [33].
The present article is organized as follows. After this

introductory section, in Sec. II we present a brief discussion
of the 2HDM, including different parametrizations of the
two-Higgs doublets, along with the mass matrices of the
physical scalars. In Sec. III we consider the most general
parametrization of the two-Higgs doublets by means of an

electroweak gauge transformation and thus allow for the
possible presence of charge breaking and CP-violating
vacua. In addition, we study analytically all the kink
solutions for each Goldstone mode individually, and verify
our findings by solving numerically the pertinent equations
of motion using the gradient flow method. Basic aspects of
the gradient flow method are reviewed in Appendix.
Finally, Sec. IV summarizes our results and discusses
possible cosmological phenomena due to the electrically
charged andCP-violating domain walls that may take place
in the 2HDM and beyond.

II. THE Z2-SYMMETRIC TWO HIGGS
DOUBLET MODEL

The scalar potential of the Z2-symmetric 2HDM reads

VðΦ1;Φ2Þ ¼ −μ21ðΦ†
1Φ1Þ − μ22ðΦ†

2Φ2Þ þ λ1ðΦ†
1Φ1Þ2

þ λ2ðΦ†
2Φ2Þ2 þ λ3ðΦ†

1Φ1ÞðΦ†
2Φ2Þ

þ ðλ4 − jλ5jÞ½ReðΦ†
1Φ2Þ�2

þ ðλ4 þ jλ5jÞ½ImðΦ†
1Φ2Þ�2: ð2:1Þ

Obviously, the potential as defined in (2.1) is invariant
under the Z2 symmetry [35],

Φ1 → Φ1; Φ2 → −Φ2: ð2:2Þ

A. Parametrizations of the Higgs doublets

There are different ways to parametrize or represent the
Higgs doublets in the 2HDM. The simplest representation
is the linear one,

Φ1 ¼
�
ϕ1 þ iϕ2

ϕ3 þ iϕ4

�
; Φ2 ¼

�
ϕ5 þ iϕ6

ϕ7 þ iϕ8

�
: ð2:3Þ

Another equivalent and perhaps more intuitive parametri-
zation to interprete our results in Sec. III is the nonlinear
representation, which employs an electroweak gauge trans-
formation and so renders the potential occurrence of
charge- and CP-breaking vacua manifest [33]. Such vacua
are in general admissible in the 2HDM [16] and may be
expressed in terms of the four vacuum parameters
v1; v2; vþ, and ξ as follows:

Φ0
1 ¼

1ffiffiffi
2

p
�

0

v1

�
; Φ0

2 ¼
1ffiffiffi
2

p
�

vþ
v2eiξ

�
: ð2:4Þ

If v1 is nonzero, then a nonvanishing value for vþ implies
that the ground state ðΦ0

1;Φ0
2Þ is charge violating or

electrically charged, while a relative nonzero phase ξ
(possibly not a multiple of π=2 [16]) between the two
neutral vacuum parameters v1;2 implies that the ground
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state violates CP. To allow for the most general vacuum
field configurations beyond the unitary gauge, we para-
metrize the Higgs doubletsΦ1;2 nonlinearly by means of an
SUð2ÞL × Uð1ÞY gauge transformation,

Φ1 ¼ UΦ0
1; Φ2 ¼ UΦ0

2; ð2:5Þ

where

U ¼ eiθ exp

�
i
Ga

vSM

σa

2

�
¼ eiθ exp

�
iĜaσa

2

�
ð2:6Þ

is an element of the SUð2ÞL × Uð1ÞY gauge group. In (2.6),
θ, and Ga ¼ ðG1; G2; G3Þ (with Ĝa ≡Ga=vSM) are the
would-be Goldstone bosons after electroweak symmetry
breaking, and vSM ≃ 246 GeV is the vacuum expectation
value (VEV) of the SM Higgs doublet. In this parametri-
zation, we may easily count that we have eight parameters
in total to represent the vacua, i.e., v1;2; ξ; vþ; Ga, and θ,
which is the same number of parameters as in the linear
representation (2.3).
On the other hand, using the bilinear scalar-field for-

malism [21,36,37], we may introduce a four-vector Rμ

which is invariant under electroweak gauge transformations

Rμ ≡Φ†σμΦ ¼

0
BBBBB@

Φ†
1Φ1 þΦ†

2Φ2

Φ†
1Φ2 þΦ†

2Φ1

−i½Φ†
1Φ2 −Φ†

2Φ1�
Φ†

1Φ1 −Φ†
2Φ2

1
CCCCCA; ð2:7Þ

where Φ ¼ ðΦ1;Φ2ÞT. The index μ in σμ runs from 0 to 3,
with σ0 ¼ I2 and σ1;2;3 being the Pauli matrices. In terms of
Rμ, the general 2HDM potential may be written as

V ¼ −
1

2
MμRμ þ 1

4
LμνRμRν; ð2:8Þ

where

Mμ¼ðμ21þμ22; 2Reðm2
12Þ; −2Imðm2

12Þ; μ21−μ22 Þ; ð2:9Þ

Lμν ¼

0
BBBBB@

λ123 Reðλ67Þ −Imðλ67Þ λ̄12

Reðλ67Þ λ4þReðλ5Þ −Imðλ5Þ Reðλ̄67Þ
−Imðλ67Þ −Imðλ5Þ λ4−Reðλ5Þ −Imðλ̄67Þ

λ̄12 Reðλ̄67Þ −Imðλ̄67Þ λ̄123

1
CCCCCA:

ð2:10Þ

The first term in (2.8) contains the mass terms, while the
second term describes the quartic couplings. In (2.10), we
have used the notations: λab ¼ λa þ λb, λ̄ab ¼ λa − λb,
λabc ¼ λa þ λb þ λc and λ̄abc ¼ λa þ λb − λc. Since Rμ is

invariant under the unitary transformations U of the SM
gauge group, we can use the charge-breaking ground state
ðΦ0

1;Φ0
2Þ (in the unitary gauge) to express this four-vector

as follows:

Rμ ¼ 1

2

0
BBBBB@

v21 þ v22 þ v2þ
2v1v2 cos ξ

2v1v2 sin ξ

v21 − v22 − v2þ

1
CCCCCA: ð2:11Þ

Inverting the relations in (2.11), we can express the vacuum
parameters in terms of the components Rμ. In particular, vþ
is related to the components Rμ by

v2þ ¼ RμRμ

R0 þ R3
: ð2:12Þ

Therefore, we can determine whether a solution is charge-
violating by looking at either the parameter vþ, when for
v1 ≠ 0, or the norm of the four-vector Rμ. Imposing the
condition RμRμ ¼ v21v

2þ ¼ 0, known as the vacuum neu-
trality condition [21], would imply that vþ ¼ 0 or v1 ¼ 0.
However, in order to properly describe the dynamics

emerging from the Goldstone mode θ, we have to extend
the above bilinear formalism and promote Rμ to an SUð2ÞL-
invariant six-vector RA [23,24],

RA ¼

0
BBBBBBBBBB@

Φ†
1Φ1 þΦ†

2Φ2

Φ†
1Φ2 þΦ†

2Φ1

−i½Φ†
1Φ2 −Φ†

2Φ1�
Φ†

1Φ1 −Φ†
2Φ2

ΦT
1 iσ

2Φ2 −Φ†
2iσ

2Φ�
1

−i½ΦT
1 iσ

2Φ2 þΦ†
2iσ

2Φ�
1�

1
CCCCCCCCCCA

¼ 1

2

0
BBBBBBBBBB@

v21 þ v22 þ v2þ
2v1v2 cos ξ

2v1v2 sin ξ

v21 − v22 − v2þ
−2v1vþ cos 2θ

−2v1vþ sin 2θ

1
CCCCCCCCCCA
: ð2:13Þ

Note that RA is a null vector, and its Uð1ÞY-violating
components R4;5 do explicitly depend on θ which would
correspond to a massive photon for possible nonzero
values of vþ.
To fully cover the parameter space of the vacuum

manifold, we may choose R0, R1, R2, R3, and R4, together
with G1, G2, and G3, as our free vacuum parameters.
Evidently, these are eight independent quantities, in
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agreement with the total number of parameters needed to
parametrize the vacuum manifold in the linear representa-
tion [cf. (2.3)].

B. Mass matrices

In the 2HDM, we have five physical Higgs states, which
in the absence of CP violation, the two scalars, h andH, are
CP-even, one is CP-odd, A, and the remaining two scalars
H� are electrically charged. To find the mass matrices, it
would be useful to use the following representation of the
Higgs doublets,

Φ1 ¼
 

ϕþ
1

1ffiffi
2

p ðv1 þ ϕ1 þ ia1Þ

!
;

Φ2 ¼ eiξ
 

ϕþ
2

1ffiffi
2

p ðv2 þ ϕ2 þ ia2Þ

!
; ð2:14Þ

where ϕþ
1 and ϕþ

2 are complex scalar fields. ϕ1 and ϕ2 can
be expressed as a rotation of the CP-even fields h and H,
while a1 and a2 can be expressed as a rotation of the
CP-odd fields G0 and A. More explicitly, we have

�
ϕ1

ϕ2

�
¼
�
cα −sα
sα cα

��
h

H

�
;

�
a1
a2

�
¼
�
cβ −sβ
sβ cβ

��
G0

A

�
; ð2:15Þ

where the short-hand notations sx ≡ sin x and cx ≡ cos x
are employed for the trigonometric functions. We note that
G0 is the would-be Goldstone boson associated with the
longitudinal polarization of the Z boson. Since the Z2-
symmetric 2HDM potential is CP-preserving, we may set
ξ ¼ 0 [33] to a good approximation, with possible excep-
tions arising from instanton effects [32]. Substituting the
representations of the Higgs doublets in (2.14) back into the
Z2-symmetric potential in (2.1), the CP-even, CP-odd and
charged scalar mass matrices are found respectively to be

M2
h;H ¼

� ∂2V
∂ϕi∂ϕj

�
¼
�

2λ1v21 λ̃345v1v2

λ̃345v1v2 2λ2v22

�
; ð2:16Þ

M2
A ¼

� ∂2V
∂ai∂aj

�
¼ jλ5j

�
v22 −v1v2

−v1v2 v21

�
; ð2:17Þ

M2
H� ¼

� ∂2V
∂ϕþ

i ∂ϕ−
j

�
¼−

1

2
ðλ4− jλ5jÞ

�
v22 −v1v2

−v1v2 v21

�
:

ð2:18Þ

The squared masses of the five physical scalars, h, H, A,
and H�, are then given by

M2
h ¼ λ1v21þλ2v22−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1v21−λ2v22Þ2þ λ̃2345v

2
1v

2
2

q
; ð2:19Þ

M2
H ¼ λ1v21þλ2v22þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1v21−λ2v22Þ2þ λ̃2345v

2
1v

2
2

q
; ð2:20Þ

M2
A ¼ jλ5jv2SM; ð2:21Þ

M2
H� ¼ −

1

2
ðλ4 − jλ5jÞv2SM; ð2:22Þ

with λ̃345 ≡ λ3 þ λ4 − jλ5j. The VEVs of the Higgs dou-
blets are related to the SM VEV vSM by the mixing angle β
that enters the diagonalization of CP-odd scalar matrix, i.e.,

v01 ¼ cβvSM; v02 ¼ sβvSM: ð2:23Þ

As done in [33], in all our numerical simulations,
we choose the masses of all the new heavy scalars to be
equal: MH ¼ MA ¼ MH� ¼ 200 GeV, tan β ¼ 0.85, and
cosðα − βÞ ¼ 1 obeying the alignment limit, as this is
dictated by a maximally symmetric Sp(4) realization of
the 2HDM [38,39]. Moreover, we adopt the Type-I pattern
of Yukawa interactions to avoid the majority of the
phenomenological quark-flavor constraints.

III. ELECTRICALLY CHARGED AND
CP-VIOLATING KINK SOLUTIONS

In a 1D spatial approximation, e.g., along the x-direction,
the total energy density of the electroweak gauged
Z2-symmetric 2HDM may be conveniently determined
as [33]

E ¼ dΦ†
1

dx
dΦ1

dx
þ dΦ†

2

dx
dΦ2

dx
þ VðΦ1;Φ2Þ; ð3:1Þ

where the scalar potential VðΦ1;Φ2Þ is defined in (2.1). If
we now use the nonlinear representation as given in (2.5) for
the two-Higgs doublets, i.e.,Φ1;2 ¼ UΦ0

1;2, we then observe
that the 2HDM scalar potential simplifies as VðΦ1;Φ2Þ ¼
VðΦ0

1;Φ0
2Þ, and all Goldstone modesG1;2;3 and θ contained

in the unitary matrix U [cf. (2.6)] vanish identically.
To further simplify matters, we consider that only one

normalized Goldstone mode Ĝa ≡Ga=vSM is nonzero each
time of our analytical investigation and may possess
asymmetric boundary conditions at spatial infinities as
x → �∞. This corresponds to choosing a fixed given axis
for performing an SUð2ÞL gauge rotation. With this
simplification, we have

dU
dx

¼ i

�
dθ
dx

þ dĜa

dx
σa

2

�
U; ð3:2Þ

where we reiterate that the index a is not summed over.
Substituting (2.5) into (3.1), and using (3.2), we find that
the kinetic part of the energy density can be expressed as
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Ekin ¼
���� dΦ0

i

dx

����2 þ jΦ0
i j2
��

dθ
dx

�
2

þ 1

4

�
dĜa

dx

�
2
	

þΦ0†
i U†

�
dθ
dx

��
dĜa

dx

�
σaUΦ0

i

þ
�
i
dΦ0†

i

dx
U†
�
dθ
dx

þ dĜa

dx
σa

2

�
UΦ0

i þ H:c:

	
; ð3:3Þ

where summation over the index i ¼ 1, 2 is implied. Since
the unitary matrix U in (3.3) involves the exponentiation of
only one Pauli matrix σa, it commutes with the Pauli matrix
σa itself. Hence, Ekin will take on the simpler form

Ekin ¼
���� dΦ0

i

dx

����2 þ jΦ0
i j2
��

dθ
dx

�
2

þ 1

4

�
dĜa

dx

�
2
	

þΦ0†
i

�
dθ
dx

��
dĜa

dx

�
σaΦ0

i

þ
�
i
dΦ0†

i

dx

�
dθ
dx

þ dĜa

dx
σa

2

�
Φ0

i þ H:c:

	
: ð3:4Þ

A. Goldstone bosons

Considering the simplified energy density Ekin in (3.4)
where each time only one of the would-be Goldstone
bosons Ĝa is nonzero, we can derive a simpler set of
equations for Ĝa,

d
dx

�
1

2
jΦ0

i j2
dĜa

dx
þΦ0†

i σaΦ0
i
dθ
dx

þ
�
i
2

dΦ0†
i

dx
σaΦ0

i þ H:c:
�	

¼ 0 ð3:5Þ

Equation (3.5) implies that the terms inside the derivative
must add up to an x-independent constant. Since the
x-derivatives of all the vacuum parameters should vanish
as x → �∞ to ensure that the total energy of the kink
solution is finite, this integration constant can only be zero.
In this way, we arrive at a first-order differential equation
describing the spatial profiles of Ĝa,

1

2
jΦ0

i j2
dĜa

dx
þΦ0†

i σaΦ0
i
dθ
dx

þ
�
i
2

dΦ0†
i

dx
σaΦ0

i þ H:c:

�
¼ 0:

ð3:6Þ
By analogy, a similar first-order differential equation may
be derived for θðxÞ,

2jΦ0
i j2

dθ
dx

þΦ0†
i σaΦ0

i
dĜa

dx
þ
�
i
dΦ0†

i

dx
Φ0

i þ H:c:

�
¼ 0:

ð3:7Þ
We note that the first-order differential equations in (3.6)
and (3.7) reflect the conservation of the Noether currents

associated with the local symmetries of the original theory
under the SUð2ÞL ×Uð1ÞY group [33].
In the following, we will derive the equations of motion

for all the vacuum parameters by assuming that only one
would-be Goldstone boson at the time, i.e., θðxÞ or Ĝ1;2;3, is
nonzero. Such a simplification enables us to better under-
stand the analytic properties of the kink solutions when
asymmetric boundary conditions are imposed on each of the
would-be Goldstone bosons. In tandem, we use the gradient
flow technique to obtain numerical solutionswhichwill then
be compared with our analytical findings. A brief introduc-
tion to the gradient flow technique is given in Appendix.

1. The θ-scenario

We start by considering the case where only θðxÞ
is nonzero, with all G1;2;3ðxÞ ¼ 0. For brevity, we call
this the θ-scenario. This means that the unitary matrix U
in (2.6) describing an arbitrary gauge rotation is simply
U ¼ eiθðxÞ12. In this case, the kinetic energy density of the
system becomes

Ekin ¼
1

2

�
dv1
dx

�
2

þ 1

2

�
dv2
dx

�
2

þ 1

2

�
dvþ
dx

�
2

þ 1

2
v22

�
dξ
dx

�
2

þ 1

2
ðv21 þ v22 þ v2þÞ

�
dθ
dx

�
2

þ v22
dξ
dx

dθ
dx

: ð3:8Þ

The gradient flow equations for v1; v2; ξ; vþ, and θ are then
found to be

∂v1
∂t ¼ ∂2v1

∂x2 −v1

�∂θ
∂x
�

2

þμ21v1−λ1v31−
1

2
λ3v1v2þ

−
1

2
ðλ34− jλ5jc2ξÞv1v22;

∂v2
∂t ¼ ∂2v2

∂x2 −v2

��∂ξ
∂x
�

2

þ
�∂θ
∂x
�

2

þ2
∂ξ
∂x

∂θ
∂x
	

þμ22v2−λ2v2ðv22þv2þÞ−
1

2
ðλ34− jλ5jc2ξÞv21v2;

∂vþ
∂t ¼ ∂2vþ

∂x2 −vþ

�∂θ
∂x
�

2

þμ22vþ−λ2vþðv22þv2þÞ

−
1

2
λ3v21vþ;

∂ξ
∂t¼ v22

�∂2ξ

∂x2þ
∂2θ

∂x2
�
þ2v2

∂v2
∂x
�∂ξ
∂xþ

∂θ
∂x
�

−
1

2
jλ5jv21v22s2ξ;

∂θ
∂t ¼ðv21þv22þv2þÞ

�∂2θ

∂x2
�
þv22

∂2ξ

∂x2

þ2
∂θ
∂x
�
v1

∂v1
∂x þv2

∂v2
∂x þvþ

∂vþ
∂x
�
þ2v2

∂v2
∂x

∂ξ
∂x;
ð3:9Þ
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where t represents a fictitious time upon which each vacuum
parameter is assumed to depend in this gradient flowmethod.
A solution describing the ground state of the system is
declared to be found, once the left-hand side of the partial
differential equations in (3.9) will all vanish, up to a given
degree of numerical accuracy. More details of the gradient
flow method are given in Appendix.
Assuming that the derivatives of all Goldstone bosons

and vacuum parameters tend to zero at the boundaries as
x → �∞, the gradient flow equation for θðxÞ in the ground
state will be

ðv21 þ v22 þ v2þÞ
dθ
dx

þ v22
dξ
dx

¼ 0: ð3:10Þ

Solving this last equation for dθ=dx yields

dθ
dx

¼ −
v22

v21 þ v22 þ v2þ

dξ
dx

: ð3:11Þ

Equation (3.11) is one of the central results of this paper. It
tells us that if asymmetric boundary conditions at infinity
are imposed on θðxÞ, i.e., θð−∞Þ ≠ θðþ∞Þ, so that dθ=dx
happens to be nonzero for a finite x-interval, then one must
necessarily have dξ=dx ≠ 0 for a correlated x-interval of
finite size, provided v2 ≠ 0 in the same interval. As expected
from earlier considerations where the effect of Goldstone
bosons was ignored [23], this is indeed the case, so the 1D
kink solution for theCP phase ξðxÞwill be nonzero for some
finite interval close to the origin. This signifies that the kink
solution itself violates CP, even though the Z2-symmetric
2HDM is CP invariant as well as it cannot realize sponta-
neousCP violation [14,16]. Moreover, since v2ðxÞ is an odd
function of x and dθ=dx is an even function (due to the
asymmetric boundaries), one should expect that self-
consistency of (3.11) would require that ξðxÞ (dξ=dx) is
an odd (even) function of x.
The above analytical observations may also be

verified by our numerical simulations. To confirm these

(a) (b)

(c) (d)

FIG. 1. Numerical estimates of the vacuum parameters and the energy density using the gradient flow method for different boundary
conditions on θðx̂Þ: (a) θðx̂Þ ¼ π=2 at both boundaries, (b) R-field space profiles with θðx̂Þ ¼ π=2 at both boundaries, (c) θðx̂Þ ¼ 0 at the
LH boundary and θðx̂Þ ¼ π=2 at the RH boundary. The dash-dotted line through the boundary points is shown for comparison, (d) R-
field space profiles with θðx̂Þ ¼ 0 at the LH boundary and θðx̂Þ ¼ π=2 at the RH boundary.
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observations, we first impose symmetric boundary con-
ditions, such that θð−LÞÞ ¼ θðLÞ ¼ π=2 at both the left-
hand (LH) and the right-hand (RH) boundary of a finite
interval −L ≤ x̂ ≤ L, with x̂≡Mhx (see Appendix). Here,
L is a length cutoff in units of M−1

h that should be send to
infinity upon completion of the simulation. The results of
our analysis for the five vacuum parameters, v1; v2; ξ; vþ,
and θ, are shown in Fig. 1(a), and the corresponding x-
profiles in the bilinear R-space are displayed in Fig. 1(b).
As expected, we find that the kink solutions in Fig. 1(a) are
both charge and CP-preserving, with vþðxÞ ¼ 0 for all x.
The latter is reflected in Fig. 1(b), with the kink solution
obeying the vacuum neutrality condition; RμRμ ¼ 0.
Let us now impose an asymmetric boundary condition on

θðxÞ, with θð−LÞ ¼ 0 at the LH boundary and θðLÞ ¼ π=2
at the RH boundary. This corresponds to a relative Uð1ÞY
gauge rotation of the vacua at infinity [33]. The initial guess
function for θðx; t ¼ 0Þ at the origin of time t is chosen to be
a straight line connecting the two boundaries at x ¼ �L. The
gradient flow numerical results are shown in Fig. 1(c), with
the corresponding R-space profiles shown in Fig. 1(d). As
before, we see that the kink solution is electrically neutral
with vþðxÞ ¼ 0 for all x, satisfying the vacuum neutrality
condition: RμRμ ¼ 0. This should not be surprising, since
vþðxÞ ¼ 0 is the lowest energy configuration which is still
compatible with all the imposed boundary conditions.
Nevertheless, we see from Fig. 1(c) that ξðxÞ is a nonzero

and odd function of x for an interval close to the origin. This
also gives rise to a nonzero x-profile in the same region for
the componentR2 in the bilinearR-space.As a consequence,
the so-determined kink solution is CP-violating, and its
analytic behavior agrees well with our discussion in con-
nection with (3.11). We also observe that the ground state
solution for θðx̂Þ tends asymptotically to a straight linewith a
nonzero slope π=ð4LÞ at the boundaries, x̂ ¼ �L, where
L ¼ 20 is the length cutoff (in units of M−1

h ) used in our
gradient flow analysis. This may cause some concern
regarding the validity of our results. However, in realistic
situations, we must send L → ∞. Hence, we have

dθ
dx̂

����
x̂¼�L

¼ π

4L
→ 0; ð3:12Þ

as the length cutoffL goes to infinity. In particular, given the
analytic behavior of dθ=dx̂ ∝ 1=L in (3.12) at the bounda-
ries, it is not difficult to check using (3.4) that the total
(kinetic) energy of the kink solution,

EkinðLÞ ¼
Z

L

−L
dx̂Ekinðx̂Þ; ð3:13Þ

is proportional to 1=L, and so remains finite in the limit
L → ∞, as it is expected on general theoretical grounds.

2. The G1-scenario

Our second simplified scenario will be to consider the
effect of a nonzero Goldstone mode G1ðxÞ, but take all

other Goldstone modes to vanish, i.e., by setting
θðxÞ; G2;3ðxÞ ¼ 0, for all x. In thisG1-scenario, the relevant
electroweak gauge transformation matrix becomes

U ¼ exp

�
iĜ1ðxÞσ1

2

�
¼
�

cos ðĜ1=2Þ i sin ðĜ1=2Þ
i sin ðĜ1=2Þ cos ðĜ1=2Þ

�
:

ð3:14Þ
Substituting (3.14) into (3.4), the kinetic energy density
evaluates to

Ekin¼
1

2

�
dv1
dx

�
2

þ1

2

�
dv2
dx

�
2

þ1

2

�
dvþ
dx

�
2

þ1

2
v22

�
dξ
dx

�
2

þ1

8
ðv21þv22þv2þÞ

�
dĜ1

dx

�
2

þ1

2

�
vþ sinξ

dv2
dx

þvþv2 cosξ
dξ
dx

−v2 sinξ
dvþ
dx

�
dĜ1

dx
:

ð3:15Þ
For this second G1-scenario, the gradient flow equations
are found to be

∂v1
∂t ¼ ∂2v1

∂x2 −
1

4
v1

�∂Ĝ1

∂x
�

2

þ μ21v1 − λ1v31 −
1

2
λ3v1v2þ

−
1

2
ðλ34 − jλ5jc2ξÞv1v22;

∂v2
∂t ¼ ∂2v2

∂x2 þ 1

2
vþ sin ξ

∂2Ĝ1

∂x2 − v2

�∂ξ
∂x
�

2

−
1

4
v2

�∂Ĝ1

∂x
�

2

þ sin ξ
∂Ĝ1

∂x
∂vþ
∂x þ μ22v2 − λ2v2ðv22 þ v2þÞ

−
1

2
ðλ34 − jλ5jc2ξÞv21v2;

∂vþ
∂t ¼ ∂2vþ

∂x2 −
1

2
v2 sin ξ

∂2Ĝ1

∂x2 −
1

4
vþ

�∂Ĝ1

∂x
�

2

− sin ξ
∂Ĝ1

∂x
∂v2
∂x − v2 cos ξ

∂Ĝ1

∂x
∂ξ
∂x

þ μ22vþ − λ2vþðv22 þ v2þÞ −
1

2
λ3v21vþ;

∂ξ
∂t ¼ v22

∂2ξ

∂x2 þ 2v2
∂v2
∂x

∂ξ
∂xþ

1

2
vþv2 cos ξ

∂2Ĝ1

∂x2
þ v2 cos ξ

∂vþ
∂x

∂Ĝ1

∂x −
1

2
jλ5jv21v22s2ξ;

∂Ĝ1

∂t ¼ 1

4
ðv21 þ v22 þ v2þÞ

∂2Ĝ1

∂x2 þ ∂
∂x
�
1

2
vþ sin ξ

∂v2
∂x

þ 1

2
vþv2 cos ξ

∂ξ
∂x −

1

2
v2 sin ξ

∂vþ
∂x
�

þ 1

2

�
v1

∂v1
∂x þ v2

∂v2
∂x þ vþ

∂vþ
∂x
��∂Ĝ1

∂x
�
: ð3:16Þ
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In order to obtain a finite-energy kink solution, the
derivatives of all Goldstone bosons and vacuum parameters
should tend to zero at the boundaries. In the ground state,
the gradient flow equation for Ĝ1 takes the form,

1

4
ðv21þv22þv2þÞ

dĜ1

dx
−
1

2
v22sin

2ξ
d
dx

�
vþ

v2 sinξ

�
¼ 0: ð3:17Þ

We may now solve this last equation for dĜ1=dx,

dĜ1

dx
¼ 2v22 sin

2 ξ

v21 þ v22 þ v2þ

d
dx

�
vþ

v2 sin ξ

�
: ð3:18Þ

To get the lowest contribution from ξðxÞ to Ekin in (3.15)
compatible with its vanishing boundary conditions at
x ¼ �L, one must have dξðxÞ=dx ¼ ξðxÞ ¼ 0 for all x.
If dĜ1=dx varies significantly for some finite interval of x
enforced by the asymmetric boundary values of G1ðxÞ at
x ¼ �L, then the analytic property (3.18) can only hold
true when vþðxÞ does not vanish everywhere in x. In this
asymmetric G1 scenario, one may expect that the kink
solution violates charge conservation, but respects CP.
The results of a gradient flow analysis are shown in

Fig. 2. Figure 2(a) presents a numerical simulation using
symmetric boundary conditions Ĝ1 ¼ π=2 at both LH and
RH boundaries. Instead, Fig. 2(c) displays a simulation by
imposing asymmetric boundary conditions, with Ĝ1 ¼ 0 at
the LH boundary and Ĝ1 ¼ π=2 at the RH boundary. No
charge violation was noticeable for both types of symmetric
and asymmetric boundary conditions on Ĝ1, i.e., vþðxÞ ¼ 0
for all x. In addition, the CP-odd vacuum parameter ξðxÞ is
also zero everywhere in x, according to our discussion
given above. However, for the asymmetric case, the finding
of an unobservable charge violation is a bit unexpected, but
it may be attributed to a good extent to the dispersive

(nonlocalized) feature of the obtained solution for Ĝ1ðxÞ.
The G1ðxÞ solution from a gradient flow computation has a
nonvanishing and almost constant slope π=ð4LÞ, for the
entire x-interval ð−L;LÞ. Hence, dG1=dxwill vanish for all
x, as L → ∞. Moreover, the kinetic and total energies of the
kink can then easily be shown to remain finite in the same
limit for L.

3. The G2-scenario

In our third G2-scenario, we study the effect of G2ðxÞ
alone by setting θðxÞ; G1;3ðxÞ ¼ 0, for all x. In this case, the
unitary matrix U describing electroweak gauge transfor-
mations assumes the SO(2) form,

U¼ exp

�
iĜ2ðxÞσ2

2

�
¼
�

cosðĜ2=2Þ sinðĜ2=2Þ
−sinðĜ2=2Þ cosðĜ2=2Þ

�
:

ð3:19Þ

Taking this last expression of U into account, the kinetic
energy density becomes

Ekin ¼
1

2

�
dv1
dx

�
2

þ 1

2

�
dv2
dx

�
2

þ 1

2

�
dvþ
dx

�
2

þ 1

2
v22

�
dξ
dx

�
2

þ 1

8
ðv21 þ v22 þ v2þÞ

�
dĜ2

dx

�
2

þ 1

2

�
v2 cos ξ

dvþ
dx

− vþ cos ξ
dv2
dx

þ v2vþ sin ξ
dξ
dx

�

×
dĜ2

dx
: ð3:20Þ

For this G2-scenario, the gradient flow equations may be
cast into the form,

(a) (b)

FIG. 2. Numerical estimates of the kink parameters for two different boundary conditions on Ĝ1ðx̂Þ: (a) Ĝ1ðx̂Þ ¼ π=2 at both
boundaries, (b) Ĝ1ðx̂Þ ¼ 0 at the LH boundary and Ĝ1ðx̂Þ ¼ π=2 at the RH boundary. The dash-dotted line through the two boundary
points is also shown for comparison.
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∂v1
∂t ¼ ∂2v1

∂x2 −
1

4
v1

�∂Ĝ2

∂x
�

2

þ μ21v1 − λ1v31 −
1

2
λ3v1v2þ −

1

2
ðλ34 − jλ5jc2ξÞv1v22;

∂v2
∂t ¼ ∂2v2

∂x2 − v2

�∂ξ
∂x
�

2

−
1

2
vþ cos ξ

∂2Ĝ2

∂x2 −
1

4
v2

�∂Ĝ2

∂x
�

2

− cos ξ
∂vþ
∂x

∂Ĝ2

∂x þ μ22v2

− λ2v2ðv22 þ v2þÞ −
1

2
ðλ34 − jλ5jc2ξÞv21v2;

∂vþ
∂t ¼ ∂2vþ

∂x2 þ 1

2
v2 cos ξ

∂2Ĝ2

∂x2 −
1

4
vþ

�∂Ĝ2

∂x
�

2

þ cos ξ
∂v2
∂x

∂Ĝ2

∂x − v2 sin ξ
∂ξ
∂x

∂Ĝ2

∂x
þ μ22vþ − λ2vþðv22 þ v2þÞ −

1

2
λ3v21vþ;

∂ξ
∂t ¼ v22

∂2ξ

∂x2 þ
1

2
v2vþ sin ξ

∂2Ĝ2

∂x2 þ 2v2
∂v2
∂x

∂ξ
∂xþ v2 sin ξ

∂vþ
∂x

∂Ĝ2

∂x −
1

2
jλ5jv21v22s2ξ;

∂Ĝ2

∂t ¼ 1

4
ðv21 þ v22 þ v2þÞ

∂2Ĝ2

∂x2 þ 1

2

�
v1

∂v1
∂x þ v2

∂v2
∂x þ vþ

∂vþ
∂x
��∂Ĝ2

∂x
�

þ 1

2

∂
∂x
�
v2 cos ξ

∂vþ
∂x − vþ cos ξ

∂v2
∂x þ v2vþ sin ξ

∂ξ
∂x
�
: ð3:21Þ

(a) (b)

(c) (d)

FIG. 3. Numerical estimates of the kink parameters for different boundary conditions on Ĝ2ðx̂Þ: (a) Ĝ2ðx̂Þ ¼ π
2
at both boundaries, (b)

Ĝ2ðx̂Þ ¼ 0 at the LH boundary and Ĝ2ðx̂Þ ¼ π=2 at the RH boundary, (c) R-field space profiles with Ĝ2ðx̂Þ ¼ 0 at the LH boundary and
Ĝ2ðx̂Þ ¼ π=2 at the RH boundary, (d) maximum value for vþ as a function of the value of Ĝ2 at the RH boundary.
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Exactly as we did before, the following constraining
equation for Ĝ2ðxÞ may be derived in the ground state,

dĜ2

dx
¼ −

2v22 cos
2 ξ

v21 þ v22 þ v2þ

d
dx

�
vþ

v2 cos ξ

�
: ð3:22Þ

Following a line of argumentation as we did before for the
G1-scenario, Eq. (3.22) implies that the kink solution
should respect CP, but it can violate charge conservation,
only when asymmetric boundary conditions are chosen and
dĜ2=dx ≠ 0 for a localized finite interval of x as L → ∞.
We investigate two different cases by imposing sym-

metric and asymmetric boundary values on Ĝ2ðxÞ. The G2

solution preserves the neutrality of the ground state,
i.e., vþðxÞ ¼ 0 for all x, for the symmetric case when
Ĝ2 is set to π=2 at both boundaries, as can be seen from
Fig. 3(a). However, when asymmetric gauge rotated vacua
are selected at the boundaries with Ĝ2ð−LÞ ¼ 0 and
Ĝ2ðþLÞ ¼ π=2, we then observe in Fig. 3(b) a localized
violation of charge, i.e., vþðxÞ ≠ 0 close to the origin,
having the same width as the v2ðxÞ kink solution. Instead,
the CP phase ξðxÞ ¼ 0 everywhere respecting CP invari-
ance. These analytic properties are consistent with those
derived from (3.22).
We should comment here that our results shown in Fig. 3

are in good agreement with those presented in [33] (see,
e.g., Fig. 10), where a peak in vþ was observed when a
relative gauge rotation of π=2 was applied to γ1 at the RH
boundary. Note that the angle γ1 in [33] corresponds to
Ĝ2=2 here, as long as all the other electroweak group
parameters are set to zero, i.e., γ2 ¼ γ3 ¼ θ ¼ 0. We
complement the analysis given in [33] by showing explic-
itly the x-profile of Ĝ2ðxÞ, so to better assess its direct
impact on vþðxÞ, by virtue of (3.22).
The lowest total energy Etot of the 2HDM kink solution

is obtained for vþ ¼ 0, in which case we have Etot ¼ 0.354
(in Mh units) per unit area. As shown in Fig. 3(d), the
maximum value of vþ increases for large asymmetric
boundary values of G2. For this asymmetric G2-scenario,
we have

ffiffiffiffiffiffiffiffiffiffiffi
RμRμ

p ¼ jR4j, since both ξðxÞ and θðxÞ are zero
for all x, which is a relation satisfied by our R-field space
profiles shown in Fig. 3(c).

4. The G3-scenario

Our last scenario of interest to us is the case where only
the Goldstone field G3ðxÞ is nonzero, whereas all other
would-be Goldstone modes vanish, i.e., θðxÞ; Ĝ1;2ðxÞ ¼ 0.
For this G3-scenario, the electroweak gauge transformation
matrix U is given by

U ¼ exp

�
iĜ3ðxÞσ3

2

�
¼
�
eiĜ

3=2 0

0 e−iĜ
3=2

�
: ð3:23Þ

In this case, the kinetic energy density becomes

Ekin¼
1

2

�
dv1
dx

�
2

þ1

2

�
dv2
dx

�
2

þ1

2

�
dvþ
dx

�
2

þ1

2
v22

�
dξ
dx

�
2

þ1

8
ðv21þv22þv2þÞ

�
dĜ3

dx

�
2

−
1

2
v22

dξ
dx

dĜ3

dx
: ð3:24Þ

Given the form of U in (3.23), we may derive a new set of
gradient flow equations,

∂v1
∂t ¼ ∂2v1

∂x2 −
1

4
v1

�∂Ĝ3

∂x
�

2

þμ21v1−λ1v31−
1

2
λ3v1v2þ

−
1

2
ðλ34− jλ5jc2ξÞv1v22;

∂v2
∂t ¼ ∂2v2

∂x2 −v2

�∂ξ
∂x
�

2

−
1

4
v2

�
dĜ3

∂x
�

2

þv2
∂ξ
∂x

∂Ĝ3

∂x
þμ22v2−λ2v2ðv22þv2þÞ−

1

2
ðλ34− jλ5jc2ξÞv21v2;

∂vþ
∂t ¼ ∂2vþ

∂x2 −
1

4
vþ

�∂Ĝ3

∂x
�

2

þμ22vþ−λ2vþðv22þv2þÞ

−
1

2
λ3v21vþ;

∂ξ
∂t¼ v22

∂2ξ

∂x2−
1

2
v22

∂2Ĝ3

∂x2 þ2v2
∂v2
∂x

∂ξ
∂x−v2

∂v2
∂x

∂Ĝ3

∂x
−
1

2
jλ5jv21v22s2ξ;

∂Ĝ3

∂t ¼ 1

4
ðv21þv22þv2þÞ

∂2Ĝ3

∂x2 −
1

2
v22

∂2ξ

∂x2
þ1

2

�
v1

∂v1
∂x þv2

∂v2
∂x þvþ

∂vþ
∂x
�∂Ĝ3

∂x −v2
∂v2
∂x

∂ξ
∂x:
ð3:25Þ

From the gradient flow equation for Ĝ3, we obtain the
constraining relation,

dĜ3

dx
¼ 2v22

v21 þ v22 þ v2þ

dξ
dx

: ð3:26Þ

Equation (3.26) tells us that if we have dĜ3=dx ≠ 0 for
some localized and finite interval of x as L → ∞, we
should then have dξðxÞ=dx ≠ 0 and v2ðxÞ ≠ 0 on this
correlated x-interval. Hence, we expect that the resulting
kink solution be CP-violating, but electrically neutral.
In Fig. 4, we show our results obtained by the gradient

flow approach. Figure 4(a) shows the result using the
boundary conditions Ĝ3 ¼ π=2 at both the LH and RH
boundaries, with the corresponding profiles in the R-space
shown in Fig. 4(b). Figure 4(c) shows the results obtained
by imposing Ĝ3 ¼ 0 at the LH boundary and Ĝ3 ¼ π=2 at
the RH boundary, with the corresponding x-profiles in the
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R-space depicted in Fig. 4(d). Like in the θ- and Ĝ1-
scenarios, no violation of the vacuum neutrality condition is
observed, independently of whether symmetric or asym-
metric boundary conditions are applied to Ĝ3. If asym-
metric boundary conditions are used, however, we find a
nonzero ξðxÞ close to the kink at the origin. The latter
implies that the 2HDM kink solution violates CP, as can be
analytically inferred from (3.26).

IV. DISCUSSION

It is well known that the two-Higgs-doublet model may
possess accidental discrete symmetries like CP or Z2

symmetry, which can be utilized to explain the origin of
CP violation in nature [14], or forbid tree-level flavor-
changing neutral currents in Higgs interactions [35].
However, the spontaneous breakdown of such symmetries
during the electroweak phase transition in the early uni-
verse can give rise to the formation of domain walls that

may have detrimental effects on the cosmic evolution of the
early Universe.
In this paper, we have extended a recent work on this

topic [33] and studied in more detail the analytic properties
of charged and CP-violating kink solutions in a Z2-
symmetric 2HDM. To do so, we have first derived the
complete set of equations of motion that describe the 1D
spatial profiles, not only of the 2HDM vacuum parameters
alone as done in [33], but also of the would-be Goldstone
bosons G1;2;3 associated with the SM W� and Z bosons,
and the mode θ corresponding to a would-be massive
photon emerging from a possible spontaneous breakdown
of the Uð1Þem group of electromagnetism. These equations
are then solved numerically using the gradient flow
method, and the results of our analysis are presented in
the nonlinear and R-space field representations. In particu-
lar, by virtue of (3.22), we have analytically demonstrated
how an electrically charged profile can arise in 1D kink
solutions when asymmetric boundary conditions are

(a) (b)

(c) (d)

FIG. 4. Numerical evaluation of the kink parameters for different boundary conditions on Ĝ3ðx̂Þ: (a) Ĝ3ðx̂Þ ¼ π=2 at both boundaries,
(b) R-field profiles with Ĝ3ðx̂Þ ¼ π=2 at both boundaries, (c) Ĝ3ðx̂Þ ¼ 0 at the LH boundary and Ĝ3ðx̂Þ ¼ π=2 at the RH boundary.
The dash-dotted line through the boundary points is shown for comparison. (d) Profiles in the R-field space with Ĝ3ðx̂Þ ¼ 0 at the LH
boundary and Ĝ3ðx̂Þ ¼ π=2 at the RH boundary.
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imposed on G2 at spatial infinities, such that
Gð2Þð−∞Þ ≠ Gð2Þðþ∞Þ. If similar asymmetric boundary
conditions are selected for the longitudinal mode θ or the
Goldstone mode G3, we have shown how the derived kink
solutions obeying the constraining equations (3.11) and
(3.26) exhibit CP violation, while preserving electric
charge. These findings were corroborated by our numerical
analysis based on the gradient flow method. We note,
however, that the kink solutions obtained when asymmetric
boundary values were imposed on G1 do appear to respect
both CP and electric charge, at least at the level of our
numerical accuracy. Hence, where comparisons were pos-
sible, our results agree well with the numerical simulations
carried out in [33].
It is important to stress here that the total finite energy of

the 2HDM kink solutions depends on the boundary con-
ditions on the Goldstone modes θ and Ga at spatial
infinities. It gets higher when these conditions are asym-
metric thereby triggering electric charge or CP noncon-
servation. In a fashion very analogous to the well-known
Lee’s mechanism of spontaneous CP violation [14] caused
by the zero-energy vacuum state of a CP-invariant 2HDM
potential, charged and CP-violating kink configurations of
the ground state will now induce electric charge and CP
violation for the constrained Z2-symmetric 2HDM poten-
tial. It should be appreciated here the fact that spontaneous
CP violation is not possible in an exact Z2-symmetric
2HDM potential [16], but only through topological kink
configurations as discussed in this paper.
Electrically charged and CP-violating domain walls may

have a number of cosmological implications while they are
decaying in the early Universe. They will interact with
photons and other light charged particles affecting the
CMB spectrum, and in certain instances, they may even
affect gravitational wave detectors, such as LIGO [40–43].
Since the photons can become massive inside the domain
walls, the latter will acquire superconducting properties as
other topological defects [44]. Moreover, photons will be
reflected by the walls for sufficiently low frequencies below
the symmetry-breaking scale [45]. In a decaying domain-
wall scenario, charge violation of the kink solution may
lead to conversions of electrons or muons into neutrinos
and photons or other gauge bosons [46], potentially
modifying the relic abundances of the latter particles.
Even though numerical simulations and estimates are
bound to be highly model-dependent, the minimal Z2-
symmetric 2HDM that we have been considering here is
certainly an archetypal framework for conducting realistic
studies.
We note that electrically charged and CP-violating

domain walls do not only occur in the Z2-symmetric
2HDM under study, but they can also be a generic feature
of many SM extensions for which domain walls happen to
carry electroweak or other charges of gauge groups that mix
with the Uð1Þem group. For instance, this can be the case for

some breaking patterns of grand unified theories like SO(10)
[47,48], which can go to the SM gauge group via the Pati-
Salam (PS) subgroup [49]: SOð10Þ → SUð4ÞPS × SUð2ÞL×
SUð2ÞR → SUð3Þc × SUð2ÞL × SUð2ÞR × Uð1ÞB−L × C →
SUð3Þc × SUð2ÞL × Uð1ÞY → SUð3Þc × Uð1Þem. In this
breaking pattern [50,51], C is a discrete charge conjugation
symmetry, which reflects the symmetry of the theory under
the interchange of left and right chiral fields belonging to the
SUð2ÞL and SUð2ÞR groups, respectively, followed by a
charge-conjugation of their representations. An alternative
left-right symmetric theorywith a similar discrete symmetry
[not embeddable in SO(10)] was given in [52]. Thus, an
asymmetric spontaneous symmetry breaking of the SUð2ÞL
and SUð2ÞR gauge groups through hierarchical VEVs will
break C spontaneously, producing a system of domain walls
bounded by strings [50,51]. Hence, the spontaneous break-
ing of C will potentially give rise to electrically charged and
CP-violating domain walls, even in the absence of any
explicit or spontaneous source of CP violation.
Finally, it would be interesting to explore whether other

topological defects, such as cosmic strings and monopoles,
may also carry electric charge, or whether they can localize
a nontrivial CP-violating phase close to their origin. An
ultimate goal of such studies would be to understand the
role that the so-generated CP-violating topological defects
can play in the dynamics of electroweak baryogenesis in
the 2HDM and beyond.

ACKNOWLEDGMENTS

We thank Richard Battye for useful discussions.
The work of A. P. is supported in part by the Lancaster-
Manchester-Sheffield Consortium for Fundamental
Physics, under STFC research Grant No. ST/T001038/1.

APPENDIX: GRADIENT FLOW TECHNIQUE IN
THE Z2-SYMMETRIC 2HDM

In order to solve rather complex time-independent
equations of motion that give rise to stable topological
defects in extensions of the SM, like the 2HDM, we must
rely on numerical methods. One such convenient method is
the so-called gradient flow technique, which enables one to
numerically solve a set of coupled second-order differential
equations, with well defined Neumann or Dirichlet initial
conditions [23,53]. We have applied the gradient flow
technique to obtain numerical solutions for one-dimen-
sional (1D) topological kink configurations.
In detail, the 1D energy density E of the Z2-symmetric

2HDM is given by the f00g component of the energy stress
tensor, T00, i.e.,

EðΦ1;Φ2Þ ¼
dΦ†

1

dx
dΦ1

dx
þ dΦ†

2

dx
dΦ2

dx
þ VðΦ1;Φ2Þ þ V0;

ðA1Þ
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where VðΦ1;Φ2Þ is the Z2-symmetric potential given in
(2.1) and V0 is a constant introduced here in order to shift
the minimum energy density to zero, such that E is non-
negative for all x. We use the gradient flow technique to
find solutions that minimize the total energy of the system,
E ¼ R dxEðΦ1;Φ2Þ. In three spatial dimensions, this rep-
resents the energy per unit area of the system. We introduce
a fictitious time parameter t, so that the ground-stated
functions within the Higgs doublets, collectively denoted
here as fi, become t dependent,

fi ¼ fiðx; tÞ: ðA2Þ

Since we wish our field solutions to minimize the total
energy E of the system, we set

_fi ¼ −
δE
δfi

: ðA3Þ

We introduced in (A3) a negative sign before the functional
derivative, because we want the fields to evolve in a way

such that the energy decreases and eventually reaches a
minimum.
In our numerical analysis, we have appropriately rede-

fined the length x, the vacuum parameters v1;2;þ and the
energy density E, so as to become dimensionless,

x̂≡Mhx; v̂1;2;þ ≡ v1;2;þ
vSM

; Ê ≡ E
M2

hv
2
SM

; ðA4Þ

where Mh ¼ 125 GeV is the value used for the SM Higgs
mass and vSM ¼ 246 GeV is the VEVassumed for the SM
Higgs field. These values coincide with their central values
as determined by experiment [4]. Finally, we have rede-
fined all relevant kinematic parameters of the Z2-symmetric
2HDM to facilitate the rescaling of the energy density;

μ̂21 ¼
μ21
M2

h

; μ̂22 ¼
μ22
M2

h

; λ̂i ¼
λiv2SM
M2

h

; ðA5Þ

with i ¼ 1, 2, 3, 4, 5.
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