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We consider the possibility that the gauge hierarchy is a byproduct of the metastability of the
electroweak vacuum, i.e., that whatever mechanism is responsible for the latter also sets the running Higgs
mass to a value smaller than its natural value by many orders of magnitude. We find that the metastability of
the electroweak vacuum, together with the requirement that such a nontrivial vacuum exists, requires the
Higgs mass to be smaller than the instability scale by around 1 order of magnitude. While this bound is
quite weak in the Standard Model (SM), as the instability scale is ∼1011 GeV, simple and well-motivated
extensions of the SM significantly tighten the bound by lowering the instability scale. We first consider the
effect of right-handed neutrinos in the νMSMwith approximate B − L̃ symmetry, which allows for masses
of order TeV for the right-handed neutrinos and Oð1Þ Yukawa couplings. We find that right-handed
neutrinos cannot by themselves fully explain the gauge hierarchy, as the tightest upper bound compatible
with current experimental constraints is ∼108 GeV. As we demonstrate on the example of the minimal
SU(4)/Sp(4) composite Higgs model, this bound can be lowered significantly through the interplay of the
neutrinos and a dimension-six operator. In this scenario, the bound can be brought down considerably, with
the smallest value accessible by our perturbative treatment being of order ≃10 TeV, and consistently
several orders of magnitude below its natural value. While this is insufficient to fully solve the gauge
hierarchy problem, our results imply that, assuming the SM symmetry-breaking pattern, small running
Higgs masses are a universal property of theories giving rise to metastability, suggesting a common origin
of the two underlying fine-tunings and providing a strong constraint on any attempt to explain metastability.
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I. INTRODUCTION

The principles of naturalness and symmetry have guided
the development of fundamental physics over the last
50 years. However, in the light of our Universe’s apparent
fine-tuning, it appears increasingly likely that particle
physics has entered a post-naturalness era [1]. One of the
most important observations motivating this perspective are
the measured values of the Higgs and top quark mass,
Mh¼125.1GeV andMt¼172.4GeV, which imply that the
Standard Model (SM) couplings remain perturbative until
energies exceeding even the Planck scale. This, together

with the absence of new physics in flavor, precision, and
LHC experiments, points to the SM being valid up to very
high energies and potentially even the Planck scale.
An obvious drawback of such a grand desert above the

electroweak scale is that the Higgs mass requires fine-
tuning to cancel large radiative corrections, which cannot
be explained by (technical) naturalness alone [2], leading to
the so-called hierarchy problem. Furthermore, it opens up
the question why the laws of nature appear to include two
fundamental scales, set by the Planck and the Higgs mass,
which are separated from one another by 17 orders of
magnitude, which is known as the Higgs naturalness or
gauge hierarchy problem.
As we argue throughout this article, this last question

might in parts be answered by considering yet another
apparent fine-tuning of the Higgs sector. The masses of
both the Higgs and the top quark lie in an extraordinarily
small window corresponding to a metastable electroweak
vacuum [3–17]. When extrapolated to high energies, the
Higgs quartic coupling becomes negative at the instability
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scale μI ∼ 1011 GeV and remains small, which allows our
vacuum to decay through bubble nucleation. Using the
most recent global averages given in [18,19], its lifetime,
defined as the characteristic time to form a bubble in
a true vacuum within our past light cone, is found to be
at 1σ,1

τEW ∼ 10983
þ1410
−430 years: ð1Þ

This hinges on a delicate cancellation between the expo-
nentially small decay rate per unit volume of the vacuum,
Γ
V ∼ exp ð− 8π2

3jλðμ⋆ÞjÞ, which in the pure Standard Model is

exquisitely sensitive to the quartic coupling at the scale
μ⋆ ∼ 1017 GeV, where the latter achieves a minimum, and
the exponentially large space-time volume of the observ-
able Universe. In other words, metastability requires a
remarkable conspiracy between the cosmological constant
and the couplings of the Standard Model.
A way forward is suggested by a common theme

underlying many fine-tunings, namely, that they are prob-
lems of near criticality. The metastability of the electroweak
vacuum requires that the decay rate per space-time volume
be relatively close to the critical range for the percolation
phase transition of bubble nucleation [20]. The gauge
hierarchy problem can be interpreted as the Higgs having
a nearly vanishing mass relative to the fundamental scale,
close to the phase transition between broken/unbroken
electroweak symmetry [21].2

The main point of this article is that two of these
examples—the metastability of the electroweak vacuum
and the smallness of the (running) Higgs mass compared to
the Planck mass—are in fact not entirely independent, as a
small Higgs mass is a necessary condition for metastability.
In other words, any explanation of metastability also
offers a path toward a solution to the Higgs naturalness
problem.

A. Gauge hierarchy from metastability

Our central result is that the metastability of the
electroweak vacuum, together with the very requirement
that such a nontrivial vacuum exists, implies an upper
bound on the Higgs mass. In other words, metastability
necessarily implies a hierarchy between the running Higgs
mass and its natural value, whose precise extent depends on
the lifetime.

We show this in three steps:
(1) Under our assumptions, the running Higgs mass is

bounded from above through the instability
scale, m2

h < jβλðμIÞjð…Þμ2I .
(2) The instability scale lies below the so-called in-

stanton scale, μ2I ≪ μ2S, which we introduce in the
next section.

(3) The instanton scale lies below the natural value for
the running Higgs mass, μ2S ≲m2

h;nat.
We furthermore show that through the effects of well-
motivated SM extensions it is possible to obtain a bound
just 2 orders of magnitude above the observed value
within the limitations of our perturbative treatment and
potentially even lower if a more elaborate analysis was to
be performed.
The relation between Higgs mass parameter and insta-

bility scale was first pointed out in the context of the SM in
[11], whose authors obtained the following upper bound3:

m2
h < jβλðμIÞje−3=2μ2I : ð2Þ

Thus, once the instability scale μI has been determined, the
condition for the existence of a false vacuum constrains the
Higgs mass by about 1 more order of magnitude.
Until recently, the usefulness of this bound has widely

been dismissed, in particular, by the authors of [11]
themselves, as it appears to suffer from two important
problems. The first of them is that it simply shifts the
question to why the instability scale lies so far below the
natural value for the Higgs mass, and more importantly,
why it exists in the first place. From our perspective, the
existence of the instability scale is given, as it is necessary
to allow the vacuum to decay. To achieve metastability with
a relatively short lifetime, the quartic coupling must
become negative at the instability scale μI and then
continue to fall off until it reaches a sufficiently negative
value λðμSÞ to obtain the desired lifetime, with μS being the
instanton scale defined in Sec. II. Since λ depends only
logarithmically on the scale, this running stretches over
several orders of magnitude. Furthermore, as we argue in
Sec. II, the properties of the decay rate imply a hierarchy
between μS and the natural value for m2

h.
The second reason why one might question the useful-

ness of (2) is that it only requires the Higgs mass to lie
slightly below the instability scale, which, assuming
continued validity of the SM, can be found at roughly
1011 GeV, leaving unexplained an additional 8 orders of
magnitude to reach the electroweak scale. It is now,
however, important to observe that the precise extent of
this remaining gap is sensitive to beyond-the-SM physics.
In the context of the usefulness of inequality (2), this has
recently been discussed in [24], whose authors argue that

1We take into account the correlated errors in the top Yukawa,
Higgs quartic, and strong gauge coupling as given in [19]. An
extensive discussion of the lifetime’s sensitivity to other param-
eters can be found in [13].

2However, even with a positive Higgs mass squared, the
electroweak phase would still be spontaneously broken at the
QCD scale by the Higgs coupling to the quark condensate.
See [22,23] for discussions of this other phase of the SM. Thus,
one must not only explain why the Higgs mass is small, but also
why the Higgs mass squared is negative.

3In Sec. III, we review its derivation and derive a more precise
version of the bound.
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the interplay of a dimension-six operator and additional
fermions can significantly lower the instability scale and
thus strengthen the bound (2). In Sec. II, we discuss how
such SM extensions effect the vacuum’s decay rate, before
providing explicit numerical results for the SMwith gravity
as well as two well-motivated Standard Model extensions,
namely, the minimal SU(4)/Sp(4) composite Higgs model,
which serves as an example for the impact of a dimension-6
term, and the νMSM with approximate B − L̃ symmetry,
whose right-handed neutrinos serve as an example for
additional fermion singlets. Besides lowering the instability
scale and thus our bound on the Higgs mass, we find that
the influence of the additional fermions also shortens the
vacuum’s lifetime, to the extent that, e.g., the Page time can
be achieved. We provide accurate predictions of the
vacuum’s lifetime as a function of the parameters character-
izing the SM extensions of interest. As an important side
result, we not only update existing stability bounds by
combining for the first time all relevant next-to-leading-
order (NLO) corrections, both from gravity and functional
determinants, at up to 3-loop accuracy, but also provide a
translation of any prediction of the vacuum’s lifetime to
parameters of the considered SM extensions.
Before discussing in more detail the SM extensions

considered here, it is worth emphasizing that our upper
bound (2) relies on two assumptions: (i) metastability of the
electroweak vacuum and (ii) the existence of such a
nontrivial vacuum, i.e., a negative Higgs mass squared.

B. Achieving metastability

One framework in which metastability may naturally
arise is the landscape of string theory, together with the
mechanism of eternal inflation [25–29] for dynamically
populating its vacua. The principle of mediocrity, generally
assumed in this context (e.g., [30]), entails that we live at
asymptotically late times in the unfolding of eternal infla-
tion,when the relative occupational probabilities of different
vacua have settled to a near-equilibrium distribution.
However, a more interesting possibility for our purposes

is based on the idea that we exist during the approach to
equilibrium, i.e., at times much earlier than the exponen-
tially long mixing time for the landscape. In this case, a
vacuum like ours should be likely not because it is typical
according to a quasistationary distribution, but rather
because it has the right properties to be accessed early
on in the evolution [31]. This perspective offers a dynami-
cal selection mechanism for vacua based on search opti-
mization [32–35]: vacua that are easily accessed reside in
optimal regions where the search algorithm defined by
local landscape dynamics is efficient. This idea was
formalized with the definition of an accessibility or
early-time measure in [33,35]. Importantly, optimal regions
of the landscape display nonequilibrium critical phenom-
ena, in the sense that their vacuum dynamics are tuned at
dynamical criticality. This suggests a deep connection

between the near criticality of our Universe and non-
equilibrium phase transitions on the landscape.
A key prediction is that optimal regions are characterized

by vacua that are relatively short lived, with lifetimes of
order their de Sitter Page time.4 For our vacuum, this
optimal lifetime is

τPage ∼
M2

Pl

H3
0

≃ 10130 years: ð3Þ

While this lies around 850 orders of magnitude below the
central value of the SM, it should be clear that the latter is
highly sensitive to beyond-the-SM physics. Indeed, as we
show, well-motivated extensions of the SM, such as right-
handed neutrinos, can very well shorten the vacuum life-
time down to the Page time.
Importantly, the early-time approach to eternal inflation

offers a raison d’être for the conspiracy underlying Higgs
metastability. That being said, while we are primarily
motivated by nonequilibrium eternal inflationary dynamics,
it is worth emphasizing once again that our analysis is
logically independent of this proposal. The results below
pertain more generally to any theoretical framework which
predicts that our vacuum should be metastable.
One other example for such a framework is described in

[24]. These authors propose that the parameters of the Higgs
potential are functions of an additional scalar field, the
apeiron, and provide a dynamical mechanism based on
quantum first-order phase transitions in the early Universe
favoring values of the field corresponding to a near-critical
Higgs potential. For the quartic coupling λ, this translates to
the selection of anRG trajectory close to the transition from a
stable vacuum to a potential with both a false vacuum at the
electroweak scale and a true vacuum at some higher energy,
albeit the existenceof the latter requires someUVcompletion
to stabilize it. As we argue in Sec. III, these are the necessary
conditions for metastability, while the favored RG trajectory
of λ amounts to the prediction of an ideal lifetime.
What makes this approach particularly interesting from

the perspective of this article is that it allows for a
prediction of the Higgs mass parameter and vacuum
expectation value. Following the reasoning of [24,37],
the probability distributions for these quantities are strongly
peaked around values near the instability scale. In the
Appendix A 1, we show that this prediction corresponds to
the saturation of our bound, making it an important special
case of our universally applicable result.

II. ELECTROWEAK VACUUM DECAY

We begin with a brief review of Higgs metastability and
how it is effected by the SM extensions of interest for our

4It is intriguing that the de Sitter Page time has also emerged
recently in a completely different context, as the quantum break
time of de Sitter space [36].
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later reasoning, in particular, a H6 operator. The electro-
weak vacuum corresponds to the minimum of the Higgs
potential, which at tree level is given by

VðHÞ ¼ −
1

2
m2

hjHj2 þ λjHj4; ð4Þ

with H denoting the standard Higgs doublet. The Higgs
boson arises from fluctuations around the minimum of this
potential, which can in unitary gauge be parametrized as

H ¼
�
0;

Hffiffiffi
2

p
�
; H ¼ vþ h; ð5Þ

where v ¼ mhffiffiffiffi
2λ

p corresponds to the potential’s minimum and

m2 ¼ 2λv2 ¼ m2
h to the tree-level mass of the fluctuation h.

In a similar manner, the masses of the fermions as well as
the massive gauge bosons are proportional to v, as they are
generated through the coupling of these particles to the
Higgs field. Thus, most particles of the SM can be found at
energies somewhere below v. That is, v, or equivalentlymh,
sets the electroweak scale.
In a purely classical theory, the configuration H ¼ v

represents the theory’s unique, stable vacuum up to SU(2)
transformations of the full Higgs doublet. This is, however,
not necessarily true once the scale dependence of the
parameters, due to quantum effects, is taken into account.
Doing so gives rise to the RG-improved effective potential,
which, for energies well above the electroweak scale, takes
the simple form

VeffðhÞ ≃
1

4
λeffðhÞh4; ð6Þ

where λeffðhÞ combines the running quartic coupling, its
loop corrections, and the Higgs’ wave function renormal-
ization factors.
Depending on the precise values of the couplings,

it is possible for λ to turn negative at high energies [4].
The data compiled at the LHC indicate that this might
indeed be the case, as the measured values of the quartic
and Yukawa couplings lie just shy of the critical value
beyond which λ would remain positive at all scales. For the
most accurate values of the couplings available, λ turns
negative at the instability scale μI ≃ 1011 GeV, which
signals metastability—the electroweak vacuum can decay
through nucleation of a bubble of a large Higgs field within
a small region of space, which then expands indefinitely.
The lifetime of the electroweak vacuum is determined by

the bubble nucleation rate per unit volume, Γ=V. Its
dominant contribution arises from the so-called bounce
solution, which is the instanton describing the tunneling
from the false vacuum into the region of negative λ, as
famously shown in [38–40] and built upon in [41,42]. Once
the rate per unit volume is known, it is straightforward to
obtain the lifetime τEW of the vacuum, i.e., the time at
which the probability that a bubble has formed within an

observer’s past light cone becomes unity. Assuming vac-
uum energy dominance, it is given by

τEW ¼ 3H3
0

4π

�
Γ
V

�
−1
; ð7Þ

where H0 is the Hubble constant. It is also common in the
literature to define the lifetime as the characteristic time
scale τEW ∼ ðΓVÞ−

1
4, as is, e.g., the case in [17].5 An addi-

tional technical hurdle for a potential of the form (6) arises
from its classical scale invariance. As a result, there exists
not just one bounce configuration but a one-parameter
family of solutions,

HRðrÞ ¼
2
ffiffiffi
2

pffiffiffiffiffiffi
−λ

p R
R2 þ r2

; ð8Þ

whose parameter R is the size of the bubble of true vacuum,
and r is the four-dimensional Euclidean radius. This
degeneracy manifests itself in the form of a nontrivial zero
mode, the dilatation mode, which on its own would result in
a divergent decay rate. An extensive discussion of the SM
lifetime, including a clear solution to the scale invariance
problem, was recently given in [17]. The problem is
naturally solved by the RG running of λ, which breaks
the scale invariance radiatively, resulting in the decay rate
being dominated by the bounce of size R ¼ μ−1⋆ , where μ⋆
satisfies

βλðμ⋆Þ ¼ 0: ð9Þ

Intuitively, the decay rate is dominated by the configuration
associated with the scale at which λ is smallest.
Before performing the integral over the dilatation mode,

the decay rate at NLO takes the form

Γ
V
¼
Z

dR
R5

e
− 8π2

3jλðR−1ÞjDðR−1Þ; ð10Þ

where D summarizes all but the gravitational corrections at
NLO, which we give in the Appendix. The integral over R
can be performed explicitly by resumming loop corrections
to the Euclidean action, leading to the result given in [17].6

5The difference in our lifetime is also partially due to an
increase in the world average of the top mass since [17] was
published.

6Note that we evaluate all couplings at the scale R−1, while in
[17] they are evaluated at μ⋆, which is more convenient if one
wishes to perform the integral exactly. These authors show that
setting the scale equal to μ⋆ and demanding scale invariance of
the nucleation rate induce a series of quantum corrections,
allowing them to perform the integral order by order and finally
resumming all terms obtained in this way. In order to obtain (11),
all one has to do is perform the sum over all the corrections right
away in the exponent.
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As the scale μ⋆ lies quite close to the Planck mass, high-
precision predictions of the lifetime require an analysis of
gravitational corrections. Derivations of the leading-order
contributions arising from gravity can be found in, e.g.,
[43–45]. This complicates the above prescription as it
introduces terms in the Euclidean action that explicitly
break scale invariance. The general influence of such terms
on the decay rate has been discussed with a special focus on
the interplay of gravitational corrections with RG running
in [43]. In general, introducing an explicit breaking of scale
invariance affects the Euclidean action not only directly via
the additional term but also indirectly by changing the scale
of the dominant bounce.
One way to understand this is to reconsider (10),

supplemented with a gravitational term for concreteness.
We assume that the latter is subdominant, so that the saddle
point of the path integral can be approximated to leading
order by the family of bounces (8). Including the leading-
order gravitational correction to the Euclidean action given
in, e.g., [45] leads to a modified version of (10),

Γ
V
¼
Z

dR
R5

e
− 8π2

3jλðR−1Þj−
256π3

45λ2ðR−1Þ
1

ðRMPlÞ2DðR−1Þ: ð11Þ

The technique used in [17] to perform the R integral is now
spoiled by the gravitational term, so that we must be
content with a saddle-point approximation,7

Γ
V
≃ e−SEðλðμSÞ;μSÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

d2

d ln μ2 SEðλðμSÞ; μSÞ

s
μ4SΛðμSÞ; ð12Þ

where the Euclidean action is

SEðλðμSÞ; μSÞ ¼
8π2

3jλðμSÞj
þ 256π3

45λ2ðμSÞ
μ2S
M2

Pl

: ð13Þ

All couplings, as well as the corrections summarized in D,
are evaluated at the saddle point R−1 ¼ μS minimizing the
Euclidean action, which is the solution of

βλðμSÞ
�
64π

15

μ2S
M2

Pl

− λðμSÞ
�

¼ λðμSÞ
64π

15

μ2S
M2

Pl

: ð14Þ

This result agrees up to a factor of Oð1Þ with the rate given
in [45]. It is straightforward to prove that μS < μ�, in
general, with approximate equality μS ≃ μ⋆ whenever
μ⋆ ≪ MPl.

As the left-hand side is suppressed by βλ, it can be
expected that the effect of the gravitational term, which is to
lower μS relative to μ�, becomes dominant already for
values of μS 1 order of magnitude below MPl, leading to
sub-Planckian values of μS even for values of μ� multiple
orders of magnitude above MPl. As this would clearly
remain true if one were to replace the Planck mass by any
cutoff scale Λ, it can, in general, be expected that any new
physics stabilizing the Standard Model below μ� has a
strong impact on the decay rate even if the direct correction
to the Euclidean action is suppressed by the naturally small

factor μ2S
Λ2. Therefore, we are careful in what follows to

distinguish between these two scales.
This effect also arises naturally in SM extensions that

lead to an extended Higgs potential, most importantly
(partially) composite Higgs models and models with a
second, heavy Higgs doublet like the (ν)MSSM. After
integrating out all heavier degrees of freedom, the most
general Higgs potential takes the form

VfullðHÞ ¼ −
m2

h

4
H2 þ λ

4
H4 þ C6

Λ2
H6 þ…; ð15Þ

where the values of the Wilson coefficients at the matching
scale Λ can be obtained by standard techniques. Through
power counting and anticipating that μS tends to be smaller
thanΛ, it is clear that for a majority of generic potentials the
dimension-six term will be the most important, so that we
focus on its effect throughout the remainder of this article.
At lower energy, the coefficients fC2ngn>2 are obtained

by integrating their beta functions. In principle, the dimen-
sion-six correction induces additional terms in the SM
couplings’ beta functions. However, these are suppressed

by a factor of m2
h

Λ2 [46], which, as we are about to show, is
necessarily≪ 1 for metastable vacua. Hence, we can safely
neglect these corrections in the beta functions. The main
impact of the dimension-six operator will be on the
instanton scale μS and corresponding decay rate.
We proceed to calculate the vacuum decay rate, includ-

ing the dimension-six correction to the potential

ΔVeff ¼
C6

Λ2
H6: ð16Þ

As such, the impact of beyond-the-SM physics is treated
perturbatively, neglecting higher-order terms in the full
potential (15). This approximation is justified provided that

����ΔVeff

Veff

���� ¼ 4C6

jλj ·
H2

Λ2
≪ 1: ð17Þ

On the bounce solution, which to leading order is given by
(8), clearly HRðrÞ is maximal at the origin: HRðrÞ ≤
HRð0Þ ≃ 2

ffiffiffi
2

p
μS=

ffiffiffiffiffiffiffiffiffiffiffiffiffijλðμSÞj
p

, where we have focused on

7In the following analytical discussions, we treat the R−5

prefactor as effectively Oð1Þ when performing the saddle-point
approximation, as its dependence on R is negligible compared to
the e

1
λ of the Euclidean action. We nevertheless included it in our

numerical calculations, confirming that this approximation is well
justified.
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the dominant bounce with R ¼ μ−1S . Combining with (17),
we are led to define an expansion parameter,

ϵ≡ 32C6

λ2
·
μ2S
Λ2

: ð18Þ

For concreteness, we define the regime of validity of our
perturbative treatment as ϵ ≤ 1. Given the relation between
the lifetime and λ, our perturbative treatment is expected to
break down either for small values of Λ or for sufficiently
long-lived vacua.
Including the dimension-six operator (16) to the Higgs

potential yields a correction to the bounce Euclidean action
(13) given by

ΔSE ¼ 128π2

5jλj3
C6

R2Λ2
: ð19Þ

Thus, the decay rate (11) becomes, to leading order,

Γ
V
¼
Z

dR
R5

exp

�
−

8π2

3jλðR−1Þj −
128π2ðR−1Þ
5jλðR−1Þj3

C6

ðRΛÞ2

−
256π3

45λ2ðR−1Þ
1

ðRMPlÞ2
�
·DðR−1Þ: ð20Þ

By analogy with the gravitational correction, it is easy to
see that the new term has two effects. First, it increases the
value of the Euclidean action, thereby stabilizing the
vacuum. Clearly, the strength of this effect increases with
C6

Λ2; i.e., it is most significant either for large C6 or small Λ.
Second, it shifts the instanton scale μS further away from
μ⋆. For Λ≲ μ⋆, in particular, μS is shifted to scales below or
close to Λ.
This can be quantified in parallel to the treatment of the

gravitational term. As before, we perform the R integral in
the saddle-point approximation, with the scale μS of the
dominant bounce satisfying the modified equation,

βλðμSÞ
�
64π

15

μ2S
M2

Pl

− λðμSÞ−
144

5

C6

λðμSÞ
μ2S
Λ2

�
þ βC6

ðμSÞ
48

5

μ2S
Λ2

¼ 64π

15
λðμSÞ

μ2S
M2

Pl

−
96

5
C6ðμSÞ

μ2S
Λ2

: ð21Þ

The decay rate in this approximation is once again given
by (12), with the Euclidean action now of the form

SE ¼ 8π2

3jλðμSÞj
þ 128π2C6ðμSÞ

5jλðμSÞj3
μ2S
Λ2

þ 256π3

45λ2ðμSÞ
μ2S
M2

Pl

: ð22Þ

III. UPPER BOUND ON THE RUNNING HIGGS
MASS FROM METASTABILITY

A key point of our analysis is the observation that the
metastability of the electroweak vacuum, together with the

very requirement that such a nontrivial vacuum exists,
implies an upper bound on the Higgs mass. This connection
was first pointed out in the context of the SM in [11],
although its usefulness was quickly dismissed as the
resulting bound lies several orders of magnitude above
the observed value.
At first sight, how the vacuum lifetime can translate to a

bound on the Higgs mass is somewhat nontrivial. The
lifetime is highly sensitive to the quartic coupling, but it has
no explicit dependence on the vacuum expectation value or,
equivalently, the Higgs mass. The additional necessary
ingredient is the demand of a nontrivial electroweak
vacuum. This requires the existence of a minimum of
the effective potential at field values below the instability
scale μI, where the quartic coupling becomes negative.
To see this, let us follow [11] and minimize the effective

potential, including the logarithmic running of λ but neglect-
ing the running of mh. Demanding that d

dh VeffðhÞ ¼ 0,
we find

m2
h ¼

�
2λðvÞ þ βλðvÞ

2

�
v2: ð23Þ

At scales somewhat larger than the instability scale, both
quadratic and quartic terms appear with a negative sign, so
that no extremum can occur. Thus, since we are interested in
an upper bound formh, we can focus on values of v near μI,
such that λðvÞ ≃ βλðμIÞ ln v

μI
. This gives

m2
h ≃
�
2 ln

v
μI

þ 1

2

�
βλðμIÞv2: ð24Þ

If understood as a function of v, the right-hand side is
bounded from above since βλðμIÞ < 0, which implies that a
solution can only exist for sufficiently small mh,

m2
h ≲ jβλðμIÞje−3=2μ2I : ð25Þ

Thus, once the instability scale has been determined, the
condition for the existence of a false vacuum constrains the
Higgs mass by about 1 more order of magnitude.
A more precise version of this bound can be obtained by

including the nonlogarithmic 1-loop corrections to λ,
following the power counting scheme developed in [47].
As shown in Appendix A 1, doing so replaces (25) by

m2
h ≲ jβλðμIÞj exp

�
−
3

2
− 2

λ1ðμIÞ
βλðμIÞ

�
μ2I : ð26Þ

This of course reduces to (25) if λ1 is neglected, as assumed
in [11]. Unfortunately, (25) on its own is insufficient to
explain the large hierarchy between the electroweak scale
and the Planck scale, for two reasons. First, it only shifts the
question to why the instability scale lies so far below the
Planck scale, and why it exists in the first place. Second,
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it only requires the Higgs mass to lie slightly below the
instability scale, which as mentioned earlier is roughly
1011 GeV, leaving unexplained an additional 8 orders of
magnitude to reach the electroweak scale.
The goal of this analysis is to address these two points as

follows. With regard to the first point, as mentioned earlier,
we assume the existence of the instability scale to be the
result of some underlying UV physics determining the
Higgs’ couplings at some high energy. To achieve meta-
stability, the quartic coupling must become negative at the
instability scale μI and then continue to fall off until it
reaches a sufficiently negative value λðμSÞ to obtain the
desired lifetime. Since λ depends only logarithmically on
the scale, this running stretches over several orders of
magnitude. This, together with relation (25), provides us
with an upper bound for the Higgs mass parameter and
therefore also the electroweak scale, as sketched in Fig. 1.
As to the second point, in Sec. V, we explore beyond-the-
SM physics naturally lowering the instability scale and
thereby strengthening the bound on the Higgs mass.
We first derive a simple analytical relation between the

vacuum’s lifetime and the strength of the mass inequality,
showing that less stable vacua lead to a stronger bound on
the Higgs mass.
For the purpose of an approximate analytical treatment,

it suffices to use the leading-order expression for the
decay rate,

Γ
V
∝ μ4S exp

�
−

8π2

3jλðμSÞj
�
; ð27Þ

where μS satisfies (14). Note that, although the correction
through either gravity or a dimension-6 term can be
significant in minimizing SE, the validity of the semi-
classical description of course requires μS ≪ MPl or
μS ≪ Λ, respectively, so that the direct correction to the
numerical value of SE is small and can be safely neglected
for the purpose of this estimate.
Thus, at this level, the decay rate is fully determined by

the two parameters λðμSÞ and μS. For a given μS, it is easy to

see that a larger λðμSÞ (i.e., smaller jλðμSÞj) corresponds to a
smaller decay rate and hence a longer lifetime. Indeed,
combining (7) and (27) gives

λðμSÞ ≃ −
8π2

223.14þ 3 lnð μ4S
H3

0
GeVÞ þ 3 lnðτEWyrs Þ

≃ −
8π2

1551.15þ 12 lnð μS
4×1016 GeVÞ þ 3 lnðτEWyrs Þ

; ð28Þ

where in the last step we have substituted H0 ≃ 10−42 GeV
and normalized μS to its SM value. Notice from the first line
that, given the smallness of H0 compared to typical values
of μS, the Hubble constant plays a significant role in
determining the lifetime. This highlights the fact that
metastability does not only require a conspiracy of SM
couplings but also of the Hubble and instanton scales.
The key point is that, once a lifetime τEW and an

instanton scale μS are specified, the quartic coupling
λðμSÞ is determined through (28). Further substitution of
μS and λðμSÞ back into (14) then determines βλðμSÞ. This
gives us all the necessary data to perform a RG evolution
and determine the instability scale μI at which λ crosses
zero. While we soon solve the RG equations numerically, it
is worth plowing ahead with an analytical estimate to get
some intuition on how different parameters of the theory
ultimately affect the Higgs mass bound.
To proceed, let us Taylor expand the quartic coupling

around μS and evaluate the result at μI,

0 ¼ λðμIÞ ¼ λðμSÞ þ βλðμSÞðln μI − ln μSÞ

þ 1

2
β0λðμSÞðln μI − ln μSÞ2 þ… ð29Þ

To leading order, this gives

μI ≃ μS exp

�
−

jλðμSÞj
jβλðμSÞj

�
: ð30Þ

In the regime where μS ≃ μ⋆, which occurs whenever
μ⋆ ≪ MPl or μ⋆ ≪ Λ, respectively, we must work to
subleading order, since βλðμ⋆Þ ¼ 0. The result in this case
is an even larger hierarchy,

μI ≃ μ⋆ exp
 
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
jλðμ⋆Þj
β0λðμ⋆Þ

s !
: ð31Þ

For all parameter values of interest in our discussion, the
right-hand sides of (30) and (31) imply the existence of a
significant hierarchy between the instability scale μI and
the instanton scale μS. This approximate result can now also
be used to understand the dependence of our bound (26) on
the Higgs mass on the lifetime. It is straightforward to see

FIG. 1. The effective potential as well as the running of the
quartic coupling, not to scale. If the scale μ⋆ where the quartic
coupling reaches a minimum lies significantly below the Planck
scale, then μS ≃ μ⋆.
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that, for a given value of μS, shorter lifetimes imply smaller
values of μI and thus stronger upper bounds on mh.

IV. METASTABILITY BOUNDS IN THE
STANDARD MODEL WITH GRAVITY

As a first example for the consequences of our
previous arguments, we assume that the SM is valid up
to the Planck scale and neglect all Yukawa couplings except
the top and bottom quarks and that of the tau. Furthermore,
following [11], we treat ytðMPlÞ and λðMPlÞ as free
parameters characterizing the vacuum, while, for simplic-
ity, fixing all other couplings at the Planck scale to their
SM-extrapolated values.
We now perform the RG running numerically to accu-

rately evaluate the Higgs mass bound (26). This requires us
to determine the instability scale μI and all relevant
couplings at that scale. We assume that the SM is valid
up to the Planck scale and keep track of the most important
coupling constants in determining the lifetime, namely,
the Higgs quartic, the top, bottom, and tau Yukawa, and the
three gauge couplings. We run these couplings using the
complete 3-loop beta functions for all but the small bottom
and tau Yukawas and taking into account the most
important 4-loop contribution for the QCD coupling, given
in the Appendix.
Following the reasoning of [11], we assume ytðMPlÞ and

λðMPlÞ to be subject to the mechanism responsible for
picking the vacuum and thus consider them as free
parameters probing the landscape. While scanning different
values of these parameters, we keep the gauge as well as the
bottom and tau Yukawa couplings fixed at the Planck scale.
We determine them by integrating the beta functions given
Appendix A 3 with the initial values of the relevant
couplings at the top mass given in [19],

λðMtÞ ¼ 0.12607; ytðMtÞ ¼ 0.9312;

ybðMtÞ ¼ 0.0155334; yτðMtÞ ¼ 0.0102566;

gsðMtÞ ¼ 1.1618; g0ðMtÞ ¼ 0.358545;

gðMtÞ ¼ 0.64765; ð32Þ

leading to the Planck scale values,

λðMPlÞ ¼ −0.00971659; ytðMPlÞ ¼ 0.380196;

ybðMPlÞ ¼ 0.00456352; yτðMPlÞ ¼ 0.00940597;

gsðMPlÞ ¼ 0.486966; g0ðMPlÞ ¼ 0.477243;

gðMPlÞ ¼ 0.505385: ð33Þ

Having solved for the RG evolution of these couplings,
we determine μS by solving (14), which in turn can be used
to calculate the decay rate and thus the lifetime of the
vacuum. For this purpose, we use the full expression (12)
for the decay rate. Repeating this for a sufficiently tight

mash of vacua, we obtain a collection of data points
ðytðMPlÞ; λðMPlÞ; μS; τEW; m̄hÞ, where m̄h denotes the upper
bound on the running Higgs mass for the considered
vacuum. When scanning the landscape of potential vacua,
we neglect those with a lifetime shorter than 1010 years, as
well as those whose dominant instanton reaches into a
Planckian regime at its center, HR¼μ−1S

ðr ¼ 0Þ ∼MPl, for
which quantum gravity effects might be relevant.
We treat gravitational corrections in the way described in

Sec. II, taking into account only the leading-order correc-
tion. This is justified, as the condition HRS

≲MPl ensures

that the natural expansion parameter, ϵgrav ¼ 1ffiffiffiffiffiffiffiffi
λðμSÞ

p μ2S
M2

Pl
is

smaller than 1
8
. Furthermore, as was argued in [48], it can be

expected that the higher-order gravitational corrections due
to backreactions should have a negligible influence on the
decay rate.
Figure 2 shows the numerical dependence of m̄h on the

lifetime, where we replace λðMPlÞ by the lifetime and keep
ytðMPlÞ as a second parameter. We find that once the
lifetime has been imposed, a hierarchy of several orders of
magnitude arises naturally, without the need for further
fine-tuning of the couplings.
Despite falling short of explaining the full hierarchy, this

establishes a strong connection between metastability and
the smallness of the Higgs mass. To summarize the logic, in
any framework where there is a fundamental reason for
vacuum metastability, such as in the early-time approach to
eternal inflation, the requirement of an electroweak vacuum
requires the running Higgs mass to be sufficiently small,
with shorter lifetimes leading to stronger bounds.
As we see throughout the remainder of this article, the

insight that shorter lifetimes lead to a stronger bound on the
Higgs mass remains valid even for the considered Standard
Model extensions and is at least qualitatively independent
of the choice of parameter(s) used to achieve different
lifetimes. While this universality, which could be expected
from the simplicity of (30) and (26), might be nothing but a
mathematical peculiarity, we think that it is reasonable to
believe that it might be of significance for the under-
standing of our Universe and, in particular, the Higgs mass.

V. METASTABILITY BOUNDS BEYOND
THE STANDARD MODEL

The remaining gap between our bound and the observed
value of the Higgs mass is mostly due to the hierarchy
between the latter and the instability scale μI , which is not
constrained by vacuum decay via an instanton. If, however,
our vacuum’s instability scale could be found at a lower
energy, the bound arising from the requirement of meta-
stability would improve significantly. In general, taking the
idea seriously that the near criticality of the Higgs mass is a
consequence of the vacuum’s metastability, this favors SM
extensions causing large negative contributions to βλ at

JUSTIN KHOURY and THOMAS STEINGASSER PHYS. REV. D 105, 055031 (2022)

055031-8



energies significantly below the pure SM’s instability scale.
The simplest way to generate such terms is through the
influence of relatively light fermions with a large Yukawa
coupling to the Higgs. The currently best-motivated can-
didate for a particle with these properties is famously the
right-handed neutrino.8 While we use it for the purpose of
concreteness, it should be clear that, at least qualitatively,
our results could be recovered from any suitable fermion.
In generic seesaw models, the combination of relatively

light right-handed neutrinos and a large Yukawa coupling is
obviously in conflict with current experimental constraints
and the very idea of the seesaw itself. While it is, in
principle, possible for the eigenvalues of the light neutrino
mass matrix to be smaller than their pendants for the heavy
neutrinos by many orders of magnitude, the cancellations
necessary for this would require a significant amount of
fine-tuning. An attractive way around this issue is presented
by models in which the mass of the light neutrinos is
protected by an approximate symmetry. For instance, the
B − L̃ symmetric νMSM [49–55], reviewed in Sec. VA,
allows for Oð1Þ couplings despite a right-handed neutrino
mass as small as Oð1Þ TeV.

In Secs. V B–VD, we demonstrate how adding light
right-handed neutrinos to the SM decreases both the
instability scale and the vacuum lifetime. However, as
we show that the effect on the latter is far more pronounced
than that on the instability scale, lowering it to the desired
extent would render the vacuum severely unstable.
Again falling back to our initial assumption that the

observed value of the Higgs mass is indeed the result of
metastability, this suggests considering further SM exten-
sions capable of conspiring with right-handed neutrinos in
a similar way as gravity, i.e., by stabilizing the vacuum at
scales below the instability scale, thus allowing for stronger
Yukawa couplings. The simplest way to achieve this is
through new physics that generates a dimension-six term in
the Higgs potential, which happens, e.g., in models with a
(partially) composite Higgs or two Higgs doublets like the
MSSM. For a general dimension-six operator at tree level,
this mechanism and its interplay with the influence of
fermion singlets has recently been discussed in [24]. For
concreteness and to allow for an efficient treatment of the
running of the dimension-six Wilson coefficient, for our
numerical analysis, we impose the matching condition of
the SU(4)/Sp(4) composite Higgs model,

C6ðΛfÞ ¼ −
π2

12
λðΛfÞ; ð34Þ

FIG. 2. The upper bound m̄h on the running mass as a function of the vacuum’s lifetime for different values of ytðMPlÞ. The dashed
green line denotes the central values of parameters inferred from experiments, and the solid green line marks the measured value of the
Higgs mass.

8The case of a generic singlet neutrino has recently been
discussed in [24], whereas we chose to focus on this particular
example for concreteness but also due to its potential phenom-
enological relevance.
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whereΛf ¼ 4πf, with the technipion decay constant f. It is
however crucial to keep in mind that this case is generic,
and our results can be easily generalized to a general theory.
Using our results from Sec. II, we show in Secs. V E and

V F that through the involvement of such an operator the
instability scale can be lowered drastically, and with it the
bound on the Higgs mass can be shifted closely above its
observed value in agreement with all observational con-
straints. To be concrete, our perturbative treatment allows
for a bound as strong as 104 GeV, in agreement with all
observational constraints, and potentially even smaller if it
were not for the breakdown of approximation for the
bounce.

A. Achieving light right-handed neutrinos
with a large Yukawa coupling

The νMSM consists of the SM together with three heavy,
right-handed singlet neutrinos NI , I ¼ 1, 2, 3. Their
Lagrangian is given by

L ¼ N̄Iiγμ∂μNI − YαIL̄αNIðϵH�Þ

−
1

2
MIJN̄c

INJ þ H:c:; ð35Þ

where L̄α denotes the lepton doublets (α ¼ e, μ, τ), and YαI
is the matrix of Yukawa couplings and ϵ the totally anti-
symmetric SU(2) matrix. The last term is a Majorana mass
matrix. This model is usually referred to as the νMSM or
type I seesaw, as the mass matrix of the left-handed
neutrinos after symmetry breaking is given by

mν ¼ −
v2

2
YM−1YT; ð36Þ

which is to be understood as a matrix in generation space.
This relation implies that, in generic cases, increasing the
mass of the right-handed neutrinos decreases the mass of
the left-handed ones and vice versa. In other words, the
lightness of the left-handed neutrinos is either the result of
the large masses of their right-handed counterparts or tiny
Yukawa couplings.
However, there is a subtlety to this argument. As the

masses of the left-handed neutrinos are the eigenvalues of
the mass matrix (36), it is possible that cancellations
between the different elements of the latter lead to small
eigenvalues despite Yukawa couplings of order ∼1 and
right-handed neutrinos with masses in the TeV range [56].
While the fine-tuning necessary to achieve such cancella-
tions could of course be accidental, it can naturally arise as
the result of an additional approximate symmetry protect-
ing the masses of the left-handed neutrinos. One of the most
important examples for such a symmetry is related to the
preservation of the B − L̃ number, where L̃ denotes an
extension of the lepton number by right-handed neutrinos
[49] and given by

N3 → eiαN3; N2 → e−iαN2; N1 → eiβN1: ð37Þ

Imposing this as an exact symmetry, and taking into
account several observational constraints, the Majorana
mass matrix and the matrix of Yukawa couplings are
restricted to be of the form

M ¼

0
B@

0 0 0

0 0 M

0 M 0

1
CA; Y ¼

0
B@

0 Y1 0

0 Y2 0

0 Y3 0

1
CA; ð38Þ

up to rotations of the right-handed neutrinos in flavor space.
Consistency with observations requires this symmetry to be
broken, which can be made manifest by introducing
symmetry-breaking terms for both the Yukawa coupling
as well as the mass term. While these are crucial to obtain
everything from neutrino oscillations to the masses of the
light mass eigenstates, i.e., the SM neutrinos, their effect on
the decay rate is negligible as long as the symmetry is only
slightly broken.
The influence of right-handed neutrino singlets on

vacuum stability has been discussed at different levels of
detail in [57–61]. Considering its strong dependence on the
quartic coupling λ, it should be clear that the neutrinos’
main influence on the decay rate is via their contribution to
βλ. While their precise effect depends on the detailed form
of the Yukawa coupling and Majorana mass matrix, it is
generally true that right-handed neutrinos lead to a more
negative λ and thus a shorter lifetime.

B. Vacuum decay in symmetry protected
seesaw models

Assuming the Yukawa couplings to be of the form (38)
allows for the following replacements in the νMSM’s beta
functions, which we give in full detail to 2-loop accuracy in
Appendix A 3,

YνY
†
νYν → Yν · ðY2

1 þ Y2
2 þ Y2

3Þ;
TrðY†

νYνÞ → Y2
1 þ Y2

2 þ Y2
3: ð39Þ

As argued above, observations require the addition of
symmetry-breaking terms to (38) and thus modifications
to this relation. However, under our assumption that
jYj ∼Oð1Þ while M ≲ 1011 GeV, such additional terms
should be strongly suppressed compared to the leading-
order terms, allowing us to safely neglect them in the
following. The same is true for corrections of the heavy
neutrino masses, so that we match the νMSMwith the pure
SM at the scale μ ≃M. This reduces the number of
parameters to four: the heavy neutrino mass M and the
three couplings Y1ðMÞ; Y2ðMÞ, and Y3ðMÞ.
Furthermore, given that we neglect the terms breaking

the B − L̃ symmetry, and taking into account that our
analysis is, in general, insensitive to all properties of the
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neutrinos except their Yukawa couplings, we find an
additional SOð3Þ symmetry among Y1, Y2, and Y3.

9

This symmetry is also respected by the correction to
the effective potential required for our upper bound on
the Higgs mass, as well as by the threshold corrections
at the matching scale of the pure SM’s quartic coupling
with the one of UV theory, making it evident that the same
holds for the NLO corrections to the decay rate from the
neutrinos’ determinants. Thus, as long as we are only
interested in the neutrinos’ influences on Higgs vacuum
decay, we can further simplify the Yukawa matrix by
rotating its components as

Y →

0
B@

0 0 0

0 jYj 0

0 0 0

1
CA; where jYj2 ¼ Y2

1 þ Y2
2 þ Y2

3; ð40Þ

leaving us with just two parameters: M and
jYðMÞj.10
The neutrino’s contribution to the quartic coupling’s loop

correction, λ1, is given in, e.g., [60–62], and the beta
functions of the extended SM are known to 2-loop accuracy
[63]. The only missing quantity to extend the NLO
formula (12) is the neutrinos’ kinetic terms’ functional
determinants. Recalling that we are interested in the regime
M ≲ μI , the masses of both light and heavy neutrino states
are negligible at scales relevant to the instanton. Making
use of this fact, it is straightforward to see that the neutrino
fluctuations contribute in the same way as the top quark
under the replacement yt → jYj.

C. The numerical relation between neutrinos’
Yukawa couplings and the lifetime

We numerically compute the lifetime using (12), sup-
plemented with the neutrino determinant. To do so, we first

FIG. 3. The value of jYðMÞj necessary to realize a given lifetime, shorter than the central value of 10983 years for the pure SM. Each
curve corresponds to a different value of M, in increasing order of magnitude.

9Note that this symmetry would be broken, e.g., through the
neutrino contribution to the tau Yukawa. However, given the
smallness of the latter as well as the smallness of the interval over
which the neutrino contribution is relevant, we can safely neglect
the corresponding terms for simplicity.

10This is equivalent to the case of a hierarchy between the
Yukawa couplings of the neutrinos, which is often used in the
literature to simplify results [57–61].
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match the SM couplings with those of the B − L̃ symmetric
νMSM at the scale M, following the effective field theory
procedures outlined in [64,65] and using the threshold
corrections for λ and yt given in [57].11 Then, for a given
value of jYðMÞj, we run the couplings up to the Planck
scale using the full νMSM beta functions at 2-loop
accuracy found in [63], which we give in the Appendix
in the conventions used in this article.
Having determined the running of the couplings, we

obtain the instanton scale μS as before by solving (14). It is
worth noting that μS lies significantly below μ⋆ (where βλ
vanishes) in this case. Indeed, the right-handed neutrino
Yukawa couplings with values relevant for our purposes
generally push μ⋆ beyond the Planck scale. Nevertheless, as
explained in Sec. II, gravitational corrections keep μS

below the Planck scale due to their nonlogarithmic
dependence on the scale.
Figure 3 shows the value of jYðMÞj necessary to achieve a

certain lifetime for all values of M of interest. We consider
lifetimes ranging from 1010 years to the SM central value of
10983 years. This plot allows us to convert any prediction of
the vacuum’s lifetime to a relation of the relevant right-
handed neutrino properties, assuming either a strong hier-
archybetween theYukawacouplings or theB − L̃ symmetry.
As a side result, we provide updated stability bounds on the
Yukawa couplings, which can be read off from the left
boundary of Fig. 3. For M ¼ 1012 − 1015 GeV, our results
are almost identical to the ones given in [57], with a minor
deviation due to our more careful treatment of gravitational
corrections and, more importantly, updated experimental
input for the SM couplings.
Before proceeding, it is important to stress once again

that the inclusion of right-handed neutrino Yukawa cou-
plings with properties relevant for our purpose generally
shifts the minimum of λ to scales beyond the Planck mass.

FIG. 4. The upper bound on the running Higgs mass as a function of the lifetime. Different lifetimes are achieved by varying the
neutrino coupling parameter jYðMÞj (per Fig. 3), while all other couplings are fixed to their observed values near the electroweak scale.
Each curve corresponds to a different value ofM. The green dashed line marks the bound obtained for the considered set of parameters
in the pure SM.

11The authors of [57] kindly informed us about a small typo in
their Eq. G(20), where a factor of 1

4
in the first term has to be

replaced by 1
2
. We have taken this into account in our calculation.
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While this on its own would render the most important
instantons inaccessible to us, we are saved by gravitational
corrections. As described in Sec. II, due to their non-
logarithmic dependence on the scale, gravitational correc-
tions shift μS below the Planck scale, even though the
gravitational term is strongly suppressed compared to the
Minkowski contribution. This observation is crucial, as it
provides a hint at how the small Higgs mass we observe
might be achieved via a metastability bound.

D. The neutrino Yukawa couplings’ effect
on the metastability bound

Having established the possibility to achieve any desired
lifetime shorter than in the pure SM, we turn to our second
objective, namely, to address the smallness of the electro-
weak scale. Unlike in Sec. III, we keep λ and yt fixed to
their SM values at the electroweak scale and instead scan
the lifetime by varying jYðMÞj. We further modify our
previous procedure by including the neutrino correction to
the decay rate, as well as the neutrino contributions to λ1
and the beta functions. We focus on the range M ≲ μI , for

otherwise the running of λ would be unaffected up to the
instability scale, and the Higgs mass bound would be
unchanged.
Figure 4 shows the upper bound on the running Higgs

mass, m̄h, as a function of the lifetime for different values of
M. Stronger Yukawa couplings lead to a faster decline of λ,
and thus a smaller μI, which in turn yields a stronger bound
on the Higgs mass. Furthermore, it is clear that the larger
the neutrino mass is, the higher is the energy at which their
Yukawa couplings become relevant, and the smaller is their
influence on μI .
Our results lie within with experimental bounds on

neutrino parameters. While in the νMSM many of their
properties depend on the symmetry-breaking parts of the
Yukawa couplings and the mass matrix, the symmetric
Lagrangian (35) allows for a mixing of the active neutrinos
with the Dirac fermionΨ ¼ N2 þ Nc

3, the strength of which
is determined by the combination v

M jYj [56]. Although
experiments do not directly constrain this combination,
current experimental bounds allow for jYj≲ 0.5 for
M ¼ 1 TeV [66], i.e., the full range of parameters inves-
tigated in this section.

FIG. 5. The value of jYðMÞj necessary to realize a given lifetime for different values of f. The gray bars cover the range
M ¼ 1–5 TeV. In the white region, the expansion parameter defined in (18) is smaller than 0.1 for M ¼ 1 TeV, in the dark red region
larger than 1. The shaded regions indicate the transition in steps of Δϵ ¼ 0.1.
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There is an important subtlety arising from the inclusion
of neutrinos or additional fermions, in general. As we are
mostly interested in scenarios with M < μI ∼ m̄h, the
restricted Higgs mass is, in general, not the SM parameter
but that of the νMSM, which is related to its SM counterpart

via a threshold correction δm2
h ¼ M2jYj2

ð4πÞ2 . While this expres-

sion is at least 1 order of magnitude smaller than m̄2
h for all

parameters considered in this article and thus negligible in
the context our bound, it is important to note that this is not
automatically true for all setups. The smallness of the
correction compared to m̄2

h can be related to the relative
smallness of jYj, which on the one hand leads to a small
correction and on the other hand does not allow for a fast
enough decline of λ to push μI close toM. This last point is
further enhanced by the threshold correction in λ. If the
matching scale M lies close enough to the would-be
instability scale, the threshold correction for λ can be large
enough for the latter to jump to a negative value without
vanishing exactly, spoiling our analysis. While also this
poses no problem for the range of parameters covered in this
article, it might have consequences for a refined analysis of
the model discussed in the next subsection with parameters
currently not accessible by our perturbative treatment.

E. The numerical relation between neutrinos Yukawa
couplings, dimension-six operator, and the lifetime

Combining our previous results, it is straightforward to
include the effect of a dimension-six operator. We restrict

ourselves to small values of M, for concreteness
M ∼ 1–5 TeV, which yield the tightest bound on the
Higgs mass (see Fig. 4) while being safely compatible
with experimental constraints for M ≳ 2 TeV. With these
values fixed, we scan different values of f and jYðMÞj.
All SM couplings are matched at the scale M using the

same procedure as before, in particular, taking into account
threshold corrections for λ and yt and run using their 3-loop
beta functions, neglecting the contributions ∼m2

h=Λ2
f. As in

the most interesting cases the instanton scale lies close to
the scale of new physics, we take into account the RG
running of C6 at 1-loop only.
In this manner, we can compute the lifetime of the vacuum

for each pair of values jYðMÞj and f—or, equivalently, the
value of jYðMÞj corresponding to every possible lifetime,
given f. This relation is depicted in Fig. 5, for values of f
ranging from 106 to 1019 GeV. In principle, smaller values of
f would also be possible but are not accessible by our
perturbative analysis. The red shading indicates different
values of the expansion parameter ϵ assuming M ¼ 1 TeV,
defined in (18), ranging from 0.1 to 1. Consistent with the
discussion below (18), we see that the perturbative expansion
is indeed most reliable for shorter lifetimes and larger f.

F. The neutrino Yukawa couplings
and dimension-six term’s combined
effect on the metastability bound

Having related the lifetime to the neutrino Yukawa
couplings, we have gathered everything necessary to

FIG. 6. The upper bound on the running Higgs mass as a function of the lifetime for different values of f, with the range of f being only
restricted by the applicability of our perturbative treatment and not physical reasons. The gray bars represent the intervalM ¼ 1–5 TeV.
The shading in the background again marks areas of different ϵ for M ¼ 1 TeV, ranging from 0.1 to 1 in steps of size 0.1.

JUSTIN KHOURY and THOMAS STEINGASSER PHYS. REV. D 105, 055031 (2022)

055031-14



include the effect of the dimension-six term on the upper
bound on the running Higgs mass as a function of the
vacuum’s lifetime. The modified relation is shown in Fig. 6,
again considering M ¼ 1–5 TeV for concreteness. We see
that metastability forcesmh lie consistently at least 2 orders
of magnitude below f, which is of the same order as the
natural value for the mass parameter.
Figure 6 confirms our expectations. By balancing

right-handed neutrinos with the stabilizing effect of a
dimension-six operator, it is possible to simultaneously
achieve a significantly smaller lifetime and decrease the
upper bound on the running Higgs mass down to ≃10 TeV.
From there, naively extrapolating our results beyond
the applicability of our approximations, it appears as if
lowering f just slightly further might allow for an upper
bound on the Higgs mass of order 1 TeV, which, together
with the necessity of a potential barrier separating electro-
weak and true vacuum, might be sufficient to explain the
observed value of 102 GeV as well as the remaining small
hierarchy.

VI. CONCLUSIONS

The absence of new physics in flavor, precision, and
LHC experiments points to the SM being valid up to very
high energy, leaving the lightness of the Higgs unexplained
and seemingly fine-tuned. It appears increasingly doubtful
that the cherished principle of naturalness, which has
guided much of particle model building, can explain the
gauge hierarchy problem. A puzzling consequence of
extrapolating the SM to a very high energy scale is the
metastability of the electroweak vacuum. We believe this
numerical conspiracy is no accident. It is striking that Higgs
metastability, the gauge hierarchy problem, and the cos-
mological constant problem can all be interpreted as
problems of near criticality.
In this article, we considered an unconventional

approach to the hierarchy problem, which rests on the
idea that the gauge hierarchy is a consequence of a more
primitive property of our vacuum, namely, its metastability.
This is motivated, e.g., by the early-time framework for
eternal inflation put forth recently, based on search opti-
mization on the string landscape. A key prediction of this
framework is that optimal regions of the landscapes are
characterized by vacua that are relatively short lived, with
lifetimes of order of their de Sitter Page time. As such, this
offers a raison d’être for the conspiracy underlying Higgs
metastability. While we are primarily motivated by the
nonequilibrium approach to eternal inflation, our results
pertain more generally to any theoretical framework pre-
dicting that our vacuum should be metastable.
Central to our analysis is the observation that the

metastability of the electroweak vacuum, together with
the very requirement that such a nontrivial vacuum exists,
implies that the Higgs mass is bounded from above by the
instability scale. Simply put, a small Higgs mass is a

necessary condition for a metastable vacuum. This was first
pointed out in the context of the SM in [11], though the
bound is quite weak in this case, as the instability scale
is ∼1011 GeV.
A key point of this article is that simple, well-motivated

extensions of the SM can significantly tighten the upper
bound on the Higgs mass, as low as ∼10 TeV and
potentially even further through a more elaborate analysis,
by lowering the instability scale μI. Furthermore, the
vacuum lifetime can be shortened, to the extent that the
Page time can be achieved. In other words, our viewpoint is
that tightening the Higgs mass bound down to a value
slightly above the electroweak scale together with achiev-
ing a shorter lifetime act as guiding principles in sifting
through possible SM extensions. As an important by-
product of our analysis, we provided accurate calculations
of the vacuum’s lifetime as a function of the parameters
characterizing the SM extensions of interest, which allowed
us to update existing stability bounds by combining for the
first time all relevant NLO corrections, both from gravity
and functional determinants, at up to 3-loop accuracy.
We first considered the inclusion of right-handed neu-

trinos, a necessary extension to the SM to explain the mass
of their left-handed counterparts. With a right-handed mass
of order TeV and Oð1Þ Yukawa couplings, the lifetime is
dramatically shorter while the Higgs mass bound is
significantly tighter. An elegant model where this can be
naturally realized while satisfying experimental constraints
is the νMSM model with approximate B − L̃ symmetry.
However, we found that right-handed neutrinos by them-
selves cannot fully explain the gauge hierarchy—the
tightest upper bound compatible with experimental con-
straints is ∼108 GeV—still a few orders of magnitude away
from the electroweak scale. Within the νMSM, this
discrepancy can only be alleviated by further increasing
the Yukawa couplings, but this would inevitably render the
electroweak vacuum unstable.
This observation led us to consider further SM exten-

sions that have a stabilizing effect on the vacuum, thereby
allowing for stronger right-handed neutrino Yukawa
couplings. For concreteness, we studied the minimal
SU(4)/Sp(4) composite Higgs model as a simple example
that can achieve this. The main impact of compositeness is
through the perturbative addition of a dimension-six
correction to the Higgs potential. As such, while we focus
on this particular minimal composite Higgs model, our
results apply more generally to any theory that can be well
approximated by a dimension-six operator at low energy.
The stabilizing effect of this dimension-six operator

allowed for stronger right-handed neutrino Yukawa cou-
plings. This results in shorter lifetimes, of order the de
Sitter Page time, while simultaneously lowering the upper
bound on the Higgs mass. Within the reach of our
perturbative analysis, the bound can be moved down to
up to ≃10 TeV and potentially even further if corrections to
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the bounce profile were to be taken into account to increase
our analysis’ range of applicability.
It is crucial to keep in mind that our result is really a

bound rather than an independent solution to the gauge
hierarchy problem and is independent of the mechanism
setting the lifetime. The existence of our bound provides a
strong constraint for any such mechanism, as it implies that
its applicability either requires a small Higgs mass or,
ideally, should be able to yield the correct Higgs mass. Our
result can, however, also be understood as a strong
indicator for the shared origin of the different fine-tunings
observed in the Higgs sector, as it suggests that a large
hierarchy between running Higgs mass and Planck scale is
necessary for metastability.
The upper bound on the Higgs mass relies on two

assumptions: (i) metastability of the electroweak vacuum
and (ii) the existence of such a nontrivial vacuum, i.e., a
negative Higgs mass squared. While the former is moti-
vated, e.g., by the nonequilibrium approach to eternal
inflation, the latter remains an assumption in our analysis.
In future work, we will consider further SM extensions
which naturally give rise to a negative Higgs mass squared.
The νMSMmodel with approximate B − L̃ symmetry, with
right-handed neutrino masses at the TeV scale, has the
appealing feature of having the electroweak scale as its
unique mass scale. A natural extension of the present work
would be to consider classically conformally invariant
models [67–69], such as theories where scale invariance
is radiatively broken in a hidden sector and mediated to the
SM via a Higgs-portal coupling [68,70–84]. It will be
interesting to see whether such extensions can further
tighten the bound closer to the measured Higgs mass.
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APPENDIX: COLLECTED RELEVANT
CALCULATIONS

1. Upper bound on the Higgs mass

In this Appendix, we derive the more precise version of
the Higgs mass bound, given by (26), by including

nonlogarithmic 1-loop corrections to λ. The full RG-
improved effective potential is given by

VeffðHÞ ¼ −
m2

h

4
e2Γ½H�H2

þ 1

4
ðλðHÞ þ λ1ðHÞ þ…Þe4Γ½H�H4; ðA1Þ

where λn denotes nonlogarithmic corrections to λ at n-loop
order. The extrema of this potential, d

dH VeffðHÞjH¼v ¼ 0,
are given by

m2
h

v2
¼ e2ΓðvÞ

1þ γðvÞ
�
2ðλðvÞ þ λ1ðvÞ þ…Þ

þ 1

2
ðβλðvÞ þ βλ1ðvÞ þ…Þ

�
; ðA2Þ

where γ denotes the Higgs field’s anomalous dimension.
The existence of a metastable vacuum is equivalent to the

existence of solutions to this equation. A first restriction on
these solutions can be read off directly from (A1): at scales
somewhat larger than the instability scale, λðμÞ becomes
sufficiently negative to compensate for the positive loop
corrections fλnðμÞgn. Thus, at those scales, both the
quadratic and the quartic term appear with a negative sign,
and no extremum can occur. This implies that we can focus
on values of v near the instability scale, with the immediate
consequence that λðvÞ ≃ βλðμIÞ ln v

μI
. Thus, λ becomes

effectively 1-loop [47], and therefore, a consistent lead-
ing-order perturbative expansion of (A2) must account for
all 1-loop terms. This includes, in particular, λ1, which has
been neglected in [11].
Restricting ourselves to 1-loop accuracy, (A2) can be

brought to the form

m2
h ¼ v2

�
2 ln

v
μI

þ 2
λ1ðμIÞ
βλðμIÞ

þ 1

2

�
βλðμIÞ: ðA3Þ

Understood as a function of v, the right-hand side is
bounded from above since βλðμIÞ < 0. Maximizing over
v, we obtain the inequality

m2
h ≲ jβλðμIÞj exp

�
−
3

2
− 2

λ1ðμIÞ
βλðμIÞ

�
μ2I : ðA4Þ

If λ1 is neglected, as assumed in [11], this bound reduces
to (25).
Equation (A3) can furthermore be used to classify the

effective potential. Clearly, for values of m2
h larger than the

bound (A4), it has no extremum. In the case that m2
h is

strictly smaller than the bound but larger than 0, the right-
hand side of Eq. (A3) has two solutions, corresponding to
the top of the potential barrier and the vev, which—
neglecting the nonlogarithmic term λ1 for now—ranges
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from 0 to e−1=4μI. For v ¼ e−3=4μI, the inequality (A4) is
saturated, corresponding to a saddle point of the effective
potential at v, implying that corrections due to the running
of λ effectively cancel the tree-level mass parameter m2

h in
d2

dH2 VeffðHÞ. This is now precisely the critical point at the
center of the probability distribution derived in [24],
confirming its consistency with our bound on the running
Higgs mass, which it saturates.
For m2

h < 0, the potential no longer permits spontaneous
symmetry breaking without the influence of further quan-
tum corrections, and (A3) has only one solution, again
corresponding to the potential wall, which is now located
beyond the instability scale. Since in this limit the poten-
tial’s only minimum lies at H ¼ 0, we find v < e−

1
4μI when

neglecting λ1. The same discussion can be performed after
restoring it, leading to the more appropriate bound,

v ≤ exp

�
−
1

4
−
λ1ðμIÞ
βλðμIÞ

�
μI: ðA5Þ

In Secs. V E and V F, we add a dimension-six operator to
the potential, of the form ΔV ¼ C6

Λ2
f
H6, where to leading

order C6 ∼ λ. This term leads to a correction in (A4) of
order λ v2

Λ2
f
. Recalling that v2 ≲ μ2I ≪ Λ2, this correction is

suppressed compared to the terms originating from the pure
SM, so that it could justifiably be neglected in our
perturbative discussion.

2. NLO tunneling formula for the Standard Model

For completeness, we include here the NLO formula for
the vacuum decay rate derived in [17]. Before performing
the integral over the dilatation modes, the decay rate per
unit volume is given by

Γ
V
¼
Z

dR
R5

e−SEðλðR−1Þ;RÞDðR−1Þ: ðA6Þ

The factor DðR−1Þ is defined as

DðR−1Þ≡ 72ffiffiffi
6

p
π2

S4EðλðR−1Þ; RÞ exp
�
12ζ0ð−1Þ − 25

3
þ π2 − γE −

3

2
ln 2 −

3

2
SþfinðXÞ − 3SþfinðYÞ þ

3

2
Sψ̄ψfin ð

ffiffiffiffiffi
Zt

p
Þ

þ 3

2
Sψ̄ψfin ð

ffiffiffiffiffiffi
Zb

p
Þ − 3Sψ̄ψloopsðZtÞ − 3Sψ̄ψloopsðZbÞ −

1

2
SAGdiffðXÞ − SAGdiffðYÞ − SAGloopsðXÞ − 2SAGloopsðYÞ

�
; ðA7Þ

where X ≡ − g2þg02
12λ , Y ≡ − g2

12λ, and Zi ≡ y2i
λ . The correction SþfinðxÞ appearing in the exponent is given by

SfinðxÞ ¼ x2ð6γE þ 51 − 6π2Þ þ 6xþ 11

36
þ ln 2π þ 3

4π2
ζð3Þ − 4ζ0ð−1Þ − ln

�
cos ðπ

2
κxÞ

6πx

�

− xκx

�
ψ ð−1Þ

�
3þ κx

2

�
− ψ ð−1Þ

�
3 − κx
2

��
þ
�
6x −

1

6

��
ψ ð−2Þ

�
3þ κx

2

�
þ ψ ð−2Þ

�
3 − κx
2

��

þ κx

�
ψ ð−3Þ

�
3þ κx

2

�
− ψ ð−3Þ

�
3 − κx
2

��
− 2

�
ψ ð−4Þ

�
3þ κx

2

�
þ ψ ð−4Þ

�
3 − κx
2

��
; ðA8Þ

where κx ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 24x

p
, and ψn is the polygamma function. The other corrections to the action are

SAGdiffðxÞ ¼ x2ð121 − 12π2Þ − 45

2
x2;

SAGloopsðxÞ ¼ −
5

18
−
1

3
ðγE − ln 2Þ − xð7þ 6ðγE − ln 2ÞÞ − 9x2

�
1

2
þ γE − ln 2

�
;

Sψ̄ψloopsðxÞ ¼ −x
�
13

8
þ 2

3
ðγE − ln 2Þ

�
þ x2

�
5

18
þ 1

3
ðγE − ln 2Þ

�
; ðA9Þ

as well as

Sψ̄ψfin ðxÞ ¼ 16ψ ð−1Þð2Þ − 8

3
ψ ð−2Þð2Þ þ 4

3
x2ð1 − γEÞ −

x4

3
ð1 − 2γEÞ

−
4

3
xð1 − x2Þ½ψ ð−1Þð2þ xÞ − ψ ð−1Þð2 − xÞ� þ 4

3
xð1 − 3x2Þ½ψ ð−2Þð2þ xÞ þ ψ ð−2Þð2 − xÞ�

þ 8x½ψ ð−3Þð2þ xÞ − ψ ð−3Þð2 − xÞ� − 8½ψ ð−4Þð2þ xÞ þ ψ ð−4Þð2 − xÞ�: ðA10Þ
We refer the reader to [17] for further details and the meaning of the different subscripts.
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3. Beta functions

We provide the beta functions used in our calculations. The beta function of the quartic coupling λ at 3-loop order is
given by

βλ ¼
1

ð4πÞ2 ½24λ
2 − 6y4t − 6y4b − 2y4τ þ

3

8
ð2g4 þ ðg2 þ g02Þ2Þ − λð9g2 þ 3g02 − 12y2t − 12y2b − 4y2τÞ þ jYj2ð4λ − 2jYj2Þ�

þ 1

ð4πÞ4
�
1

48
ð915g6 − 289g4g02 − 559g2g04 − 379g06Þ þ 30y6t þ 30y6b þ 10y6τ − y4t

�
8

3
g02 þ 32g2s þ 3λþ 6y2b

�

− y4b

�
4

3
g02 þ 32g2s þ 3λþ 6y2t

�
− y4τð4g02 þ 3λÞ

þ λ

�
−
73

8
g4 þ 39

4
g2g02 þ 629

24
g04 þ 108g2λþ 36g02λ − 312λ2

�

þ y2t

�
−
9

4
g4 þ 21

2
g2g02 −

19

4
g04 þ λ

�
45

2
g2 þ 85

6
g02 þ 80g2s − 144λ − 42y2b

��

þ y2b

�
−
9

4
g4 þ 9

2
g2g02 −

5

4
g04 þ λ

�
45

2
g2 þ 25

6
g02 þ 80g2s − 144λ − 42y2t

��

þ y2τ

�
−
3

4
g4 þ 11

2
g2g02 −

25

4
g04 þ λ

�
15

2
g2 þ 75

6
g02 − 48λ

��

þ jYj2
�
−96λ2 þ λð5g02 þ 15g2 − 2jYj2Þ − 3

2
g4 þ 20jYj4

��

þ 1

ð4πÞ6 ½λ
3ð12022.7λþ 1746y2t − 774.904g2 − 258.3g02Þ

þ λy2t ð3536.52y2t þ 321.54g2s − 719.078g2 − 212.896g02Þ
þ λ2ð−1580.56g4 − 1030.734g04 − 1055.466g2g02Þ
þ λy4t ð−446.764y2t − 1325.732g2s − 10.94g2 − 70.05g02Þ
þ λy2t ð713.936g4s − 639.328g4 − 415.888g04 þ 30.288g2sg2 þ 58.18g2sg02 þ 18.716g2g02Þ
þ λg4ð−114.288g2s þ 1730.966g2 þ 265.46g02Þ þ λg04ð−46.562g2s þ 343.072g2 þ 260.814g02Þ
þ y6t ð−486.298y2t þ 500.988g2s þ 146.276g2 þ 113.1g02Þ
þ y4t ð−100.402g4s þ 31.768g4 þ 88.6g04 þ 26.698g2sg2 þ 58.566g2sg02 − 234.52g2g02Þ
þ y2t g2sð32.928g4 þ 3.644g04 þ 37.954g2g02Þ þ y2t g4ð125g2 þ 43.470g02Þ
þ y2t g04ð58.318g2 þ 102.936g02Þ þ g2sð15.072g6 þ 7.138g06 þ 5.024g4g02 þ 6.138g2g04Þ

− 228.182g8 − 23.272g08 − 126.296g6g02 þ 36.112g4g04 − 14.288g2g06� þO
�
m2

h

Λ2
f

�
: ðA11Þ

For the top Yukawa coupling yt, we have, also at 3-loop order,

βyt ¼
yt

ð4πÞ2
�
−
9

4
g2 −

17

12
g02 − 8g2s þ

9

2
y2t þ jYj2

�

þ yt
ð4πÞ4

�
−
23

4
g4 −

3

4
g2g02 þ 1187

216
g04 þ 9g2g2s þ

19

9
g02g2s − 108g4s þ y2t

�
225

16
g2 þ 131

16
g02 þ 36g2s −

11

4
y2b −

9

4
y2τ

�

þ y2b

�
99

16
g2 þ 7

48
g02 þ 4g2s −

1

4
y2b þ

5

4
y2τ

�
þ y2τ

�
15

8
g2 þ 25

8
g02 −

9

4
y2τ

�

þ 6ðλ2 − 2y4t − 2λy2t Þ þ jYj2
�
5

8
y2t −

9

8
y2t −

9

4
jYj2 þ 5

8
g02 þ 15

8
g2
��
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þ yt
ð4πÞ6

�
y4t

�
58.6028y2t þ 198λ − 157g2s −

1593

16
g2 −

2437

48
g02
�
þ λy2t

�
15

4
λþ 16g2s −

135

2
g2 −

127

6
g02
�

þ y2t ð363.764g4s þ 16.990g4 − 67.839g04 þ 48.370g2sg2 þ 30.123g2sg02 þ 58.048g2g02Þ

þ λ2ð−36λþ 45g2 þ 15g02Þ þ λ

�
−
171

16
g4 −

1089

144
g04 þ 39

8
g2g02

�
− 619.35g6s þ 169.829g6 þ 74.074g06 þ 73.654g4sg2 − 25.16g4sg02

− 21.072g2sg4 − 61.997g2sg04 −
107

4
g2sg2g02 − 7.905g4g02 − 12.339g2g04

�
þO

�
m2

h

Λ2
f

�
:

Meanwhile, the beta function of the bottom Yukawa is, at 2-loop order,

βyb ¼
yb

ð4πÞ2
�
3

2
y2t þ

9

2
y2b þ y2τ − 8g2s −

9

4
g2 −

5

12
g02 þ jYj2Þ

�

þ yb
ð4πÞ4

�
5

8
y2t jYj2 −

9

8
y2bjYj2 −

9

4
jYj4 þ 15

8
jYj2

�
1

3
g02 þ g2

�
þ 6λ2 − 108g4s −

23

4
g04 −

127

216
g04

þ 9g2sg2 þ
31

9
g2sg02 −

9

4
g2g02 þ y2t

�
−
1

4
y2t −

11

4
y2b þ

5

4
y2τ þ 4g2s þ

99

16
g2 þ 91

48
g02
�

þ y2b

�
−12y2b −

9

4
y2τ − 12λþ 36g2s þ

225

16
g2 þ 79

16
g02
�
þ y2τ

�
−
9

4
y2τ þ

15

8
g2 þ 25

8
g02
��

:

At the same order, the tau Yukawa’s beta function is

βyτ ¼
yτ

ð4πÞ2
�
3y2t þ 3y2b þ

5

2
y2τ −

9

4
g2 −

15

4
g02
�

þ yτ
ð4πÞ2

�
6λ2 −

23

4
g4 þ 457

24
g04 þ 9

4
g2g02 þ y2t

�
−
27

4
y2t þ

3

2
y2b −

27

4
y2τ þ 20g2s þ

45

8
g2 þ 85

24
g02
�

þ y2b

�
−
27

4
y2b −

27

4
y2τ þ 20g2s þ

45

8
g2 þ 25

24
g02
�
þ y2τ

�
−3y2τ − 12λþ 165g2 þ 179

16
g02
��

: ðA12Þ

The beta functions of the gauge couplings g0, g, and gs are, again at 3-loop order, respectively, given by

βg0 ¼
g03

ð4πÞ2
41

6
þ g03

ð4πÞ4
�
199

18
g02 þ 9

2
g2 þ 44

3
g2s −

17

6
y2t −

1

2
jYj2

�

þ g03

ð4πÞ6
�
y2t

�
315

16
y2t −

29

5
g2s −

785

32
g2 −

2827

288
g02
�
þ λ

�
−3λþ 3

2
g2 þ 3

2
g02
�

þ 99g4s þ
1315

64
g4 −

388613

5184
g04 −

25

9
g2sg2 −

137

27
g2sg02 þ

205

96
g2g02

�
; ðA13Þ

βg ¼ −
g3

ð4πÞ2
19

6
þ g3

ð4πÞ4
�
3

2
g02 þ 35

6
g2 þ 12g2s −

3

2
y2t −

1

2
jYj2

�

þ g3

ð4πÞ6
�
y2t

�
147

16
y2t − 7g2s −

729

32
g2 −

593

96
g02
�
þ λ

�
−3λþ 3

2
g2 þ 1

2
g02
�

þ 81g4s þ
324953

1728
g4 −

5597

576
g04 þ 39g2sg2 −

1

3
g2sg02 þ

291

32
g2g02

�
; ðA14Þ

and
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βgs ¼−
g3s

ð4πÞ2 7þ
g3s

ð4πÞ4
�
11

6
g2s þ

9

2
g2−26g2s −2y2t

�

þ g3s
ð4πÞ6

�
y2t ð15y2t −40g2s −93=8g2−101=24g02Þþ65

2
g4s þ

109

8
g4−

2615

216
g04þ21g2sg2þ

77

9
g2sg02−

1

8
g2g02

�
: ðA15Þ

These are at 3-loop order, except for βgs which includes the dominant 4-loop term. For the neutrinos’Yukawa couplings, the
beta function at 2-loop order is

βYi
¼ Yi

ð4πÞ2
�
5

2
jYj2 þ 3y2t −

3

4
g02 −

9

4
g2
�

þ Yi

ð4πÞ4
�
3

2
jYj4 − 9

4
jYj2ð3y2t þ jYj2Þ − 9

4
ð3y4t þ jYj4Þ þ 3

2
λ2 − 64λjYj2 þ jYj2

16
ð93g02 þ 135g2Þ

þ 5

2

�
y2t

�
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12
g02 þ 9

4
g2 þ 8g2s

�
þ 3

4
jYj2

�
1

3
g02 þ g2

��
þ 7

48
g04 −

9

4
g2g02 −

23

4
g4
�
þO

�
m2

h

Λ2
f

�
: ðA16Þ

The running of the Wilson coefficient C6 at 1-loop order is determined by

βC6
¼ C6

ð4πÞ2
�
−
9

2
ð3g2 þ g02Þ þ 108λþ 18y2t

�
: ðA17Þ

Lastly, the running mass m2
h satisfies

βm2
h
¼ 3m2

h

8π2

�
2λþ y2t −

3

4
g2 −

3

20
g02 þO

�
m2

h

Λ2
f

��
: ðA18Þ
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