
Investigation of the Lorentz invariance violation in two-neutrino
double-beta decay

S. A. Ghinescu ,1,2,3 O. Niţescu ,1,2,3 and S. Stoica 1,*

1International Centre for Advanced Training and Research in Physics,
P.O. Box MG12, 077125-Măgurele, Romania

2“Horia Hulubei” National Institute of Physics and Nuclear Engineering,
30 Reactorului, P.O. Box MG-6, RO-077125, Bucharest-Măgurele, Romania

3Faculty of Physics, University of Bucharest,
405 Atomiştilor, P.O. Box MG-11, RO-077125, Bucharest-Măgurele, Romania

(Received 3 February 2022; accepted 8 March 2022; published 30 March 2022)

We make a comprehensive investigation of the Lorentz invariance violation (LIV) effects that may occur in
two-neutrino double-beta (2νββ) decay for all the experimentally interesting nuclei. We deduce the formulas
for the LIV deviations and provide single and summed energy electron spectra and angular correlation between

electrons with and without LIV contributions to be used for constraining the LIV coefficient a
∘ ð3Þ
of . First, we

confirm the shifting of the electron spectra to higher electron energies due to LIV for all nuclei. Next, we
analyze other LIV signatures that can be used in LIV investigations. Thus, from the comparison of the electron
and angular correlation spectra calculated with the inclusion of the LIV contributions, with their standard
forms, information can be obtained about the strength versus observability of the LIV effects in the current

experimental statistics. Then, we present the alternative method of constraining a
∘ ð3Þ
of from the measurement of

the angular correlation coefficient and estimate the statistics that different double-beta decay experiments
should reach to constrain the LIV coefficient at the level of the current beta decay experiments. We hope that
our work will improve the theoretical support and further stimulate the search for LIV in double-beta decay.

DOI: 10.1103/PhysRevD.105.055032

I. INTRODUCTION

Investigation of the Lorentz invariance violation in 2νββ
decay is an interesting research topic that is currently
included in the study of this process. The theoretical
framework underlying the estimation of the Lorentz invari-
ance violation (LIV) effects in various physical processes is
the Standard Model extension (SME) theory, which incor-
porates Lorentz invariance violating operators of arbitrarily
large dimension [1–4]. Of particular interest is the minimal
SME, where LIV effects can occur only through operators
of mass dimension four or less [4], which represents the
theoretical background of many investigations, including
those in the neutrino sector. The operators that couple to
neutrinos can affect the neutrino oscillations, neutrinos
velocity, and spectra of the electrons emitted in beta and
double-beta decays [5–10].
The effects of LIV in the neutrino sector have been

searched for first in neutrino oscillation experiments such as
Double Chooz [11], MiniBooNE [12], IceCube [13],
MINOS [14], and Super-Kamiokande [15] resulting in
constraints of the LIV coefficients that control different

couplings. However, according to the SME theory, the LIV
effects in the neutrino sector can also be induced by the so-
called oscillation-free operators of dimension three (counter-
shaded effects), which do not affect the neutrino oscillations
and hence cannot be measured in these experiments. They
are controlled by an oscillation-free (of) coefficient with four
components, one timelike a

∘ ð3Þ
of and three spacelike ðað3Þof Þ1m,

withm ¼ 0;�1. In particular, the LIVeffects induced by the
isotropic component of the countershaded operator can be
searched for in double-beta decay (DBD) experiments. This
is because, in these experiments, the neutrinos are not
measured, and only a global effect given by neutrinos of
all orientations can be detectable [10]. LIV signatures have
recently been searched for in DBD experiments such as EXO
[16], GERDA [17], AURORA [18], NEMO 3 [19,20],
CUORE [21,22], and CUPID-0 [23], and the nonobservation

of the LIV effects resulted in constraints on the a
∘ ð3Þ
of

coefficient. These investigations were based, until recently,
on predictions of the electron spectra that were done with
approximate (analytical) Fermi functions built from electron
wave functions (w.f.’s) obtained within a pointlike nucleus
model [24–27] and without screening effects. In two
previous papers, we provided predictions of the single
and summed energy electron spectra and angular correlation
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between electrons as well as their deviations due to LIV
calculated with improved electron w.f.’s [28,29]. First, in
Ref. [28] we compared the results of calculating 2νββ
decay observables using Fermi functions obtained with
different methods. We found that the differences in the
values of the phase-space factors and decay rates calcu-
lated with different Fermi functions can be up to 30%.
Thus, we concluded that the exact electronic w.f. obtained
by numerically solving the Dirac equation in a realistic
Coulomb-type potential, including the finite nuclear size
correction and screening effects, are indicated for the
accurate calculation of the phase-space factors and further
of the electron spectra and their LIV deviations. Next, using
this method, we provided theoretical summed energy elec-
tron spectra for experimental LIV analyses for the 100Mo
nucleus. Then, in Ref. [29], we extended the analysis of the
LIV effects to single-electron spectra and angular correla-
tions between electrons. We discussed the LIV deviations
that may occur in these spectra showing that they manifest
differently for positive and negative values of the LIV

coefficient a
∘ ð3Þ
of and become more pronounced as the electron

energy approaches the Q value. We also proposed an

alternative method to constrain a
∘ ð3Þ
of , namely, through the

measurement of the angular correlation coefficient.
However, our analysis of the LIV effects in [29] was limited
to the 100Mo nucleus, for which the single-state dominance
(SSD) hypothesis (i.e., only the first 1þ state in the
intermediate odd-odd nucleus contributes to the DBD rate
[30–32]) can be used in calculations.
In this paper, we extend the previous analyses to all

nuclei that are currently being studied in DBD experiments,
namely, 48Ca, 76Ge, 82Se, 100Mo, 110Pd, 116Cd, 130Te, 136Xe,
and 150Nd. We deduce the formulas for the LIV deviations
and provide single-electron spectra, summed energy elec-
tron spectra, and angular correlation between electrons
calculated with and without LIV contributions, which are
measured in 2νββ decay. Different from the 100Mo case, in
most other studied nuclei, more 1þ states in the inter-
mediate nucleus with higher energies can also contribute to
the decay rate. This is referred to as higher state dominance
(HSD) hypothesis. For these isotopes, the perturbation of
the single-electron spectra due to LIV may look different,
as we will show. Next, we compare the electron and angular
correlation spectra calculated with the inclusion of the
LIV perturbations with their Standard Model (SM) forms
and discuss the information that can be obtained about
the strength versus observability of the LIV effects in the
current experimental statistics. Finally, we present the

alternative method of constraining a
∘ ð3Þ
of from the measure-

ment of the angular correlation coefficient and estimate the
statistics that different double-beta decay experiments
should reach to constrain this coefficient at the level of
the current beta decay experiments.

II. THEORETICAL FORMALISM

In this section, we deduce the necessary formulas for
the electron spectra, angular correlation, and angular
correlation coefficient as well as for their perturbations
due to Lorentz invariance violation. LIV effects in the
neutrino sector can be estimated taking into account that
the neutrino four-component momentum modifies from
its standard expression qα ¼ ðω;qÞ to qα ¼ ðω;qþ að3Þof −
a
∘ ð3Þ
of q̂Þ [4,9,33]. In 2νββ decay this induces a change in the

total decay rate that can be expressed as a sum of two
terms [9]:

ΓSME ¼ ΓSM þ δΓ; ð1Þ

where ΓSM is the standard decay rate and δΓ is the LIV
contribution. The differential decay rate for the standard
2νββ decay process and for ground states (g.s.’s) to g.s.’s
transitions 0þgs → 0þgs can be expressed as [25,26,34,35]

dΓSM ¼ ½Aþ B cos θ12�wSMdω1dε1dε2dðcos θ12Þ; ð2Þ

where ε1;2 are the electron energies, ω1;2 are the antineu-
trino energies, and θ12 is the angle between the directions
of the two emitted electrons. In what follows, we adopt the
natural units (ℏ ¼ c ¼ 1). Within the SM framework, the
term wSM is given by

wSM ¼ g4AG
4
FjVudj4
64π7

ω2
1ω

2
2p1p2ε1ε2; ð3Þ

where gA is the axial vector constant, GF is the Fermi
coupling constant, Vud is the first element of the Cabibbo-
Kobayashi-Maskawa matrix, and p1;2 are the momenta of
the electrons.
The A and B quantities are products of nuclear matrix

elements (NMEs) and phase-space factors (PSFs) for the
2νββ decay mode. Their explicit expressions can be found in
many papers on DBD (see, for example, Refs. [26,29,34]).
After the integration over the lepton energies, the

derivative of the decay rate with respect to the cosine of
the angle θ12 can be written as a sum between the spectrum
part and angular correlation part:

dΓSM

dðcos θ12Þ
¼ 1

2
ðΓSM þ ΛSM cos θ12Þ

¼ 1

2
ΓSMð1þ κSM cos θ12Þ: ð4Þ

Here, κSM ¼ ΛSM=ΓSM is the angular correlation coefficient.
ΛSM, the angular part of the decay rate, is also affected by
LIV and, like the spectrum part, can be written as a sum
between its SM form and the LIV deviation:
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ΛSME ¼ ΛSM þ δΛ: ð5Þ

We note that after integration over cos θ12, only the spectrum
part gives contribution to the total DBD decay rate. Using the
closure approximation, the 2νββ decay rate can be expressed
in a factorized form [25,26,34]:

Γ
ln 2

¼ g4AjMj2G;
Λ
ln 2

¼ g4AjMj2H; ð6Þ

whereM’s are NMEs which depend on the nuclear structure
of the nuclei involved in the decay, and G and H are PSFs

which include the distortion of the electrons w.f.’s by the
Coulomb field of the daughter nucleus. Since we refer to the
LIV effects induced by the neutrino behavior, only PSFs are
subject to the LIV modifications, namely,

GSME ¼ GSM þ δG; ð7Þ

HSME ¼ HSM þ δH: ð8Þ

The phase-space factors for the 2νββ transitions to final
ground states can be written in a compact form as
follows [29]:

�
GSM

δG

�
¼ Ã2G2

FjVudj2m9
e

96π7 ln 2
1

m11
e

Z
EI−EF−me

me

dε1ε1p1

Z
EI−EF−ε1

me

dε2ε2p2

×
Z

EI−EF−ε1−ε2

0

dω1ω
2
2aðε1; ε2Þ½hKNi2 þ hLNi2 þ hKNihLNi�

� ω2
1

4a
∘ ð3Þ
of ω1

�
; ð9Þ

�
HSM

δH

�
¼ Ã2G2

FjVudj2m9
e

96π7 ln 2
1

m11
e

Z
EI−EF−me

me

dε1ε1p1

Z
EI−EF−ε1

me

dε2ε2p2

×
Z

EI−EF−ε1−ε2

0

dω1ω
2
2bðε1; ε2Þ

�
2

3
hKNi2 þ

2

3
hLNi2 þ

5

3
hKNihLNi

�� ω2
1

4a
∘ ð3Þ
of ω1

�
; ð10Þ

where me is the electron mass.
The quantities hKNi and hLNi are kinematic factors that

depend on the lepton energies (ϵ, ω), the g.s. energy of the
parent nucleus (EI), and an averaged energy of the excited
1þ states in the intermediate nucleus (hENi). Replacing the
energies of the 1þ states with an average energy is called
the closure approximation and allows us to express the
2νββ decay rate as a product of the PSF and NME parts [see
Eq. (6)]. The expressions of the kinematic factors hKNi and
hLNi are given in many papers about the double-beta decay
topic (see, for example, Ref. [25]):

hKNi¼
1

ε1þω1þhENi−EI
þ 1

ε2þω2þhENi−EI
;

hLNi¼
1

ε1þω2þhENi−EI
þ 1

ε2þω1þhENi−EI
: ð11Þ

The energy hENi − EI is determined from the approxi-
mation Ã ¼ ½W0=2þ hENi − EI�, where Ã ¼ 1.12A1=2 (in
MeV) gives the energy of the giant Gamow-Teller reso-
nance in the intermediate nucleus and W0 ¼ EI − EF,
where EF is the g.s. energy of the daughter nucleus. We
note that in many calculations, simplified expressions of
these factors are used, namely, hKNi ≃ hLNi ≃ 2=Ã. With
this approximation, the PSF formulas and their LIV

deviations simplify much, but some accuracy is lost as
well [28].
To provide good predictions for the single and summed

energy electron spectra, angular correlation between elec-
trons, as well as for their deviations due to LIV, accurate
calculations of the GSM and HSM phase-space factors and
their deviations are required. This implies accurate calcu-
lations of the integrals in Eqs. (9) and (10) which contain
the factors aðϵ1; ϵ2Þ and bðϵ1; ϵ2Þ. These quantities are built
with electron w.f.’s obtained by solving the Dirac equation
in a realistic Coulomb-type potential, including the finite
nuclear size and screening effects.
The functions aðε1; ε2Þ and bðε1; ε2Þ are defined as

[28,35]

aðε1; ε2Þ ¼ jα−1−1j2 þ jα11j2 þ jα1−1j2 þ jα−11j2;
bðε1; ε2Þ ¼ −2ℜfα−1−1α�11 þ α−11α1

−1�g ð12Þ

with

α−1−1 ¼ g−1ðε1Þg−1ðε2Þ;α11 ¼ f1ðε1Þf1ðε2Þ;
α−11 ¼ f1ðε1Þg−1ðε2Þ; α−11 ¼ g−1ðε1Þf1ðε2Þ; ð13Þ

where f1ðε1Þ and g−1ðε2Þ are the electron radial wave
functions evaluated on the surface of the daughter nucleus:
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g−1ðεÞ ¼
Z

∞

0

g−1ðε; rÞδðr − RÞdr;

f1ðεÞ ¼
Z

∞

0

f1ðε; rÞδðr − RÞdr; ð14Þ

where R ¼ r0A1=3, r0 ¼ 1.2 fm.
In the PSF evaluation for LIV analyses, we included the

full expressions of hKNi and hLNi from Eq. (12), while in
previous calculations, their simplified expressions men-
tioned above are used. Our method of calculation and the
comparison of the results with other methods are described
in detail in [28], where we showed that using exact electron
w.f.’s instead of approximative ones is more reliable in
calculating the PSF values.
By differentiating the 2νββ decay rate expression versus

the total energy of one electron (ε1), one gets the single-
electron spectrum [26,34,35]:

dΓSME

dε1
¼ C

dGSM

dε1
: ð15Þ

Similarly, one gets the summed energy spectrum of the two
electrons:

dΓSME

dK
¼ C

dGSM

dK
; ð16Þ

where K ≡ ε1 þ ε2 − 2me is the total kinetic energy of the
two electrons. C is a constant including the nuclear matrix
elements.
Also, by differentiating the decay rate versus ε1 and

cos θ12, one gets the angular correlation αSM between the
two emitted electrons:

dΓSM

dε1dðcos θ12Þ
¼ C

dGSM

dε1
½1þ αSM cos θ12�; ð17Þ

where αSM ≡ ðdHSM=dε1Þ=ðdGSM=dε1Þ is the SM angular
correlation.
In [29], we calculated the expressions of these quantities

and their LIV deviations for the single-electron spectrum

dΓSME

dε1
¼ C

dGSM

dε1
ð1þ a

∘ ð3Þ
of χ

ð1Þðε1ÞÞ ð18Þ

and summed energy electron spectrum

dΓSME

dK
¼ C

dGSM

dK
ð1þ a

∘ ð3Þ
of χ

ðþÞðKÞÞ: ð19Þ

Here,

χð1Þðε1Þ ¼
dðδGÞ
dε1

=
dGSM

dε1
ð20Þ

and

χðþÞðKÞ ¼ dðδGÞ
dK

=
dGSM

dK
ð21Þ

are quantities that incorporate the deviations of the electron
spectra from their standard (SM) forms.
The relation between the LIV-perturbed angular corre-

lation and its standard form can be extracted from the
expression of the derivative of the decay rate versus the
total energy of an electron and the cos θ12:

dΓSME

dε1dðcosθ12Þ
¼ C

dGSM

dε1
×

�
1þ a

∘ ð3Þ
of χ

ð1Þðϵ1Þ

þ
�
αSM þ a

∘ ð3Þ
of

dðδHÞ=dε1
dGSM=dε1

�
cosθ12

�
ð22Þ

with

αSME ¼ αSM þ a
∘ ð3Þ
of

dðδHÞ=dε1
dGSM=dε1

: ð23Þ

Differentiating the decay rate expression versus cos θ12,

dΓSME

dðcos θ12Þ
¼ CGSM ×

�
1þ a

∘ ð3Þ
of

δG
GSM

þ
�
κSM þ a

∘ ð3Þ
of

δH
GSM

�
cos θ12

�
; ð24Þ

we can identify (in round brackets) the SME expression of
the angular correlation coefficient κSME and the relation
with its standard form. For an independent treatment with

respect to a
∘ ð3Þ
of , we define ξLIV ≡ δH=GSM in units of

MeV−1. Finally, the LIV-perturbed angular correlation
coefficient can also be written as

κSME ¼ ΛSM

ΓSM
þ δΛ
ΓSM

: ð25Þ

The first term on the rhs of Eq. (25) is the standard angular
correlation coefficient κSM, and the second one is its LIV
deviation.

III. RESULTS AND DISCUSSION

We calculate the single and summed energy electron
spectra, angular correlation spectra, and angular correlation
coefficient, along with their LIV deviations from the standard
forms for all nuclei that are investigated in DBD experiments,
i.e., 48Ca, 76Ge, 82Se, 100Mo, 116Cd, 130Te, 136Xe, and 150Nd.
As already mentioned, we use electron radial wave functions
obtained as solutions of the Dirac equation in a Coulomb
potential that encodes the finite size and the atomic screening
of the final nucleus. We numerically solve the radial Dirac
equation with the subroutine package RADIAL [36,37].
Following this procedure, the truncation errors are completely
avoided, and the radial wave functions are obtained with the
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desired accuracy. Thus, the numerical solutions can be
considered as exact for the given input potential. More
details about the electrostatic potential that we use can be
found in Refs. [28,38,39]. In the calculations, we use either
the SSD or HSD hypothesis as follows. The SSD hypothesis
has been experimentally validated for the 82Se [40] and 100Mo
[19] nuclei and we used it for these isotopes. This means
we replaced hENi in the formulas from the previous section,
with the energy of the first 1þ intermediate state (E1þ

1
). For

the 150Nd nucleus, the dominant DBD transition also occurs
through the first 1þ state in the intermediate nucleus 150Pm,
but transitions through other 1þ states of higher energies also
contribute and must be included in the calculation so that the
DBD rate value is reproduced [41]. Thus, we calculated the
single-electron spectra using both (SSD and HSD) hypoth-
eses for this nucleus. In Fig. 1, we present the normalized
standard and LIV-perturbed spectra for all nuclei except
150Nd. For the nuclei where the SSD hypothesis applies,
we used the following values for the 1þ state energies
(E1þ

1
− EI): −0.338 MeV for 82Se, −0.343 MeV for 100Mo,

and −0.315 MeV for 150Nd. As can be seen, the main
difference between the calculations for different nuclei

can occur at low electron energies. For the nuclei where
the HSD hypothesis applies, the LIV spectra increase first
monotonically with increasing energy and reach their
maxima at energies not close to 0. On the other hand,
for the isotopes where the SSD hypothesis applies, the
LIV spectra (except 82Se) show a local maximum at
ε1 → 0. A concrete example of the differences between
SSD and HSD hypotheses is illustrated in Fig. 2, for
150Nd, where we plot the same quantities as in Fig. 1. For
more precise information, in Table I, we give the position
of the global maxima of the LIV spectra for all nuclei.
Concluding, regardless of the hypothesis assumed, the
overall effect of LIV on the single-electron spectra in all
nuclei is a shift of the spectra toward higher electron
energies, as shown in Ref. [29] in the case of 100Mo. This
is an effect similar to that found in the summed energy
electron spectra [28].
Next, we discuss other LIV signatures resulting from the

comparison of the single and summed energy electron
spectra and angular correlation perturbed by LIV with their
standard forms. We note first that in the previous works
[9,16,19,28] the LIV effects were presented by plotting
separately, on the same figure, the normalized summed

FIG. 1. Normalized 2νββ single-electron spectra within the SM with the solid line, and the first order contribution in a
∘ ð3Þ
of due to LIV

with the dashed line. See text for the assumption on the hypothesis used.
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energy electron spectra calculated within the SM, and their
LIV deviations. Thus, as we already mentioned, it was
concluded that the LIV effects (if they exist) manifest as a
global shift of the electron spectra to higher electron
energies. Further, using the theoretical predictions for the
summed energy electron spectra and from the nonobserva-
tion of such deviations, constraints on the LIV a

∘ ð3Þ
of coef-

ficient are deduced. Several DBD experiments reported such
limits [16–20,23]. Besides the analyses of the summed
energy electron spectra reported in these references, we
presented in [29] another analysis of the LIV signatures by
comparing the electron spectra (single and summed energy)
and angular correlation calculated with and without LIV
contributions. This was done for the 100Mo nucleus for which
the SSD hypothesis holds. Here, we extend this analysis to
all nuclei. We mention that the single-electron-related
quantities are not of interest in experiments without tracking
systems for individual electrons. The most studied nucleus in
this regard is 100Mo in NEMO 3, where the single-electron
spectrum and angular distribution are measured with the best
current statistics. Also, single-electron spectra for other
nuclei can be analyzed in this experiment. The next-

generation experiments that will include a tracking system
could measure, with higher statistics, all the spectra pre-
sented above; hence, our analysis could be relevant for them.
In Fig. 3, we plot the quantity 1þ a

∘ ð3Þ
of χ

ð1Þðε1Þ, which
represents the ratio between the single-electron spectrum
calculated with the LIV contributions and its standard
forms for all nuclei. The calculations are performed with

two (extreme) sets of a
∘ ð3Þ
of limits, namely, those reported

by the EXO Collaboration −2.65 × 10−2 MeV ≤ a
∘ ð3Þ
of ≤

7.6 × 10−3 MeV [16] and those reported by the NEMO 3

Collaboration −4.2 × 10−4 MeV ≤ a
∘ ð3Þ
of ≤ 3.5 × 10−4 MeV

[19]. Other limits reported until now can be found in [4,42].
The horizontal line equal to 1 represents the ratios in the
absence of LIV effects, while the curves situated over or
under this line represent the deviations when the LIV
corrections are included. The position of the curves is

dictated by the sign of the a
∘ ð3Þ
of coefficient, over the horizontal

unity line for positive values of a
∘ ð3Þ
of and under this line for

negatives values of this coefficient. As we mentioned in [29],
the increased divergences between the standard and the LIV-
perturbed spectra are due to a slower descent (in absolute

FIG. 2. Normalized single-electron spectra within the SMwith the solid line, and the first order contribution in a
∘ ð3Þ
of due to LIV with the

dashed line for 2νββ decay of 150Nd. We assumed the SSD hypothesis in the left panel and HSD in the right panel.

TABLE I. kSM and ξLIV computed as described in the text for all nuclei. Q values used in calculations are also

displayed. The fifth column contains the expected number of events needed to constrain a
∘ ð3Þ
of to the current limit

obtained from tritium decay [42]. The last column contains the position of the maxima of LIV single-electron
spectra.

Nucleus Q value (MeV) kSM ξLIV ðMeV−1Þ N × 10−8ðja∘ ð3Þof j < 3 × 10−5 MeVÞ εmax
1 (MeV)

48Ca 4.2681 [43] −0.7673 −3.4931 8.4060 0.671
76Ge 2.0391 [44] −0.5608 −4.9831 4.4625 0.181
82SeSSD 2.9979 [45] −0.6585 −4.3121 5.7670 0.197
100MoSSD 3.0344 [46] −0.6690 −4.2939 5.7932 0
110Pd 2.0179 [47] −0.5788 −5.0765 4.2760 0.120
116Cd 2.8135 [48] −0.6726 −4.3332 5.6808 0.192
130Te 2.5275 [49] −0.6514 −4.6013 5.0779 0.220
136Xe 2.4587 [50] −0.6483 −4.6828 4.9082 0.198
150NdSSD 3.3367 [51] −0.7218 −4.1323 6.1258 0
150NdHSD 3.3367 −0.7357 −3.9734 6.5869 0.375
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value) of the LIV spectrum with respect to the standard one
at the end of the energy interval (near the Q value). As seen,

for a
∘ ð3Þ
of limits reported by [16] the deviations of the single-

electron spectra due to LIV are quite pronounced (even for
electron energies much lower than the Q value), and they
should have been seen already, which did not happen. For

more stringent limits of a
∘ ð3Þ
of , as those reported by NEMO 3

[19], the deviations are very small and cannot be seen in the
current experimental statistics. However, in future DBD
experiments, such as the SuperNEMO experiment, which

targets 103 times the statistics from NEMO 3 for 100Mo,
these LIV deviations might be observed. These observations
are valid for all the studied nuclei. However, a drawback of
the single-electron spectra is that they can only be measured
in DBD experiments with electron tracking systems. That is
why we present a similar analysis for the summed energy
electron spectra that are measured in all the DBD experi-
ments and with higher statistics than the single-electron
spectra. In Fig. 4, we plot the ratio between the summed
energy spectra of electrons calculated with the LIV
contributions and their standard forms. One can see

FIG. 3. The quantity χð1Þðε1Þ depicted for current limits of a
∘ ð3Þ
of (dashed for upper limit and dot-dashed for lower limit). The solid line at

χð1Þðϵ1Þ ¼ 0 represents the SM prediction.
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LIV effects with similar shapes, as in the case of the
single-electron spectra, and the same arguments are valid
to explain them. From the analysis of the deviations
of these predicted electron spectra, estimations on the
magnitude and observability of the LIV effects in the
different statistics can be made.
Further, we discuss the LIV effects on the angular

correlation α and the value of the angular correlation
coefficient k. In Fig. 5, the angular correlation spectra for
all the nuclei are plotted with the same conventions as in
Fig. 4. As seen, deviations of the angular correlation curves

from their standard forms may manifest even at low electron
energies, and they increase much in the vicinity of the Q

value for the a
∘ ð3Þ
of values reported by EXO. Again, for the a

∘ ð3Þ
of

values reported by NEMO 3, these deviations cannot be seen
in the current experimental statistics. We also note that
distinctively from the electron spectra, the total angular
correlation spectrum exceeds the standard spectrum for

negative values of a
∘ ð3Þ
of because δH is also negative, making

the LIV contribution positive [see Eq. (24)]. Regarding the
theoretical electron and angular correlation spectra discussed
above, we mention that we can provide upon request detailed

FIG. 4. The quantity χðþÞðKÞ depicted for current limits of a
∘ ð3Þ
of . The same conventions as in Fig. 3 are used.

S. A. GHINESCU, O. NIŢESCU, and S. STOICA PHYS. REV. D 105, 055032 (2022)

055032-8



numerical predictions of these spectra to be used in DBD
experiments for the LIV investigation.
Finally, we refer to the angular correlation coefficient k

defined in Eqs. (4) and (25) of the previous section. As

shown in Ref. [29], it can also be used to constrain the a
∘ ð3Þ
of

coefficient and estimate quickly (albeit grossly) the number

of the 2νββ events needed to put a certain limit on a
∘ ð3Þ
of .

kSME can be determined in the DBD experiments with
electron tracking systems by using the forward-backward
asymmetry [52]

A≡
R
0
−1

dΓ
dx dx −

R
1
0

dΓ
dx dx

Γ
¼ Nþ − N−

Nþ þ N−
¼ 1

2
kSME; ð26Þ

where x ¼ cos θ12 and N−ðNþÞ are the 2νββ events with
the angle θ12 smaller (larger) than π=2. Assuming that the
experimental value of this coefficient is compatible at
90% CL with the SM value and considering only
statistical uncertainties in the number of events recorded,
one can compute the number of events needed to constrain

the a
∘ ð3Þ
of coefficient at a specific value. In Table I, we give

FIG. 5. The angular correlation spectrum plotted for the current limits of a
∘ ð3Þ
of . The same conventions as in Fig. 3 are used.
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the values of kSM and ξLIV computed as described in the
previous section. In the last column, we also give the
number of events needed to constrain the upper limit of

a
∘ ð3Þ
of at the same value obtained from the tritium decay (i.e.,

ja∘ ð3Þof j < 3 × 10−5 MeV [42]). We also indicate the nuclei
for which we have employed the SSD hypothesis by
subscript. In these cases, the Ã value has been taken from
[35]. The rest of the nuclei have been treated within the
HSD hypothesis.
We note that kSM and ξLIV do not follow the same

behavior across the nuclei. As expected, the number of

events necessary to constrain a
∘ ð3Þ
of (Nev) is the lowest where

the modulus of ξLIV is the highest, although the relation is
not linear and Nev varies significantly from one nucleus to
another. We also remark that applying the same procedure

for an a
∘ ð3Þ
of limit stronger by 1 order of magnitude than the

most stringent current limit ([19]) leads to an increase of 2
orders of magnitude of the needed number of events. This
implies that in the near future, the DBD experiments will
improve by some factor of the best current upper limit of

the a
∘ ð3Þ
of coefficient.

IV. CONCLUSIONS

We analyze the LIVeffects on the single-electron spectra,
summed energy electron spectra, and angular correlation
between electrons in 2νββ decay for all the experimentally
interesting nuclei. We derive the formulas of the LIV
contributions to these spectra and angular correlation and

provide theoretical predictions of them to be used for

constraining the LIV coefficient a
∘ ð3Þ
of . Next, we analyze

different signatures that could be probed in the DBD
experiments. First, we confirm the overall effect of LIV
to shift the single and summed energy electron spectra to
higher electron energies for all the studied nuclei. Next, we
highlight other LIV signatures that can be analyzed by
comparing the electron and angular correlation spectra
computed with and without LIV contributions and show
that from this comparison, one can get information about the
observability of the LIV effects in the current experimental

statistics. Then, the alternative method of constraining a
∘ ð3Þ
of

from the measurement of the angular correlation coefficient
is discussed. In this regard, we estimate the statistics that
each of the DBD experiments, studying different nuclei,

should reach to constrain a
∘ ð3Þ
of at the level of the current beta

decay experiments. We hope that our work improves the
theoretical support and further stimulates the search for LIV
in DBD.
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