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Chiral symmetry breaking comes from the mass dynamically generated through interaction of Dirac
fermions for both quantum electrodynamics in ð2þ 1ÞD (QED3) and ð3þ 1ÞD (QED4). In QED3, the
presence of a Chern-Simons (CS) parameter affects the critical structure of the theory, favoring the
symmetric phase where the electron remains massless. Here, we calculate the main effects of a pseudo-
Chern-Simons (PCS) parameter θ into the dynamical mass generation of pseudo–quantum electrodynamics
(PQED). The θ parameter provides a mass scale for PQED at the classical level and appears as the pole of
the gauge-field propagator. After calculating the full electron propagator with the Schwinger-Dyson
equation in the quenched-rainbow and large-N approximations, we conclude that θ changes the critical
parameters related to the fine-structure constant αcðθÞ and the number of copies of the matter field NcðθÞ,
favoring the symmetric phase. In the continuum limit (Λ → ∞), nevertheless, the θ parameter does not
affect the critical parameters. We also compare our analytical results with numerical findings of the integral
equation for the mass function of the electron. In the strong-coupling limit (with a fine-structure constant
α ≫ 1), the PCS mass vanishes and the system presents the same criticality as QED3.

DOI: 10.1103/PhysRevD.105.056004

I. INTRODUCTION

In the last few decades, quantum field theories in ð2þ 1ÞD
have been extensively studied. This interest is partly due
to its potential applications in condensed matter physics
[1–24] and, for comparison with quantum chromodynamics,
at low-energy scales. In particular, QED3 has provided
interesting features that are similar to quantum chromo-
dynamics, such as dynamical mass generation [25–36] and
confinement [37–39].
Pseudo quantum electrodynamics (PQED) is the dimen-

sional reduction of QED4, when the matter field is con-
strained to movewithin a plane and the photons are allowed
to propagate away from and back to this plane; as such, it is
a unitary [40] model that respects causality [41,42] and
describes mixed-dimensionality systems. Because of that,
2d materials—whose electromagnetic interactions escape
the plane, as happens in graphene [43–48], silicene [49],
and transition metal dichalcogenides [49–53]—are perfect

candidates to be described by the mixed-dimensionality
electromagnetic description of pseudo–quantum electrody-
namics (PQED) and end up defining a relevant break-
through to this research topic. Within the myriad of results
PQED has given rise to, we allude in hindsight to
dynamical mass generation for fermions at zero and finite
temperature [54–56], the interaction-driven quantum valley
Hall effect [57], quantum corrections of the electron
g-factor [58], electron-hole pairing (excitons) in transition
metal dichalcogenides [59,60], the optical infrared con-
ductivity of graphene [61], the emergence of a dynamically
generated mass for PQEDwith the Gross-Neveu interaction
[62], Yukawa potential in the plane [63,64], and PQED
cavity effects [65,66].
For massless Dirac particles, dynamical mass generation

has been investigated in several scenarios in both QED4
[67–81] and QED3 [25–36], providing a critical value
either for the fine-structure constant or for the number of
flavors, respectively. This nonperturbative effect is usually
calculated with the Schwinger-Dyson (SD) equations for
the full electron propagator [82–84]. For graphene, this
dynamical mass generation implies a gap opening at the
Dirac points of the quasiparticle excitation [57], which
might cause a topological phase transition [22].
Meanwhile, the Chern-Simons (CS) term plays a vital

role in gauge field topological phase transitions. Indeed, it
generates a mass for the gauge field while breaking the
parity symmetry and preserving the gauge symmetry [85].
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As a consequence, the CS term’s applications to the
Meissner effect are documented in the literature [86–91].
The addition of the CS term to QED3 has been shown to

favor the symmetric phase, where the electron remains
massless in both representations for spinors [92–94]. On
the other hand, coupled to PQED, the CS term changes the
electric permittivity of the vacuum—effectively working as
a dielectric medium [95,96]—and it has been used to
calculate the nonperturbative mass generation for the
fermions [97]. This CS parameter, however, is dimension-
less and cannot generate a mass for the gauge field i
n PQED. In order to do so, one has to consider the pseudo-
Chern-Simons (PCS) action, obtained by dual transforma-
tion of an Abelian Chern-Simons-Higgs [98] or by a
bosonization of massive Dirac fermions [99]. We shall
refer to the model that combines PQED and PCS as pseudo-
Maxwell-Chern-Simons (PMCS) theory. This PMCS
has a peculiar feature of producing bound states of
electrons [98,99]. Nevertheless, effects of dynamical mass
generation had not been investigated for PMCS theory
until now.
In this work, we use the Schwinger-Dyson equations to

investigate the dynamical mass generation associated with
four-component fermions coupled to the PCS terms. We
use the so-called quenched-rainbow approach and the
large-N expansion for calculating the mass function
ΣðpÞ—i.e., the term of the electron self-energy that yields
the dynamical mass. Our main results show that there exist
a critical coupling constant αcðθÞ and a critical number of
fermions NcðθÞ separating the broken phase from the
symmetric (massless) phase. It is shown that these are
dependent on the PCS parameter θ. Thereafter, we compare
our approximated analytical results with the numerical
results obtained from the integral equation for the mass
function and illustrate some of its interesting properties.
Because θ has the dimension of mass in the PMCSmodel, it
essentially means an effective correlation length and,
therefore, our results may be relevant for describing a
symmetry restoration in two-dimensional materials due to a
screening of the electromagnetic interaction.
This paper is organized as follows: In Sec. II, we present

the model and set up the coupled SD equations for the
photon and fermion propagators. In Sec. III, we present the
truncation scheme using the quenched-rainbow approxi-
mation and investigate the analytical solutions of the
integral equation for the mass function of fermions. In
Sec. IV, we examine the influence of vacuum polarization
on the CSB using the N massless fermion flavors version
and adopting a 1=N expansion. In Sec. V, we plot the mass
function for the electron numerically and characterize
the different regimes found. We summarize our results in
Sec. VI. In Appendix A, we review some aspects of the
criticality of QED3 coupled to the usual CS term, and in
Appendix B, we discuss some details of the analytical
approximation performed.

II. THE MODEL AND ITS TRUNCATED
SCHWINGER-DYSON EQUATION

We start with a PMCS model, where the CS term is
modified by a pseudo–differential operator. This action has
been shown to be dual to the Chern-Simons-Higgs model in
Ref. [98] using standard path-integral formalism. We
represent the PMCS model by

LPMCS ¼
1

2

FμνFμνffiffiffiffiffiffiffiffi
−□

p þ iθ
2

ϵμνγAμ∂νAγffiffiffiffiffiffiffiffi
−□

p

þ ψ̄ i=∂ψ þ λ

2

ð∂μAμÞ2ffiffiffiffiffiffiffiffi
−□

p þ eψ̄γμψAμ; ð1Þ

where Aμ is a gauge field, θ is the CS massive parameter, e
is the dimensionless coupling constant, 1=

ffiffiffiffiffiffiffiffi
−□

p
is a

pseudo–differential operator, and the fermions are repre-
sented by the four-component spinors ψ and ψ̄ , describing
the Dirac field. We expect to find nonzero values of θ in
mixed-dimensionality systems that exhibit a superconduct-
ing phase, as discussed in Ref. [99] (where it is shown that
θ is intrinsically associated with an attractive potential
between the electrons and controls the maximum depth of
the static potential).
This gives rise to a bare gauge-field propagator given by

Δð0Þ
μν ðpÞ ¼ p2Pμν þ θϵμνγpγ

2ε
ffiffiffiffiffi
p2

p
ðp2 þ θ2Þ

þ ΔGF
μν ðpÞ; ð2Þ

where ε is included in order to describe the dieletric
constant, and ΔGF

μν ðpÞ represents the gauge-dependent part
which is null in the Landau gauge λ → ∞. The fermion
bare propagator is given by

Sð0ÞF ðpÞ ¼ −
=p
p2

; ð3Þ

and an interaction vertex by Γð0Þ
μ ¼ eγμ.

The main consequence of the θ parameter is to provide a
bounded pair of electrons [98] within a typical distance of
r0 ∝ 1=θ, as explained in Ref. [99]. Furthermore, such a
parameter does not change the main results of the renorm-
alization group functions at one-loop expansion, because it
appears in any divergent term of the two-point vertex
functions associated with Eq. (1). Next, we shall calculate
the main contribution of θ through a nonperturbative
approach, provided by the Schwinger-Dyson equation in
the ladder approximation.
In order to investigate the corrections coming apace with

the PMCS dynamics, we consider the following coupled
Schwinger-Dyson equations displayed in Fig. 1 and ana-
lytically written as

½SFðpÞ�−1 ¼ ½Sð0ÞF ðpÞ�−1 − ΞðpÞ ð4Þ
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and

Δ−1
μν ðpÞ ¼ Δ−1

0μνðpÞ − ΠμνðpÞ; ð5Þ

where the electron and photon self-energies are, respec-
tively,

ΞðpÞ ¼ e2
Z

d3k
ð2πÞ3 γ

μSFðkÞΓνðk; pÞΔμνðp − kÞ ð6Þ

and

ΠμνðpÞ¼−e2
Z

d3k
ð2πÞ3Tr½γ

μSFðkþpÞΓνðk;pÞSFðkÞ�: ð7Þ

In the Euclidean spacetime, we can write

½SFðpÞ�−1 ¼ −γμpμAðpÞ þ ΣðpÞ; ð8Þ

where AðpÞ is the wave function renormalization and ΣðpÞ
is the mass function. Posteriorly, substituting Eq. (8) into
Eq. (4), we find that

− γαpαAðpÞ þ ΣðpÞ

¼ −γαpα þ −e2
Z

d3k
ð2πÞ3

γμSFðkÞΓνðk; pÞΔμνðp − kÞ
γβpβAðkÞ þ ΣðkÞ :

ð9Þ

From Eq. (9), we can isolate an expression for AðpÞ by
multiplying p on both sides and then calculating the trace
over the Dirac matrices, hence

AðpÞ ¼ 1 −
e2

4p2

Z
d3k
ð2πÞ3 Tr½γβpβFðpÞ�; ð10Þ

where for the sake of simplicity we define

FðpÞ ¼
�
γμSFðkÞΓνðk; pÞΔμνðp − kÞ

γβpβAðkÞ þ ΣðkÞ
�
: ð11Þ

For ΣðpÞ, we simply take the trace over the γμ matrices in
Eq. (9) to get

ΣðpÞ ¼ −e2
Z

d3k
ð2πÞ3 Tr½FðpÞ�: ð12Þ

In the following sections, we shall consider a set of
approximations in order to obtain an analytical result for
the mass function. This will allow us to discuss the
dynamical breaking of chiral symmetry, as well as to
calculate the critical behavior of the model in terms of
the θ parameter.

III. QUENCHED-RAINBOW APPROXIMATION

The ladder order is obtained by the so-called quenched-
rainbow approximation, which has been previously applied
to investigate the criticality of the PQED in the 4 × 4
representation [54–56]. It imposes that the full vertex Γμ

and the full gauge-field propagatorΔμν can be exchanged by

their bare counterparts γμ andΔð0Þ
μν . This approach decouples

Eqs. (6) and (7). Also, note from Eq. (10) that we can
conclude that AðpÞ ≈ 1þOðe2Þ. Keeping this in mind, and
using the trace properties for the Dirac matrices—namely,
Trð1Þ ¼ 4, TrðγμγνÞ ¼ −4δμν, and TrðγμγνγβÞ ¼ 0—we
may calculate ΣðpÞ from Eq. (12); hence,

ΣðpÞ ¼ e2
Z

d3k
ð2πÞ3 ΣðkÞδ

μνΔð0Þ
μν ðp − kÞ: ð13Þ

Substituting Eq. (2) into Eq. (13) and using spherical
coordinates, we obtain that, in the Landau gauge,

ΣðpÞ ¼ α

2π2

Z
Λ

0

dk
k2ΣðkÞ

k2 þ Σ2ðkÞ
Z

2π

0

dϕ

×
Z

π

0

dη
sinðηÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ k2 − 2pk cosðηÞ

p
p2 þ k2 − 2pk cosðηÞ þ θ2

; ð14Þ

where Λ is the UV cutoff, and α ¼ e2=4πε is the fine-
structure constant. After solving the integrals over η and ϕ,
we find

ΣðpÞ ¼ α

π

Z
Λ

0

kΣðkÞ
k2 þ Σ2ðkÞ

�jpþ kj − jp − kj
p

þ θ

p

�
arctan

�jp − kj
θ

�
− arctan

�jkþ pj
θ

���
dk:

ð15Þ

We can split the integrand in Eq. (15) as a composition of
kernels in the regions where k ≫ p and k ≪ p, yielding

FIG. 1. The fermion and photon SD equations, respectively.
The bold and filled dots indicate full propagators and vertices.
The second terms on the right-hand side represent the photon self-
energy ΠμνðpÞ (top) and the electron self-energy ΞðpÞ (bottom).
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ΣðpÞ ¼ α

πp

Z
Λ

0

dk
kΣðkÞ

k2 þ Σ2ðkÞ ½Kk≫pðk; pÞΘðk − pÞ

þKk≪pðk; pÞΘðp − kÞ�; ð16Þ

where ΘðxÞ is the Heaviside function, while Kk≫pðk; pÞ
and Kk≪pðk; pÞ are given by

Kk≫pðk; pÞ ≈ 2p −
2pθ2

k2 þ θ2
ð17Þ

and

Kk≪pðk; pÞ ≈ 2k −
2kθ2

p2 þ θ2
; ð18Þ

respectively. As a consequence, the integrals are separated
into

ΣðpÞ ¼ α

πp

Z
p

0

2k2ΣðkÞ
k2 þ Σ2ðkÞ

�
1 −

θ2

k2 þ θ2

�
dk

þ α

πp

Z
Λ

p

2kpΣðkÞ
k2 þ Σ2ðkÞ

�
1 −

θ2

k2 þ θ2

�
dk: ð19Þ

After taking the derivative of Eq. (19) with respect to p
(see Appendix A for more details) and using the Leibniz
integral rule [54–56], it becomes a nonlinear differential
equation given by

p2Σ00ðpÞ þ 2pΣ0ðpÞ þ 2α

π

p2 − p2θ2

p2þθ2

p2 þ Σ2ðpÞΣðpÞ ¼ 0: ð20Þ

This is supplemented by two boundary conditions—
namely,

lim
p→Λ

�
p
dΣðpÞ
dp

þ ΣðpÞ
�
¼ 0 ð21Þ

for the UV regime and

lim
p→0

p2
dΣðpÞ
dp

¼ 0 ð22Þ

for the infrared regime.
Equation (20) has a nonlinear behavior in p, which

prevents us from calculating an analytical solution for the
mass function. This nonlinear feature is generated by the
last nonzero term of Eq. (20). We could find linear
differential equations by assuming either p ≪ ΣðpÞ, but
it is shown that the corresponding solution does not obey
the boundary conditions, and is therefore an unphysical
solution. Therefore, we will concentrate on the case of
p ≫ ΣðpÞ and assume that p ≈ Λ (as discussed with more
detail in Appendix B and in Refs. [54,100,101]) to find the
linearized form

p2Σ00ðpÞ þ 2pΣ0ðpÞ þ 2α

π

�
1 −

θ2

Λ2 þ θ2

�
ΣðpÞ ¼ 0; ð23Þ

a Euler differential equation solved by

ΣðpÞ ¼ Apλþ þ Bpλ− ð24Þ

with

λ� ¼
−1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α

αc

q
2

; ð25Þ

where the critical value for the fine-structure constant has
been defined as

αcðθÞ ¼
πε

ð8 − 8θ2

Λ2þθ2
Þ ¼ αPQEDc|fflffl{zfflffl}

πε=8

�
1þ θ2

Λ2

�
: ð26Þ

Notice that for α < αc, the solution in Eq. (24) does not
satisfy the UV boundary condition and permits only a
trivial solution that allows no chiral symmetry breaking, as
deduced analogously for PQED in Ref. [54], where the
value αPQEDc ¼ πε=8 has been deduced. For α > αc, there
is also a nontrivial solution similar to PQED that implies
the emergence of a chiral symmetry breaking (see
Appendix B). Turning θ off, we can hence see that
Eq. (26) generalizes the result in the literature for PQED
and indicates that the PCS mass θ might effectively be used
to tune the critical point, as seen in Fig. 2.
The fact that Λ also appears in Eq. (26) is a consequence

of the scale invariance of the model when θ vanishes.
In particular, when we take the continuum limit (Λ → ∞),

FIG. 2. The critical fine-structure constant as a function of θ.
We plot Eq. (26) with Λ ¼ 10 (units of energy) and ε ¼ 1. The
blue dot is the critical fine-structure constant of PQED at θ ¼ 0
(units of energy), which has been discussed in Refs. [54–56]. The
dashed red line shows that as we increase θ, the critical constant
also increases, eventually bringing the system into its symmetric
phase, where the mass function vanishes.
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the role of θ also disappears, as expected. Indeed, this
represents a continuum limit, where the dynamical mass
generation occurs for any value of α, and therefore, we do
not have an actual phase transition [54–56].
In this section, we have neglected the quantum correc-

tions to the gauge-field propagator. Nevertheless, we may
go beyond this by introducing the large-N expansion,
which is sometimes called the unquenched-rainbow
approximation. Next, we consider this case.

IV. UNQUENCHED PMCS

PQED has been shown to have a critical number of
fermions Nc which separates the symmetric from the
broken phase [54–56], entailed when the number of copies
of the fermionic field N is greater than Nc. In this section,
we investigate the role of the CS term in the criticality of
PQED in the large-N regime. Within the unquenched-
rainbow approximation, we must extend the fermionic
sector in Lagrangian (1) to N copies of a massless fermion
field; thus, we consider

LPMCS ¼
1

2

FμνFμνffiffiffiffiffiffiffiffi
−□

p þ iθ
2

ϵμνγAμ∂νAγffiffiffiffiffiffiffiffi
−□

p

þ
XN
a¼1

ψ̄aði=∂ þ eγμAμÞψa þ λ

2

ð∂μAμÞ2ffiffiffiffiffiffiffiffi
−□

p : ð27Þ

Applying a similar approach, it is possible to generalize
such results to the PMCS model by adding the dominant
order of the 1=N expansion (which is equivalent to the
random phase approximation; see Fig. 3) to the truncated
gauge-field propagator in Sec. III. The gauge-field propa-
gator for the PMCS model would then be

Δμν ¼ TPμν þ Lϵμνρpρ; ð28Þ

with

T ¼ 8ðp2Þ3=2 þ ð8
ffiffiffiffiffi
p2

p
− 4Π1Þθ2

½4ðp2 − θ2Þ þ Π2
1�2 þ 64p2θ2

þ Π1½5p2 − ðΠ1 þ
ffiffiffiffiffi
p2

p
Þ2�

½4ðp2 − θ2Þ þ Π2
1�2 þ 64p2θ2

;

L ¼ 2θ

4½ðp2Þ3=2 − p2Π1 þ θ2
ffiffiffiffiffi
p2

p
� þ

ffiffiffiffiffi
p2

p
Π2

1

; ð29Þ

and

Π1 ¼ −
e2

8
N

ffiffiffiffiffi
p2

q
ð30Þ

for massless fermions, as calculated in Refs. [102,103].
The gauge-field propagator in Eq. (28) simplifies to the

PMCS propagator in Ref. [99]—namely,

ΔμνðpÞ ¼
p2Pμν þ 16

16þNe2 θϵμνρp
ρ

2εð1þ Ne2
16
Þ

ffiffiffiffiffi
p2

p
½p2 þ θ2

ð1þNe2
16

Þ2�
: ð31Þ

In order to compatibilize our model with the 1=N expan-
sion, we apply the transformation e → e=

ffiffiffiffi
N

p
to get

Δμν ¼
p2Pμν þ θ̃ϵμνρpρ

2εef
ffiffiffiffiffi
p2

p
ðp2 þ θ̃2Þ

; ð32Þ

whereas the effective dielectric constant and effective CS
parameter are, respectively,

εef ¼ ε

�
1þ e2

16

�
;

θ̃ ¼ θ

1þ e2
16

: ð33Þ

Thus, similarly to Eq. (12), the mass function in the
unquenched regime reads

ΣðpÞ ¼ e2

N

Z
d3k
ð2πÞ3

ΣðkÞδμνΔμνðp − kÞ
k2 þ Σ2ðkÞ ; ð34Þ

where we use AðpÞ ¼ 1 because AðpÞ ≈ 1þOð1=NÞ, and
we are calculating ΣðpÞ only up to the dominant order of
the 1=N expansion.
Since the propagator in Eq. (2) has the same overall

structure as the PMCS propagator in Ref. [99], the only
associations necessary to map the quenched approximation
in Sec. III to an unquenched PMCS model are

2α

πε
→

e2

2π2εefN
;

θ → θ̃: ð35Þ

Applied to Eq. (23), the transformations in Eq. (35) lead to

p2Σ00ðpÞ þ 2pΣ0ðpÞ þ e2

2π2εefN

�
1 −

θ̃2

Λ2 þ θ̃2

�
ΣðpÞ ¼ 0;

ð36Þ

which satisfies the same boundary conditions as Eqs. (21)
and (22). This allows us to identify a chiral-symmetry-
broken phase (shaded region in Fig. 4) up to a critical
number of fermions,

FIG. 3. Dominant order of the 1=N expansion of a photon
propagator.
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NcðθÞ¼
2e2

π2εef

�
1−

θ̃2

Λ2þ θ̃2

�
¼NPQED

c

�
Λ2

Λ2þ θ̃2

�
; ð37Þ

directly affected by the PCS parameter θ. Equation (37)
also exhibits the same criticality as PQED when we turn the
θ factor off (blue point in Fig. 4) and in the strong-coupling
limit, where it also reproduces QED3 for θ ¼ 0.
Notice that Nc must be at least larger than 1 in order to

obtain a broken phase; otherwise, the condition N < Nc
may not be satisfied. Such a minimum value for Nc to
permit a symmetry-broken phase (Nc → 1) can also be
plugged into Eq. (37) to estimate a threshold value in the
effective PCS mass θ̃ given by

θ̃th ¼ Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NPQED

c − 1

q
: ð38Þ

This threshold value separates the two different phases that
might appear in the system: If θ̃ ≥ θ̃th, the system forcibly
falls upon its symmetric phase, while θ̃ < θ̃th allows the
formation of a broken phase, as we see in Fig. 4.

V. NUMERICAL ANALYSIS

Even though ΣðpÞ analytical solutions could only be
obtained approximately in the previous sections, the
integral in Eq. (15) needs no approximation to be numeri-
cally evaluated. Hence, we can apply the same numeric
calculation described in Refs. [54,104] to get a glimpse of
the features related with the mass generation in the PMCS
model, as illustrated in Figs. 5, 7, and 8.
As illustrated in Fig. 5, the mass function generated is

maximum for small momentum values and gets strongly

suppressed below a different αcðθÞ for each PCS mass, as
seen from the sudden increase of Σð0Þ when each system
crosses the critical point in Fig. 6; notice that as θ grows,
the minimum value for mass generation αcðθÞ also
increases. These transition points can be used to establish
a comparison that confirms the existence of a critical
parameter exhibited in Fig. 2. This allow us to identify
the numerical value of αcðθÞ with the same order as the
analytical result in Fig. 2. The numeric deviation comes
from the fact that the analytical solution is obtained after
linearizing the differential in Eq. (15), while the numerical
results contains all of the nonlinear behavior in Eq. (23),
affecting its numerical value, but not changing the exist-
ence of the critical point we predict.

FIG. 4. Sketch of the maximum number of flavors that allow a
manifestation of a broken phase as a function of θ. The blue dot
represents the critical number of flavors of PQED, where θ ¼ 0 is
deduced in Ref. [54–56] for ε ¼ 1. The dashed green line shows
that as we increase θ, the critical number of fermions decreases,
guiding the system into its symmetric phase when Nc gets smaller
than 1.

FIG. 5. The mass function generated by the PMCS model
above and below its critical point αcðθÞ. Plotted is the numerical
solution of Eq. (15) with θ ¼ 0.1, Λ ¼ 10, and consequently
αc ≈ :39. The blue line [α ¼ 0.2 < αcðθÞ] shows that dynamical
mass generation is negligible below the critical fine-structure
parameter, while the yellow line exhibits the typical behavior
above its critical value (α ¼ 0.8 > αc).

FIG. 6. The small-momentum mass function generated by the
PMCS model for different PCS masses. The numerical solution
of Eq. (15) is plotted with θ ranging from 0 to 2 (in units of
energy). The estimated values for αc were selected using the
values when Σð0Þ ≈ 0.01.
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Considering the system above its critical value αc, which
allows for mass generation, it is possible to infer that
reducing the (inverse-of-mass) interaction range (by means
of controlling the PCS mass θ) mitigates the mass gen-
eration until it becomes almost negligible, as illustrated
in Fig. 7.
The qualitative interpretation exhibited in Fig. 4 can be

broadened by further analyzing the numerical evaluations
of Eq. (37) at different coupling regimes. This illustrates
some new features that can be observed in Fig. 8 and clearly
sets apart the different behaviors a MPCS system might
have. The shaded cyan region is the region where

NcðθÞ > 1, allowing at least one possible nonzero value
for N that breaks the symmetry [i.e., NcðθÞ > N ¼ 1].
Meanwhile, the shaded magenta region [NcðθÞ ≤ 1]
implies that the system completely falls into its symmetric
phase. As we change the coupling constant e, the system
critical point travels from a constant NcðθÞ ¼ NPQED

C at its
strong-coupling limit (solid black line in Fig. 8) towards an
attenuated value that slightly diminishes as θ increases
(solid blue line), until NcðθÞ eventually goes below 1 for all
possible θ (dashed red line). Before it reaches its com-
pletely symmetric phase, the system first passes through a
peculiar coupling regime with a built-in phase transition
(numerically estimated to happen when 2.65 < e < 3.42).
In this regime, the broken-symmetric phase transition
appears within a single system, since the broken phase
gets forbidden when the mass of the gauge field is above
the threshold θth (as indicated by the dashed part of the
green line)—i.e., in these coupling regimes, the PCS mass θ
regulates whether the system may or may not have its
symmetry broken.

VI. FINAL REMARKS AND PERSPECTIVES

In this work, we have described the chiral symmetry
breaking in the nonperturbative regime of PMCS electro-
dynamics, a renormalizable model composed by associat-
ing PQED with a massive PCS parameter θ [98,99]. We
have written the Schwinger-Dyson equations for the model
assuming the planar Dirac fermions were four-component
spinors and have applied the rainbow-quenched and the
unquenched approximations to determine the criticality
within the system.
At the rainbow-quenched approximation, we have

deduced an analytical expression for the dynamical mass
ΣðpÞ [Eq. (24)] and for the critical fine-structure constant
αc [Eq. (26)], emphasizing their dependence on θ to exhibit
the correction (proportional to θ2=Λ2) to αPQEDc caused by
the PCS term—whence we deduce that αcðθ;ΛÞ grows as
we enhance the PCS contribution, even though such
criticality correction diminishes conversely at larger energy
scales, effectively retrieving αPQEDc . It is also worth noting
that very large θ values inhibit the dynamical mass
generation, since this brings the system to α < αc, favoring
the symmetric phase.
At the unquenched approximation, we have considered

N copies of the Dirac spinors to calculate the critical
number of flavors Nc, governed by Eq. (37). The depend-
ence of the critical parameter on the PCS term in this
approximation works the other way around—i.e., Nc
decreases towards zero as θ grows for a given Λ—by
setting an upper value for N and θ [see Eq. (38)].
Meanwhile, the vacuum polarization onto the gauge field
propagator not only produces a screening effect, but also
modifies the mass of the gauge field according to Eq. (33).
In the strong-coupling limit (e > 3.42), this mass

FIG. 7. The mass function generated by the PMCS model for
different values of the PCS parameter θ. Plotted is the numerical
solution of Eq. (15), assuming α ¼ 0.8 > αcðθÞ and Λ ¼ 10. The
blue inset is the log scale of the same plot to illustrate that the
mass generated gets even smaller as θ approaches 1.

FIG. 8. Dependence of the maximum number of flavors on θ,
plotted numerically assuming Λ ¼ 10 and different coupling
constants e in Eq. (37). The shaded cyan region [NcðθÞ ≥ 1]
marks the potentially breakable states, while the shaded magenta
region [NcðθÞ ≤ 1] implies that the system completely falls into
its symmetric phase. Notice that the green line (e ¼ 3) passes
through both regions, which suggests a phase transition around
θth, as previouly suggested by Fig. 4.
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disappears, and then the mass function is the same as in
standard PQED in Ref. [54], while weaker couplings either
go completely symmetric (e < 2.65) or present a model
with a phase transition at θ ¼ θth (2.65 < e < 3.42).
Comparing the Nc results for the PMCS electrodynamics
with the usual Maxwell-Chern-Simons model (see
Appendix A) discloses that they both have the same
structure. Differently from the PMCS, however, the
Maxwell-Chern-Simons model has a characteristic energy
scale (defined by its fine-structure constant), which reflects
the fact that this model is super renormalizable.
Both approximations reproduce PQED in the continuum

limit, since θ ≪ Λ → ∞. These recursive results regarding
PQED are also obtained once we turn the PCS mass off
(θ → 0), retrieving αc → αPQEDc and Nc → NPQED

c . Thence,
we hope that the PMCS model described here will inherit
the utility of PQED for the characterization of different
kinds of two-dimensional materials, but now with the extra
feature of applying to systems with short-range inter-
actions, because θ reduces the strength of the static
potential, possibly including superconductivity and bound
states [98], as happens in magic-angle twisted bilayer
graphene [105,106] and hybrid graphene/LiNbO3 plat-
forms [107].
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APPENDIX A: THE QED WITH A CS TERM

In this appendix, we discuss the main results regarding
the dynamical symmetry breaking of MCS theory [92–94].
Our main idea is to show that the θ̄ parameter also favors
the symmetric phase. The action of the model, in the
Euclidean space, reads

LMCS ¼
1

4
F̄μνF̄μν þ

λ

2
ð∂μĀμÞ2 − i

θ̄

2
ϵμναĀμ∂νĀα

þ ψ̄aðiγμ∂μ þ ēγμĀμÞψa; ðA1Þ

where Āμ is a gauge field (usually called the Maxwell-
Chern-Simons field), θ̄ is the CS parameter with units of
mass ½θ̄� ¼ M, ē is the coupling constant with units
given by ½ē� ¼ M1=2, λ is the gauge-fixing parameter,
and F̄μν ¼ ∂μĀν − ∂νĀμ is the strength-field tensor of
Āμ. The matter field is given by the Dirac field ψ , and
γμ are the four-rank Dirac matrices, obeying the same
properties as in Secs. II–III. Here, we consider a flavor

index a ¼ 1;…; N, which shows that we have N copies of
the matter field.
We shall follow the same steps as we have done in the

case of the PMCSmodel. Hence, let us summarize the main
results. Within the large-N expansion, at lowest order, the
gauge-field propagator reads

ΔμνðpÞ ¼ ΔðpÞ
�
δμν −

pμpν

p2

�
þ LðpÞϵμανpα; ðA2Þ

where

ΔðpÞ ¼ p2 þ ē2
8
jpj

p2½ðjpj þ ē2
8
Þ2 þ θ̄2� ðA3Þ

and

LðpÞ ¼ θ̄

½ðp2Þ2 þ 2ðp2Þ3=2 ē2
8
þ p2 ē4

64
þ p2θ̄2� : ðA4Þ

Using Eqs. (A3) and (A4) in the Schwinger-Dyson equa-
tion of the electron propagator, one may conclude, after
some work, that the mass function ΣðpÞ obeys an integral
equation, given by

ΣðpÞ¼ ē2

4Nπ2

Z
∞

0

dk
kΣðkÞ

k2þΣ2ðkÞ
1

p
ln

� ðpþkþ ē2
8
Þ2þ θ̄2

ðjp−kjþ ē2
8
Þ2þ θ̄2

�
:

ðA5Þ

Equation (A5) admits an expansion in its kernel, such that
one may convert this integral equation into a differential
equation. To achieve that, we expand the logarithm in
Eq. (A5), assuming ē2 ≫ p (because chiral symmetry
breaking usually occurs for strong interactions), to derive
the property

ln

� ðpþ kþ ē2
8
Þ2 þ θ̄2

ðjp − kj þ ē2
8
Þ2 þ θ̄2

�

≈
32kē2Θðp − kÞ
64k2 þ ē4 þ 64θ̄2

þ 32pð8kþ ē2ÞΘðk − pÞ
64k2 þ ē4 þ 64θ̄2

: ðA6Þ

This approximation has also been applied for the usual
QED3 in Refs. [25–36] and in the QED3 coupled to the
usual CS term in Refs. [92–94].
Applying the property in Eq. (A6) to the MCS mass

function in Eq. (A5), we get

ΣðpÞ ¼ ē2

4π2N

�Z
p

0

dk
k2ΣðkÞ

k2 þ Σ2ðkÞ
1

p
32ē2

64k2 þ ē4 þ 64θ̄2

þ
Z

∞

p
dk

kΣðkÞ
k2 þ Σ2ðkÞ

32ð8kþ ē2Þ
64k2 þ ē4 þ 64θ̄2

�
; ðA7Þ
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which can, in turn, be translated to the second-order
differential equation, whose linearized version for
p2 ≫ Σ2ðpÞ is given by

d
dp

�
p2

dΣðpÞ
dp

�
þ 8ē4

Nπ2
ΣðpÞ

ē4 þ 64θ̄2
¼ 0; ðA8Þ

supplemented by two asymptotic conditions similar to
Eqs. (21) and (22).
With that in mind, we obtain the critical number of

fermions Nc, given by

NcðzÞ ¼ NQED3
c

�
ē4

ē4 þ 64θ̄2

�
¼ NQED3

c
1

ð1þ z2Þ ; ðA9Þ

where z2 ¼ 64θ̄2=ē4. It is interesting to highlight that
within the strong-coupling limit—i.e., ē2 ≫ θ̄—we obtain
NQED3

c → 32=π2 ≈ 3.24 as in Eq. (37). Thence, solving the
equation NcðzcÞ ¼ 1, we obtain zc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32=π2 − 1

p
, which

in terms of θ̄ implies that we must have θ̄ < θ̄th, where
θ̄th ¼ zcē2=8. Therefore, we conclude that the presence of
θ̄ ≠ 0 decreases Nc and favors the symmetric phase. For
α ≫ 1, Eq. (38) reproduces the same θth (after using
Λ ¼ ē2=8), which is a surprising connection between
PMCS and MCS that appears in spite of the differences
of their actions.

APPENDIX B: ANALYTICAL APPROXIMATION

After taking the derivative of Eq. (19) with respect to p,
we find

dΣðpÞ
dp

¼ −
α

πp2

Z
p

0

2k2ΣðkÞ
k2 þ Σ2ðkÞ

�
1 −

θ2

k2 þ θ2

�
dk: ðB1Þ

From Eqs. (B1) and (19), it follows that the UV and IR
conditions are as given by Eqs. (21) and (22), respectively.
Thereafter, we multiply Eq. (B1) by p2 and calculate the
derivative with respect to p again to obtain Eq. (20). This is
a nonlinear differential equation, whose solution ΣðpÞ
approximately behaves as the solution of our full integral
equation in Eq. (15) when the UV/IR conditions are
respected.
Obviously, in order to obtain an analytical solution, we

have to linearize the differential equation.Whenwe consider
p ≪ ΣðpÞ in Eq. (20), we find ΣðpÞ ¼ C1=pþ C2, where
C1 and C2 are arbitrary constants. However, after using the
conditions in Eqs. (21) and (22), we conclude that
C1 ¼ C2 ¼ 0, implying that such approximation does not
provide any nontrivial solution that fulfills the auxiliary
conditions, and hence the dynamical mass generation is not
expected to occur.

Next, let us consider our main case where p ≫ ΣðpÞ.
In this case, the solution ΣðpÞ is given by Eq. (24). Here,
because the behavior of the solutions depend on λ�ðα; αcÞ,
making the analysis more subtle. Within the continuum
limit Λ ¼ ∞, we find that ΣðpÞ ≠ 0 regardless of the value
of α, because both the UVand IR conditions are respected.
When Λ is finite, it is useful to write the solution as

ΣðpÞ ¼ Apð−1þγÞ=2 þ Bpð−1−γÞ=2; ðB2Þ

where ð−1þ γÞ=2 ¼ λþ, ð−1 − γÞ=2 ¼ λ−, and γ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α=αc

p
. Equation (B2) respects the IR condition for

any value of γ (and therefore α). To discuss the UV
condition, we must first define the range of α. For
α < αc, it follows that the UV condition is not respected;
hence, ΣðpÞ ¼ 0, and the system remains in the symmetric
phase. Next, let us consider α > αc so that Eq. (B2) becomes

ΣðpÞ ¼ Apð−1þiRÞ=2 þ Bpð−1−iRÞ=2; ðB3Þ

where R ¼ iγ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α=αc − 1

p
is a real constant. After some

algebra, it is possible to write Eq. (B3) as

ΣðpÞ ¼ Āffiffiffiffi
p

p sin

�
R

�
ln

p
MΛ

þ ϕ

��
; ðB4Þ

where Ā ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 −D2

p
, S ¼ Aþ B, D ¼ B − A, and

Rϕ ¼ tan−1ð−iS=DÞ. The parameterMΛ is needed in order
to write a dimensionless argument of the logarithmic
function. This may be fixed by the UV condition, yielding

MΛ ¼ Λe2þϕe−2nπ=R; ðB5Þ

where n is a positive integer. Note thatMΛ obeys aMiransky
scaling law as in QED4 [72–74,108–110]—i.e., in our
results, αc might be interpreted as an ultraviolet fixed point
defining the continuum limit of the theory. While in the
regime α > αc, we find a nontrivial solution and the system
is in its broken phase.
One important point regarding the interpretation of αc

is the validity of the approximation p2 ≫ Σ2ðpÞ. In general
grounds, the mass function decreases as we increase
p—i.e., its maximum value is Σð0Þ. As a consequence,
it is unclear whether we actually find Σð0Þ → 0 at α ¼ αc,
since our approach seems to work well only at large p. It
turns out that we could improve our approximation by
considering p2 þ ΣðpÞ2 ≈ p2 þ Σð0Þ2, which also works
reasonably well at small external momentum. In this case,
we would obtain that Σð0Þ obeys a Miransky scaling law
similar to Eq. (B4), with the very same value of αc.
Therefore, we do not find any better result for αc, but
we avoid the limitation of large external momentum, as is
done in the context of QED3 in Refs. [100,101].
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