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In this work, a possible description for quantum dynamics of the cuscuton within the sigma-model
approach is presented. Lower order perturbative corrections and the structure of divergences are found.
Motivated by the results generated by the perturbative approach, we investigate the existence of topological
structures in the cuscutonlike model. The structures we study are, first, kinklike configurations in two
dimensional spacetime, second, vortex solutions in three dimensional one with gauge field ruled by the
Maxwell term. In fact, to show the existence of kink solutions one needs to introduce a standard dynamics
term in the cuscutonlike model. Then, a numerical approach (interpolation method) is used and the solution
of the scalar field is presented. On the other hand, for the study of topological vortices, we reorganized the
energy density to obtain, for convenience, equations similar to those canonical vortex structures, namely,
the Maxwell-Higgs model. In fact, even for this particular case, we observed the existence of structures
with localized energy and quantized magnetic flux in a given topological sector. We also show that when
the model does not spontaneously break the symmetry, the ð2þ 1ÞD model only admits the so-called
nontopological field solutions.
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I. INTRODUCTION

Topological structures are present in various scenarios of
our world. We find topological structures when we analyze
the behavior of a wave propagating in the sea [1], or whenwe
study superconductivity phenomena [2,3] or even when we
study cosmological objects [4–10]. Theoretically the topo-
logical defects arise as a consequence of a theory that has a
spontaneous breaking of symmetry [11]. In fact, the simplest
structures found in the literature are: the kink [12], thevortices
[12,13] and themonopoles [13]. It is important tomention that
each class of solution is associated with the spatial dimension
of the model. Therefore, kink appears when we study
ð1þ 1ÞD models, vortices appear in ð2þ 1ÞD models and
monopoles arise in four-dimensional ones.
In recent years several researchers have turned their

attention to the study of these structures [14–17], in particular,

kinks and vortices [12]. Part of this interest ismotivated by the
fact that such structures discussed in field theory have direct
applications in condensed matter physics [18], since they are
similar. In principle, if we consider a qualitative point of view,
such topological structures are formed during a phase
transition and are related to the breaking of some symmetry
of the model [11]. In this way, we can particularly relate the
vortex structures that arise in a context of field theory to
Abrikosov’s vortices known as characteristic phenomena in
condensed matter physics [19].
As a motivation for the study of these structures we have

some applications such as: in the study of vortices in
topological superconductors [3], the study of topological
structures in two-dimensional quantum gravity [20],
topological solutions describing the multivortex dyna-
mics in Abelian theories [21], structures in models with
k-defects [22], study of generalized models [23–25] and
nongeneralized ones [26–29].
It is also important to mention that topological structures

appear in noncanonical models [30]. The motivation for the
study of such configurations arises from theories such as
the inflationary evolution [31], where it is possible that
generalized noncanonical terms in the absence of an
interaction lead to an inflationary evolution [32,33]. In
fact, we have the supposition that some generalized
noncanonical models can give explanations about the
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accelerated evolution of the universe. It is important to note
that in the topological defects context, noncanonical
models can provide new behaviors, as news configurations
of fields, generating new classes of solutions and structures.
In this work, we are interested in the study of topological

structures in a noncanonical model known as cuscuton
model whose first example was originally introduced by
Afshordi et al. [34]. However, it is worth noting that all the
theories presented so far discuss the noncanonical models
only within the cosmological scenario or extra dimensions
context [35–37]. In contrast to this, we found for the first
time in the literature a possible description for the quantum
dynamics of cuscuton basing on the approach developed
for the nonlinear sigma model (see an example of this
approach in Ref. [38]). Motivated by the results of the
perturbative approach, we built cuscutonlike models in
(1þ 1) and (2þ 1) dimensional spacetime, and investi-
gated the existence of topological structures that each
model admits. We show that for a particular class of
solutions the vortex structures of the model have a localized
energy and a quantized magnetic flux in a given topological
sector.
Our work is organized as follows: in Sec. II, we consider

the cuscutonlike models in (1þ 1) and (2þ 1) dimensional
spacetime and investigate the existence of solutions of
topological structures of the model for certain forms of the
potential. In Sec. III, we develop the perturbative approach
and, using the auxiliary field methodology similar to that
applied in the context of the nonlinear sigma model, we
construct a possible description for the quantum dynamics
of the cuscuton. In Sec. IV, we summarize our results and
present some conclusions.

II. TOPOLOGICAL STRUCTURES IN
CUSCUTONLIKE MODEL

In this section, we investigate the possible emergence of
topological structures in 2-dimensional and 3-dimensional
models with the interaction term derived from the pertur-
bative dynamics of the cuscuton model.
It is important to say that the cuscuton model appears as

an alternative or a new model of dark energy, which,
although generally nonuniform, lacks a degree of dynamic
freedom [35]. The word “Cuscuton” has an origin in Latin
derived from a name of a parasitic planta called cuscuta. It
is applied in this context due to the fact that this model is a
new type of restriction system that allows a new dynamic
class, namely, noncanonical models.
In this work, our motivation is twofold. First, we seek a

direct description of the quantum dynamics of cuscuton
based on the nonlinear sigma model through of perturbative
method (see Sec. III). Second, we want to study how
topological structures can appear in cuscutonlike models.
However, it is observed that the usual cuscuton dynamics
only produces nontopological structures. To get around this
point, we use the correction term of the perturbative theory

and build a new cuscutonlike model. In this model, the
interaction spontaneously breaks the symmetry and guar-
antees the existence of topological structures. The non-
polynomial correction term that appears in quantum theory
is interesting due to its ability to amplify the magnetic flux
intensity and energy of vortex structures, which can be a
useful property for its experimental detection [39].

A. The cuscutonlike model in (1 + 1) dimensional
spacetime (2D)

1. Basic definitions

Usually, topological effects are studied in canonical
models interacting with Higgs polynomial potentials
[1,4]. We want now to investigate the possible existence
of topological structures in the cuscutonlike model. In order
to analyze whether the model supports kinklike topological
solutions, that is, concentrating on studies in 2D, let us
consider the following action:

S ¼
Z

d2x
h
μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂μϕ∂μϕ

q
− VðϕÞ

i
: ð1Þ

In our theory, we can firstly choose, as an example, a
particular potential of the form

V ¼ λ

4!
ϕ4 þ λ2ϕ4

256π2

�
ln

�
ϕ2

M2

�
−
25

6

�
: ð2Þ

This potential is inspired by perturbative calculations in
the usual ϕ4 scalar field model [40], but in principle, our
study will not be conceptually modified if we treat other
potentials. It is interesting to note that logarithmic poten-
tials are widely considered within various studies of
effective models, see, e.g., our previous paper [24] and
references therein. As we see below, this potential allows to
obtain nontrivial topological structures, namely, kinks and
vortices. At the same time, the calculations of one-loop
corrections in the cuscuton model itself are detailed in the
next section. Actually, we can assume that the cuscuton,
being effectively of the first order in derivatives, “domi-
nates” over the usual ∂μϕ∂μϕ kinetic term in the infrared
domain of the derivative expansion, so, the theory (1) can
be treated as the infrared limit of the theory being a sum of
the usual one-loop corrected ϕ4 theory and the cuscuton
model. Here,

V1 ≃
λ2ϕ4

256π2

�
ln
�
ϕ2

M2

�
−
25

6

�
; ð3Þ

is the one-loop contribution [40].
In fact, only the finite terms are taken into account when

we consider topological structures in the model, once its
potential behaves as a combination of the classical ϕ4

theory term and quantum corrections. Here we assume that
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the divergent parts of any contribution do not affect the
class of solutions of the topological structures since they are
canceled by the corresponding counterterms.
From the point of view of nonperturbative studies, nothing

prohibits the use of interaction (3). Based on the arguments
that support the study of topological structures, the loga-
rithmic interaction can be considered as long as the gauge
invariance is preserved and themodel admits the existence of
a spontaneous symmetry breaking. In fact, the interaction (3)
has these properties preserved. Therefore, the study of
topological structures with the logarithmic interaction is
possible.Here it is interesting tomention that the spontaneous
symmetry breaking of the model occurs when the values of
the parameters M and λ are correctly adjusted. In this
direction, see Ref. [41] where Belendryasova et al. brings
a discussion of the study of topological structures with
logarithmic nonlinear interaction.
Knowing that the logarithmic interaction is the contri-

bution responsible for inducing the emergence of topo-
logical structures in the theory, and that the contribution of
ϕ4 term (with a single vacuum) is not able to produce
topological structures, we consider the potential (3), which
is reminiscent of the perturbative calculus of Refs. [24,40]
for study of the topological solutions in our work.
For the study of topological structures it is necessary to

investigate the model’s Euler-Lagrange equation (1). In this
way, we obtain that the equation of motion for static field
configurations is given by

λ

64π2

�
λ

�
ln

�
ϕ2

M2

�
−
25

6

�
þ 1

2

�
ϕ0ϕ3 ¼ 0: ð4Þ

Throughout this article, the metric signature will be
ημν ¼ diagð−;þÞ. It is important to note that, if we consider
the static solution in the two-dimensional space-time,
ϕ ¼ ϕðx1Þ≡ ϕðxÞ, the contribution from the kinetic term

to the equation of motion is ∂μð ∂L
∂ð∂μϕÞÞ ¼ ð∂L∂ϕ0Þ0 ¼ μ2ð∂jϕ0j

∂ϕ0 Þ0,
which vanishes except of singular case ϕ0 ¼ 0.
Nevertheless, this singularity is actually removable,
thus, one can assign the zero value to its contribution to
the equation of motion as well. Consequently, in two-
dimensional case the pure cuscutonlike kinetic term yields
only a trivial contribution to equations of motion inde-
pendently of the form of the potential. Therefore, such a
kinetic term does not contribute to the equation of motion.
As a matter of fact, the Euler-Lagrange equation is
completely described by the potential.
Indeed, analyzing the solution of (4), we get that

ϕ ¼ M exp

�
25

12
−

1

4λ

�
; ð5Þ

that is, a constant. Therefore, the model does not admit
topological structures.

2. The kinklike solution

To find a scenario where a cuscuton term develops a
nontrivial contribution to the equation of motion, we define
a model that includes both terms with canonical and
noncanonical dynamics, namely,

S ¼
Z

d2x

�
μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂μϕ∂μϕ

q
þ 1

2
∂μϕ∂μϕ − VðϕÞ

�
: ð6Þ

In this case, the equation of motion (4) describing
the static field configurations, for our choice of the poten-
tial (2) is

ϕ00 −
λ

64π2

�
λ

�
ln

�
ϕ2

M2

�
−
25

6

�
þ 1

2

�
ϕ0ϕ3 ¼ 0: ð7Þ

Due to nonlinearity of equation of motion, we must use a
numerical method to investigate classical field solutions.
Investigating topological field configurations, we will
assume that

ϕðx → −∞Þ → −1 and ϕðx → ∞Þ → 1: ð8Þ

Studying numerically the solution of Eq. (4), we obtain,
by interpolation, the kinklike solution presented in Fig. 1.
In this case, the energy density, at μ ¼ 1, is

E ¼ 1

2
ϕ02 þ ϕ0 −

λ2ϕ4

256π2

�
ln

�
ϕ2

M2

�
−
25

6

�
: ð9Þ

We note that the linear term ϕ0 here is a consequence of the
cuscuton contribution.
We refer to the structures as kinklike solutions due to the

scalar field profile and energy density, i.e., the structures
that arise in the cuscutonlike theory have a similar profile as
a kink structure coming from a ϕ4 theory.
Let us analyze the behavior of the energy density of the

kinklike solution in Fig. 1. For this analysis, we considered

FIG. 1. Kinklike solutions in the cuscuton model added to the
term of the standard canonical dynamics in 2D.
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energy (9) and investigated the behavior of energy for the
field of Fig. 1. The result we obtained is shown in Fig. 2.
As expected, adding the canonical kinetic term to the 2D

cuscuton model solves the problem and allows the emer-
gence of topological structures kinklike. Here it is interest-
ing to mention that by adjusting the parameters M, and λ,
we will obtain other kinklike profiles centered in other
regions of space. In our simulation, we show the kinklike
structure is centered at r ¼ 2. By analysis, we see that the
solutions of Eq. (7) are type ϕ ∝ tanhðr − r0Þ, where the
value of r0 is associated with the parametersM and λ. As a
consequence, we observed that the energy associated with
this structure behaves like sechðr − 2Þ2. This result is a
direct consequence of the influence of the addition of the
canonical dynamics in the cuscutonlike model. Some
interesting discussions of this class of solutions can be
found in Refs. [13,42,43].
Within that study of kinklike structures, we concluded

that the pure noncanonical cuscuton kinetic term yields
only a trivial contribution independently of the form of the
potential. Nontrivial impacts of the square root term
probably can arise for generalized cuscuton terms like
fðϕÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂μϕ∂μϕ

p
or for cuscutonlike models including an

additive contribution of the canonical kinetic term. Some
implications of such terms have been considered in
Ref. [44], and their detailed study will be carried out
elsewhere. It is natural to expect that other potentials would
display similar behavior.

Linear excitation of the kinklike structures.—In the back-
ground of the kinklike structure, the dispersion states are
found as solutions to the nontrivial equation of motion
of kinklike fluctuations. If we denote the solution of
the stationary matter field by ϕkðrÞ, the fluctuation field
ψðr; tÞ is

δϕðr; tÞ ¼ ϕðkÞðr; tÞ − δϕðr; tÞ; ð10Þ

let us assume that the vacuum expected value is much
smaller than the fluctuations in the field. To study

fluctuations, it is convenient to consider ψðx; tÞ ¼
hðxÞ cosωt. Considering the linear terms of the theory,
we arrive at the equation

−
d2hðrÞ
dr2

þUðrÞhðrÞ ¼ ω2hðrÞ; ð11Þ

the Eq. (11) is a Schrödinger-like equation with

UðrÞ ¼ d2VðkÞ

dϕ2

				
ϕ¼ϕðkÞ

: ð12Þ

being the stability potential referred to as the quantum-
mechanical potential. For our model, the stability
potential is

UðrÞ ¼ λ2

64π2

�
3 ln

�
ϕðkÞ2

M2
−
25

6

�
þ 7

2

�
ϕðkÞ2ϕ0ðkÞ2 : ð13Þ

To investigate the excitation spectrum of our kinklike
solutions, we analyze the stability potential (13). The
stability potential profile is shown in Fig. 3.
Perceive that the stability potential is one symmetrical

double-well centered at r ¼ 2, with UðrÞ < 0. It is worth
mentioning that the confining potential is located at the
position of the structure. This behavior is reflected in the
profile of the numerical solution of the Eq. (11), and leads
us to investigate the translation modes of the structure.
Using the numerical interpolation method with steps of
10−5, we show the ground state of the excitation spectrum
(see Fig. 4).
Note that there are no negative values of the eigenvalue

of the excitation spectrum of our kinklike structures.
Furthermore, using arguments from supersymmetric quan-
tum theory, it is concluded that dϕðkÞ

dr is the corresponding
eigenfunction to the eigenvalue ω0 ¼ 0 (the calculation of
this proof is immediate by acting the annihilation operator
on the ground state of the spectrum, for more details
see Ref. [12]). This result implies that kink or kinklike

FIG. 2. Energy density of the field ϕ.

FIG. 3. Profile of potential stability whenM ¼ 1 and λ ¼ 20.9.
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structures must have a zero (translational) mode, see for
example Ref. [45].
To achieve our purpose, the numerical interpolation

method was used to investigate the solution of Eq. (11).
By numerical interpolation, the only frequency of the
spectrum arises when ω0 ¼ 0.663. Its corresponding eigen-
function is shown in Fig. 4. Analyzing the vibrational
modes, is it noted the absence of these eigenstates. This
result is interesting, as it suggests that resonance pheno-
mena probably do not occur in kink-antikink scattering in
our structures. However, it is important to note that the
phenomenon of resonance is possible even in the absence
of vibrational modes, see Ref. [45]. We hope in future
works to investigate the scattering of these structures to
analyze the possibility of the existence of the resonance
phenomenon.

B. Vortex solutions gauged by the Maxwell field

1. Description of the theory

Let us also motivate ourselves now by the theory
presented above, to investigate the vortex structures asso-
ciated with cuscutonlike [35] dynamics. To investigate the
vortex structures it is necessary to couple a gauge field for
the investigation of these field configurations. In this way,
we will consider the model defined by the action,

S ¼
Z

d3x

�
μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dμϕ ·Dμϕ

q
−
1

4
FμνFμν − VðjϕjÞ

�
; ð14Þ

where again, the potential is chosen in the form (3).
Let us make our definitions. The field ϕ is the complex

scalar field. Here, an overline denotes the complex con-
jugation of the field. The Abelian gauge field is denoted
by Aμ. The electromagnetic tensor is described by Fμν,
which is defined as

Fμν ¼ ∂μAν − ∂νAμ: ð15Þ

Also, the covariant derivative is defined asDμ¼∂μþ ieAμ.
The metric signature is ημν ¼ diagð−;þ;þÞ and the natural
system of units has ℏ ¼ c ¼ 1.
Investigating the equation of motion of the field con-

figurations, we obtain that

Dμ

�
DμϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijDνϕDνϕjp �

þ ϕ

jϕjV jϕj ¼ 0; ð16Þ

and

∂μFμν ¼ Jν: ð17Þ

For this noncanonical field dynamics, the current Jν

takes the form

Jν ¼
ieffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j∂μϕ∂μϕjp ðϕ̄Dνϕ − ϕDνϕÞ: ð18Þ

Let us consider the translational symmetry of space-time
to build the energy-momentum tensor, namely,

Tμν¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DμϕDνϕ

q
þ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DμϕDνϕ

q
þFμλFλ

ν−ημνL ð19Þ

This allows us also to particularize our solutions to the
case of the rotational symmetry. Therefore, an ansatz can be

ϕ ¼ fðrÞeinθ and A ¼ −
1

er
½aðrÞ − n�êθ; ð20Þ

where to investigate topological field conditions, we must
assume that

fð0Þ ¼ 0; fð∞Þ ¼ ν; ð21Þ

að0Þ ¼ n; að∞Þ ¼ 0: ð22Þ

Here it is important to mention that n ∈ Z and it is also
known as the winding number of the model. Meanwhile, ν
is the vacuum expected value (v.e.v.).
For this particular ansatz, we observe that the vortex

structures are purely magnetic, with the field given by

B ¼ −F12 ¼ ∇ ×A ¼ −
a0ðrÞ
er

: ð23Þ

It is important to mention that these topological struc-
tures have a magnetic flux that is given by

FIG. 4. Profiles of the eigenfunction of zero-mode (transla-
tional mode, continuous line), and eigenfunction of the Eq. (11)
with eigenvalue ω0 ¼ 0.663 (dashed line).
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ΦB ¼
Z
S

Z
B · dS ¼ −

Z
2π

0

Z
∞

0

F12rdrdθ

¼ −
2π

e
½að∞Þ − að0Þ�: ð24Þ

Therefore,

ΦB ¼ 2πn
e

: ð25Þ

In this way, we are investigating quantized magnetic
topological structures, i.e., structures that exhibit a quan-
tized magnetic flux.
Considering the behavior of the fields (20), we have the

energy density of the model written as

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrÞ2 þ fðrÞ2aðrÞ2

r2

r
þ a0ðrÞ2

e2r2

þ λ2fðrÞ4
256π2

�
ln

�
fðrÞ2
M2

�
−
25

6

�
: ð26Þ

To find finite energy configurations in the model, the
energy functional can be rearranged as

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
f0ðrÞ − fðrÞaðrÞ

r

�
2

þ 2f0ðrÞfðrÞaðrÞ
r

s

þ
�
a0ðrÞ
er

∓ λfðrÞ2
8π

�
ln

�
fðrÞ2
M2

�
−
25

6

�
1=2

�

� 1

4eπ
λa0ðrÞfðrÞ2

r

�
ln

�
fðrÞ2
M2

�
−
25

6

�
1=2

: ð27Þ

In order to study the localized structures of the model, we
will assume that the fields obey the following equalities,

f0ðrÞ ¼ fðrÞaðrÞ
r

; ð28Þ

and

a0ðrÞ
er

¼ � λfðrÞ2
8π

�
ln

�
fðrÞ2
M2

�
−
25

6

�
1=2

: ð29Þ

Looking at (28) and (29), we can clearly see that at the
limit of λ → 0, the gauge field assumed a constant behavior,
i.e., aðrÞ ¼ a0. Meanwhile, we have fðrÞ ∝ ra0 , which
gives us nontopological field configurations.
In fact, for all field configurations that respect Eqs. (28)

and (29), the energy density is reduced to

EBPS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f0ðrÞfðrÞaðrÞ

r

r

� 1

4eπ
λa0ðrÞfðrÞ2

r

�
ln

�
fðrÞ2
M2

�
−
25

6

�
1=2

: ð30Þ

By convention, EBPS can be treated as the model’s
Bogomol'nyi–Prasad–Sommerfield (BPS) energy [46–48].

2. Numerical results

In fact, the chosen case significantly simplifies the
configurations of fields that have energy located in the
cuscutonlike model. However, to investigate the solutions
of Eqs. (28) and (29), a numerical method is required.
For our case, we use a numerical interpolation to study the
field configurations expressed by Eqs. (28) and (29). The
numerical solutions for the field variables fðrÞ and aðrÞ are
illustrated in Figs. 5(a) and 5(b), respectively.
The vortex solutions with the field configurations shown

in Fig. 5 have localized energy. This is clearly seen when
we investigate the energy density (30) for the behavior of

(a) (b)

FIG. 5. (a) Behavior of the variable field fðrÞ. (b) Solution of the gauge field associated with field fðrÞ. In both solutions we assume
that e ¼ λ ¼ M ¼ 1.
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fðrÞ and aðrÞ in Fig. 5. The result for the energy density of
the model is shown in Fig. 6.
The magnetic field that generates the flux of the vortex is

found considering the solutions in Fig. 5 and the Eq. (23).
By interpolation, the behavior of the magnetic field is
demonstrated in Fig. 7.
It is easy to check that the considerations carried out

throughout this section, continue to be valid, if we consider
a set of ϕi fields, with i ¼ 1…N, so that only one of these
fields, say ϕ1, differs from zero, while all other ones are
equal to zero. In this case the solutions obtained in this
section continue to be valid for the ϕ1 field. This is the
simplest solution for the cuscuton theory generalized to
the case ofN scalar fields which is very interesting from the
perturbative viewpoint. Indeed, as we will argue in the next
section, the corresponding extension of the cuscuton will
admit a consistent quantum treatment based on using of the
1=N expansion. At the same time, it is natural to expect that
other exact solutions consistent in the presence of many
scalar fields ϕi can be obtained as well. Before starting
the next section, where we will discuss quantum perturba-
tive aspects of the cuscuton, let us emphasize that the

low-dimensional single field solutions we obtained above
represent themselves as the first steps for inspecting
the corresponding quantum theory which we begin to
consider now.

III. COMMENTS ON PERTURBATIVE DYNAMICS
OF THE CUSCUTON

While, as it was demonstrated in the Introduction, the
main attention to the cuscuton model is motivated to its
classical properties, i.e., exact solutions, quantum correc-
tions in this theory call a certain interest motivated, clearly,
by the highly unusual form of the kinetic term establishing
the question about a possibility of consistent application of
the perturbative formalism of the quantum field theory. It is
clear that, to solve this question, one must define a field
theory model equivalent in a certain limit to a cuscuton
theory, but written in the standard form, i.e., its Lagrangian
looks like a sum of the conventional kinetic term 1

2
ϕiT̂ijϕj,

with T̂ij some differential operator acting on dynamical
fields ϕj, and an interaction term presented as a power
series in fields and derivatives, so that in some limit (i.e.,
when some constant parameters tend to zero or to the
infinity) or after integrating out some fields, one could
arrive at the cuscuton model. For the theory with the
Lagrangian L ¼ 1

2
ϕiT̂ijϕj þ � � �, one evidently can apply

the standard perturbative methodology.
First, one can assume the naive manner to generalize the

cuscuton model in the Born-Infeld style, proposing the
action

S1 ¼
Z

d4x

"
μ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂μϕ∂μϕ

μ4

s
− VðϕÞ

#
; ð31Þ

where, after all calculations, we should consider the small μ
limit in order to have the first, field independent term to be
suppressed. We note that this Born-Infeld-like action is
related with the cuscuton just in the same manner as the
Born-Infeld electrodynamics is related to the Nielsen-
Olesen gauge theory, discussed in Ref. [49] (see also
references therein). However, this model cannot be treated
as a perturbatively consistent generalization of the cuscuton
model. Indeed, the cuscuton action corresponds to small
(not large!) μ2 limit of Eq. (31), for which the unit under the

square root is suppressed in comparison with ∂μϕ∂μϕ
μ4

, to

ensure arising of the classical cuscuton action (1), and, by
dimensional reasons, as higher the order in fields and
derivatives, as higher will be the negative degree of small μ.
Therefore, the series in μ diverges, hence the presentation
of the cuscuton action in the form (31) is perturbatively
inconsistent.
The more appropriate way for inserting the cuscuton

model in a perturbative context is based on the sigma-
model-style approach. We start with the action

FIG. 6. Energy density associated with complex scalar and
gauge field solutions when e ¼ λ ¼ M ¼ 1.

FIG. 7. Magnetic field associated the vortex solution when
e ¼ λ ¼ M ¼ 1.

TOPOLOGICAL STRUCTURES IN A NONCANONICAL … PHYS. REV. D 105, 056005 (2022)

056005-7



S2 ¼
Z

d4x

�
1

2

�
Σ∂μϕ∂μϕþ μ4

Σ

�
− VðϕÞ

�
; ð32Þ

which, after eliminating Σ through its classical equations
of motion, reproduces the initial cuscuton action (1).
Therefore, our theory is dynamically equivalent to the
cuscuton model. Further, to avoid negative degrees of any
fields, we can replace Σ → eσ , since Σ is dimensionless:

S02 ¼
Z

d4x

�
1

2
ðeσ∂μϕ∂μϕþ μ4e−σÞ − VðϕÞ

�
: ð33Þ

Now, we perform the sigma-model-like extension of this
theory, by assuming that it describes, instead of one field ϕ,
N scalar fields ϕi, i ¼ 1…N, which allows us to employ
1=N expansion as it is done for the nonlinear sigma model
[38], so, we promote the theory (33) to

S02 ¼
Z

d4x

�
1

2

�
eσ

XN
i¼1

∂μϕi∂μϕi þ μ4e−σ
�
− VðϕÞ

�
:

ð34Þ
Eliminating the σ field with its equation of motion,
we arrive at the many-field cuscuton kinetic termffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1 ∂μϕi∂μϕi

q
. Therefore, the theory we consider is

effectively the many-field extension of the cuscuton model,
with the multiplicity of fields is necessary to apply the
machinery of the 1=N expansion.
The propagator of ϕi is usual:

hϕiϕji ¼
δij

k2 −m2
: ð35Þ

We choose the usual self-coupling potential

VðϕÞ ¼ m2

2

XN
i¼1

ϕiϕi þ
λ

4!

�XN
i¼1

ϕiϕi

�
2

: ð36Þ

There will be two contributions to the two-point function
of σ field, that one involving three-point vertices and that
one involving a four-point vertex.
These vertices, respectively, look like

V3 ¼
1

2
σ
XN
i¼1

∂μϕi∂μϕi;

V4 ¼
1

4
σ2

XN
i¼1

∂μϕi∂μϕi: ð37Þ

For the sake of simplicity, we suggest
VðϕÞ ¼ 1

2
m2

P
N
i¼1 ϕiϕi, so, the ϕi are coupled only to

the auxiliary field σ. Hence the graphs a, b depicted at
Fig. 8 yield following contributions to the effective
Lagrangian:

ΓaðpÞ¼
N
8
σð−pÞσðpÞ

Z
d4k
ð2πÞ4

k2ðkþpÞ2
ðk2−m2Þ½ðkþpÞ2−m2� ;

ΓbðpÞ¼
N
4
σð−pÞσðpÞ

Z
d4k
ð2πÞ4

k2

k2−m2
: ð38Þ

It is straightforward to show that although the exact
result for the first integral is rather complicated due to need
to integrate over Feynman parameters, for studying of
renormalizability it is sufficient to use the asymptotic form
of the two-point function given by the sum Γa þ Γb, just as
in [38]:

Γ2 ¼ Γa þ Γb ∼ N
α

2
σð−pÞðp4 þ βm4ÞσðpÞ; ð39Þ

where α, β are some numbers. So, we generated the higher-
derivative contribution to the effective action. We should
note nevertheless that it is divergent, so, the effective
propagator of σ is an inverse to this two-point function,
i.e., hσðpÞσð−pÞi ∝ 1

N
1

p4þm4, but it is well defined only at

d ¼ 4 − 2ϵ with ϵ ≠ 0. The superficial degree of diver-
gence is

ω ¼ 4 − Eϕ − Nd; ð40Þ

whereEϕ is a number of externalϕ fields (it is always even),
and Nd is a number of derivatives applied to external fields,
while the number of external σ fields is arbitrary. One could
think that renormalization of the theory is problematic.
However, it follows from the structure of the classical action
that the external σ in any Feynman diagram will arise only
within the exponential e−σ. Therefore, all divergences can be
of the form e−nσ, e−nσ

P
N
i¼1 ∂μϕi∂μϕi, e−nσð

P
N
i¼1 ϕiϕiÞ2,

with n is non-negative integer (indeed, each vertex can carry
only an integer number of external e−σ). Alternatively, we
can make resummation over background constant σ and use
the background-dependent propagator hϕiϕji ¼ 1

k2e−σ−m2 δij
which, for the constant background σ, allows us to take care
only on external ϕi fields while the σ fields are already
summed out. Moreover, if derivatives act on some external
σ, it is easy to see that other external σ fields in each vertex
are summed to exponential. Even ifwe consider nonconstant
background σ, we can have only additional divergences

FIG. 8. One loop contributions to the two-point functions of
σ field.
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e−nσ∂μσ∂μσ, e−nσð∂μσ∂μσÞ2, and e−nσ∂μσ∂μσϕiϕi, with
no other divergences. Moreover, if the self-coupling of
the ϕi is absent, λ ¼ 0, there will be no derivative-free
vertices involving ϕ field. Therefore, we will have only two
types of divergences: e−nσ and e−nσ

P
N
i¼1 ∂μϕi∂μϕi.

It is easy to find the effective potential Vð1Þ of the field σ
treated as a purely external one, in the simplest case λ ¼ 0:
in this case the Vð1Þ is given by

Vð1Þ ¼ i
2
NTr lnðeσ□þm2Þ: ð41Þ

We note that this contribution to the effective potential is
a dominant term within the framework of 1=N expansion
since it involves a complete loop of propagators of ϕi fields,
and each such a loop yields N factor while each propagator
of the σ field yields a 1=N factor. Doing the integral at
d ¼ 4 − 2ϵ, we find

Vð1Þ ¼−
N

64π2
m4e−2σ

�
2

ϵ
þγ−1−2 ln

�
m2e−σ

μ02

��
þOðϵÞ:

ð42Þ

Here μ0 is a normalization parameter. It is interesting to note
that, first, the divergent part of the one-loop contribution to
the effective potential does not match the form of the
classical action, second, besides of the e−2σ, we have as
well a new (finite) term σe−2σ due to the logarithmic
contribution. In terms of the initial Σ ¼ eσ, we have

Vð1Þ ¼−
N

64π2
m4

Σ2

�
2

ϵ
þγ−1−2 ln

�
m2

μ02

�
þ2 lnΣ

�
þOðϵÞ:

ð43Þ

We note that there will be no other terms of the first order in
N in the effective action since this is the only contribution
involving the propagators of ϕi only. To cancel the
divergence, we must introduce the term m4

Σ2 to the initial
action (32). The contributions to the effective action
generated by propagators of Σ will be suppressed by
various degrees of the 1

N factor, entering the propagator
of the σ ¼ lnΣ corresponding to the quadratic action (39).
Therefore, this modification of the action of Σ will modify
quantum corrections only in higher orders of 1

N expansion.
It is interesting to note that, if we assume this term to be

added with a multiplier ε ≪ 1, in order to treat this term as a
small one, the modified sigma-model-like cuscuton action
becomes

S2 ¼
Z

d4x

�
1

2

�
Σ
XN
i¼1

∂μϕi∂μϕi þ
μ4

Σ

�
þ εm4

Σ2
− VðϕÞ

�
:

ð44Þ

Now, let us obtain equations of motion for Σ corre-
sponding to this action. We have

XN
i¼1

∂μϕi∂μϕi −
μ4

Σ2
− 2

εm4

Σ3
¼ 0: ð45Þ

In principle, the Σ can be found from this equation
through the Cardano formula for roots of a cubic equation.
However, it is better to obtain Σ as a series in ε:

Σ ¼ μ2

j∂ϕj þ εΣ1 þOðε2Þ; ð46Þ

where j∂ϕj≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1 ∂μϕi∂μϕi

q
. We know that at ε ¼ 0,

one has Σ ¼ μ2

j∂ϕj, and substituting this result to the

equations of motion in ε ¼ 0 case, one recovers the initial
cuscuton action (1). The Σ1 is a first-order approximation to
be found: implementing the expansion (46) into the
equation of motion (45), one obtains, in the first order

in ε, that Σ1 ¼ m4

μ4
. Thus, we substitute Σ ¼ μ2

j∂ϕj þ ε m4

μ4
to the

action (33) and find the action depending only on ϕi and
their derivatives:

S2½ϕ� ¼
Z

d4x

2
641
2

2
64�m2 þ μ4

m2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

∂μϕi∂μϕi

vuut

þ εm4

μ4
XN
i¼1

∂μϕi∂μϕi

3
75 − VðϕÞ

3
75; ð47Þ

i.e., the modified theory (44) yields a sum of the cuscuton
term with a modified constant multiplier and the usual
kinetic terms, plus the potential. This result is a reminis-
cence of the discussion in the first part of Sec. II, where we
argued that the usual additive kinetic term is necessary to
provide a nontrivial impact of the cuscuton term in
equations of motion. We note that the usual kinetic term
here is suppressed due to the ε factor, hence we conclude
that our theory (44) indeed reproduces a sum of the
cuscuton action and small terms.

IV. CONCLUSION

In this work, we constructed cuscuton models in 2D and
3D to study the existence of topological structures with the
interaction term derived of the perturbative theory in the
cuscuton model. Initially, the existence of kink solutions in
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the 2Dmodel was investigated, and the nontrivial solutions
were shown to arise if we have both noncanonical and
canonical kinetic terms in the action. Then, we studied
Maxwell’s vortices subject to the nonpolynomial potential.
In our model, the gauge field is described by Maxwell’s
term. Starting our investigation, we observed that the
cuscutonlike model only admits nontopological solutions.
However, when adding a canonical kinetic term to the
model, we notice that the model starts to admit the arise
topological structures. In fact, the existence of kink
structures in the 2Dmodel was expected since the corrected
nonlinear potential assumes a behavior similar to a ϕ4

theory. We observed, by numerical analysis, that the scalar
field (in case more general) assumes a behavior like
ϕ ∝ tanhðxÞ. Thus, an immediate consequence is that the
energy density of the model starts to assume a profile
similar to a Gaussian curve, namely E ∝ sechðxÞ2.
For an analysis of the vortex structure, we note that the

analyzed vortices have a critical gauge field around the
origin, i.e., when r → 0. On the other hand, it is notable that
the gauge field of these structures generates a null magnetic
field in the near of r ¼ 0. However, it quickly reached a
maximum intensity value of rc (rc is the value of r that the
scalar field reach the v.e.v.). It is important to mention that
the vortex structures that admit this behavior are said to be
ringlike vortex [48]. Furthermore, all the vortex structures
investigated so far have a quantized magnetic flux given
by 2πn=e.
In fact, due to the behavior of the field variable fðrÞ, the

energy settings of the vortex are localized and have the
profile of a function sechðrÞ2. It is worth noting that despite
the localized characteristic of the structures in both cases,
i.e., in 2D and 3D, the topological structures have an
intense energy around of the structures. For example, in
2D, the structure is localized around the center of the kink,
meanwhile, in 3D, the structure is localized around r ¼ 0.
We believe that these magnetic and nonmagnetic structures
have this energetic behavior due to the type of interaction of
the model, as already shown in Ref. [24].

To close the discussion of exact solutions, we observe
that if the parameter λ → 0, the case in ð2þ 1ÞD will not
have topological structures. In this particular case, the
model will only accept so-called nontopological solutions.
On the other hand, in ð1þ 1ÞD, the model would only
admit trivial solutions.
Within the perturbative context, we presented the cus-

cuton action in a manner similar to the nonlinear sigma
model, with the Lagrange multiplier field Σ ¼ eσ intro-
duced to deal with the square root term, is apparently much
more promising. Within this approach, we formulated
Feynman diagrams methodology, found the effective
propagator of the Lagrange multiplier field, and classified
the possible divergences. We found that their structure is
restricted. Therefore, we succeeded to develop a perturba-
tive formalism for the cuscuton. Certainly, more its aspects
must be studied. Moreover, perhaps other perturbatively
consistent theories reducing to the cuscuton model in a
certain limit or after integrating over some fields, can be
introduced. Searching for such theories is certainly an
interesting task.
It is interesting to note that the mechanisms discussed in

Ref. [44] do not allow for constructing the supersymmetric
extension of the cuscuton. However, within the second
perturbatively consistent approach, the cuscuton action has
been rewritten in a form similar to the nonlinear sigma
model whose supersymmetric extension is well known
[50,51]. Therefore, the possibility of constructing super-
symmetric extension of the cuscuton still must be
discussed.
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