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We study the combined effects of a finite volume and an external magnetic field on the charged two-pion
correlation function. For these purposes, we consider a dilute system of pions where the finite volume
effects are introduced computing the pion wave functions with rigid boundary conditions in a cylindrical
geometry in the presence of a uniform and constant magnetic field. We find that for slow pions, namely, for
the case where the average pair momentum is small, the correlation function shows a large distortion, as
opposed to the case where the average pair momentum is large. For a finite density system, the intercept
of the correlation function is reduced, signaling the increasing importance of the pion ground state
contribution. An increasing strength of the magnetic field reduces the importance of the ground state and
the intercept becomes closer to 2.
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I. INTRODUCTION

The properties of relativistic pion systems have attracted
attention over several years in different contexts, ranging
from the early universe [1,2] and astrophysics [3,4] to
relativistic heavy-ion collisions [5–7]. One of the main
motivations has been the search for conditions that can lead
to the production of a Bose-Einstein condensate (BEC) and
its possible signatures [8–22]. It has been recently shown
that if the system can be regarded as having a finite volume,
the relative contribution from the condensate state to the
system properties is enhanced [23,24]. The fireball pro-
duced during the evolution of a heavy-ion reaction can be
regarded as providing this finite volume. More recently, it
has also been realized that a magnetic field of considerable
strength, albeit short lived, can be produced in semicentral
heavy-ion collisions [25–27]. A natural question that
emerges is what is the effect of the magnetic field produced
in this kind of collisions on the formation of the condensate
in a finite volume system. This question has been partially
addressed in Ref. [28] where we found that the critical
temperature for the formation of the condensate, when a

magnetic field is present, turns out to be larger than the one
obtained by considering only finite size effects.
Experimental signatures of pion condensation are more

easily accessible from measurements of two-pion correla-
tion functions [29]. The height of the intercept parameter
can be linked to the fraction of pions that are found in the
ground state. Recall that if a sizable fraction of pions is
condensed, these can be regarded as being emitted from the
fireball in a coherent state. Therefore, their contribution can
be singled out from the contribution of the rest of the states.
The presence of a condensate shows itself in terms of an
intercept of the two-pion correlation function smaller than 2
at vanishing relative momentum. Finite size effects on the
height of this intercept, when a sizable fraction of pions are
in the lowest energy state, have been studied in Ref. [30]. In
this work we include the effects of a magnetic field and
study how this intercept varies, when the field strength, the
temperature, the density and the system size are varied. We
consider a nonequilibrium chemical potential to account for
a given number of charged pions [7]. The work is organized
as follows: In Sec. II we formulate the way the finite
volume pion states can be obtained in the presence of a
magnetic field. This is accomplished by finding the
solutions of the Klein-Gordon equation with rigid boun-
daries, minimally substituting the canonical by the kin-
ematical momentum. We work within a cylindrical finite
volume to allow for different transverse and longitudinal
(with respect to the magnetic field) dimensions. Armed
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with the explicit eigenfunctions, in Sec. III we study the
magnetic field and finite volume combined effects on the
two-pion correlation function. Finally, we summarize and
conclude in Sec. IV.

II. TWO-PION CORRELATION FUNCTION
IN A FINITE VOLUME AND WITHIN A

MAGNETIC FIELD

We study a dilute system of charged pions contained
within a cylindrical finite volume of radius R and height L,
immersed within a constant magnetic field B⃗ in the ẑ
direction. We include the magnetic field effects by means of
the minimal substitution p⃗ → p⃗þ qA⃗, where q is the pion

charge. Working in the symmetric gauge, A⃗ ¼ jB⃗j
2
ð−y; x; 0Þ,

the system of pions can be described in terms of the Klein-
Gordon equation

�
−
�
i
∂
∂t
�

2

þ ½−i∇þ qA⃗�2 þm2

�
ψðr⃗; tÞ ¼ 0; ð1Þ

where m is the pion mass. To implement the finite volume
effects, we look for the stationary states subject to the
boundary conditions

ψðr ¼ R; tÞ ¼ 0; ð2Þ

ψ
�
z ¼ �L

2
; t
�
¼ 0: ð3Þ

The stationary states are given by

ψnljðr; θ; z; tÞ ¼
Anljffiffiffiffiffiffiffiffiffiffiffi
2Enlj

p e−iEnljte−ilθ cos ðkjzÞ

× e−
qBr2

4 rl1F1

	
−anl; lþ 1;

qBr2

2



; ð4Þ

where the quantized momentum in ẑ direction is defined as

kj ≡ ð2jþ 1Þπ
L

ð5Þ

with j; l ¼ 0; 1; 2…, and where 1F1 is a confluent hyper-
geometric function. Notice that these states correspond
to the well-known solution for a harmonic oscillator with
rigid boundary conditions (see for example Ref. [31]).
The parameters anl are obtained from the solutions of the
boundary condition

1F1

	
−anl; lþ 1;

qBR2

2



¼ 0; ð6Þ

and are related to the energy eigenvalues Enlj by

anl ¼
E2
nlj −m2 − k2j

2qB
−
2lþ 1

2
: ð7Þ

Level quantization in the ẑ direction corresponds to the
quantization of a one-dimensional rigid box of length L and
is described by the quantum number j. Level quantization
in the x̂ − ŷ direction is achieved from the solutions of
Eq. (6) and accounts both for the presence of the magnetic
field as well as for the finite size of the cylinder of radius R.
The energy in the previous equation can be written then in
terms of the parameter anl

E2
nlj ¼ k2j þm2 þ qBð2lþ 1þ 2anlÞ; ð8Þ

from where the Landau levels can be identified in terms of
the quantum numbers n and l. The quantities Anlj in Eq. (4)
are the normalization constants and are obtained from the
condition

Z
d3rψ�

nljðr⃗; tÞ
∂↔
∂tψnljðr⃗; tÞ ¼ 1: ð9Þ

Equation (4), together with the energy eigenvalues obtained
from Eq. (7), constitute the set of properly normalized
eigenfunctions in terms of which the various multiparticle
distributions can be expressed.
In order to describe the system near equilibrium, we

consider a thermal statistical distribution in the grand
canonical ensemble. Following Ref. [30], the correspond-
ing occupation number Nλ for a given state is

Nλ ¼
1

expðEλ − μÞ=T − 1
; ð10Þ

where λ represents the set of quantum numbers fn; l; jg,
T is the system temperature and μ the chemical potential
associated to the pion number density. The situation we
consider corresponds to a charge balanced system with
equal numbers of positive and negative pions. Since from
the strong interaction perspective, there is no difference
between positive and negative charge pions, both kinds of
particles need to be considered as populating the quantum
levels, given that in the absence of particle interactions
other than with the external field (dilute system approxi-
mation), the magnetic effects enter with the absolute
value of the particle’s charge. Nevertheless, the correlation
function refers only to indistinguishable particles, that is
either positive or negative charged pions. Notice that since
the chemical potential does not correspond to a strictly
speaking conserved charge, it cannot be included in the
Hamiltonian and thus in the Lagrangian in the same way
that a conserved charge would be included. In this sense,
our chemical potential corresponds to an effective descrip-
tion of the (in average) approximately conserved number of
charged pions.
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Let ψλðp⃗Þ denote the Fourier transformed wave function
for the state with quantum numbers λ, namely,

ψλðp⃗Þ ¼
Z

d3re−ip⃗·r⃗ψλðr⃗Þ: ð11Þ

Accounting for the normalization in Eq. (4), the single-pion
momentum distribution can be written as

P1ðp⃗Þ≡ d3N
d3p

¼ 1

ð2πÞ3
X
λ

2EλNλψ
�
λðp⃗Þψλðp⃗Þ: ð12Þ

The total number of pions can be shown to be obtained
from

N ¼
X
λ

1

expðEλ − μÞ=T − 1
: ð13Þ

For a totally chaotic pion source, the two-pion distribu-
tion is given by

P2ðp⃗1; p⃗2Þ≡ d6N
d3p1d3p2

¼ P1ðp⃗1ÞP1ðp⃗2Þ

þ
���� 1

ð2πÞ3
X

λ
2EλNλψ

�
λðp⃗1; tÞψλðp⃗2; tÞ

����
2

;

ð14Þ

from where the two-pion correlation function C2 can be
expressed in terms of the one and two-pion momentum
distributions as

C2ðp⃗1; p⃗2Þ ¼
P2ðp⃗1; p⃗2Þ

P1ðp⃗1ÞP1ðp⃗2Þ

¼ 1þ jPλEλNλψ
�
λðp⃗1Þψλðp⃗2Þj2P

λEλNλjψλðp⃗1Þj2
P

λEλNλjψλðp⃗2Þj2
:

ð15Þ

When the pion source is not totally chaotic, which
happens when the fraction of pions in the ground state
is not negligible, we must separate the contribution of the
ground state to the correlation function [30] as

C2ðp⃗1;p⃗2Þ¼1þ jPλ≠λ0EλNλψ
�
λðp⃗1Þψλðp⃗2Þj2P

λEλNλjψλðp⃗1Þj2
P

λEλNλjψλðp⃗2Þj2

þ jEλ0Nλ0ψ
�
λ0
ðp⃗1Þψλ0ðp⃗2Þj2P

λEλNλjψλðp⃗1Þj2
P

λEλNλjψλðp⃗2Þj2
; ð16Þ

where λ0 represents the set of quantum numbers corre-
sponding to the ground state. Notice that when pions
coming from the ground state are treated separately from
the ones coming from the excited states, the correlation
function C2ðp⃗1; p⃗2Þ fails to reach its maximum possible

value C2ð0Þmax ¼ 2 as the ground state occupation
increases [30]. This happens since for q⃗ ¼ 0, the numerator
and denominator in the second and third terms on the right-
hand side of Eq. (16) are no longer equal, as they were in
Eq. (15) for the case of a totally chaotic source.
The explicit expression for the Fourier transformed wave

function is

ψλðp⃗Þ ¼ ð−iÞle−ilθi ð2πÞ
2Rlþ2Aλffiffiffiffiffiffiffiffi
2Eλ

p ð−1Þjð2jþ 1ÞL cosðLpz
2
Þ

ð2jþ 1Þ2π2 − L2p2
z

×
Z

1

0

dxxlþ1e−
qBR2x2

4 JlðpRxÞ

× 1F1

	
−anl; lþ 1;

qBR2

2
x2


; ð17Þ

where in cylindrical coordinates p⃗ ¼ ðp; θ; pzÞ.
With the expressions for the eigenfunctions in momen-

tum space at hand, we can study the combined effects of the
magnetic field and finite volume on the correlation func-
tion. We now proceed to show these properties.

III. MAGNETIC FIELD AND FINITE
VOLUME EFFECTS

The two-pion correlation function C2 depends on the
six kinematical variables corresponding to the two-pion
momenta as well as parametrically on μ, T, jqBj, R and L.
The properties of this correlation function can be more
easily studied by setting particular configurations for
these kinematical variables. In this work we consider the
behavior of C2 as a function of the magnitudes of the
momentum difference, in the transverse q ¼ jp1 − p2j and
longitudinal qz ¼ jpz1 − pz2j directions, and for fixed
values of the average transverse P ¼ 1

2
ðp1 þ p2Þ and

longitudinal Pz ¼ 1
2
ðpz1 þ pz2Þ momenta, for different

values of the external parameters.
In order to make contact with the previous findings of

Ref. [30], we first consider the case when jqBj ¼ 0. This
can be accomplished from Eq. (4) taking the limit jqBj → 0
using the identity [32]:

lim
α→∞

1F1ðα; b;− z
αÞ

ΓðbÞ ¼ z
1
2
ð1−bÞJb−1ð2

ffiffiffi
z

p Þ; ð18Þ

whereby we obtain

ψnljðr⃗; tÞ ¼
Ãλffiffiffiffiffiffiffiffiffiffiffi
2Enlj

p e−iEnljte−ilθ cos

�ð2jþ 1Þπ
L

z

�

× Jl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
nlj −m2 −

ð2jþ 1Þ2π2
L2

r
r

�
; ð19Þ

where Ãλ is computed using the normalization condition in
Eq. (9), Jl is a Bessel function and the energy eigenvalues
are obtained from the condition
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Jl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
nlj −m2 −

ð2jþ 1Þ2π2
L2

r
R

�
¼ 0: ð20Þ

Notice that Eq. (19) can also be directly obtained from
Eq. (1), by setting the vector potential A⃗ ¼ 0, namely, by
directly solving the Klein-Gordon equation in the absence
of an external field, albeit still obeying cylindrical boun-
dary conditions.

A. Zero chemical potential

In order to have a benchmark reference to compare
against the case describing a finite density pion system, we
hereby first consider the case where the number of pions
is not fixed and thus of a vanishing chemical potential.
Figure 1, shows the behavior of C2ðqÞ for fixed values of
P ¼ 500 MeV, pz1 ¼ pz2 ¼ 0 and θ2 ¼ θ1, taking
R ¼ 5 fm and L ¼ 10 fm and for different magnetic field
strengths, qB ¼ 0; 0.5 m2; m2; 1.5 m2; and 2 m2. The tem-
perature and chemical potential have been held fixed to
T ¼ 100 MeV and μ ¼ 0, respectively. Notice that changes
on the width of the correlation function start appearing only
when jqBj≳m2.
Figures 2 and 3 show the behavior of C2ðqÞ for different

average momenta and for the same set of parameters as in
Fig. 1 for a magnetic field strength jqBj ¼ 0 and
jqBj ¼ 2 m2, respectively. Notice that in both cases the
width of the correlation function is a monotonically
decreasing function of P. A finite value of the field strength
increases the width of the correlation function but does not
change its monotonically decreasing trend with P.
Figures 4 and 5 show the behavior of C2ðqÞ again for

different average momenta, pz1 ¼ pz2 ¼ 0, θ2 ¼ θ1, T ¼
100 MeV and μ ¼ 0, for magnetic field strengths jqBj ¼ 0

and jqBj ¼ 2 m2, respectively, but this time for R ¼ 10 fm
and L ¼ 5 fm, namely, the inverse hierarchy as for the case
of Figs. 2 and 3. Notice that when jqBj ¼ 0, the width of
the correlation function barely changes, although this time
it is not anymore a monotonic function of P. The width
starts growing to then decrease as a function of P. The
situation changes for the case when jqBj ¼ 2m2 where the
magnetic field produces the width to first decrease to then
increase and decrease again as P increases. We thus see that
when the cylindrical box length along its symmetry axis
(which is the same as the direction of the field) is shorter
than the radius, the magnetic field has a more dramatic

FIG. 1. C2ðqÞ for fixed values of P ¼ 500 MeV, pz1 ¼pz2 ¼ 0
and θ2 ¼ θ1, R ¼ 5 fm and L ¼ 10 fm. In all cases the temper-
ature and chemical potential have been held fixed to T ¼
100 MeV and μ ¼ 0. Notice that the increment of the correlation
function width is appreciable only for the highest considered field
strength.

FIG. 2. C2ðqÞ for fixed values of jqBj ¼ 0, pz1 ¼ pz2 ¼ 0 and
θ2 ¼ θ1, R ¼ 5 fm and L ¼ 10 fm. In all cases the temperature
and chemical potential have been held fixed to T ¼ 100 MeV and
μ ¼ 0. Notice that the width of the correlation function is a
monotonically decreasing function of P.

FIG. 3. C2ðqÞ for fixed values of jqBj ¼ 2m2, pz1 ¼ pz2 ¼ 0
and θ2 ¼ θ1, R ¼ 5 fm and L ¼ 10 fm. In all cases the temper-
ature and chemical potential have been held fixed to T ¼
100 MeV and μ ¼ 0. Notice that the width of the correlation
function is a monotonically decreasing function of P, however,
for each of the considered values of P, the width is larger than for
the corresponding case for jqBj ¼ 0.

AYALA, BERNAL-LANGARICA, and VILLAVICENCIO PHYS. REV. D 105, 056001 (2022)

056001-4



effect on the width. For pions with a smaller P the magnetic
field produces a larger distortion of the correlation function.
This behavior signals that slower pions experience the
field effects for a longer time, inducing a change on their
individual directions of motion and thus affecting more
significantly the correlation as a function of q. It is hereby
pertinent to mention that in a peripheral relativistic heavy-
ion collision, the case where L > R is a closer description
of the ellipsoid that corresponds to the geometry of
interaction region than the case R > L. This happens
because on average, the magnetic field is directed along
the normal to the reaction plane and thus along the
semimajor axis of this ellipsoid. We thus continue explor-
ing the properties of the correlation function for
μ ≠ 0 for the case L > R.

B. Fixed pion number

Figures 6, 7 and 8 show the behavior ofC2ðqÞ for different
magnetic field strengths jqBj ¼ 0;0.5m2;m2;1.5m2;2m2,
pz1 ¼ pz2 ¼ 0, θ2 ¼ θ1, T ¼ 100 MeV and N ¼ 320, for
different average pairmomentaP ¼ 300, 500, 700MeV.The
chemical potential has been calculated for each case by fixing
N ¼ 320 [28] from Eq. (13). Notice that the energy eigen-
values Eλ appearing in Eq. (10) are computed from the
solutions of Eq. (6). When the particle number is fixed, the
chemical potential adjusts itself to take on values such that,
for the given temperature and system size, each energy level
contributeswith a finite occupation number such that the sum
of each level contribution makes up for the total number of
particles. When the system is dense, the difference between
the ground state energy E0 and the chemical potential

FIG. 6. C2ðqÞ for fixed values of pion multiplicity N ¼ 320,
pz1 ¼ pz2 ¼ 0, θ2 ¼ θ1 ¼ 0, R ¼ 5 fm, and L ¼ 10 fm. In all
cases the temperature and the pair average momenta have been
held fixed to T ¼ 100 MeV and P ¼ 300 MeV, respectively.

FIG. 7. C2ðqÞ for fixed values of pion multiplicity N ¼ 320,
pz1 ¼ pz2 ¼ 0, θ2 ¼ θ1 ¼ 0, R ¼ 5 fm, and L ¼ 10 fm. In all
cases the temperature and the pair average momenta have been
held fixed to T ¼ 100 MeV and P ¼ 500 MeV, respectively.

FIG. 4. C2ðqÞ for fixed values of jqBj ¼ 0, pz1 ¼ pz2 ¼ 0 and
θ2 ¼ θ1, R ¼ 10 fm and L ¼ 5 fm. In all cases the temperature
and chemical potential have been held fixed to T ¼ 100 MeV and
μ ¼ 0. Notice that the width of the correlation function is not a
monotonic function of P.

FIG. 5. C2ðqÞ for fixed values of jqBj ¼ 2 m2, pz1 ¼ pz2 ¼ 0
and θ2 ¼ θ1, R ¼ 10 fm and L ¼ 5 fm. In all cases the temper-
ature and chemical potential have been held fixed to T ¼
100 MeV and μ ¼ 0. Notice that the width of the correlation
function is not a monotonic function of P.
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becomes small but it never vanishes. This precludes the
divergence of the ground state occupation number.
As before, pions with smaller P show a correlation

function with a more significant distortion. For small values
of the magnetic field, this distortion shows up as an
oscillation pattern that extends to larger values of q.
These oscillations fade away for larger values of jqBj,
however the distortion of the correlation function shows as
an increase of the width and the intercept value. For finite
values of jqBj, the latter effects are more significant for low
momentum than for higher values or P. In classical terms,
this behavior can be understood as coming from the relation
between the cyclotron radius R0 for a charged particle with
momentum p subject to the effect of a magnetic field jqBj,
given by R0 ¼ p=jqBj. Although in the configurations we
have studied, p starts off in the radial direction, for low
momentum pions the original direction of motion is bound
to be changed to start orbiting the field lines. When R0 < R,
that is, for slow pions, this change of direction produces
larger effects. These properties can be summarized as
follows: for a relatively low temperature and small values
of jqBj the population of the ground state is significant
whereas for the same temperature, increasing values of jqBj
contribute to decrease the importance of this state. For finite
values of the external field, low momentum pions are
significantly more affected than fast moving ones. Notice
that C2ðq ¼ 0Þ is a nonmonotonic function of jqBj. For the
case of pions with larger P, this nonmonotonic behavior is
less pronounced but still persists. This effect is in agree-
ment with the findings in Ref. [33] where it is shown that
when external effects are included, distortions of the
correlation function are always more significant for slower
pions. In all the cases discussed C2ð0Þ < 2, although for
large values of jqBj, C2ðq ¼ 0Þ → 2. In account of
Eq. (16), this shows that the condensate forms but tends
to be destroyed for large magnetic field intensities.

Figure 9 corresponds to the case shown in Fig. 7 but
considering a higher temperature T ¼ 150 MeV. As in
the previous cases, the chemical potential has been calcu-
lated for each value of the magnetic field strength by fixing
N ¼ 320 from Eq. (13). Notice that the nonmonotonic
behavior of C2ðq ¼ 0Þ as a function of jqBj is less evident
but still persists. This happens because for higher temper-
atures, the contribution from the condensate becomes
correspondingly less prominent. This is illustrated in
Fig. 10 where we show C2ðq ¼ 0Þ as a function of the
field strength for two temperatures T ¼ 100, 150 MeV
and P ¼ 700 MeV.
Overall, for the same number of pions in a given volume,

for increasing strengths, the magnetic field produces that

FIG. 8. C2ðqÞ for fixed values of pion multiplicity N ¼ 320,
pz1 ¼ pz2 ¼ 0, θ2 ¼ θ1 ¼ 0, R ¼ 5 fm and L ¼ 10 fm. In all
cases the temperature and the pair average momenta have been
held fixed to T ¼ 100 MeV and P ¼ 700 MeV, respectively.

FIG. 9. C2ðqÞ for fixed values of pion multiplicity N ¼ 320,
pz1 ¼ pz2 ¼ 0, θ2 ¼ θ1 ¼ 0, R ¼ 5 fm and L ¼ 10 fm. In all
cases the temperature and the pair average momenta have been
held fixed to T ¼ 150 MeV and P ¼ 500 MeV, respectively.

FIG. 10. Correlation function intercept C2ðq ¼ 0Þ as a function
of the field intensity for fixed values of the pion multiplicity
N ¼ 320,pz1 ¼ pz2 ¼ 0, θ2 ¼ θ1 ¼ 0,R ¼ 5 fm andL ¼ 10 fm.
Notice that in both cases the intercept is not a monotonic function
of the field intensity and tends to 2 for the largest field
strengths shown.
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the intercept of the correlation function becomes closer
to 2. We thus find that a large magnetic field produces a
reduction of the contribution to the correlation function
from the fraction of pions coming from the ground state.
These findings are in agreement with the results of
Ref. [28], whereby the presence of a magnetic field
increases the critical temperature for the formation of the
condensate in a finite volume. In all the studied cases, the
destruction of the condensate is not sudden neither is
monotonic as a function of the field intensity.

IV. SUMMARY AND CONCLUSIONS

In summary, we have studied the combined effects of a
finite volume and magnetic field on the charged, two-pion
correlation function. To include these effects, we have
considered the dilute limit of the pion system computing
their wave functions in the presence of the magnetic field
assuming cylindrical symmetry with rigid boundary con-
ditions. To include the effects of a finite density, we
introduce a chemical potential associated with the approx-
imately (in average) conserved charged pion number. For a
vanishing magnetic field and when the temperature is
sufficiently small and the pion number is fixed (and thus
the system is described with a nonvanishing chemical
potential), C2ð0Þ < 2. The field greatly distorts the corre-
lation function for pions whose average pair momentum is
small. We interpret this behavior as coming from the
deflection that pions experience due to the magnetic field,
whose effect is larger for small pion momentum and more
intense field strengths. Increasing values of the magnetic
field reduce the contribution of the ground state producing
that, for a finite density pion system, an intercept of the
correlation function is closer to 2.
Recall that for finite volume systems, the condensate

forms for relatively large values of the chemical potential
and for low temperatures and small volumes. Unlike the
infinite volume case, where condensation occurs when the

chemical potential reaches the pion mass (see Ref. [7]), in
the finite volume case, there is not a precise critical
temperature. As we have shown, the condensate formation
is enhanced in the absence of a magnetic field, due to finite
size effects. The increasing importance of the pion ground
state contribution is signaled by the fact that C2ð0Þ < 2.
This behavior has already been found in Ref. [30].
Although not monotonically, the magnetic field tends to
destroy the condensate.
Our findings emphasize that a magnetic field, such as the

one produced in the early stages of a relativistic heavy-ion
collision, when properly considered, can distort the corre-
lation function, particularly for low momentum charged
pions. This distortion may be missed in analysis that
measure the correlation function for pions within a given
solid angle that may not correspond to the ones carrying the
original quantum correlations, due to the bending of the
trajectory caused by the magnetic field. This effect can
exclude from this solid angle some of the pions originally
coming from regions close in phase space. Consequences
of this effect as well as of the possible backreaction currents
produced by the charged pions in response to the external
field, including a possible charged imbalanced pion system,
are currently being pursued and will be reported elsewhere.
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