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We study a relativistic fluid with longitudinal boost invariance in a quantum-statistical framework as an
example of a solvable nonequilibrium problem. For the free quantum field, we calculate the exact form of
the expectation values of the stress-energy tensor and the entropy current. For the stress-energy tensor, we
find that a finite value can be obtained only by subtracting the vacuum of the density operator at some fixed
proper time 7. As a consequence, the stress-energy tensor acquires nontrivial quantum corrections to the

classical free-streaming form.
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I. INTRODUCTION

Spurred by a successful description of experimental data
in high-energy nuclear collisions, relativistic hydrodynam-
ics has recently made major progress, both regarding its
theoretical foundations as well as its phenomenological
applications. Lately, the quantum-statistical foundations of
relativistic hydrodynamics have attracted a great deal of
attention [1-7], in particular to describe quantum phenom-
ena in relativistic fluids such as chirality [8] and polariza-
tion [9]. In a quantum-statistical framework, hydrodynamic
quantities, such as the stress-energy tensor and conserved
currents, are the expectation values of the corresponding
quantum operators with respect to a suitable statistical (or
density) operator p:

T = e (pT" ) e, (1)

where the subscript “ren” implies renormalization of the
otherwise divergent expectation value.

In general, the form of the stress-energy tensor and the
currents crucially depends on the density operator. Exact
expressions are known only in a few cases, including the
familiar global thermodynamic equilibrium and, as a recent
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development, global thermodynamic equilibrium with
rotation and acceleration. However, no exact form is known
in local thermodynamic equilibrium, which is defined by
[1,2,10,11]

. 1 . ~
PLE = ieXP {— / dzﬂ(T” B, —Ci")|, (2)
b

where f(x) is a four-temperature field [equal to the four-
velocity u(x) divided by the temperature 7'(x)], and {(x) is
a scalar field [equal to the ratio of the chemical potential
u(x) associated with the conserved current 7 and the
temperature]. The hypersurface X is a three-dimensional
spacelike hypersurface, on which the local equilibrium is
defined. The calculation of expectation values of operators
using Eq. (2) can be performed only in the hydrodynamic
limit of slowly varying fields [1]. For the stress-energy
tensor, the leading-order term coincides with the familiar
perfect-fluid expression. Beyond this approximation,
quantum corrections appear, which have been estimated
by means of a perturbative expansion only in the global-
equilibrium case [12].

Recently, Akkelin [13,14] derived an exact solution of a
particular nonequilibrium problem, a free neutral scalar
field with the density operator:

1 1 -
D=—exp|—— dz T’“’uy] , 3
7= |70 oy )

with 2(z) being a proper-time 7 hyperbola in the future
light cone in two dimensions (see Fig. 1) and u(x) the four-
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FIG. 1. Two-dimensional section of the future light cone.
Curves of constant Milne time 7 are hyperbolas, while curves
of constant space-time rapidity # are lines through the origin. The
thicker hyperbolas are two-dimensional sections of the three-
dimensional hypersurfaces X(z) and X(zy) at constant z and
constant 7, respectively.

velocity field coinciding with the unit vector perpendicular
to X. The density operator (3) is invariant under longi-
tudinal boosts, a symmetry which has been often used to
study general features of relativistic hydrodynamics prob-
lems. Lately, longitudinal boost-invariant solutions have
been studied in the context of spin hydrodynamics [15] and
magnetohydrodynamics [16—18]. This symmetry and the
solution found in Ref. [13] also offers a special opportunity
to explore in detail some essential features of quantum
relativistic hydrodynamics in a nonequilibrium situation
and, in particular, to determine the pure quantum correc-
tions to classical hydrodynamics and kinetic equations,
including those to the stress-energy tensor and to the
entropy current. In other words, this solution provides a
benchmark test of a relativistic quantum fluid.

In this work, we extend the results of Ref. [13] and study
the stress-energy tensor with longitudinal boost-invariant
symmetry. We find that, even for the simplest case of a free
scalar field, there are relevant quantum corrections related
to its renormalization by subtraction of the vacuum expect-
ation value. Indeed, while the traditional vacuum of the
field, expanded in plane waves, the so-called Minkowski
vacuum, fails to provide a finite energy density, the
subtraction of the vacuum expectation value with respect
to the vacuum of the density operator does. Conversely, for
the entropy current, no significant quantum correction
is found.

This paper is organized as follows. We will start in Sec. 11
with a review of the density-operator approach in relativ-
istic quantum-statistical mechanics with special emphasis
on symmetry considerations. In Sec. III we will specialize
to the symmetry of concern for this work, that is boost
invariance. As underlying quantum field theory, in Sec. IV
we will present the field theory of the free neutral scalar
field in the future light cone, including a diagonalization of
the density operator. This will put us in the position to
calculate the thermal expectation value of the stress-energy

tensor in Sec. V both in local thermodynamic equilibrium
and out of equilibrium. Finally, we will discuss the entropy
current and entropy production in Sec. VI, before conclud-
ing this paper in Sec. VIIL.

In this work, we use natural units 7 =c = kg = 1.
Operators in Hilbert space are denoted with a wide upper

hat, e.g., 5 while vectors of unit length have a regular hat,
that is 71#. Repeated indices are assumed to be contracted.
We adopt the “mostly minus” convention, so the
Minkowski metric is g,, = diag(1,—1,—1,—1). For the

Levi-Civita symbol we use the convention €% = 1.

II. LOCAL THERMODYNAMIC EQUILIBRIUM,
DENSITY OPERATOR, AND SYMMETRIES

In quantum-statistical mechanics, the local-equilibrium
density operator (LEDO) p;g, Eq. (2), is obtained by
maximizing the entropy S = —Tr(pglogp ) under the
constraints of fixed energy-momentum and, possibly,
charge densities on a given three-dimensional spacelike
hypersurface . The hypersurface can be either specified
a priori or can be found in a self-consistent procedure by
using the thermodynamic fields themselves [1].

The energy-momentum densities on a hypersurface
X are obtained by contracting the stress-energy tensor
with its normal unit vector n, so that the constraints
read:

nﬂTr(ﬁLETﬂy)ren = nﬂTﬂy7 (4)

and likewise for the conserved currents. The densities on
the right-hand side of Eq. (4) are meant to be the actual
ones, no matter how they are known or defined, and they
are supposedly finite. It is crucial to specify that
the expectation values on the left-hand side must be
suitably renormalized because, in general, the expectation

value of the operator T with a density operator such
as in Eq. (2) is divergent. For instance, in free field
theory, the renormalization procedure is most readily
established by subtracting the vacuum expectation value,
that is,

TH(PT") ey = Te(GT™) = (O[T[0).  (5)
which is tantamount to normal-ordering of the creation
and annihilation operators because the currents are quad-
ratic in the fields. We will delve into the question of
vacuum subtraction in Sec. III A.

With the constraints (4), the function to be maximized
with respect to prg is

—n@m@m+/dmw%ﬁmfwwb

2(7)

- C(tr(ﬁLE/jﬂ)ren - jﬂ)}’ (6)
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where the thermodynamic fields f and { are Lagrange
multipliers introduced to enforce the constraints (4). The
solution is Eq. (2) and it should be pointed out that it can be
kept in that simple form without subtraction of the vacuum
expectation value because the latter is not an operator and
would appear in the partition function Z as well (in order to
make Trp; g = 1), hence canceling out in the ratio. With the
energy-momentum densities given by the right-hand side of
Eq. (4), the thermodynamic fields f and ¢ are determined
by solving them with p; g given by Eq. (2); there are five
equations with five unknowns (4 and ), which in general
can be solved.

Unless fis a Killing field and { constant, which character-
izes a state of global thermodynamic equilibrium, the
operator (2) is not independent of the hypersurface, hence
it cannot be the actual density operator in the Heisenberg
representation. In fact, the true density operator is, for a
system which supposedly achieves local thermodynamic
equilibrium at some time 7z, the so-called nonequilibrium
density operator (NEDO), which is just Eq. (2) at time 7y:

1 I
p=gow |- [ awm@n-gn) 0

1

)

(9)p U(g)™!

This can be recast by using Gauss’s theorem as [19]

1
P =—exp {—/ dz (T”” ”4‘)]
Z 2(z0)

1 . A
=—exp|— [ d=,(T"B, - "
7 p[ /X(T) (T B, = ')

+ / dQ(T"V, B, —}”vﬂg)} . (8)
Q

In the exponent on the right-hand side, the first term is just
the operator of local equilibrium at time 7, while the second
term contains dissipative corrections [19].

Suppose now that the actual density operator, the NEDO,
has some symmetry, meaning that it commutes with some
unitary representation U (9) in Hilbert space of a group or a
subgroup G of transformations, to be specific of the proper

orthochronous Poincaré group 10(1, 3)1 We have

—?WPA#EU(@WU()%U am@wmwwﬂ

= 5o |- [ DU DRI o)A ) - DG T ()|

Let us now set y = g(x) and we obtain, remembering dX,(x) =

U(gp U(g)" =1

Thus, if the hypersurface is invariant under the trans-
formation ¢ and if

D(g")ep, (g7 () = B,(v).  Llg7' () =<¢0).  (9)

then the operator p is invariant under the transformation
U(g)p U(g)~". Equations (9) specify the symmetry con-
ditions on the transformations of the thermodynamic fields
B and {. An invariance of p has straightforward conse-
quences for the expectation values of operators. For
instance, for the stress-energy tensor,

T (x) = Tr[pT" (x)] = Tr[p U(g)~' T (x)U(g)]
= D(9)sD(g)sTr[pT" (g7 (x))]
= D(9),D(9)5T* (97" (x)). (10)

D(g);dZ,(y),

= exp [— / . dZ, ()T ()D(g™ B (g7 () —C(g"(y))?’(y))}

|
If we consider a one-parameter subgroup of transforma-
tions g, [e.g., a rotation, g, = exp(—i¢J), around some
axis], Egs. (9) and (10) have the consequence that the Lie
derivative along the vector field X (x) = dg,(x)/d¢ of the
field under consideration vanishes, that is,

Ly(T)™ = 0. (11)

An important question concerns the persistence of the
symmetry of the local thermodynamic equilibrium oper-
ator, that is whether the implication

= ﬁ(Q)ﬁLE(‘f) ﬁ(Q)_l

is true for any 7. Indeed, it can be shown that if the subgroup
G transforms X(zp) into itself and if the fields § and { are
also symmetric under G, namely they fulfill Eqs. (9) or

= f]( )2 ﬁ(g)_l = pre(7)
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(11), this is the case. Indeed, by definition, pyg(7)
is the solution of maximizing a function which is invariant
under any unitary transformation, the entropy, with the
constraint (4). If a particular p g fulfills Eq. (4), so will

U(9)pLe(r)U(g)
either U(g)pre(z)U(g)™" is a different solution of the
constrained maximization problem, or it coincides with
pre(7). In both cases, it is possible to generate one
symmetric solution under the subgroup G by using a

particular solution ﬁg and summing over all g’s:

PLe(T Z U(g

JEG

-1 as it can be readily checked. Therefore,

LEU(Q

It is then obvious that the sufficient condition for pyg(7),
given by Eq. (2), to be symmetric under G is that the fields
p and ¢ fulfill Eqs. (9) at time z. This is a crucial point for
the purpose of this work.

III. RELATIVISTIC QUANTUM FLUID WITH
LONGITUDINAL BOOST INVARIANCE
Suppose that the density operator is given by Eq. (7) with
¥(zy) being the hyperboloid 7=V —z>=1, in
Minkowski space-time and with

1

— = H

= T) 70 (1,0,0,z2) = ut, (12)
where T (7y) and {(zj) are constant on the hypersurface.
This vector field is timelike on the hypersurface X(z),
hence thermodynamically meaningful.

The field # in Eq. (12) and the field ¢ fulfill Eq. (9) for
any longitudinal boost with hyperbolic angle £ along the z
axis, L, (), and manifestly for translations and rotations in
the xy plane. Besides, the hypersurface X(z;) is invariant
under the same transformations. Therefore, the density
operator has the symmetry group ISO(2) ® SO(1, 1), that
is the Euclidean group in the transverse plane times Lorentz
transformations in the longitudinal direction. Furthermore,
the density operator is also invariant under a space-
reflection transformation turning x, y, z into —x, —y, —z.

This symmetry group dictates the possible forms of
vector and tensor fields, which are most easily found by
using Milne coordinates, (z,x,y,#), instead of the usual
Cartesian ones, (7,x,y,2):

t = rcoshy, z = tsinh7y,
R I+z
T = -2z, zilog P
-z

such that the coordinate basis vectors are

o 1

—=—(1,0,0,z) = (cosh#,0,0,sinhy) = u,
or

0 ~
e z(sinh#, 0,0, coshn) = (z,0,0,1) = 7,

n

o - 0 -~

.= L o )

Ox dy J

and the metric tensor is

ds? = dr? — dx? — dy? — dz? = d7® — dx? — dy? — 72dn>.
The vector fields X (x) associated with the symmetry group
along which the Lie derivatives vanish can be readily

found:

dT,(a)x -3 dTy(a)y _»
da 7 da 7
dR(f:;’)x: (0,—y,x,0) — I’@, dLji(;) ( 0,0 l) _T;’],
(13)

where T, are translations in the coordinate directions of the
xy plane, r = /x> + ¥, R(g) is a rotation with angle ¢ in
the same plane, and L3(&) is a longitudinal boost with
hyperbolic angle &. Note that three vector fields are just the
Milne-coordinate basis vectors, which, by construction,
have vanishing Lie derivatives among each other, that is
vanishing Lie commutators.

As has been mentioned, the condition of vanishing Lie
derivatives along the vector fields (13) puts strong limi-
tations on the form of the fields in general. For instance, a
vector field V(x) can be decomposed onto the coordinate
basis vectors:

V(x) = A(e)u + B(z)i + C(z)] + D(x)7h.

where the coefficients depend on the variable 7 only as a
consequence of Ly (V) = 0, where X is either 7, or j, or 7.
Also, by implementing £, (V) = 0 one obtains that both B
and C are in fact zero. Furthermore, by reflection invari-
ance, the component proportional to # must be vanishing
because a reflection turns 7 into —# and the vector field has
just one component:

V(x) = A(7)u. (14)
Similarly, the form a symmetric tensor field like the
stress-energy tensor 7*” can be obtained by iterated

projections onto vectors and orthogonal components.
The result is

T = E(0)uu” + Pr() ("1 + J#7°) + Pulo)iir.  (15)
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The form (15) is different from the usual perfect fluid form,
for which Pt = P, .. The difference between transverse and
longitudinal pressure is due to the lack of full rotational
symmetry.

In order to determine the three scalar functions in
Eq. (15), we have to calculate the expectation values of
operators with the density operator (7). The unit four-vector
orthogonal to the hyperboloid with fixed 7 is u itself, so the
operator (7) becomes

p= e |- ﬁ(%)] , (16)

Z

with
T(z) :/ dZuﬂuyT”” = ro/dxdydnuﬂuyf"””,
Z(7o)

where we have used the measure in Milne coordinates. It

should be stressed that the operator ﬁ(ro) is not conserved
because the divergence of the integrand is not zero:

aﬂ(u,,YA"””) = f"‘”’aﬂu,, #0,

so it depends on 7. We can also write down a general form
of the local equilibrium operator p; ¢ (7) at any Milne time 7
by taking the hyperboloid = = const. as local-equilibrium
hypersurface, which is invariant under the same trans-
formations as X(z;), according to the discussion in Sec. 1L
Since the field #(z) must fulfill Egs. (9) and (11), it can only
be of the form (14):

1 1
——(cosh#,0,0,sinhz), (17)

=10 =10

thus the constraint (4) becomes, by using Eq. (15),

~  Puv _ Ho n
nTr(pLeT™ )ren =, Tig = u, Tig

= &E(t) gt = n,TH = E()u”.

ren

This vector equation comes down to one scalar equation
E(7) g = E(z) with T(z) as unknown to be determined
once the actual &£(z) is determined by using the actual
density operator (7). The local thermodynamic equilibrium
operator will be of the same form as Eq. (16), that is,

Pusls) = yewp | - ?8] , (18)

with TI(z) # (zp).

A. Vacuum effects

A very interesting feature of a relativistic quantum fluid
with the four-temperature field (12) is that the spectrum of

ﬁ(ro), and particularly the lowest-lying eigenvector, the I1
vacuum, may depend on 7, as it is clear from Ref. [13]. This
7-dependent vacuum |0,) is in general also different
from the vacuum of a quantum field theory—even for free
fields—in flat space-time obtained by quantizing in Cartesian
coordinates, the so-called Minkowski vacuum |0,,). This is
clearly at variance with familiar equilibrium quantum thermo-
dynamics, where the Hamiltonian operator achieves its
minimal eigenvalue in the Minkowski vacuum. The distinc-
tion between vacua is very important as far as the renorm-
alization of several quantities is concerned, including, e.g., the
stress-energy tensor. In a free field theory, the renormalization

of the expectation value of an operator O involves the
subtraction of its vacuum expectation value. If more vacua
are present, there is an ambiguity as we could define, as usual,

<6>ren = TI'(TO\ a) - <0M|a|OM>’ (19)
[see Eq. (5)] or, in our case,
(O)gen = Tr(p 0) — (0,]00,). (20)

Note that the IT vacuum can be subtracted by taking the limit
T(z) — 0 of the unrenormalized expression since

.~ . 1 ~
lim pui(e) = tim Zexpl=T(e)/7(2)] =[0.) (0. =Py,

For this reason, in general the vacuum |0,) will have the same
symmetries as the original density operator, but it will be less
symmetric than the supposedly Poincaré-invariant
Minkowski vacuum [0,;)."

It should be pointed out that the vacuum |0,) is 7
dependent, hence a subtraction like in Eq. (20) implies
that the expectation value can get an undesired time
dependence. For instance, if we define the renormalized
stress-energy tensor as

T = Te(pT™) - (0,1710,) = Tr[(p — Py )T").
then

9,T" = 9, Tt[(p — Py, ) T"]
= Tr[(p — Py )9, T"] + Tr[-(0,Py ) T"]

Py ~
= —Tr [uﬂ (96 0 TW} # 0,

T

where we used 8”7"”” = 0 and the time independence of the
density operator. Therefore, the expectation value T+

"This does not mean that the vacuum |0,) is degenerate, but
that Poincaré transformations will give rise to nonvanishing
components of excited states.

056003-5



RINDORI, TINTI, BECATTINI, and RISCHKE

PHYS. REV. D 105, 056003 (2022)

would no longer fulfill a conservation equation even though

the operator 7" does.

Therefore, in order to have a properly finite, conserved
stress-energy tensor for a relativistic quantum fluid, the
vacuum must be necessarily fixed, just like the density
operator. Of course the Minkowski vacuum |0,,) meets this
requirement and is seemingly the most obvious choice.
However, we will see in Sec. V that the subtraction of the

vacuum expectation value of 7" of a free field with respect
to |0,) does not give rise to a finite value, for the particular
symmetry we are dealing with, and an alternative definition
is needed.

IV. FREE SCALAR FIELD IN MILNE
COORDINATES

As has been mentioned in the Introduction, a closed
analytic form of the stress-energy tensor with the four-
temperature field (12) exists for the case of free fields,
providing the opportunity to determine exact quantum
corrections to the classical expressions in the nonequili-
brium case. The system which is described by the operator
(7) and a free scalar field is that of a fluid where
interactions effectively cease at the hypersurface X(z)
with temperature T(z) and a four-velocity u = T, with
particles freely streaming thereafter. We thus expect to
recover, in the classical limit, the classical Kkinetic-
theory solutions of the free-streaming Boltzmann equation
starting from the local thermodynamic equilibrium
expressions with proper temperature 7(zy) and flow
velocity u(zg).

The calculation of the stress-energy tensor for the
massive free scalar field (x) requires the solution of
the Klein-Gordon equation in Milne coordinates:

%81(18,) -2 -0 - %85 +m?|y(r,x1,n) = 0.
T

This is a well-known problem in the literature [20,21],
which has even raised some discussion. It has been
convincingly demonstrated [21] that, within the future
light cone, there is a complete set of solutions of the
Klein-Gordon equation in Milne coordinates, which allow
an expansion in terms of the familiar plane waves and
which do not mix positive and negative frequencies. These
mode functions can be obtained starting from the usual
expansion of the scalar field [13] in plane waves. We will
recapitulate the salient points of the derivation presented in
Ref. [13]. The obtained full expansion of the field in Milne
coordinates reads

d>prdu . .
w(t,X7,n) = h(p, 7)e!®Prxr+um)
l//( T ’7) / 4ﬂ:\/§ [ (p ) P

+ " (p, ,)e—i<pT~xT+w>gm, (21)

where p = (pr,u) to distinguish it from the Cartesian

vector p = (pr, p.). Here, Zg and Zp are creation and
annihilation operators satisfying the usual algebra:

~ o~ o~

(bp. by =8 (r—P)8(u—4),  [bp. by =0=1[bj, b} .
(22)

The relation between the operators E; and the familiar
a'(p) of the plane-wave expansion reads

a'(p) = (23)

1 +oo o~
- due™"p!
v/ 2xmy coshy /_oo P

where y is the particle rapidity in longitudinal direction,
which can be easily inverted to obtain p,. Since there is no
mixing between creation and annihilation operators, the
vacuum of the by, operators is the same Minkowski vacuum
|04,) as for the operators a(p), which is a consequence of
the fact that the functions h(p,7) can be expressed as a
linear combination of plane waves with just positive
frequency [22]. In Eq. (21) u is the eigenvalue of the boost

operator K 2> SO that
U(Ls(€)bpU(Ly(8))" = eK-bpe®F: = ey,

Le., Zg creates a state with eigenvalue . The r-dependent
functions in Eq. (21) are

h(p,7) = —ie¥H}) (m17),  h*(p.7) = ie”¥H,)) (m7),

(24)
where the Hankel functions are [23]
Hl(z)(mTT) _ _.ie—%ﬂ /+oo dge—imTrcoshHJriﬂH’
# in oo
H(1> _ 1 i teo imyt cosh O—iul
i (my7) = Eez d@e!"r , (25)

with mp = \/p> + m? being the transverse mass. The
integration variable 0 in Eq. (25) is related to the Milne
coordinates and rapidity by [13]

0=y—-n. (26)

The functions (25) solve the differential equations:

1 5 u?
~0,(0,) + it + 25 h(p. ) = 0,

which are indeed Bessel’s differential equations. It is also
useful to define
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2
w? = mi + = (27)

Let us now work out the density operator, particularly the
operator I1(7) in Eq. (18). In a nonequilibrium situation it is
known that the density operator depends on the particular
stress-energy tensor operator which is employed; however,
for the free scalar field we will be using the canonical
tensor:

T = L @90+ ) - L.
£ = 3 (00,0, — m*7?)
where £ is the Lagrangian density. Hence,
T, =3 |05 +(0.5)
+ (0,5)? +%(a,7¢>2 2|, (28)

By using the above equation along with Eq. (21) and taking
advantage of the invariance by reflection p — —p of the
functions A(p, ), one can obtain the following expression

for TI(z):
M(r) = r/dxdydn?””uﬂu,,

@~ i e
= / & prdu K (boby + bpby)
+ Abpb_p + A*bbL,]. (29)

where the positive real function K(p,r) and the complex
function A(p,7) are defined as

K(p.7) = 5 (10:h(p.2) + @?lh(p.7) ). (30)

T

Alp.7) = 1 —A{[0:h(p. ) + 0?h2(p. 7)) (31)

Note that, with @ and & being invariant under a reflection
p — —p, so are K and A, and

K*(p.7) = [A(p.7)PP = 1. (32)
|

as K? — |AJ? is proportional to the Wronskian of the Hankel
functions

K*(p.7) = |A(p.7)]?

:-<”TT¢>2ovuﬁ?<mTa,HSNHWTNV’

which is known to be a very simple function [23]:

WHY (x), HY (1)) = HY ()H (x) = HY (0)HP (x)
4
= —. 33
- (33)

The above relation is not accidental but it is related to the
invariance of the Klein-Gordon scalar product of the mode
functions [22]. Equation (32) allows one to write

K(p.7) = cosh20(p, 1),
A(p,7) = sinh20(p, 7) explix(p, 7)], (34)

which is very important to highlight the vacuum effects, as
it will become clear later. N

Due to the terms proportional to A and A*, II(7) in
Eq. (29) is not diagonal in the creation and annihilation
operators. If it were, we could easily calculate the expect-
ation values of products of creation and annihilation
operators, hence of operators quadratic in the field, using
standard methods. We thus look for a suitable Bogolyubov

~

transformation that diagonalizes I1(z),

(1) = A(p.7)bj — B(p.7)b_p,
&o(7) = A*(p.7)bp — B*(p.7)b . (35)

where A and B are complex functions to be determined. We
require Tf\; and &, to fulfill the usual algebra:

[60(). &y ()] = 0 = [E(2). &}, ()], (36)

so that, by enforcing the commutation relations (22), we
find respectively

(JA(p.7)|* = [B(p.7)|*)8*(pr — P1)S(u — 1) = 8*(pr — PF)0(u — '),
[A*(—p.7)B*(p.7) — A*(p,7)B*(—p.7)]6*(Pr + P1)S(u + ') = 0,
[A(p. 7)B(—=p.7) — A(=p. 7)B(P. 7)]6*(Pr + P7)8( + 4') = 0.
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The above equation is fulfilled if

B(p,z) = B(-p,7),
IB(p.7)]* =1, (37)

A(p,7) = A(-p, 7),
|A(p.7)* —

SO we can set

A(p,7) = coshf(p, 7)eaP7)
B(p. ) = sinh §(p, 7)esP7), (38)

The conditions (37) make it easier to invert Eq. (35):
by = A(p, 7)& (1) + B'(P, 1)L 7).
by = A (p, 7)E (1) + B(p, 1)ép(7). (39)

Plugging Eq. (39) into Eq. (29) we obtain

~ 1)
fitr) = [ @prdu{K(AP + |8P)
+ AAB* + N A*B|(E,E + E1E,)
+ (2KAB + AA> + A" BY)EE
+ (2KA*B* + A*A*2 + AB*2)EEL},  (40)
where we used the invariance of the integral under

reflections p — —p. In order to make H( ) diagonal, the
second line of Eq. (40) must vanish:

2KAB + AA? + A*B%2 =0

(the other equation is just the complex conjugate). This can
be rewritten by using Eqgs. (34) and (38):

cosh 20 sinh 20eia+x8)  sinh 2@cosh?@e(r+21a)
+ sinh 2@sinh?ge’%5~%) = 0,

the solution of which is

XB—XA =X 0 =-0.

We can then set y4, =0 and find A, B fulfilling the
Bogolyubov relations (35)

A = cosh®, B = —sinh @e¥, (41)
from which follows, by using Eq. (34)

K(|AP? + |B]*) + AAB* + A*A*B
= cosh?20 — 2Re(sinh 2@e™ cosh © sinh @e ™) = 1.

With these solutions, Eq. (39) becomes

by = cosh©(p, 7)&,(z) — sinh O(p, 7)e & (7),
b} = cosh®(p, 7)&(z) — sinh O(p, 7)eE_y(7), (42)

and the operator (40):
fi(c) = /fm@ E(0E(0) + B0 ()
— [ @prauo (B0 + 3). @)

where in the last equality we have used the commutation
relations (36).

A. Discusssion

The nontrivial Bogoliubov transformation (42) between
different sets of creation and annihilation operators is
reminiscent of the Unruh effect [24]. However, we are facing
essentially different physics here; as it has been pointed out,
the relation (23) between plane-wave creation operators and
the creation operators appearing in the field expansion in
curvilinear coordinates does not mix creation and annihila-
tion operators. In other words, unlike in the Unruh effect, the
observers associated with Milne coordinates (defined by
n = X = const) (moving with zero acceleration as implied
by the velocity field u in (17), count the same particles as the
conventionally fixed inertial observer.

In fact, the Bogolyubov transformation (42) stems from
the somewhat unexpected form of the local thermodynamic
equilibrium operator IT in Eq. (29) involving quadratic
combinations of two annihilation and two creation oper-
ators, unlike the Hamiltonian in global-equilibrium thermal
field theory. We thus have a concrete situation where the

vacuum |0,), which is the lowest-lying eigenvector of I1(z)
annihilated by all £,(7)’s,

&(@)0;) =

is different from the Minkowski vacuum |0,,), which is

annihilated by the Ep, as envisioned in Sec. IIT A. The full
expression of the vacuum |0,) can be obtained from the
coefficients in Eq. (42) with known methods [22] and reads

1_[|<:osh® )|/
1
X exp [—itanh O(p, 7)e#PIpIpT 110)).  (44)

With I1 diagonal in Eq. (43), we can readily obtain the
expectation values of products of creation and annihilation
operators in local thermodynamic equilibrium. The form
(43) is essentially the same as the equilibrium Hamiltonian
operator of the free field with the replacements 4 — p, and
@ — €. We thus have
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()& (0))1g = np(P.7)6*(Pr — P18k — 1),
(Ep(0)EL (1)) e = [np(p.7) + 1]8*(Pr — P1)S(1 — ),
(Ep(1)é (1))1e = 0 = (E5(1)E] (0)). (45)

where (-); i stands for Tr(pyg-) and ng is the Bose-Einstein
distribution function:

1

S 46
ew(’l’)/T(‘L’) -1 ( )

ng(p.7) =

with w(z) given by Eq. (27).
It is important to emphasize that Eq. (46) is by no means
a density of particles as usually in Minkowski space-time.
Equatlon (46) accounts for the mean number of excitations
of the (fp( 7) operator, which is nor the mean number of
excitations of the Minkowski vacuum as expressed by the

a(p)’sor Zp’s. Indeed, the expectation values of the various

combinations can be found by means of Eq. (42) and
Eq. (45):

—

SN 1 .
bpby )1 E= —§s1nh(2®)e Z(2ng +1)8* (pr—pr)s(u—u'),

A~ 1

(bbb )1 == Sinh (20)e* (25 +1)5% (pr = Pr)3(u— ).
(bpby )15 = [np cosh(20) + cosh?@]62 (pr —pi)3(u — i),
(bpbe )15 = [np cosh(26) +sinh?©]6% (pr — pr)3(u — ).

(47)
!

As is clear from Eq. (47), field vacuum effects are encoded
in a nonvanishing value of the angle ®(p, 7), which is both
a function of the modes and of the Milne time 7 and whose
value can be determined through the relations (34). We are
now in a position to calculate the expectation values of all
operators which are quadratic in the field.

V. THE STRESS-ENERGY TENSOR AND ITS
RENORMALIZATION

We now come to the main point of this work, namely the
determination of the stress-energy tensor. We start by
calculating it in local thermodynamic equilibrium.

A. Local thermodynamic equilibrium

As the symmetries of p; g are the same as p (see the
discussion in Sec. II) the structure must be the same as in
Eq. (15):

Tf(/A’LE?W) = <TW>LE =&(1) g u”
+Pr(7)E Gﬂ? +;”;D) +PL(7) e’ (48)

Hence, by using Eq. (28) with the expansion (21) we obtain

~u d? prdud*pl.dy’ , , , 1 ,
€0)e = (T2 usn, = [ LIV ({00 0031 = (popk popt = o, i)

4(4r)

x eil(Pr+p) X1+ (u+4' )1 ]@pzp,m&

+ < [0:h(p,7)

J[0:h" (P 7)) +

+ < [0.h*(p, 7)][0.h(P,7)] +

(
(

+

f—"\r—’Hf—/H

Plugging the relations (47) into Eq. (49) we obtain

E(r)g= m

and, by using Egs. (30), (31), and (34), we get

E(T)E =

1673

1 ~
oy +PyP,y +T_2/'W/ + m2>h(p, ) (p', r)}e’ (Pr—pYy) X1+ (u—p '7]<b b ’>LE

1 o
Pt a2 (P (P 7) b b e G B )

1 S
[0.h*(p.7)][0.h* (P, 7)] — (pxp; PPyt = m2> h*(p, o)l (p', f)} ~ilertpr) Xt et il (b, >LE>'

(49)

1 .
/dszd/A{—E[(G,h)z +@?h?(2ng +1)sinh(20)e~% +c.c. + (|0.h|> + @*|h|*) 2ng + 1)cosh(2®)},

/dsz du w[(2ng + 1)cosh?(20) — sinh?(20)(2ng + 1)] = (2:)31/d2pTdya)<nB + %) (50)
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The longitudinal and transverse pressures can be worked
out in a similar fashion: the Wronskian of the Hankel
function is again recovered and the expressions greatly
simplify. One obtains

P _ 1 d2 d ‘pT|2 1
T(T)LE - (271')3‘[ prdy 2 np + E ’
1 u? 1
PL(7)e = m/ dszd:“? ("B + E)' (51)

Equations (50) and (51) can be written in a compact fashion
by introducing the functions

K,(p.7) = T 10:h(p.2) + 1(p.7) h(p. 7)), (52)

T
A(p.7) = 1 {[0:h(p. )] + 7 (P 7)[h(p. )P}, (53)
where y is defined as
@ (p.7) = mi +%.  for £(v).g,
y(p.7) =< —mi =-5—m’  for Pr(z)p.  (54)

2 2
—mT‘f‘l:—z,

Thanks to the Wronskian of the Hankel functions, they
satisfy the relation

»_ r(p.7)
@*(p.7)’

K;(p.7) = |A,(p.7)]|

With this in mind, and setting I', = {€, Pr.P_}, we have
for the thermodynamic function of the stress-energy tensor

o = [ Gt o(p oIk, (. 0K (p.)

- Re(,(p. O (. )] (my(por) + ).

where the combination in square brackets reads

o*(p.7) +7(p.7)

Ky (p.2)K(p.7) —Re(Ay(P.0)A"(P.7)) == 55 )

hence

B d*prdu w?(p.7)+7(p.7)
W)LE‘/ (27)3ze(p.7) 2

[nB(p,T) +ﬂ .
(55)

The above integrals can be written in a familiar form by
changing the integration variable to p, = u/z. This implies

2
w(p,7)= |PT|2+;+’”2 = \/P§+P§+P§+m2 =e,

which is just the on-shell energy, and

du
d’pr —= dp,dp,dp..

In turn, the distribution ng(p,7) becomes the energy-
dependent  Bose-Einstein ~ phase-space  distribution
ng(e, T(z)). Hence, the first term of the energy density
(50) as well as the transverse and longitudinal pressures
(51) can be written as the familiar momentum integrals of
the relativistic uncharged Bose gas. Altogether, the un-
renormalized stress-energy tensor in local equilibrium
reads:

1

A d3p B 1
Trlp " (x)] = TP”P m"‘i, (56)

where f is the four-temperature in Eq. (12). Hence, the
thermodynamic functions I, are just the familiar functions
of T(z) as for the ideal relativistic gas. In particular, the
transverse and the longitudinal pressures are in fact
identical, namely

Pr(t)ig = PL(z)ig = P(7)1k- (57)

B. Actual stress-energy tensor

The actual (unrenormalized) expectation value of the
stress-energy tensor can be calculated by using the density
operator (16), that is,

Tr[pT" (x)] = %Tr{exp[—ﬁ(fo)/ T (z0)] 7" (x)}.

Symmetries dictate that its form is given by Eq. (15), so we
need to determine the three functions I,. It is readily found
that the same expression as in Eq. (49) is obtained, with the
simple replacement of the local-equilibrium values of the
quadratic combinations of Ep and Zg with their actual
expectation values, for instance,

(Bibo) = - Tefexpl=Ti(z0)/T (o) Bibp).

The calculation of the above expression is most easily done
by using the formulas (42) at time 7, i.e., expressing the

constant b,’s as functions of the operators diagonalizing

T(z,) instead of TI(z). We thus get the same formulas as
Eq. (47), with 7 replaced by 7:
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~ ~ 1, .
(bpbp) = —Esmh[2®(ro)]e"l<70) 2n5(70) + 1] (Pr — P7)S(u — '),

(bpbly) = {ng(zy) cosh[20(zy)] + cosh?®(zy) }6>(pr — Pr)d(u — ).

—~
)

o
S

Q

~
I

We note in passing that, as expected, the expectation value
of excitations of the Minkowski vacuum, described by

@;Zp) for each mode, is constant in time, the density
operator being fixed and the operators Bp being time

independent by construction. The mean number of particles
with momentum p can be obtained by using Eq. (23):

(@ (p)a : 1

a(p')) =
(7)) 2mmy \/coshy coshy’

Foo in(v—yv") /T -~
X/ due™ 0 by, by ).

(5]

where y is the rapidity.

Now, by taking advantage of the right-hand side of
Eq. (49), and by using Eq. (58), as well as Egs. (30), (31),
and (34), it can be shown that

£(e) = 2 Tr{expl-Ti(zo) /T2 | T Y,
= e | o K@K ()

- RN Gl (o) 3] (59

The pressures can be derived likewise and we finally have

Iy() = / pr du () (K, (2)K (xo)

(27)’t
1

- R, (N ()]} ) +3] (60

Of course, at the time 7 =1, we recover the local
thermodynamic equilibrium expression (55), as required
by construction. However, at later times 7 > 7, the stress-
energy tensor differs from the local equilibrium form.
Indeed, since we are dealing with a free field, one expects
to find the same expression as for the free-streaming
solution of the Boltzmann equation in Milne coordinates,
see Appendix A. However, there are quantum corrections
due to the vacuum subtraction.

{ng(7q) cosh[20(zy)] + sinh?O(zy) }8*(pr — Pr)S(k — i'). (58)

C. Renormalization and comparison
with classical limits

The expressions found include divergent terms, both in
the stress-energy tensor in local equilibrium (55) and the
actual one (60). As we have seen in Sec. III A, in order to
fulfill the continuity equation, the stress-energy tensor
should be renormalized by subtracting a vacuum expect-
ation value (VEV) with a constant vacuum: either with
respect to the Minkowskian vacuum |0,,), like in Eq. (19),
or with respect to the vacuum |0, ) of the operator M(z),
like in Eq. (20).

The Minkowski VEV of the stress-energy tensor is
calculated in Appendix B. For the stress-energy tensor it
is found that

~uw 1 K(t
Em = (0| T w1, |0y) = W/dzm du w(7) ; ),

and the renormalized energy density is then

£ = oy [ Pordmols) ({K(T)K(TO)
- ReA(IA“ (s} (s + 5] = 3K (7).

The main drawback of this expression is that it is still
divergent. This is most easily seen at 7 = 7, where

E(70)ren = (27-[1)37:0/dsz At a>(z0)n (20
1
_m/@mduw(ro)[[((ro) —1].  (61)

While the first term is finite, the second is not due to the
behavior of the K function for large values of its effective
argument, which is myz, at fixed pu [see Egs. (30) and
(24)]. The asymptotic behavior for large transverse mass
mr of the K function is derived in Appendix C and one has,
at leading order,

K(79) — 1 = cosh20(z) — 1 ~ 20%(z)) G (62)
T

which makes the rightmost integral in Eq. (61) divergent.
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In conclusion, in order to have a finite stress-energy
tensor, we are left with one option: to subtract the VEV’s
with respect to |0, ), which can be readily done by taking
the limit 7'(z5) — 0 in Eq. (60) and subtracting what is left,
taking into account that limy_ynz = 0. We thus have

T (1) = ﬁ / Ppr du (1)K, (2)K (zo)

~ Re[A, (0)A" (x0)]} (o). (63)
|

— / d’prdu w(7)ng(zy) +

[um—

— / d*pr du o(t)ng(7o) +

(2rn)*t

It can be shown that the first term in Eq. (64) is the classical
free-streaming solution in Milne coordinates (see Appen-
dix A), while the second term is a pure quantum-field
correction due to the difference between vacua, since it
vanishes only if ®(zy) = 0. Somewhat surprisingly, the
quantum correction to energy density does not vanish at
late times, and it can even be comparable with the classical
term if the main argument of ©(z), that is m;7, is O(1),
that is for an early decoupling of the system.

Similar expressions can be obtained for the pressures.
For large times, the leading term of the A, (7) function has
an oscillating behavior ~exp(—2im;7) so the integrals in
pr or my involving A, (7) are expected to vanish as 7 — oo
(see Appendix C). Therefore, only the first term of Eq. (63)
is left and one has

P, (@) / Pprdue(2)K, (2)K (20)np (zo). (65)

1500 (271')37

Also, at late times [see Appendix C, Eq. (C3)],

m? +7
ol (1) = "L

9’

so Eq. (65) becomes

1
Py( )renr:oo (2”)37:/ 2 Td ) K(TO)nB(TO)
2
+vy
— 2 T
- (27[)31/(:1 T 2mT nB(TO)
2 2 mity .
+ (277:)3 Td 2m Slnh @(To)nB(To),

27)3c

which incorporates the relation between the energy density
and the pressures.

It is interesting to study the behavior of the functions (63)
at late times 7, which means for large values of mz (see
Appendix C). In this limit, we have ©(z) — 0, hence
K(r) - 1 and A(r) — 0, implying that the Minkowskian
vacuum is recovered asymptotically. This is also clear from
Eq. (44), which shows that |0,) — |0,,). For the energy
density, at late times we have

/ pr du () (z0)15(z0)

: / Ppr du o(0)[K (z0) — 1] (20)

2 2 / d’pr dp w(7)sinh?@ (7)) ng (7). (64)

(27)°z

[

with y from Eq. (54). Again, the first term on the right-hand
side is the leading approximation of the classical free-
streaming solution in Milne coordinates for large m;7 and
fixed u, whereas the second term is a pure quantum
correction (see Appendix A).

As has been mentioned, the relative size of the quantum
corrections with respect to the classical free streaming term
can be non-negligible. As it appears from Eqs. (64) and
(66), the relative size of the quantum corrections to the
energy density and pressures is determined by the size of
O(7p). In general, the earlier the decoupling the larger is
sinh? ©® and the weight of the quantum correction. For a
sufficiently large value of the dimensionless variable myzy,
the ©(z;) angle is given by the approximate formula in
Eq. (62):

1

®(T0) = 4mTT()

By using this approximation, it is possible to compute the
relative corrections to the energy density and pressure as a
function of the two independent dimensionless variables
mty and m/T(zy). For mzy = 1.41 the curves for the
energy density and transverse as well as longitudinal
pressures as a function of m/T, are shown in Fig. 2.
One observes that the relative corrections can be as large as
several percent. The importance of these corrections
decreases quickly as mrz, increases, since the quantum
corrections are inversely proportional to m*z3 in this limit.
This means, however, that the small m/T, part of Fig. 2
must be interpreted as the limit of large initial temperatures,
and not the limit of vanishing mass. One cannot use the
approximation (62) in the massless limit, since the integrals
diverge in the neighborhood of p; = 0, irrespective of the
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Ar,r,

m/Ty

FIG. 2. Relative magnitude of the quantum corrections to the
classical free-streaming solutions of energy density, transverse
and longitudinal pressures, according to Egs. (64) and (66), as a
function of m/T, for mzy = 1.41.

value of 7. It is possible, however, to directly compute the
m — 0 limit of Eq. (65) for small values of the remaining
dimensionless parameter 7yzy. The relative magnitude of
the quantum corrections is of the order of ~40% for
Tty ~0.1, and they become the dominant contribution
when T,z decreases. Therefore, their phenomenological
relevance in expanding systems depends on the interplay
between the mass of the particle, the dynamical decoupling
time, and the initial temperature (hence energy density),
which in turn depends on the dynamical preequilibrium
stage [25-27].

VI. ENTROPY CURRENT

The need of subtracting the vacuum [0,,) to obtain a
finite value for the stress-energy tensor for the free field has
some interesting connection to the way the entropy and the
entropy current of a relativistic fluid in local thermo-
dynamic equilibrium are calculated. This problem has been
approached in the framework of the relativistic density
operator in Ref. [28]. We first observe that the entropy of a
relativistic fluid in local equilibrium,

S = —tr(prg logpig).

with p g given by Eq. (49), is independent of the vacuum
subtraction because, as remarked in Sec. II, the density
operator (49) turns out to be independent of any non-
operator term which is subtracted from the stress-energy
tensor operator, as it cancels out in the ratio with the
normalizing Z; g.

However, it was pointed out in Ref. [28] that, provided
that the vacuum is nondegenerate, there is only one good
choice of the vacuum if one has to make log Z; i extensive,
ie.,

logZ g = / dx,¢*,
b
and this is the vacuum (meant as the eigenvector with

minimal eigenvalue) of the operator I1(z), which we have
denoted with |0,). Therefore,” the entropy current reads

s = ¢ + [Tr(pLeT™) — (0 T"(0.)]B,.  (67)
with
P = [m dA{Tr[pLe(A)T*] = (0. T*0,)},

where p;(4) is the operator defined by

_ 1 .
pLE(/{) = ZLE(/I) exp <_/1é dZ”T/l ﬁu)

The renormalized value

Tt = Tr(pueT™) = (0| 7"|0;)

of the stress-energy tensor in local thermodynamic equi-
librium with subtraction of the VEV with respect to |0,) can
be found by taking the limit 7(z) — 0, as we have seen in
Sec. III A. Hence, for the free scalar field, it is readily found
from Eq. (56) that we are left with the classical expression:

d3p
T”D(X)LE = /—P”PD

£ e/}(x)'p -1 ’

It is now easy to show that ¢* = Py gp*, with P, i being the
pressure in Eq. (57), and that the entropy current coincides
with the classical equilibrium expression,

st = (Ep + Pue)p.

where & g and Py are related by the usual equation of
state of a free relativistic gas, without apparent quantum
correction.

We end this section by discussing the entropy-production
rate equation established in Refs. [10,11] (for a derivation
see Ref. [19]), which for { = O reads

Vs = (T = T{p)V,B,. (68)

In the above equation it is usually understood that 7#* and
Ty are the renormalized stress-energy tensor expectation
values, fulfilling the constraint equation (4), and usually
obtained by subtracting the Minkowski VEV of both.

*In this section, for the sake of simplicity, we assume vanishing
chemical potentials, that is { = 0; the extension of these argu-
ments to a nonvanishing chemical potential is straightforward.
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However, in our case, in order to obtain finite values for the
constraint equation (4) and to find an appropriate expres-
sion of the entropy current, we need to subtract different
VEV’s, as we have seen. In particular,

Tﬁi = Tr(ﬁLE/TW) - <01|Tﬂu|01>7
™ = Tr(pT*) - (0,,|T*|0,,).

One may thus wonder whether such a difference in the
VEV subtraction introduces a new quantum term in the
entropy production rate. The answer is again no, pro-
vided that
(i) the renormalized expectation value 7* is finite;
(ii) the renormalized expectation value T fulfills the
continuity equation;
(iii) the renormalized expectation value in local equilib-
rium 77} fulfills the constraint (4).
The proof of Eq. (68) [19] can be shown to hold.

VII. SUMMARY AND CONCLUSIONS

To summarize, we have studied a relativistic quantum
fluid with longitudinal boost invariance, which, for the free
scalar field, is an exactly solvable nonequilibrium problem,
further developing and extending the results of
Refs. [13,14]. By using the nonequilibrium density oper-
ator, we have derived an exact solution for the stress-energy
tensor and the entropy current for the free scalar field
initially in local thermodynamic equilibrium. The most
remarkable feature of the solution is the difference between
the vacuum of the density operator and the familiar vacuum
of the field in Minkowski space-time. We have found that a
finite, renormalized value of the stress-energy tensor can be
achieved only by subtracting the vacuum of the density
operator, and not the vacuum of the field; in practice, there
is only one option. With respect to the known classical free-
streaming solution, we have found quantum corrections
related to the difference between the vacuum of the density
operator and the Minkowski vacuum. It should also be
emphasized that the quantum corrections do not depend on
the system of coordinates used, the density operator being
written in a fully covariant form. These corrections are
numerically relevant for an early decoupling of the field,
that is if mz, Tt are O(1) or smaller, where 7 is the
hyperbolic time; in this case they survive at late times and
affect the relation between energy density and pressure as
compared to the classical free-streaming case. These effects
might be phenomenologically relevant whenever a quan-
tum relativistic system expands and decouples. Their
impact crucially depends on the interplay between the
mass and the time of decoupling as well as the decoupling
temperature.
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APPENDIX A: FREE STREAMING IN MILNE
COORDINATES

The collisionless Boltzmann equation in classical rela-
tivistic kinetic theory reads

p-0f(x.p) =0. (A1)
and its explicit solution in Cartesian coordinates is
t—t
fx.p)=fol x=—=p.p ). (A2)

where fo(x,p) = f(ty, x;p) is the initial condition in a
generic inertial reference frame, and &€ = +/ m? + p? is the
(on-shell) energy.

In longitudinal boost-invariant symmetry, the initial
condition is given at some Milne time 7, rather than a
time 7, in Cartesian coordinates. Nevertheless, there is a
very simple solution in this case, too. Since the distribution
function is a scalar, it must be invariant under the symmetry
transformations at stake, that are longitudinal boosts as well
as rotations and translations in the transverse plane. Hence,
it depends only on the independent scalars that may be
formed with combinations of space-time and momentum
vector which are invariant under the group of transforma-
tions ISO(2) ® SO(1, 1). These scalars are

t=\r=2%, pr=\/pit+py, w=ze—1p®. (A3)

The last variable can be shown to be equivalent to
the covariant component p,, of the four-momentum vector
in Milne coordinates. Indeed, there is a fourth invariant

scalar:
w2
v=te—zp* =1/ m*+ pi + . (A4)
T

but it is redundant because of the on-shell condition (and
positivity) of the energy and because 7 > |z| in the future
light cone. The reflection invariance (see Sec. II) makes f
dependent on the square of w rather than just w. By utilizing
these arguments, Eq. (A1) becomes
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v

~f(z. prow 2) =0, (A5)
701
since the contribution in the partial derivatives with respect
to w cancels out. The free-streaming solution is then very
simple, a constant in z:
= f 0 (p T» W2) .

f(z, PT»WZ) = f(z0, P W)

We are now in a position to calculate the free-streaming
solution for the stress-energy tensor from its classical
kinetic definition:

(27)} /_pﬂ gl

3p 5,2
— w1 dpy
g*uﬂuZ/T —(2ﬂ>3f e Tzf,

3 2
= 7DT - %(l l +]ﬂ]z/)TﬂU = (2;‘[)3 dep%f,

3p 2
_ oo guw 1 d’pw?
PL - nll”’/T — (2x) f e 2/

(A6)

1 d
Pr :W/dZPTWpfo(PT, )

1

PL= Gy

dw
/d pr— 2fo(PT, w?) =

The change of variable introduces an explicit dependence
on the proper time in the integral.

Equations (A8) and (A9) are the classical relativistic
expressions for the energy density and pressures of a free-
streaming gas and coincide with the leading terms obtained
in Sec. V with the substitution w — ¢ and with the initial
distribution equal to the local equilibrium Bose-Einstein

distribution function f, = nj.

APPENDIX B: MINKOWSKI VACUUM
EXPECTATION VALUES

In order to calculate the scalars I',(7),, of the stress-
energy tensor in the Minkowski vacuum, we take advantage
of it being annihilated by all the Zp’s as it is clear from
Eq. (23). Hence, the only product of Zp and E; with
nonvanishing expectation value with respect to |0,) is
szg/, and using the commutation relations (22),

(0] [y
P — ).

<0M|bpb;’|OM> = <OM|b;’bp|0M> +
= 52(PT -

by ]10u)
(B1)

and by changing the integration variables

dp®
w=ze—tp°=dw= dpt = —=—, (A7)
€ v
one obtains
1 dw
&= o ) /d Pr—— sz(pT7
s [ @ordw [ S pu(pr) (a9
and
d’prdw
¢ﬁ?§@?z“p“ W)
1 d d
Y w?). (A9)

V%?mwzﬁhp“

|

We can now replace these VEV’s to obtain I',(7),, in the
stress-energy tensor expression contracted with suitable
vectors. For instance, for the energy density, we can use
Eq. (49) by simply replacing the local equilibrium expect-
ation values with those in the Minkowski vacuum and
obtain

THY d p d.u

£t = OulT u1/0) = [ T2 (0, + 07l

dszd//l K
= —. B2
/ (2rn)*t ) (B2)
Similarly, for the pressures, one finds

dszd//l K

r = . B3

(0= [ Gto (B3)

APPENDIX C: ASYMPTOTICS

It is interesting to study the behavior of the stress-energy
tensor and related quantities for late times z. With
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h(z) = —ie#H\? (m17). (C1)

one can make use of the asymptotic expansion for large
arguments [23]

ie—t(x—%’ —’—”)Z 1 F(D+ 1/2+I’l) .
X —(2ix)"n'l'(v+1/2—n)

(€2)

which is valid for Re(v) > —1/2 and | arg(x)| < z. Making
use of the property zI'(z) = I'(z + 1), substituting x = myt
and v = iy, and plugging this into Eq. (C1) we get

h ~ —7 —zmTT 1
d.h(7) zmﬂ/ﬂmTT [ +;

In particular, retaining the terms up to first order (i.e., next-
to-leading order) in my7 we get

2lmTr

=20 _. i 1 1
h ~ | ——pTimT|] — T — H -
S e [ 2t <’” 2> (’” * 2)]
—2i 14 442
_ i _lmTT<1 Iy + 4u >
TMyT 8mrt
-2i _, 3—4p?
0 h(7) = —imy : e_’mT’<1 —i K )
TMTT 8mrt

Feeding the above expansions into the definitions (52) and
(53), we obtain

m2+}/
K,~—1 "1 C3
" 2mrw (©3)
1 3 — 442
y & e 2imt m% 1—1i a
2mr@ dmrt
1+ 4p?
1 . C4
—H/( o 4mrt ﬂ ©)

The rest is of the order of 1/[mrw(myt)*] for K, and
exp(—2imy7)/[mrw(myt)?] for A,

Equations (C3) and (C4) are very useful to study the
large pr (hence, large mt) behavior as well as the long-time
behavior. For large pr, Eq. (C3) implies that K — 1, hence
to leading order K — 1 is simply zero. However, from
Eq. (C4) and the exact relation (34) one can obtain the

terms up to second order. Indeed, for y = @?, in the large
mr limit,
Aml g2ime (C5)
2mTT ’

| =2i _ 1 (ju+i-—n)®
h ~ —imrpt ,
(z) ﬂmTre Zn: (2imyt)" n!

valid for large myz. Similarly, using the exact relation [23]
0 HP (2) = vHY (2) - H, (o).

along with the expansion (C2), one obtains the expansion
for the proper-time derivative 9, h:

_2iﬂ(w 3—n)2) (i +3-n)N\]
(n—1)! n!
[
hence,
. 1
|A| = sinh20 ~ 20 = gy (Co)
and in the limit of large mt
K-1 h20 —1 (20)° ! (C7)
—1=cos -1~ ~ .
2 8mit?

Similarly, the leading expressions at late time 7 — oo can
be derived. By using the asymptotic expansions (C3) and
(C4) and expanding w(z) and y(z) for large = one obtains

K, Tt
Y= 2m2
T
I mz(3 —4) +7(1 +4°)
A, ~ 2—e 2T\ — mA + dmg ,
(C8)
at first order in 1/z, with 7:
mk,  for &,
y = limy = ¢ —m?, for Pr, (C9)

T—>0

2
—my, for Ppr.

Differently from K, the A, function is highly oscillatory
in the 7 — oo limit. In order to prove that its contribution to
kinematic integrals such as in Egs. (64), (66) vanishes at the
leading order of the asymptotic expansion, it is necessary
remember the limit, valid in the distribution sense

/dxf(x) PN g%éf(x/g) —5(x).  (CI0)
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The real and imaginary part of the phase in (C8) read

cos(2my),  sin(2mya), (C11)

since
[T st () o, (e
/_:dx cos(x?) = /7 = m(#ws[ey]) _500)
(C13)

and one can rewrite both the real and imaginary part of the
phase as a delta family

lim sin(2my7) = 2zmp8(2my), (C14)

T—00

. . T . np
TIHEOCOS(ZWTT) = Tlgg \/;6( \2my)= TlggZ T&(ZmT),
(C15)
In both cases, for massive fields, the Dirac delta argument

my = 0 is outside the physical range and any integration in
pr yields zero.
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