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We study a relativistic fluid with longitudinal boost invariance in a quantum-statistical framework as an
example of a solvable nonequilibrium problem. For the free quantum field, we calculate the exact form of
the expectation values of the stress-energy tensor and the entropy current. For the stress-energy tensor, we
find that a finite value can be obtained only by subtracting the vacuum of the density operator at some fixed
proper time τ0. As a consequence, the stress-energy tensor acquires nontrivial quantum corrections to the
classical free-streaming form.
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I. INTRODUCTION

Spurred by a successful description of experimental data
in high-energy nuclear collisions, relativistic hydrodynam-
ics has recently made major progress, both regarding its
theoretical foundations as well as its phenomenological
applications. Lately, the quantum-statistical foundations of
relativistic hydrodynamics have attracted a great deal of
attention [1–7], in particular to describe quantum phenom-
ena in relativistic fluids such as chirality [8] and polariza-
tion [9]. In a quantum-statistical framework, hydrodynamic
quantities, such as the stress-energy tensor and conserved
currents, are the expectation values of the corresponding
quantum operators with respect to a suitable statistical (or
density) operator bρ:

Tμν ¼ trðbρbTμνÞren; ð1Þ

where the subscript “ren” implies renormalization of the
otherwise divergent expectation value.
In general, the form of the stress-energy tensor and the

currents crucially depends on the density operator. Exact
expressions are known only in a few cases, including the
familiar global thermodynamic equilibrium and, as a recent

development, global thermodynamic equilibrium with
rotation and acceleration. However, no exact form is known
in local thermodynamic equilibrium, which is defined by
[1,2,10,11]

bρLE ¼ 1

Z
exp

�
−
Z
Σ
dΣμðbTμνβν − ζbjμÞ�; ð2Þ

where βðxÞ is a four-temperature field [equal to the four-
velocity uðxÞ divided by the temperature TðxÞ], and ζðxÞ is
a scalar field [equal to the ratio of the chemical potential
μðxÞ associated with the conserved current bj and the
temperature]. The hypersurface Σ is a three-dimensional
spacelike hypersurface, on which the local equilibrium is
defined. The calculation of expectation values of operators
using Eq. (2) can be performed only in the hydrodynamic
limit of slowly varying fields [1]. For the stress-energy
tensor, the leading-order term coincides with the familiar
perfect-fluid expression. Beyond this approximation,
quantum corrections appear, which have been estimated
by means of a perturbative expansion only in the global-
equilibrium case [12].
Recently, Akkelin [13,14] derived an exact solution of a

particular nonequilibrium problem, a free neutral scalar
field with the density operator:

bρ ¼ 1

Z
exp

�
−

1

TðτÞ
Z
ΣðτÞ

dΣμ
bTμνuν

�
; ð3Þ

with ΣðτÞ being a proper-time τ hyperbola in the future
light cone in two dimensions (see Fig. 1) and uðxÞ the four-
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velocity field coinciding with the unit vector perpendicular
to Σ. The density operator (3) is invariant under longi-
tudinal boosts, a symmetry which has been often used to
study general features of relativistic hydrodynamics prob-
lems. Lately, longitudinal boost-invariant solutions have
been studied in the context of spin hydrodynamics [15] and
magnetohydrodynamics [16–18]. This symmetry and the
solution found in Ref. [13] also offers a special opportunity
to explore in detail some essential features of quantum
relativistic hydrodynamics in a nonequilibrium situation
and, in particular, to determine the pure quantum correc-
tions to classical hydrodynamics and kinetic equations,
including those to the stress-energy tensor and to the
entropy current. In other words, this solution provides a
benchmark test of a relativistic quantum fluid.
In this work, we extend the results of Ref. [13] and study

the stress-energy tensor with longitudinal boost-invariant
symmetry. We find that, even for the simplest case of a free
scalar field, there are relevant quantum corrections related
to its renormalization by subtraction of the vacuum expect-
ation value. Indeed, while the traditional vacuum of the
field, expanded in plane waves, the so-called Minkowski
vacuum, fails to provide a finite energy density, the
subtraction of the vacuum expectation value with respect
to the vacuum of the density operator does. Conversely, for
the entropy current, no significant quantum correction
is found.
This paper is organized as follows. Wewill start in Sec. II

with a review of the density-operator approach in relativ-
istic quantum-statistical mechanics with special emphasis
on symmetry considerations. In Sec. III we will specialize
to the symmetry of concern for this work, that is boost
invariance. As underlying quantum field theory, in Sec. IV
we will present the field theory of the free neutral scalar
field in the future light cone, including a diagonalization of
the density operator. This will put us in the position to
calculate the thermal expectation value of the stress-energy

tensor in Sec. V both in local thermodynamic equilibrium
and out of equilibrium. Finally, we will discuss the entropy
current and entropy production in Sec. VI, before conclud-
ing this paper in Sec. VII.
In this work, we use natural units ℏ ¼ c ¼ kB ¼ 1.

Operators in Hilbert space are denoted with a wide upper
hat, e.g., bO, while vectors of unit length have a regular hat,
that is n̂μ. Repeated indices are assumed to be contracted.
We adopt the “mostly minus” convention, so the
Minkowski metric is gμν ¼ diagð1;−1;−1;−1Þ. For the
Levi-Civita symbol we use the convention ϵ0123 ¼ 1.

II. LOCAL THERMODYNAMIC EQUILIBRIUM,
DENSITY OPERATOR, AND SYMMETRIES

In quantum-statistical mechanics, the local-equilibrium
density operator (LEDO) bρLE, Eq. (2), is obtained by
maximizing the entropy S ¼ −TrðbρLE logbρLEÞ under the
constraints of fixed energy-momentum and, possibly,
charge densities on a given three-dimensional spacelike
hypersurface Σ. The hypersurface can be either specified
a priori or can be found in a self-consistent procedure by
using the thermodynamic fields themselves [1].
The energy-momentum densities on a hypersurface

Σ are obtained by contracting the stress-energy tensor
with its normal unit vector n, so that the constraints
read:

nμTrðbρLEbTμνÞren ¼ nμTμν; ð4Þ

and likewise for the conserved currents. The densities on
the right-hand side of Eq. (4) are meant to be the actual
ones, no matter how they are known or defined, and they
are supposedly finite. It is crucial to specify that
the expectation values on the left-hand side must be
suitably renormalized because, in general, the expectation
value of the operator bTμν with a density operator such
as in Eq. (2) is divergent. For instance, in free field
theory, the renormalization procedure is most readily
established by subtracting the vacuum expectation value,
that is,

TrðbρbTμνÞren ¼ TrðbρbTμνÞ − h0jbTμνj0i; ð5Þ

which is tantamount to normal-ordering of the creation
and annihilation operators because the currents are quad-
ratic in the fields. We will delve into the question of
vacuum subtraction in Sec. III A.
With the constraints (4), the function to be maximized

with respect to bρLE is

− TrðbρLE logbρLEÞ þ Z
ΣðτÞ

dΣμ½ðtrðbρLEbTμνÞren − TμνÞβν

− ζðtrðbρLEbjμÞren − jμÞ�; ð6Þ

FIG. 1. Two-dimensional section of the future light cone.
Curves of constant Milne time τ are hyperbolas, while curves
of constant space-time rapidity η are lines through the origin. The
thicker hyperbolas are two-dimensional sections of the three-
dimensional hypersurfaces ΣðτÞ and Σðτ0Þ at constant τ and
constant τ0, respectively.
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where the thermodynamic fields β and ζ are Lagrange
multipliers introduced to enforce the constraints (4). The
solution is Eq. (2) and it should be pointed out that it can be
kept in that simple form without subtraction of the vacuum
expectation value because the latter is not an operator and
would appear in the partition function Z as well (in order to
make TrbρLE ¼ 1), hence canceling out in the ratio. With the
energy-momentum densities given by the right-hand side of
Eq. (4), the thermodynamic fields β and ζ are determined
by solving them with bρLE given by Eq. (2); there are five
equations with five unknowns (βμ and ζ), which in general
can be solved.
Unless β is a Killing field and ζ constant, which character-

izes a state of global thermodynamic equilibrium, the
operator (2) is not independent of the hypersurface, hence
it cannot be the actual density operator in the Heisenberg
representation. In fact, the true density operator is, for a
system which supposedly achieves local thermodynamic
equilibrium at some time τ0, the so-called nonequilibrium
density operator (NEDO), which is just Eq. (2) at time τ0:

bρ ¼ 1

Z
exp

�
−
Z
Σðτ0Þ

dΣμðbTμνβν − ζbjμÞ�: ð7Þ

This can be recast by using Gauss’s theorem as [19]

bρ ¼ 1

Z
exp

�
−
Z
Σðτ0Þ

dΣμðbTμνβν −bjμζÞ�
¼ 1

Z
exp

�
−
Z
ΣðτÞ

dΣμðbTμνβν −bjμζÞ
þ
Z
Ω
dΩðbTμν∇μβν −bjμ∇μζÞ

�
: ð8Þ

In the exponent on the right-hand side, the first term is just
the operator of local equilibrium at time τ, while the second
term contains dissipative corrections [19].
Suppose now that the actual density operator, the NEDO,

has some symmetry, meaning that it commutes with some
unitary representation bUðgÞ in Hilbert space of a group or a
subgroup G of transformations, to be specific of the proper
orthochronous Poincaré group IOð1; 3Þ↑þ. We have

bUðgÞbρ bUðgÞ−1 ¼ 1

Z
exp

�
−
Z
Σðτ0Þ

dΣμðxÞðÛðgÞbTμνðxÞbUðgÞ−1βνðxÞ − ζðxÞbUðgÞbjμðxÞbUðgÞ−1Þ
�

¼ 1

Z
exp

�
−
Z
Σðτ0Þ

dΣμðxÞðDðg−1ÞμρDðg−1ÞνσbTρσðgðxÞÞβνðxÞ − ζðxÞDðg−1ÞμρbjρðgðxÞÞÞ�:
Let us now set y ¼ gðxÞ and we obtain, remembering dΣμðxÞ ¼ DðgÞνμdΣνðyÞ,

bUðgÞbρ bUðgÞ−1 ¼ 1

Z
exp

�
−
Z
gðΣðτ0ÞÞ

dΣρðyÞðbTρσðyÞDðg−1Þνσβνðg−1ðyÞÞ − ζðg−1ðyÞÞbjρðyÞÞ�:
Thus, if the hypersurface is invariant under the trans-
formation g and if

Dðg−1Þνσβνðg−1ðyÞÞ ¼ βσðyÞ; ζðg−1ðyÞÞ ¼ ζðyÞ; ð9Þ

then the operator bρ is invariant under the transformationbUðgÞbρ bUðgÞ−1. Equations (9) specify the symmetry con-
ditions on the transformations of the thermodynamic fields
β and ζ. An invariance of bρ has straightforward conse-
quences for the expectation values of operators. For
instance, for the stress-energy tensor,

TμνðxÞ ¼ Tr½bρbTμνðxÞ� ¼ Tr½bρ bUðgÞ−1bTμνðxÞbUðgÞ�
¼ DðgÞμρDðgÞνσTr½bρbTμνðg−1ðxÞÞ�
¼ DðgÞμρDðgÞνσTμνðg−1ðxÞÞ: ð10Þ

If we consider a one-parameter subgroup of transforma-
tions gϕ [e.g., a rotation, gϕ ¼ expð−iϕJÞ, around some
axis], Eqs. (9) and (10) have the consequence that the Lie
derivative along the vector field XðxÞ ¼ dgϕðxÞ=dϕ of the
field under consideration vanishes, that is,

LXðβÞμ ¼ 0; LXðTÞμν ¼ 0: ð11Þ

An important question concerns the persistence of the
symmetry of the local thermodynamic equilibrium oper-
ator, that is whether the implication

bρ ¼ bUðgÞbρ bUðgÞ−1 ⇒ bρLEðτÞ ¼ bUðgÞbρLEðτÞbUðgÞ−1

is true for any τ. Indeed, it can be shown that if the subgroup
G transforms Σðτ0Þ into itself and if the fields β and ζ are
also symmetric under G, namely they fulfill Eqs. (9) or
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(11), this is the case. Indeed, by definition, bρLEðτÞ
is the solution of maximizing a function which is invariant
under any unitary transformation, the entropy, with the
constraint (4). If a particular bρLE fulfills Eq. (4), so willbUðgÞbρLEðτÞbUðgÞ−1 as it can be readily checked. Therefore,
either bUðgÞbρLEðτÞbUðgÞ−1 is a different solution of the
constrained maximization problem, or it coincides withbρLEðτÞ. In both cases, it is possible to generate one
symmetric solution under the subgroup G by using a

particular solution bρð0ÞLE and summing over all g’s:

bρLEðτÞ ¼ 1

MðGÞ
X
g∈G

bUðgÞbρð0ÞLE
bUðgÞ−1:

It is then obvious that the sufficient condition for bρLEðτÞ,
given by Eq. (2), to be symmetric under G is that the fields
β and ζ fulfill Eqs. (9) at time τ. This is a crucial point for
the purpose of this work.

III. RELATIVISTIC QUANTUM FLUID WITH
LONGITUDINAL BOOST INVARIANCE

Suppose that the density operator is given by Eq. (7) with
Σðτ0Þ being the hyperboloid τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
¼ τ0 in

Minkowski space-time and with

βμ ¼ 1

Tðτ0Þ
1

τ0
ðt; 0; 0; zÞ ¼ 1

Tðτ0Þ
uμ; ð12Þ

where Tðτ0Þ and ζðτ0Þ are constant on the hypersurface.
This vector field is timelike on the hypersurface Σðτ0Þ,
hence thermodynamically meaningful.
The field β in Eq. (12) and the field ζ fulfill Eq. (9) for

any longitudinal boost with hyperbolic angle ξ along the z
axis, LzðξÞ, and manifestly for translations and rotations in
the xy plane. Besides, the hypersurface Σðτ0Þ is invariant
under the same transformations. Therefore, the density
operator has the symmetry group ISOð2Þ ⊗ SOð1; 1Þ, that
is the Euclidean group in the transverse plane times Lorentz
transformations in the longitudinal direction. Furthermore,
the density operator is also invariant under a space-
reflection transformation turning x, y, z into −x, −y, −z.
This symmetry group dictates the possible forms of

vector and tensor fields, which are most easily found by
using Milne coordinates, ðτ; x; y; ηÞ, instead of the usual
Cartesian ones, ðt; x; y; zÞ:

t ¼ τ cosh η; z ¼ τ sinh η;

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
; η ¼ 1

2
log

�
tþ z
t − z

�
;

such that the coordinate basis vectors are

∂
∂τ ¼

1

τ
ðt; 0; 0; zÞ ¼ ðcosh η; 0; 0; sinh ηÞ ¼ u;

∂
∂η ¼ τðsinh η; 0; 0; cosh ηÞ ¼ ðz; 0; 0; tÞ≡ τbη;
∂
∂x ¼bi; ∂

∂y ¼ bj;
and the metric tensor is

ds2 ¼ dt2 − dx2 − dy2 − dz2 ¼ dτ2 − dx2 − dy2 − τ2dη2:

The vector fields XðxÞ associated with the symmetry group
along which the Lie derivatives vanish can be readily
found:

dT1ðaÞx
da

¼ î;
dT2ðaÞy

da
¼ ĵ;

dRðϕÞx
dϕ

¼ð0;−y;x;0Þ≡rφ̂;
dL3ðξÞx

dξ
¼ðz;0;0;tÞ¼ τη̂;

ð13Þ

where Ti are translations in the coordinate directions of the
xy plane, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, RðφÞ is a rotation with angle φ in

the same plane, and L3ðξÞ is a longitudinal boost with
hyperbolic angle ξ. Note that three vector fields are just the
Milne-coordinate basis vectors, which, by construction,
have vanishing Lie derivatives among each other, that is
vanishing Lie commutators.
As has been mentioned, the condition of vanishing Lie

derivatives along the vector fields (13) puts strong limi-
tations on the form of the fields in general. For instance, a
vector field VðxÞ can be decomposed onto the coordinate
basis vectors:

VðxÞ ¼ AðτÞuþ BðτÞbiþ CðτÞbjþDðτÞτbη;
where the coefficients depend on the variable τ only as a
consequence of LXðVÞ ¼ 0, where X is eitherbi, or bj, or τbη.
Also, by implementing Lφ̂ðVÞ ¼ 0 one obtains that both B
and C are in fact zero. Furthermore, by reflection invari-
ance, the component proportional to η̂ must be vanishing
because a reflection turns η into −η and the vector field has
just one component:

VðxÞ ¼ AðτÞu: ð14Þ

Similarly, the form a symmetric tensor field like the
stress-energy tensor Tμν can be obtained by iterated
projections onto vectors and orthogonal components.
The result is

Tμν ¼ EðτÞuμuν þ PTðτÞðîμîν þ ĵμĵνÞ þ PLðτÞη̂μη̂ν: ð15Þ

RINDORI, TINTI, BECATTINI, and RISCHKE PHYS. REV. D 105, 056003 (2022)

056003-4



The form (15) is different from the usual perfect fluid form,
for which PT ¼ PL. The difference between transverse and
longitudinal pressure is due to the lack of full rotational
symmetry.
In order to determine the three scalar functions in

Eq. (15), we have to calculate the expectation values of
operators with the density operator (7). The unit four-vector
orthogonal to the hyperboloid with fixed τ is u itself, so the
operator (7) becomes

bρ ¼ 1

Z
exp

�
−
bΠðτ0Þ
Tðτ0Þ

�
; ð16Þ

with

bΠðτ0Þ ¼ Z
Σðτ0Þ

dΣuμuνbTμν ¼ τ0

Z
dxdydηuμuνbTμν;

where we have used the measure in Milne coordinates. It
should be stressed that the operator bΠðτ0Þ is not conserved
because the divergence of the integrand is not zero:

∂μðuνbTμνÞ ¼ bTμν∂μuν ≠ 0;

so it depends on τ0. We can also write down a general form
of the local equilibrium operator bρLEðτÞ at any Milne time τ
by taking the hyperboloid τ ¼ const: as local-equilibrium
hypersurface, which is invariant under the same trans-
formations as Σðτ0Þ, according to the discussion in Sec. II.
Since the field βðτÞmust fulfill Eqs. (9) and (11), it can only
be of the form (14):

β ¼ 1

TðτÞ u ¼ 1

TðτÞ ðcosh η; 0; 0; sinh ηÞ; ð17Þ

thus the constraint (4) becomes, by using Eq. (15),

nμTrðbρLEbTμνÞren ≡ nμT
μν
LE ¼ uμT

μν
LE

¼ EðτÞLEuν ¼ nμTμν ¼ EðτÞuν:

This vector equation comes down to one scalar equation
EðτÞLE ¼ EðτÞ with TðτÞ as unknown to be determined
once the actual EðτÞ is determined by using the actual
density operator (7). The local thermodynamic equilibrium
operator will be of the same form as Eq. (16), that is,

bρLEðτÞ ¼ 1

Z
exp

�
−
bΠðτÞ
TðτÞ

�
; ð18Þ

with bΠðτÞ ≠ bΠðτ0Þ.
A. Vacuum effects

A very interesting feature of a relativistic quantum fluid
with the four-temperature field (12) is that the spectrum of

bΠðτ0Þ, and particularly the lowest-lying eigenvector, the bΠ
vacuum, may depend on τ, as it is clear from Ref. [13]. This
τ-dependent vacuum j0τi is in general also different
from the vacuum of a quantum field theory—even for free
fields—in flat space-time obtained by quantizing in Cartesian
coordinates, the so-called Minkowski vacuum j0Mi. This is
clearly at variancewith familiar equilibriumquantum thermo-
dynamics, where the Hamiltonian operator achieves its
minimal eigenvalue in the Minkowski vacuum. The distinc-
tion between vacua is very important as far as the renorm-
alization of several quantities is concerned, including, e.g., the
stress-energy tensor. In a free field theory, the renormalization
of the expectation value of an operator bO involves the
subtraction of its vacuum expectation value. If more vacua
are present, there is an ambiguity aswe could define, as usual,

hbOiren ≡ Trðbρ bOÞ − h0MjbOj0Mi; ð19Þ

[see Eq. (5)] or, in our case,

hbOiren ≡ Trðbρ bOÞ − h0τjbOj0τi: ð20Þ

Note that the bΠ vacuum can be subtracted by taking the limit
TðτÞ → 0 of the unrenormalized expression since

lim
TðτÞ→0

bρLEðτÞ¼ lim
TðτÞ→0

1

Z
exp½−bΠðτÞ=TðτÞ�¼ j0τih0τj≡P0τ

:

For this reason, in general the vacuum j0τiwill have the same
symmetries as the original density operator, but it will be less
symmetric than the supposedly Poincaré-invariant
Minkowski vacuum j0Mi.1
It should be pointed out that the vacuum j0τi is τ

dependent, hence a subtraction like in Eq. (20) implies
that the expectation value can get an undesired time
dependence. For instance, if we define the renormalized
stress-energy tensor as

Tμν ≡ TrðbρbTμνÞ − h0τjbTμνj0τi ¼ Tr½ðbρ − P0τ
ÞbTμν�;

then

∂μTμν ¼ ∂μTr½ðbρ − P0τ
ÞbTμν�

¼ Tr½ðbρ − P0τ
Þ∂μ

bTμν� þ Tr½−ð∂μP0τ
ÞbTμν�

¼ −Tr
�
uμ

∂P0τ

∂τ bTμν

�
≠ 0;

where we used ∂μ
bTμν ¼ 0 and the time independence of the

density operator. Therefore, the expectation value Tμν

1This does not mean that the vacuum j0τi is degenerate, but
that Poincaré transformations will give rise to nonvanishing
components of excited states.
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would no longer fulfill a conservation equation even though
the operator bTμν does.
Therefore, in order to have a properly finite, conserved

stress-energy tensor for a relativistic quantum fluid, the
vacuum must be necessarily fixed, just like the density
operator. Of course the Minkowski vacuum j0Mi meets this
requirement and is seemingly the most obvious choice.
However, we will see in Sec. V that the subtraction of the
vacuum expectation value of bTμν of a free field with respect
to j0Mi does not give rise to a finite value, for the particular
symmetry we are dealing with, and an alternative definition
is needed.

IV. FREE SCALAR FIELD IN MILNE
COORDINATES

As has been mentioned in the Introduction, a closed
analytic form of the stress-energy tensor with the four-
temperature field (12) exists for the case of free fields,
providing the opportunity to determine exact quantum
corrections to the classical expressions in the nonequili-
brium case. The system which is described by the operator
(7) and a free scalar field is that of a fluid where
interactions effectively cease at the hypersurface Σðτ0Þ
with temperature Tðτ0Þ and a four-velocity u ¼ Tβ, with
particles freely streaming thereafter. We thus expect to
recover, in the classical limit, the classical kinetic-
theory solutions of the free-streaming Boltzmann equation
starting from the local thermodynamic equilibrium
expressions with proper temperature Tðτ0Þ and flow
velocity uðτ0Þ.
The calculation of the stress-energy tensor for the

massive free scalar field bψðxÞ requires the solution of
the Klein-Gordon equation in Milne coordinates:�

1

τ
∂τðτ∂τÞ − ∂2

x − ∂2
y −

1

τ2
∂2
η þm2

�bψðτ;xT; ηÞ ¼ 0:

This is a well-known problem in the literature [20,21],
which has even raised some discussion. It has been
convincingly demonstrated [21] that, within the future
light cone, there is a complete set of solutions of the
Klein-Gordon equation in Milne coordinates, which allow
an expansion in terms of the familiar plane waves and
which do not mix positive and negative frequencies. These
mode functions can be obtained starting from the usual
expansion of the scalar field [13] in plane waves. We will
recapitulate the salient points of the derivation presented in
Ref. [13]. The obtained full expansion of the field in Milne
coordinates reads

bψðτ;xT; ηÞ ¼
Z

d2pTdμ

4π
ffiffiffi
2

p ½hðp; τÞeiðpT·xTþμηÞb̂p

þ h�ðp; τÞe−iðpT·xTþμηÞbb†p�; ð21Þ

where p ¼ ðpT; μÞ to distinguish it from the Cartesian
vector p ¼ ðpT; pzÞ. Here, bb†p and bbp are creation and
annihilation operators satisfying the usual algebra:

½bbp;bb†p0 �¼ δ2ðpT−p0
TÞδðμ−μ0Þ; ½bbp;bbp0 �¼0¼½bb†p;bb†p0 �:

ð22Þ

The relation between the operators bb†p and the familiarba†ðpÞ of the plane-wave expansion reads

ba†ðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmT cosh y

p
Z þ∞

−∞
dμe−iμybb†p; ð23Þ

where y is the particle rapidity in longitudinal direction,
which can be easily inverted to obtain pz. Since there is no
mixing between creation and annihilation operators, the
vacuum of the bp operators is the same Minkowski vacuum
j0Mi as for the operators aðpÞ, which is a consequence of
the fact that the functions hðp; τÞ can be expressed as a
linear combination of plane waves with just positive
frequency [22]. In Eq. (21) μ is the eigenvalue of the boost
operator bKz, so that

bUðL3ðξÞÞbb†pbUðL3ðξÞÞ−1 ¼ e−iξbKzbb†peiξbKz ¼ e−iξμbb†p;
i.e., bb†p creates a state with eigenvalue μ. The τ-dependent
functions in Eq. (21) are

hðp; τÞ ¼ −ieπ
2
μHð2Þ

iμ ðmTτÞ; h�ðp; τÞ ¼ ie−
π
2
μHð1Þ

iμ ðmTτÞ;
ð24Þ

where the Hankel functions are [23]

Hð2Þ
iμ ðmTτÞ ¼ −

1

iπ
e−

π
2
μ

Z þ∞

−∞
dθe−imTτ cosh θþiμθ;

Hð1Þ
iμ ðmTτÞ ¼

1

iπ
e
π
2
μ

Z þ∞

−∞
dθeimTτ cosh θ−iμθ; ð25Þ

with mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2T þm2

p
being the transverse mass. The

integration variable θ in Eq. (25) is related to the Milne
coordinates and rapidity by [13]

θ ¼ y − η: ð26Þ

The functions (25) solve the differential equations:�
1

τ
∂τðτ∂τÞ þm2

T þ μ2

τ2

�
hðp; τÞ ¼ 0;

which are indeed Bessel’s differential equations. It is also
useful to define
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ω2 ¼ m2
T þ

μ2

τ2
: ð27Þ

Let us now work out the density operator, particularly the
operator bΠðτÞ in Eq. (18). In a nonequilibrium situation it is
known that the density operator depends on the particular
stress-energy tensor operator which is employed; however,
for the free scalar field we will be using the canonical
tensor:

bTμν
C ¼ 1

2
ð∂μbψ∂νbψ þ ∂νbψ∂μbψÞ − gμνbL;

bL ¼ 1

2
ðgμν∂μbψ∂νbψ −m2bψ2Þ;

where bL is the Lagrangian density. Hence,

bTμν
C uμuν ¼

1

2

�
ð∂τbψÞ2 þ ð∂xbψÞ2

þ ð∂ybψÞ2 þ 1

τ2
ð∂ηbψÞ2 þm2bψ2

�
: ð28Þ

By using the above equation along with Eq. (21) and taking
advantage of the invariance by reflection p → −p of the
functions hðp; τÞ, one can obtain the following expression
for bΠðτÞ:

bΠðτÞ ¼ τ

Z
dxdydηbTμνuμuν

¼
Z

d2pTdμ
ω

2
½Kðbbpbb†p þ bb†pbbpÞ

þ Λbbpbb−p þ Λ�bb†pbb†−p�; ð29Þ

where the positive real function Kðp; τÞ and the complex
function Λðp; τÞ are defined as

Kðp; τÞ ¼ πτ

4ω
ðj∂τhðp; τÞj2 þ ω2jhðp; τÞj2Þ; ð30Þ

Λðp; τÞ ¼ πτ

4ω
f½∂τhðp; τÞ�2 þ ω2h2ðp; τÞg: ð31Þ

Note that, with ω and h being invariant under a reflection
p → −p, so are K and Λ, and

K2ðp; τÞ − jΛðp; τÞj2 ¼ 1; ð32Þ

asK2 − jΛj2 is proportional to theWronskian of the Hankel
functions

K2ðp; τÞ − jΛðp; τÞj2

¼ −
�
πmTτ

4

�
2

ðW½Hð2Þ
iμ ðmTτÞ;Hð1Þ

iμ ðmTτÞ�Þ2;

which is known to be a very simple function [23]:

W½Hð2Þ
iν ðxÞ;Hð1Þ

iν ðxÞ� ¼ Hð2Þ0
iν ðxÞHð1Þ

iν ðxÞ − Hð1Þ0
iν ðxÞHð2Þ

iν ðxÞ

¼ 4i
πx

: ð33Þ

The above relation is not accidental but it is related to the
invariance of the Klein-Gordon scalar product of the mode
functions [22]. Equation (32) allows one to write

Kðp; τÞ ¼ cosh 2Θðp; τÞ;
Λðp; τÞ ¼ sinh 2Θðp; τÞ exp½iχðp; τÞ�; ð34Þ

which is very important to highlight the vacuum effects, as
it will become clear later.
Due to the terms proportional to Λ and Λ�, bΠðτÞ in

Eq. (29) is not diagonal in the creation and annihilation
operators. If it were, we could easily calculate the expect-
ation values of products of creation and annihilation
operators, hence of operators quadratic in the field, using
standard methods. We thus look for a suitable Bogolyubov
transformation that diagonalizes bΠðτÞ,

bξ†pðτÞ ¼ Aðp; τÞbb†p − Bðp; τÞbb−p;bξpðτÞ ¼ A�ðp; τÞbbp − B�ðp; τÞbb†−p; ð35Þ

where A and B are complex functions to be determined. We
require bξ†p and bξp to fulfill the usual algebra:

½bξpðτÞ;bξ†p0 ðτÞ� ¼ δ2ðpT − p0
TÞδðμ − μ0Þ;

½bξpðτÞ;bξp0 ðτÞ� ¼ 0 ¼ ½bξ†pðτÞ;bξ†p0 ðτÞ�; ð36Þ

so that, by enforcing the commutation relations (22), we
find respectively

ðjAðp; τÞj2 − jBðp; τÞj2Þδ2ðpT − p0
TÞδðμ − μ0Þ ¼ δ2ðpT − p0

TÞδðμ − μ0Þ;
½A�ð−p; τÞB�ðp; τÞ − A�ðp; τÞB�ð−p; τÞ�δ2ðpT þ p0

TÞδðμþ μ0Þ ¼ 0;

½Aðp; τÞBð−p; τÞ − Að−p; τÞBðp; τÞ�δ2ðpT þ p0
TÞδðμþ μ0Þ ¼ 0:
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The above equation is fulfilled if

Aðp; τÞ ¼ Að−p; τÞ; Bðp; τÞ ¼ Bð−p; τÞ;
jAðp; τÞj2 − jBðp; τÞj2 ¼ 1; ð37Þ

so we can set

Aðp; τÞ ¼ cosh θðp; τÞeiχAðp;τÞ;
Bðp; τÞ ¼ sinh θðp; τÞeiχBðp;τÞ: ð38Þ

The conditions (37) make it easier to invert Eq. (35):

bbp ¼ Aðp; τÞbξpðτÞ þ B�ðp; τÞbξ†−pðτÞ;bb†p ¼ A�ðp; τÞbξ†pðτÞ þ Bðp; τÞbξ−pðτÞ: ð39Þ

Plugging Eq. (39) into Eq. (29) we obtain

bΠðτÞ ¼ Z
d2pTdμ

ω

2
f½KðjAj2 þ jBj2Þ

þ ΛAB� þ Λ�A�B�ðbξpbξ†p þ bξ†pbξpÞ
þ ð2KABþ ΛA2 þ Λ�B2Þbξpbξ−p
þ ð2KA�B� þ Λ�A�2 þ ΛB�2Þbξ†pbξ†−pg; ð40Þ

where we used the invariance of the integral under
reflections p ↦ −p. In order to make bΠðτÞ diagonal, the
second line of Eq. (40) must vanish:

2KABþ ΛA2 þ Λ�B2 ¼ 0

(the other equation is just the complex conjugate). This can
be rewritten by using Eqs. (34) and (38):

cosh 2Θ sinh 2θeiðχAþχBÞ þ sinh 2Θcosh2θeiðχþ2χAÞ

þ sinh 2Θsinh2θeið2χB−χÞ ¼ 0;

the solution of which is

χB − χA ¼ χ; θ ¼ −Θ:

We can then set χA ¼ 0 and find A, B fulfilling the
Bogolyubov relations (35)

A ¼ coshΘ; B ¼ − sinhΘeiχ ; ð41Þ

from which follows, by using Eq. (34)

KðjAj2 þ jBj2Þ þ ΛAB� þ Λ�A�B

¼ cosh22Θ − 2Reðsinh 2Θeiχ coshΘ sinhΘe−iχÞ ¼ 1:

With these solutions, Eq. (39) becomes

bbp ¼ coshΘðp; τÞbξpðτÞ − sinhΘðp; τÞe−iχbξ†−pðτÞ;bb†p ¼ coshΘðp; τÞbξ†pðτÞ − sinhΘðp; τÞeiχbξ−pðτÞ; ð42Þ
and the operator (40):

bΠðτÞ ¼ Z
d2pTdμ

ω

2
ðbξpðτÞbξ†pðτÞ þ bξ†pðτÞbξpðτÞÞ

¼
Z

d2pTdμω

�bξ†pðτÞbξpðτÞ þ 1

2

�
; ð43Þ

where in the last equality we have used the commutation
relations (36).

A. Discusssion

The nontrivial Bogoliubov transformation (42) between
different sets of creation and annihilation operators is
reminiscent of the Unruh effect [24]. However, we are facing
essentially different physics here; as it has been pointed out,
the relation (23) between plane-wave creation operators and
the creation operators appearing in the field expansion in
curvilinear coordinates does not mix creation and annihila-
tion operators. In other words, unlike in the Unruh effect, the
observers associated with Milne coordinates (defined by
η ¼ xT ¼ const) (moving with zero acceleration as implied
by the velocity field u in (17), count the same particles as the
conventionally fixed inertial observer.
In fact, the Bogolyubov transformation (42) stems from

the somewhat unexpected form of the local thermodynamic
equilibrium operator bΠ in Eq. (29) involving quadratic
combinations of two annihilation and two creation oper-
ators, unlike the Hamiltonian in global-equilibrium thermal
field theory. We thus have a concrete situation where the
vacuum j0τi, which is the lowest-lying eigenvector of bΠðτÞ
annihilated by all bξpðτÞ’s,

bξpðτÞj0τi ¼ 0;

is different from the Minkowski vacuum j0Mi, which is
annihilated by the bbp, as envisioned in Sec. III A. The full
expression of the vacuum j0τi can be obtained from the
coefficients in Eq. (42) with known methods [22] and reads

j0τi ¼
Y
p

1

j coshΘðp; τÞj1=2

× exp

�
−
1

2
tanhΘðp; τÞe−iχðp;τÞbb†pbb†−p�j0Mi: ð44Þ

With bΠ diagonal in Eq. (43), we can readily obtain the
expectation values of products of creation and annihilation
operators in local thermodynamic equilibrium. The form
(43) is essentially the same as the equilibrium Hamiltonian
operator of the free field with the replacements μ → pz and
ω → ε. We thus have
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hbξ†pðτÞbξp0 ðτÞiLE ¼ nBðp; τÞδ2ðpT − p0
TÞδðμ − μ0Þ;

hbξpðτÞbξ†p0 ðτÞiLE ¼ ½nBðp; τÞ þ 1�δ2ðpT − p0
TÞδðμ − μ0Þ;

hbξpðτÞbξp0 ðτÞiLE ¼ 0 ¼ hbξ†pðτÞbξ†p0 ðτÞiLE; ð45Þ

where h·iLE stands for TrðbρLE·Þ and nB is the Bose-Einstein
distribution function:

nBðp; τÞ ¼
1

eωðτÞ=TðτÞ − 1
; ð46Þ

with ωðτÞ given by Eq. (27).
It is important to emphasize that Eq. (46) is by no means

a density of particles as usually in Minkowski space-time.
Equation (46) accounts for the mean number of excitations
of the bξ†pðτÞ operator, which is not the mean number of
excitations of the Minkowski vacuum as expressed by thebaðpÞ’s or bbp’s. Indeed, the expectation values of the various
combinations can be found by means of Eq. (42) and
Eq. (45):

hbbpbbp0 iLE¼−
1

2
sinhð2ΘÞe−iχð2nBþ1Þδ2ðpT−p0

TÞδðμ−μ0Þ;

hbb†pbb†p0 iLE¼−
1

2
sinhð2ΘÞeiχð2nBþ1Þδ2ðpT−p0

TÞδðμ−μ0Þ;
hbbpbb†p0 iLE¼½nBcoshð2ΘÞþcosh2Θ�δ2ðpT−p0

TÞδðμ−μ0Þ;
hbb†pbbp0 iLE¼½nBcoshð2ΘÞþsinh2Θ�δ2ðpT−p0

TÞδðμ−μ0Þ:
ð47Þ

As is clear from Eq. (47), field vacuum effects are encoded
in a nonvanishing value of the angle Θðp; τÞ, which is both
a function of the modes and of the Milne time τ and whose
value can be determined through the relations (34). We are
now in a position to calculate the expectation values of all
operators which are quadratic in the field.

V. THE STRESS-ENERGY TENSOR AND ITS
RENORMALIZATION

We now come to the main point of this work, namely the
determination of the stress-energy tensor. We start by
calculating it in local thermodynamic equilibrium.

A. Local thermodynamic equilibrium

As the symmetries of bρLE are the same as bρ (see the
discussion in Sec. II) the structure must be the same as in
Eq. (15):

TrðbρLEbTμνÞ¼hbTμνiLE¼EðτÞLEuμuν
þPTðτÞLEðbiμbiνþbjμbjνÞþPLðτÞLEbημbην; ð48Þ

Hence, by using Eq. (28) with the expansion (21) we obtain

EðτÞLE ¼ hbTμν
C iLEuμuν ¼

Z
d2pTdμd2p0Tdμ

0

4ð4πÞ2
��

½∂τhðp; τÞ�½∂τhðp0; τÞ� −
�
pxp0

x þ pyp0
y þ

1

τ2
μμ0 −m2

�
hðp; τÞhðp0; τÞ

�
× ei½ðpTþp0

TÞ·xTþðμþμ0Þη�hbbpbbp0 iLE
þ
�
½∂τhðp; τÞ�½∂τh�ðp0; τÞ� þ

�
pxp0

x þ pyp0
y þ

1

τ2
μμ0 þm2

�
hðp; τÞh�ðp0; τÞ

�
ei½ðpT−p0

TÞ·xTþðμ−μ0Þη�hbbpbb†p0 iLE
þ
�
½∂τh�ðp; τÞ�½∂τhðp0; τÞ� þ

�
pxp0

x þ pyp0
y þ

1

τ2
μμ0 þm2

�
h�ðp; τÞhðp0; τÞ

�
e−i½ðpT−p0

TÞ·xTþðμ−μ0Þη�hbb†pbbp0 iLE
þ
�
½∂τh�ðp; τÞ�½∂τh�ðp0; τÞ� −

�
pxp0

x þ pyp0
y þ

1

τ2
μμ0 −m2

�
h�ðp; τÞh�ðp0; τÞ

�
e−i½ðpTþp0

TÞ·xTþðμþμ0Þη�hbb†pbb†p0 iLE�:
ð49Þ

Plugging the relations (47) into Eq. (49) we obtain

EðτÞLE¼
1

4ð4πÞ2
Z

d2pTdμ

�
−
1

2
½ð∂τhÞ2þω2h2�ð2nBþ1Þsinhð2ΘÞe−iχþc:c:þðj∂τhj2þω2jhj2Þð2nBþ1Þcoshð2ΘÞ

�
;

and, by using Eqs. (30), (31), and (34), we get

EðτÞLE ¼ 1

16π3τ

Z
d2pT dμω½ð2nB þ 1Þcosh2ð2ΘÞ − sinh2ð2ΘÞð2nB þ 1Þ� ¼ 1

ð2πÞ3τ
Z

d2pTdμω

�
nB þ 1

2

�
: ð50Þ
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The longitudinal and transverse pressures can be worked
out in a similar fashion: the Wronskian of the Hankel
function is again recovered and the expressions greatly
simplify. One obtains

PTðτÞLE ¼ 1

ð2πÞ3τ
Z

d2pTdμ
jpTj2
2

�
nB þ 1

2

�
;

PLðτÞLE ¼ 1

ð2πÞ3τ
Z

d2pTdμ
μ2

τ2

�
nB þ 1

2

�
: ð51Þ

Equations (50) and (51) can be written in a compact fashion
by introducing the functions

Kγðp; τÞ ¼
πτ

4ω
½j∂τhðp; τÞj2 þ γðp; τÞjhðp; τÞj2�; ð52Þ

Λγðp; τÞ ¼
πτ

4ω
f½∂τhðp; τÞ�2 þ γðp; τÞ½hðp; τÞ�2g; ð53Þ

where γ is defined as

γðp; τÞ ¼

8>><>>:
ω2ðp; τÞ ¼ m2

T þ μ2

τ2
; for EðτÞLE;

−m2
L ≡ − μ2

τ2
−m2; for PTðτÞLE;

−m2
T þ μ2

τ2
; for PLðτÞLE:

ð54Þ

Thanks to the Wronskian of the Hankel functions, they
satisfy the relation

K2
γðp; τÞ − jΛγðp; τÞj2 ¼

γðp; τÞ
ω2ðp; τÞ :

With this in mind, and setting Γγ ¼ fE;PT;PLg, we have
for the thermodynamic function of the stress-energy tensor

ΓγðτÞLE ¼
Z

d2pTdμ
ð2πÞ3τ ωðp; τÞ½Kγðp; τÞKðp; τÞ

− ReðΛγðp; τÞΛ�ðp; τÞÞ�
�
nBðp; τÞ þ

1

2

�
;

where the combination in square brackets reads

Kγðp;τÞKðp;τÞ−ReðΛγðp;τÞΛ�ðp;τÞÞ¼ω2ðp;τÞþγðp;τÞ
2ω2ðp;τÞ ;

hence

ΓγðτÞLE¼
Z

d2pTdμ
ð2πÞ3τωðp;τÞ

ω2ðp;τÞþγðp;τÞ
2

�
nBðp;τÞþ

1

2

�
:

ð55Þ

The above integrals can be written in a familiar form by
changing the integration variable to pz ¼ μ=τ. This implies

ωðp;τÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpTj2þ

μ2

τ2
þm2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2xþp2yþp2zþm2

q
¼ ε;

which is just the on-shell energy, and

d2pT
dμ
τ

¼ dpxdpydpz;

In turn, the distribution nBðp; τÞ becomes the energy-
dependent Bose-Einstein phase-space distribution
nBðε; TðτÞÞ. Hence, the first term of the energy density
(50) as well as the transverse and longitudinal pressures
(51) can be written as the familiar momentum integrals of
the relativistic uncharged Bose gas. Altogether, the un-
renormalized stress-energy tensor in local equilibrium
reads:

Tr½bρLEbTμνðxÞ� ¼
Z

d3p
ε

pμpν

�
1

eβðxÞ·p − 1
þ 1

2

�
; ð56Þ

where β is the four-temperature in Eq. (12). Hence, the
thermodynamic functions Γγ are just the familiar functions
of TðτÞ as for the ideal relativistic gas. In particular, the
transverse and the longitudinal pressures are in fact
identical, namely

PTðτÞLE ¼ PLðτÞLE ≡ PðτÞLE: ð57Þ

B. Actual stress-energy tensor

The actual (unrenormalized) expectation value of the
stress-energy tensor can be calculated by using the density
operator (16), that is,

Tr½bρbTμνðxÞ� ¼ 1

Z
Trfexp½−bΠðτ0Þ=Tðτ0Þ�bTμνðxÞg:

Symmetries dictate that its form is given by Eq. (15), so we
need to determine the three functions Γγ . It is readily found
that the same expression as in Eq. (49) is obtained, with the
simple replacement of the local-equilibrium values of the
quadratic combinations of bbp and bb†p with their actual
expectation values, for instance,

hbb†pbbpi ¼ 1

Z
Trfexp½−bΠðτ0Þ=Tðτ0Þ�bb†pbbpg:

The calculation of the above expression is most easily done
by using the formulas (42) at time τ0, i.e., expressing the
constant bbp’s as functions of the operators diagonalizingbΠðτ0Þ instead of bΠðτÞ. We thus get the same formulas as
Eq. (47), with τ replaced by τ0:
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hbbpbbp0 i ¼ −
1

2
sinh½2Θðτ0Þ�e−iχðτ0Þ½2nBðτ0Þ þ 1�δ2ðpT − p0

TÞδðμ − μ0Þ;

hbb†pbb†p0 i ¼ −
1

2
sinh½2Θðτ0Þ�eiχðτ0Þ½2nBðτ0Þ þ 1�δ2ðpT − p0

TÞδðμ − μ0Þ;
hbbpbb†p0 i ¼ fnBðτ0Þ cosh½2Θðτ0Þ� þ cosh2Θðτ0Þgδ2ðpT − p0

TÞδðμ − μ0Þ;
hbb†pbbp0 i ¼ fnBðτ0Þ cosh½2Θðτ0Þ� þ sinh2Θðτ0Þgδ2ðpT − p0

TÞδðμ − μ0Þ: ð58Þ

We note in passing that, as expected, the expectation value
of excitations of the Minkowski vacuum, described by
hbb†pbbpi for each mode, is constant in time, the density

operator being fixed and the operators bbp being time
independent by construction. The mean number of particles
with momentum p can be obtained by using Eq. (23):

hba†ðpÞbaðp0Þi ¼ 1

2πmT

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh y cosh y0

p
×
Z þ∞

−∞
dμ e−iμðy−y0Þhbb†pT ;μ

bbp0
T ;μ
i;

where y is the rapidity.
Now, by taking advantage of the right-hand side of

Eq. (49), and by using Eq. (58), as well as Eqs. (30), (31),
and (34), it can be shown that

EðτÞ ¼ 1

Z
Trfexp½−bΠðτ0Þ=Tðτ0Þ�bTμνguμuν

¼ 1

ð2πÞ3τ
Z

d2pT dμωðτÞfKðτÞKðτ0Þ

− Re½ΛðτÞΛ�ðτ0Þ�g
�
nBðτ0Þ þ

1

2

�
: ð59Þ

The pressures can be derived likewise and we finally have

ΓγðτÞ ¼
1

ð2πÞ3τ
Z

d2pT dμωðτÞfKγðτÞKðτ0Þ

− Re½ΛγðτÞΛ�ðτ0Þ�g
�
nBðτ0Þ þ

1

2

�
: ð60Þ

Of course, at the time τ ¼ τ0 we recover the local
thermodynamic equilibrium expression (55), as required
by construction. However, at later times τ > τ0 the stress-
energy tensor differs from the local equilibrium form.
Indeed, since we are dealing with a free field, one expects
to find the same expression as for the free-streaming
solution of the Boltzmann equation in Milne coordinates,
see Appendix A. However, there are quantum corrections
due to the vacuum subtraction.

C. Renormalization and comparison
with classical limits

The expressions found include divergent terms, both in
the stress-energy tensor in local equilibrium (55) and the
actual one (60). As we have seen in Sec. III A, in order to
fulfill the continuity equation, the stress-energy tensor
should be renormalized by subtracting a vacuum expect-
ation value (VEV) with a constant vacuum: either with
respect to the Minkowskian vacuum j0Mi, like in Eq. (19),
or with respect to the vacuum j0τ0i of the operator bΠðτ0Þ,
like in Eq. (20).
The Minkowski VEV of the stress-energy tensor is

calculated in Appendix B. For the stress-energy tensor it
is found that

EM ≡ h0MjbTμνuμuνj0Mi ¼
1

ð2πÞ3τ
Z

d2pT dμωðτÞ
KðτÞ
2

;

and the renormalized energy density is then

EðτÞren ¼
1

ð2πÞ3τ
Z

d2pT dμωðτÞ
�
fKðτÞKðτ0Þ

− Re½ΛðτÞΛ�ðτ0Þ�g
�
nBðτ0Þ þ

1

2

�
−
1

2
KðτÞ

�
:

The main drawback of this expression is that it is still
divergent. This is most easily seen at τ ¼ τ0 where

Eðτ0Þren ¼
1

ð2πÞ3τ0

Z
d2pT dμωðτ0ÞnBðτ0Þ

−
1

2ð2πÞ3τ0

Z
d2pT dμωðτ0Þ½Kðτ0Þ − 1�: ð61Þ

While the first term is finite, the second is not due to the
behavior of the K function for large values of its effective
argument, which is mTτ0, at fixed μ [see Eqs. (30) and
(24)]. The asymptotic behavior for large transverse mass
mT of the K function is derived in Appendix C and one has,
at leading order,

Kðτ0Þ − 1 ¼ cosh 2Θðτ0Þ − 1 ≃ 2Θ2ðτ0Þ ≃
1

8m2
Tτ

2
0

; ð62Þ

which makes the rightmost integral in Eq. (61) divergent.
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In conclusion, in order to have a finite stress-energy
tensor, we are left with one option: to subtract the VEV’s
with respect to j0τ0i, which can be readily done by taking
the limit Tðτ0Þ → 0 in Eq. (60) and subtracting what is left,
taking into account that limT→0nB ¼ 0. We thus have

ΓγðτÞren ¼
1

ð2πÞ3τ
Z

d2pT dμωðτÞfKγðτÞKðτ0Þ

− Re½ΛγðτÞΛ�ðτ0Þ�gnBðτ0Þ; ð63Þ

which incorporates the relation between the energy density
and the pressures.
It is interesting to study the behavior of the functions (63)

at late times τ, which means for large values of mτ (see
Appendix C). In this limit, we have ΘðτÞ → 0, hence
KðτÞ → 1 and ΛðτÞ → 0, implying that the Minkowskian
vacuum is recovered asymptotically. This is also clear from
Eq. (44), which shows that j0τi → j0Mi. For the energy
density, at late times we have

EðτÞren ≃
τ→∞

1

ð2πÞ3τ
Z

d2pT dμωðτÞKðτ0ÞnBðτ0Þ

¼ 1

ð2πÞ3τ
Z

d2pT dμωðτÞnBðτ0Þ þ
1

ð2πÞ3τ
Z

d2pT dμωðτÞ½Kðτ0Þ − 1�nBðτ0Þ

¼ 1

ð2πÞ3τ
Z

d2pT dμωðτÞnBðτ0Þ þ
2

ð2πÞ3τ
Z

d2pT dμωðτÞsinh2Θðτ0ÞnBðτ0Þ: ð64Þ

It can be shown that the first term in Eq. (64) is the classical
free-streaming solution in Milne coordinates (see Appen-
dix A), while the second term is a pure quantum-field
correction due to the difference between vacua, since it
vanishes only if Θðτ0Þ ¼ 0. Somewhat surprisingly, the
quantum correction to energy density does not vanish at
late times, and it can even be comparable with the classical
term if the main argument of Θðτ0Þ, that is mTτ0 is Oð1Þ,
that is for an early decoupling of the system.
Similar expressions can be obtained for the pressures.

For large times, the leading term of the ΛγðτÞ function has
an oscillating behavior ∼ expð−2imTτÞ so the integrals in
pT or mT involving ΛγðτÞ are expected to vanish as τ → ∞
(see Appendix C). Therefore, only the first term of Eq. (63)
is left and one has

PγðτÞren ≃
τ→∞

1

ð2πÞ3τ
Z

d2pTdμωðτÞKγðτÞKðτ0ÞnBðτ0Þ: ð65Þ

Also, at late times [see Appendix C, Eq. (C3)],

ωðτÞKγðτÞ ≃
τ→∞

m2
T þ γ

2mT
;

so Eq. (65) becomes

PγðτÞren ≃
τ→∞

1

ð2πÞ3τ
Z

d2pT dμ
m2

T þ γ

2mT
Kðτ0ÞnBðτ0Þ

¼ 1

ð2πÞ3τ
Z

d2pT dμ
m2

T þ γ

2mT
nBðτ0Þ

þ 2

ð2πÞ3τ
Z

d2pT dμ
m2

T þ γ

2mT
sinh2Θðτ0ÞnBðτ0Þ;

ð66Þ

with γ from Eq. (54). Again, the first term on the right-hand
side is the leading approximation of the classical free-
streaming solution in Milne coordinates for large mTτ and
fixed μ, whereas the second term is a pure quantum
correction (see Appendix A).
As has been mentioned, the relative size of the quantum

corrections with respect to the classical free streaming term
can be non-negligible. As it appears from Eqs. (64) and
(66), the relative size of the quantum corrections to the
energy density and pressures is determined by the size of
Θðτ0Þ. In general, the earlier the decoupling the larger is
sinh2Θ and the weight of the quantum correction. For a
sufficiently large value of the dimensionless variable mTτ0,
the Θðτ0Þ angle is given by the approximate formula in
Eq. (62):

Θðτ0Þ ≃
1

4mTτ0

By using this approximation, it is possible to compute the
relative corrections to the energy density and pressure as a
function of the two independent dimensionless variables
mτ0 and m=Tðτ0Þ. For mτ0 ¼ 1.41 the curves for the
energy density and transverse as well as longitudinal
pressures as a function of m=T0 are shown in Fig. 2.
One observes that the relative corrections can be as large as
several percent. The importance of these corrections
decreases quickly as mτ0 increases, since the quantum
corrections are inversely proportional to m2τ20 in this limit.
This means, however, that the small m=T0 part of Fig. 2
must be interpreted as the limit of large initial temperatures,
and not the limit of vanishing mass. One cannot use the
approximation (62) in the massless limit, since the integrals
diverge in the neighborhood of pT ¼ 0, irrespective of the
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value of τ0. It is possible, however, to directly compute the
m → 0 limit of Eq. (65) for small values of the remaining
dimensionless parameter T0τ0. The relative magnitude of
the quantum corrections is of the order of ∼40% for
T0τ0 ≃ 0.1, and they become the dominant contribution
when T0τ0 decreases. Therefore, their phenomenological
relevance in expanding systems depends on the interplay
between the mass of the particle, the dynamical decoupling
time, and the initial temperature (hence energy density),
which in turn depends on the dynamical preequilibrium
stage [25–27].

VI. ENTROPY CURRENT

The need of subtracting the vacuum j0τ0i to obtain a
finite value for the stress-energy tensor for the free field has
some interesting connection to the way the entropy and the
entropy current of a relativistic fluid in local thermo-
dynamic equilibrium are calculated. This problem has been
approached in the framework of the relativistic density
operator in Ref. [28]. We first observe that the entropy of a
relativistic fluid in local equilibrium,

S ¼ −trðbρLE logbρLEÞ;
with bρLE given by Eq. (49), is independent of the vacuum
subtraction because, as remarked in Sec. II, the density
operator (49) turns out to be independent of any non-
operator term which is subtracted from the stress-energy
tensor operator, as it cancels out in the ratio with the
normalizing ZLE.
However, it was pointed out in Ref. [28] that, provided

that the vacuum is nondegenerate, there is only one good
choice of the vacuum if one has to make logZLE extensive,
i.e.,

logZLE ¼
Z
Σ
dΣμϕ

μ;

and this is the vacuum (meant as the eigenvector with
minimal eigenvalue) of the operator bΠðτÞ, which we have
denoted with j0τi. Therefore,2 the entropy current reads

sμ ¼ ϕμ þ ½TrðbρLEbTμνÞ − h0τjbTμνj0τi�βν; ð67Þ

with

ϕμ ¼
Z

∞

1

dλfTr½bρLEðλÞbTμν� − h0τjbTμνj0τig;

where bρLEðλÞ is the operator defined by

bρLEðλÞ ¼ 1

ZLEðλÞ
exp

�
−λ

Z
Σ
dΣμ

bTμνβν

�
:

The renormalized value

Tμν
LE ¼ TrðbρLEbTμνÞ − h0τjbTμνj0τi

of the stress-energy tensor in local thermodynamic equi-
librium with subtraction of the VEVwith respect to j0τi can
be found by taking the limit TðτÞ → 0, as we have seen in
Sec. III A. Hence, for the free scalar field, it is readily found
from Eq. (56) that we are left with the classical expression:

TμνðxÞLE ¼
Z

d3p
ε

pμpν 1

eβðxÞ·p − 1
:

It is now easy to show that ϕμ ¼ PLEβ
μ, with PLE being the

pressure in Eq. (57), and that the entropy current coincides
with the classical equilibrium expression,

sμ ¼ ðELE þ PLEÞβμ;

where ELE and PLE are related by the usual equation of
state of a free relativistic gas, without apparent quantum
correction.
We end this section by discussing the entropy-production

rate equation established in Refs. [10,11] (for a derivation
see Ref. [19]), which for ζ ¼ 0 reads

∇μsμ ¼ ðTμν − Tμν
LEÞ∇μβν: ð68Þ

In the above equation it is usually understood that Tμν and
Tμν
LE are the renormalized stress-energy tensor expectation

values, fulfilling the constraint equation (4), and usually
obtained by subtracting the Minkowski VEV of both.

FIG. 2. Relative magnitude of the quantum corrections to the
classical free-streaming solutions of energy density, transverse
and longitudinal pressures, according to Eqs. (64) and (66), as a
function of m=T0 for mτ0 ¼ 1.41.

2In this section, for the sake of simplicity, we assume vanishing
chemical potentials, that is ζ ¼ 0; the extension of these argu-
ments to a nonvanishing chemical potential is straightforward.
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However, in our case, in order to obtain finite values for the
constraint equation (4) and to find an appropriate expres-
sion of the entropy current, we need to subtract different
VEV’s, as we have seen. In particular,

Tμν
LE ¼ TrðbρLEbTμνÞ − h0τjbTμνj0τi;
Tμν ¼ TrðbρbTμνÞ − h0τ0 jbTμνj0τ0i:

One may thus wonder whether such a difference in the
VEV subtraction introduces a new quantum term in the
entropy production rate. The answer is again no, pro-
vided that

(i) the renormalized expectation value Tμν is finite;
(ii) the renormalized expectation value Tμν fulfills the

continuity equation;
(iii) the renormalized expectation value in local equilib-

rium Tμν
LE fulfills the constraint (4).

The proof of Eq. (68) [19] can be shown to hold.

VII. SUMMARY AND CONCLUSIONS

To summarize, we have studied a relativistic quantum
fluid with longitudinal boost invariance, which, for the free
scalar field, is an exactly solvable nonequilibrium problem,
further developing and extending the results of
Refs. [13,14]. By using the nonequilibrium density oper-
ator, we have derived an exact solution for the stress-energy
tensor and the entropy current for the free scalar field
initially in local thermodynamic equilibrium. The most
remarkable feature of the solution is the difference between
the vacuum of the density operator and the familiar vacuum
of the field in Minkowski space-time. We have found that a
finite, renormalized value of the stress-energy tensor can be
achieved only by subtracting the vacuum of the density
operator, and not the vacuum of the field; in practice, there
is only one option. With respect to the known classical free-
streaming solution, we have found quantum corrections
related to the difference between the vacuum of the density
operator and the Minkowski vacuum. It should also be
emphasized that the quantum corrections do not depend on
the system of coordinates used, the density operator being
written in a fully covariant form. These corrections are
numerically relevant for an early decoupling of the field,
that is if mτ, Tτ are Oð1Þ or smaller, where τ is the
hyperbolic time; in this case they survive at late times and
affect the relation between energy density and pressure as
compared to the classical free-streaming case. These effects
might be phenomenologically relevant whenever a quan-
tum relativistic system expands and decouples. Their
impact crucially depends on the interplay between the
mass and the time of decoupling as well as the decoupling
temperature.
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APPENDIX A: FREE STREAMING IN MILNE
COORDINATES

The collisionless Boltzmann equation in classical rela-
tivistic kinetic theory reads

p · ∂fðx;pÞ ¼ 0; ðA1Þ

and its explicit solution in Cartesian coordinates is

fðx;pÞ ¼ f0

�
x −

t − t0
ε

p;p

�
; ðA2Þ

where f0ðx;pÞ ¼ fðt0;x;pÞ is the initial condition in a
generic inertial reference frame, and ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
is the

(on-shell) energy.
In longitudinal boost-invariant symmetry, the initial

condition is given at some Milne time τ0 rather than a
time t0 in Cartesian coordinates. Nevertheless, there is a
very simple solution in this case, too. Since the distribution
function is a scalar, it must be invariant under the symmetry
transformations at stake, that are longitudinal boosts as well
as rotations and translations in the transverse plane. Hence,
it depends only on the independent scalars that may be
formed with combinations of space-time and momentum
vector which are invariant under the group of transforma-
tions ISOð2Þ ⊗ SOð1; 1Þ. These scalars are

τ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
t2−z2

p
; pT¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
xþp2

y

q
; w¼ zε− tpz: ðA3Þ

The last variable can be shown to be equivalent to
the covariant component pη of the four-momentum vector
in Milne coordinates. Indeed, there is a fourth invariant
scalar:

v ¼ tε − zpz ¼ τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

T þ
w2

τ2

s
; ðA4Þ

but it is redundant because of the on-shell condition (and
positivity) of the energy and because t > jzj in the future
light cone. The reflection invariance (see Sec. II) makes f
dependent on the square ofw rather than just w. By utilizing
these arguments, Eq. (A1) becomes
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v
τ

∂
∂τ fðτ; pT; w2Þ ¼ 0; ðA5Þ

since the contribution in the partial derivatives with respect
to w cancels out. The free-streaming solution is then very
simple, a constant in τ:

fðτ; pT; w2Þ ¼ fðτ0; pT; wÞ≡ f0ðpT; w2Þ:

We are now in a position to calculate the free-streaming
solution for the stress-energy tensor from its classical
kinetic definition:

Tμν ¼ 1

ð2πÞ3
Z

d3p
ε

pμpνf

⇒

8>>><>>>:
E ¼ uμuνTμν ¼ 1

ð2πÞ3
R d3p

ε
v2

τ2
f;

PT ¼ 1
2
ðbiμbiν þbjμbjνÞTμν ¼ 1

ð2πÞ3
R d3p

ε
p2
T
2
f;

PL ¼ bημbηνTμν ¼ 1
ð2πÞ3

R d3p
ε

w2

τ2
f;

ðA6Þ

and by changing the integration variables

w ¼ zε − tpz ⇒ dw ¼
				 − v

ε

				dpz ⇒
dpz

ε
¼ dw

v
; ðA7Þ

one obtains

E ¼ 1

ð2πÞ3
Z

d2pT
dw
v

v2

τ2
f0ðpT; w2Þ

¼ 1

ð2πÞ3τ
Z

d2pTdw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

T þ
w2

τ2

s
f0ðpT; w2Þ; ðA8Þ

and

PT ¼ 1

ð2πÞ3
Z

d2pT
dw
v

p2
T

2
f0ðpT; w2Þ ¼ 1

ð2πÞ3τ
Z

d2pTdwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

T þ w2=τ2
p p2

T

2
f0ðpT; w2Þ;

PL ¼ 1

ð2πÞ3
Z

d2pT
dw
v

w2

τ2
f0ðpT; w2Þ ¼ 1

ð2πÞ3τ
Z

d2pTdwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

T þ w2=τ2
p w2

τ2
f0ðpT; w2Þ: ðA9Þ

The change of variable introduces an explicit dependence
on the proper time in the integral.
Equations (A8) and (A9) are the classical relativistic

expressions for the energy density and pressures of a free-
streaming gas and coincide with the leading terms obtained
in Sec. V with the substitution w → μ and with the initial
distribution equal to the local equilibrium Bose-Einstein
distribution function f0 ¼ n0B.

APPENDIX B: MINKOWSKI VACUUM
EXPECTATION VALUES

In order to calculate the scalars ΓγðτÞM of the stress-
energy tensor in the Minkowski vacuum, we take advantage
of it being annihilated by all the bbp’s as it is clear from

Eq. (23). Hence, the only product of bbp and bb†p with
nonvanishing expectation value with respect to j0Mi isbbpbb†p0 , and using the commutation relations (22),

h0Mjbbpbb†p0 j0Mi ¼ h0Mjbb†p0bbpj0Mi þ h0Mj½bbp;bb†p0 �j0Mi
¼ δ2ðpT − p0

TÞδðμ − μ0Þ: ðB1Þ

We can now replace these VEV’s to obtain ΓγðτÞM in the
stress-energy tensor expression contracted with suitable
vectors. For instance, for the energy density, we can use
Eq. (49) by simply replacing the local equilibrium expect-
ation values with those in the Minkowski vacuum and
obtain

EðτÞM ≡ h0MjbTμνuμuνj0Mi ¼
Z

d2pTdμ
4ð4πÞ2 ðj∂τhj2 þ ω2jhj2Þ

¼
Z

d2pTdμ
ð2πÞ3τ ω

K
2
: ðB2Þ

Similarly, for the pressures, one finds

ΓγðτÞM ¼
Z

d2pTdμ
ð2πÞ3τ ω

Kγ

2
: ðB3Þ

APPENDIX C: ASYMPTOTICS

It is interesting to study the behavior of the stress-energy
tensor and related quantities for late times τ. With
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hðτÞ ¼ −ieπ2μHð2Þ
iμ ðmTτÞ; ðC1Þ

one can make use of the asymptotic expansion for large
arguments [23]

Hð2Þ
ν ðxÞ∼

ffiffiffiffiffi
2

πx

r
e−iðx−π

2
ν−π

4
ÞX

n

1

ð2ixÞn
Γðνþ1=2þnÞ
n!Γðνþ1=2−nÞ ; ðC2Þ

which is valid for ReðνÞ > −1=2 and j argðxÞj < π. Making
use of the property zΓðzÞ ¼ Γðzþ 1Þ, substituting x ¼ mTτ
and ν ¼ iμ, and plugging this into Eq. (C1) we get

hðτÞ ∼
ffiffiffiffiffiffiffiffiffiffiffi
−2i
πmTτ

s
e−imTτ

X
n

1

ð2imTτÞn
ðiμþ 1

2
− nÞð2nÞ
n!

;

valid for large mTτ. Similarly, using the exact relation [23]

z∂zH
ð2Þ
ν ðzÞ ¼ νHð2Þ

ν ðzÞ − zHð2Þ
νþ1ðzÞ;

along with the expansion (C2), one obtains the expansion
for the proper-time derivative ∂τh:

∂τhðτÞ ∼ −imT

ffiffiffiffiffiffiffiffiffiffiffi
−2i
πmTτ

s
e−imTτ

�
1þ

X
n>0

1

ð2imTτÞn
�
−2iμ

ðiμþ 3
2
− nÞð2n−2Þ

ðn − 1Þ! þ ðiμþ 3
2
− nÞð2nÞ
n!

��
:

In particular, retaining the terms up to first order (i.e., next-
to-leading order) in mTτ we get

hðτÞ ≃
ffiffiffiffiffiffiffiffiffiffiffi
−2i
πmTτ

s
e−imTτ

�
1 −

i
2mTτ

�
iμ −

1

2

��
iμþ 1

2

��

¼
ffiffiffiffiffiffiffiffiffiffiffi
−2i
πmTτ

s
e−imTτ

�
1þ i

1þ 4μ2

8mTτ

�
;

∂τhðτÞ ≃ −imT

ffiffiffiffiffiffiffiffiffiffiffi
−2i
πmTτ

s
e−imTτ

�
1 − i

3 − 4μ2

8mTτ

�
:

Feeding the above expansions into the definitions (52) and
(53), we obtain

Kγ ≃
m2

T þ γ

2mTω
; ðC3Þ

Λγ ≃
1

2mTω
e−2imTτ

�
−m2

T

�
1 − i

3 − 4μ2

4mTτ

�
þ γ

�
1þ i

1þ 4μ2

4mTτ

��
: ðC4Þ

The rest is of the order of 1=½mTωðmTτÞ2� for Kγ and
expð−2imTτÞ=½mTωðmTτÞ2� for Λγ.
Equations (C3) and (C4) are very useful to study the

large pT (hence, largemT) behavior as well as the long-time
behavior. For large pT, Eq. (C3) implies that K → 1, hence
to leading order K − 1 is simply zero. However, from
Eq. (C4) and the exact relation (34) one can obtain the
terms up to second order. Indeed, for γ ¼ ω2, in the large
mT limit,

Λ ≃
1

2mTτ
e−2imTτ; ðC5Þ

hence,

jΛj ¼ sinh 2Θ ≃ 2Θ ¼ 1

2mTτ
; ðC6Þ

and in the limit of large mT

K − 1 ¼ cosh 2Θ − 1 ≃
ð2ΘÞ2
2

≃
1

8m2
Tτ

2
: ðC7Þ

Similarly, the leading expressions at late time τ → ∞ can
be derived. By using the asymptotic expansions (C3) and
(C4) and expanding ωðτÞ and γðτÞ for large τ one obtains

Kγ ≃
m2

T þ γ̃

2m2
T

;

Λγ ≃
1

2m2
T
e−2imTτ

�
γ̃ −m2

T þ i
m2

Tð3 − 4μ2Þ þ γ̃ð1þ 4μ2Þ
4mTτ

�
;

ðC8Þ

at first order in 1=τ, with γ̃:

γ̃ ¼ lim
τ→∞

γ ¼

8>><>>:
m2

T; for E;

−m2; for PT;

−m2
T; for PL:

ðC9Þ

Differently from Kγ , the Λγ function is highly oscillatory
in the τ → ∞ limit. In order to prove that its contribution to
kinematic integrals such as in Eqs. (64), (66) vanishes at the
leading order of the asymptotic expansion, it is necessary
remember the limit, valid in the distribution senseZ

dx fðxÞ ¼ 1 ⇒ lim
ε→0

1

ε
fðx=εÞ ¼ δðxÞ: ðC10Þ
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The real and imaginary part of the phase in (C8) read

cosð2mTτÞ; sinð2mTτÞ; ðC11Þ

sinceZ
∞

−∞
dx

sinðxÞ
x

¼ π ⇒ lim
ε→0

�
1

π

sinðx=εÞ
x

�
¼ δðxÞ; ðC12Þ

Z
∞

−∞
dx cosðx2Þ ¼ ffiffiffi

π
p

⇒ lim
ε→0

�
1

ε
ffiffiffi
π

p cos

��
x
ε

�
2
��

¼ δðxÞ;

ðC13Þ

and one can rewrite both the real and imaginary part of the
phase as a delta family

lim
τ→∞

sinð2mTτÞ ¼ 2πmTδð2mTÞ; ðC14Þ

lim
τ→∞

cosð2mTτÞ¼ lim
τ→∞

ffiffiffi
π

τ

r
δð

ffiffiffiffiffiffiffiffiffi
2mT

p
Þ¼ lim

τ→∞
2

ffiffiffiffiffiffiffiffiffi
πmT

τ

r
δð2mTÞ;

ðC15Þ

In both cases, for massive fields, the Dirac delta argument
mT ¼ 0 is outside the physical range and any integration in
pT yields zero.
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