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2Dual CP Institute of High Energy Physics, C.P. 28045, Colima, México
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Parc Científic de Paterna. C/ Catedrático José Beltrán, 2 E-46980 Paterna (Valencia), Spain

4Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582. Colonia Crédito Constructor,
Del. Benito Juárez, C.P. 03940, Ciudad de México, México
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The use of extra space-time dimensions provides a promising approach to the flavor problem. The
chosen compactification of a 6-dimensional orbifold implies a remnant family symmetry A4. This makes
interesting predictions for quark and lepton masses, for neutrino oscillations and neutrinoless double beta
decay, providing also a very good global description of all flavor observables. Due to an auxiliary Z4

symmetry, we implement a scotogenic Majorana neutrino mass generation mechanism with a viable WIMP
dark matter candidate.
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I. INTRODUCTION

The standard model lacks a basic principle that one may
use to describe flavor properties. Indeed, the “flavor prob-
lem” constitutes one of the major challenges in our field.
Describing the observed pattern of fermion masses and
mixing has become even a tougher problem, after the
discovery of neutrino oscillations [1–4]. Oscillations dem-
onstrate that leptons do mix, but rather differently from the
way quarks do within the Cabibbo–Kobayashi–Maskawa
(CKM) model. Moreover, it seems unlikely that the fermion
mass pattern results just by chance. It seems to suggest the
existence of a “family” symmetry, for which mathematics
offers usmany possibilities [5]. Extra space-time dimensions
may help shed fresh light on the flavor problem. Indeed, the
fermion mass hierarchies may result from geometry [6],
while the mixing angles may be related as a consequence of
the imposition of suitable symmetries [7,8].
Here we build upon our previous proposal of using a

class of six-dimensional orbifold constructions as theories

of flavor [9,10]. In sharp contrast with the warped flavor
dynamics scenario proposed in [7,8], where the family sym-
metries were postulated ab initio, now the family symmetry
is dictated by the compactification to be A4, the smallest
group with three-dimensional irreducible representations
that we can use to stack the three observed particle families.
Another important drawback of the standard model is the

absence of a viable dark matter candidate. In our current
flavor model construction, dark matter can be identified as
the mediator of neutrino mass generation. Indeed, with the
help of an auxiliary symmetry, we implement a scotogenic
picture where neutrinos acquire a Majorana mass through
the exchange of a dark sector. The model naturally predicts
the “golden” quark-lepton mass relation, also making
predictions for neutrino oscillations and neutrinoless dou-
ble beta decay. Moreover, it provides an excellent global
description of all flavor observables.
The paper is organized as follows. In Sec. II we discuss

general features of the theoretical framework. In Sec. III we
introduce the new fields and their interactions, describing
both the scalar as well as the fermionic sector. In Sec. IV we
discuss fermion masses, including the scotogenic neutrino
mass generation mechanism. Section V contains a dis-
cussion on the main flavor predictions of our model.
Finally, we give our conclusions in Sec. VI.

II. THEORETICAL PRELIMINARIES

Here we consider a theoretical framework with new
dimensions [11–15] as a setup to tackle the family problem.
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As an alternative to the warped flavor dynamics scenario
proposed in [7,8] in this paper we study a realistic theory of
flavor based on a discrete A4 family symmetry that emerges
naturally from the orbifold compactification of a 6-dimen-
sional quantum field theory. This builds upon the proposal
made in [9]. Here we summarize the main features of the
extra-dimensional construction.
In the 6-dimensional theory, the spacetime manifold M

is identified with the direct product M ¼ M4 × ðT2=Z2Þ,
where M4 is the four-dimensional Minkowski spacetime,
and T2=Z2 is a one-parameter (θ) family of 2D toroidal
orbifolds defined by the following relations satisfied by the
extra-dimensional coordinates:

ðx5; x6Þ ¼ ðx5 þ 2πR1; x6Þ; ð1Þ

ðx5; x6Þ ¼ ðx5 þ 2πR2 cos θ; x6 þ 2πR2 sin θÞ; ð2Þ

ðx5; x6Þ ¼ ð−x5;−x6Þ; ð3Þ

where the first two equations define a torus, with θ
parametrizing its twist angle, and the third equation defines
the Z2 orbifolding. For concreteness, here we assume that
the characteristic radii of the compact extra dimensions are
of the same order of magnitude, satisfying

R1 ∼ R2 ∼ 1=Mc; ð4Þ
in terms of the compactification scale Mc. Moreover, we
assume that the twist angle takes the value θ ¼ 2π=3. To
simplify the analysis it is convenient to define the scaled
complex coordinate z ¼ Mcðx5 þ ix6Þ=ð2πÞ. Hence we can
write Eqs. (1)–(3) as

z ¼ zþ 1; ð5Þ

z ¼ zþ ω; ð6Þ

z ¼ −z; ð7Þ

where ω is the cubic root of unity

ω≡ eiθ ¼ ei2π=3: ð8Þ
A fundamental property of orbifolds is that they have

singular points. In our T2=Z2 orbifold, these are located at
the points that remain fixed after performing the trans-
formations listed in Eqs. (5)–(7). Notice that there are four
fixed points in our construction

f1 ¼ 0; f2 ¼
1

2
; f3 ¼

ω
1
2

2
; f4 ¼

1þ ω
1
2

2
: ð9Þ

These fixed points define the location of 4-dimensional
branes embedded in the 6-dimensional space M. In Fig. 1
both the fundamental domain of the twisted torus T2 (light

shaded green), and the fundamental domain of the T2=Z2

orbifold (dark shaded green) are displayed. After compac-
tification, the continuous Poincaré symmetry of the two
extra dimensions is broken, leaving a residual A4 symmetry
of the branes [12,15,16]. The emergence of the discrete A4

symmetry can be understood from the invariance under
permutations displayed by the four fixed points of the
orbifold. Any of these permutations can be written in terms
of two independent transformations

S∶ z → zþ 1=2; T∶ z → ω2z: ð10Þ

These transformations can be also written as elements of
the permutation group S4.

S ¼ ð12Þð34Þ; T ¼ ð1Þð243Þ; ð11Þ

In this form, S and T are related to the generators of the A4

group, satisfying its presentation equation:

S2 ¼ T3 ¼ ðSTÞ3 ¼ 1: ð12Þ

The model, introduced in the next section, is based on
this remnant A4 as a family symmetry [17–20]. Equally
charged fields located on the four different branes would
transform into each other by the remnant A4 transforma-
tions. The four branes transform as the reducible repre-
sentation 4, which in turn can be written as a sum of
irreducible representations 4 → 3þ 1. Thus, the fields
localized on the branes must transform under the flavor
group A4 as triplets or singlets. The family symmetry A4 is
then spontaneously broken, giving rise to the mass

FIG. 1. The fundamental domain of the T2=Z2 orbifold is
shown in the darkest shade of green, obtained after the compac-
tification of the corresponding domain of the twisted torus, which
includes the region depicted in the lightest shade of green. The
resulting space is reminiscent of a tetrahedron, and can be
visualized by identifying the three orange dots into a single
vertex. The fixed points of the orbifold are located at the vertices
of the tetrahedron.
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differences between the three generations of fermions, and
consequently, quark and lepton mixing. Models based on a
similar geometrical construction have proven to be highly
predictive and minimalist [9,10,21].
Notice that the A4 symmetry arises naturally on

the branes, so localized fields automatically preserve it.

The fields that propagate in the bulk preserve the full
6-dimensional Poincaré symmetry, which has A4 as a
subgroup. When adding fields in the bulk one must assign
their transformation properties under A4 in the reduced 4-D
theory. In our model we have singlet fields ψ on the bulk
which are required to satisfy

1∶ Tψðx; zÞ ¼ ψðx;ω2zÞ ¼ ψðx; zÞ; Sψðx; zÞ ¼ ψðx; zþ 1=2Þ ¼ ψðx; zÞ
10∶ Tψðx; zÞ ¼ ψðx;ω2zÞ ¼ ωψðx; zÞ; Sψðx; zÞ ¼ ψðx; zþ 1=2Þ ¼ ψðx; zÞ
100∶ Tψðx; zÞ ¼ ψðx;ω2zÞ ¼ ω2ψðx; zÞ; Sψðx; zÞ ¼ ψðx; zþ 1=2Þ ¼ ψðx; zÞ: ð13Þ

Note that in the symmetries of Eq. (10), we could also
have listed U∶ z → z�, which is also a symmetry of the
fixed points. This would enlarge the remnant symmetry to
S4 [17–20]. The chosen representations previously
described would not preserve this symmetry and only A4

would remain as desired.

III. THE FLAVOR MODEL

The model is a 6-dimensional extension of the standard
model, based on the SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY gauge
symmetry, featuring the orbifold compactification descri-
bed in the previous section.
It inherits a natural A4 discrete family symmetry. The

field content and the transformation properties under the
different symmetry groups are shown in Table I. Note that
all fermionic fields, except for the right-handed quarks,
transform as flavor triplets and are localized into the
orbifold branes. The decomposition of the 6-dimensional
fields into 4-dimensional representations is shown in the
Appendix A.
It is important to note that the 6-dimensional chiral

fermions uc
i would generate a 6-dimensional gauge and

gravitational anomaly. However, the present model is free

from 4-dimensional anomalies, and thus, those 6-dimen-
sional anomalies do not affect the phenomenology of the
low-energy effective theory of the zero modes. We expect
our model to be part of a larger UV-complete construction.
In our bottom-up spirit, focused on the low-energy phe-
nomenology, such completion lies beyond the scope of
the paper.
The scalar sector consists of three weak isodoublets, two

of these are flavor triplets Hu, Hd, and the other is a flavor
singlet η. Moreover, the model includes an SM singlet
scalar σ that drives the spontaneous breaking of both family
symmetry and lepton number, thus playing the role of a
flavored Majoron [22,23].
The model assumes an auxiliary Z4 symmetry which

dictates how the weak isodoublets Hu, Hd couple with
fermions, and forbids neutrino masses at tree level [24,25].
This Z4 symmetry is spontaneously broken as Z4 → Z2,
where the preservedZ2 symmetry defines the “dark sector,”
as it forbids the decay of the lightest Z2 charged field,
providing the stabilizing mechanism needed to describe a
viable WIMP dark matter candidate. This dark sector
includes the inert isodoublet (η) that transforms as an A4

singlet, as well as a “dark fermion” triplet F.
Given the symmetries defining this model, one can write

the most general effective Yukawa Lagrangian after com-
pactification, i.e., at an energy regime much lower than the
compactification scale. We write the Yukawa terms for the
different scalars separately to simplify the analysis. Notice
that the bold subscripts of the terms below indicate its
transformation properties under the remnant A4 family
symmetry. The explicit expressions for the invariant multi-
plet products are written in Appendix B.
The Yukawa interaction terms of down-type quarks and

charged leptons all have the same structure, given by

LYukawa
Hd

¼ ye1ðLHdecÞ11 þ ye2ðLHdecÞ12 þ yd1ðQHddcÞ11
þ yd2ðQHddcÞ12 þ H:c:; ð14Þ

whereas the transformation properties of the up-type quark
fields under A4 yield the following Yukawa terms:

TABLE I. Field representation content and symmetries of the
model.

Field content and quantum numbers

Field SUð3ÞC SUð2ÞL Uð1ÞY Z4 A4 Location

L 1 2 −1 1 3 Brane
dc 3 1 2=3 1 3 Brane
ec 1 1 2 1 3 Brane
Q 3 2 1=3 1 3 Brane
uc1;2;3 3 1 −4=3 −1 100, 10, 1 Bulk
F 1 1 0 i 3 Brane

Hu 1 2 1 −1 3 Brane
Hd 1 2 −1 1 3 Brane
η 1 2 1 −i 1 Brane
σ 1 1 0 −1 3 Bulk
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LYukawa
Hu

¼ yu1ðQHuÞ10uc1 þ yu2ðQHuÞ100uc2
þ yu3ðQHuÞ1uc3 þ H:c: ð15Þ

The dark fermion triplet F couples to the scalar field σ. The
latter acquires a vacuum expectation value which drives the
spontaneous breaking of lepton number symmetry, Z4, and
the A4 family symmetry, giving rise to Majorana mass
terms for the dark fermions.

LYukawa
σ ¼ yσðFTFσÞ11 þ H:c: ð16Þ

The dark scalar η plays a crucial role in the model since it
couples with both dark fermions and neutrinos

LYukawa
η ¼ yη1ðLηFÞ1 þ H:c: ð17Þ

In the following, we will assume that all Yukawa couplings
are real, and therefore that the model preserves a trivial CP
symmetry.
The scalar potential VðHd;Hu; η; σÞ comprises all

terms up to quartic interactions consistent with all the
symmetries of the model. It contains enough freedom in
parameter space to drive the spontaneous breaking of the
gauge symmetries down to Uð1ÞEM. In this work, we will
not perform a detailed analysis of the scalar potential of the
model, since most of its properties are not relevant for the
phenomenological studies of this paper. There is, however,
a term of special importance in the scalar potential for the
neutrino mass generation mechanism, namely

VðHu;Hd; ηÞ ⊃
1

2
λ5½ðHd

Tðiσ2ÞηÞ3ðH†
uηÞ3�1 þ H:c:; ð18Þ

with coupling constant λ5 and σ2 as the second Pauli
matrix. This term is responsible for lifting the degeneracy
of the mass eigenstates of the neutral components of η,
which we shall denote

ffiffiffi
2

p
Reðη0Þ and

ffiffiffi
2

p
Imðη0Þ. The

interplay between the dark and scalar sectors will generate

the neutrino mass as a scotogenic correction at the one-loop
level, as illustrated in Fig. 2.
The symmetry breakdown of the model is performed in

two steps. To start with, at high energies the electroweak
singlet scalar field σ develops a vacuum expectation value
(VEV) compatible with the extra-dimensional boundary
conditions. Subsequently, at lower energies, the Higgs
isodoublets Hu, Hd acquire corresponding VEVs accor-
ding to the minimization of the scalar potential. Let us take
a closer look at the high scale A4 symmetry breaking
produced by σ.
We introduce a boundary condition P, consistent with

the orbifold construction. It defines a non-trivial gauge/
Poincaré twist of the orbifold, and must be a symmetry
transformation of the Lagrangian. We assume that the
transformation P acts trivially on A4 singlet bulk fields.
Therefore, the only field in the bulk that transforms
nontrivially under P is the flavor bulk triplet σ, which
for consistency with Eq. (7) must comply with the
boundary condition.

σðx; zÞ ¼ Pσðx;−zÞ: ð19Þ

From the six-dimensional Lagrangian, the invariance of the
kinetic term of the σ field requires P ∈ SUð3Þ, while the
condition in Eq. (19) ensures the matrix P will leave
invariant the interactions of fields in the brane. Therefore
the boundary condition matrix must satisfy

P ∈ SUð3Þ; P2 ¼ 13×3; P† ¼ P: ð20Þ

Note that, while in general the matrix P ∈ SUð3Þ, the full
Lagrangian only has an A4 symmetry. Therefore the matrix
P can’t be SU(3) rotated into a trivial form.
The boundary condition of the σ field applies also to its

VEValignment. Therefore in this model, the masses of dark
fermions F are a direct outcome of the boundary condition
of the bulk field σ in the two extra dimensions

hσi ¼ Phσi: ð21Þ

The boundary condition matrix P is a property of the
orbifold and therefore it is arbitrary. In the present work we
will not assume a particular form for P. Instead, we will
adopt the most general VEValignment compatible with the
spontaneous breaking of lepton number and the A4 family
symmetry, that (up to unphysical rephasings) can be
expressed as

hσi ¼ vσ

0
B@
ϵσ1e

iφ

ϵσ2
1

1
CA; with vσ;ϵσ1;ϵ

σ
2 ∈R and 0≤ φ< π:

ð22Þ

FIG. 2. One-loop diagram for Majorana neutrino masses,
mediated by the “dark sector” particles.
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The parametrization of the respective boundary condition
matrix P in terms of (ϵσ1;2;φ) is written explicitly in
Appendix C.
Since the A4 symmetry is broken spontaneously at the vσ

scale, in the second stage of spontaneous symmetry break-
ing, we assume that the weak isodoubletsHu andHd obtain
the most general A4 breaking VEVs, compatible with the
preservation of trivial CP, and parametrized as

hHui ¼ vu

0
B@

ϵu1
ϵu2
1

1
CA; hHdi ¼ vd

0
B@

ϵd1
ϵd2
1

1
CA; ð23Þ

with real parameters vu, vd, ϵ
u;d
1;2 .

A. Phenomenology from extra dimensions

The assumption of extra dimensions implies the exist-
ence of a collection of infinitely many 4-D fields associated
with every field in the bulk, called a Kaluza-Klein (KK)
tower, with masses ðn2 þm2ÞMc determined by positive
integers n, m. In our model, the fields in the bulk are the
SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY gauge fields gμ, Wμ, Bμ, the
right-handed quarks uci and the SM singlet scalar σ. These
massive fields generate a rich phenomenology that can be
tested in current colliders. Notice that all the phenomeno-
logical analysis performed in this paper is independent of
the compactification scale Mc.
One of the most well-known predictions derived from

the existence of a KK tower is the generation of flavor
changing neutral currents (FCNCs). These arise when the
extra-dimensional fields in the bulk are allowed to have an
explicit mass term, preventing the simultaneous flavor
diagonalization of their higher KK modes with the zeroth
level Lagrangian. [26,27]. Since our model is built in six
flat dimensions, the bulk fermions are 6-D chiral fields,
with no explicit mass term and therefore free of FCNCs by
construction.
We now turn to electroweak precision observables. In

our model, the most important effect comes from the
contribution of the KK modes to the Peskin-Takeuchi
parameters S, T and U, which are modified mainly by
the tower of massive vector SUð2ÞL triplets. In contrast, the
massive vector KK singlet Bμ, as well as the right-handed
quarks, have much less impact on these observables. The
current experimental bound for our setup (2 extra nonuni-
versal dimensions) is Mc > 2.1 TeV [28,29]. If the com-
pactification scale is sufficiently close to 2 TeV, the
electroweak precision tests could in principle probe the
extra dimensions in the high luminosity LHC run.

IV. FERMION MASSES

After spontaneous symmetry breaking, the mass matri-
ces of quarks and charged leptons become

Mu ¼ vu

0
B@

yu1ϵ
u
1 yu2ϵ

u
1 yu3ϵ

u
1

yu1ϵ
u
2ω

2 yu2ϵ
u
2ω yu3ϵ

u
2

yu1ω yu2ω
2 yu3

1
CA;

Md ¼ vd

0
B@

0 yd1ϵ
d
1 yd2ϵ

d
2

yd2ϵ
d
1 0 yd1

yd1ϵ
d
2 yd2 0

1
CA;

Me ¼ vd

0
B@

0 ye1ϵ
d
1 ye2ϵ

d
2

ye2ϵ
d
1 0 ye1

ye1ϵ
d
2 ye2 0

1
CA; ð24Þ

where all Yukawa couplings are assumed to be real due to
our imposition of trivial CP symmetry.
Likewise, the A4 flavor symmetry structure of LYukawa

σ in
Eq. (16) implies that the Majorana mass matrix of the dark
fermions MF must have the following structure

MF ¼ yσvσ

0
B@

0 1 ϵσ2
1 0 ϵσ1e

iφ

ϵσ2 ϵσ1e
iφ 0

1
CA: ð25Þ

In order to describe our one-loop scotogenic mechanism for
neutrino masses we write the dark fermion F fields in the
mass eigenstate basis (F̃). This can be done by performing
the singular value decomposition of the dark fermion mass
matrix MF. Since the latter is symmetric, only one unitary
matrix V is needed in the Takagi decomposition [30],

yσðFTFσÞ11 ¼ FTMFF ¼ FTVTDVF

¼ ðVFÞTDðVFÞ≡ F̃TDF̃; ð26Þ

where F̃≡ VF is the dark fermion triplet written in the
mass eigenstate basis and D ¼ diagðmF1

; mF2
; mF3

Þ. We
can then rewrite Eq. (17) as

LYukawa
η ¼ yη1ηðLV†F̃Þ þ H:c: ð27Þ

As already noted, in this model neutrino masses are
forbidden at tree-level due to the auxiliary Z4 symmetry.
However, thanks to the mediation of the dark fields η and F,
neutrino masses emerge at one-loop through the diagram
depicted in Fig. 2. The resulting neutrino mass matrix has
the basic scotogenic structure [31].
Defining yη1V

† ≡ h in Eq. (27) we can write the
expression for the one-loop neutrino mass matrix Mν as

ðMνÞij ¼
X3
k

hikðhTÞkj
16π2

SðmFk
Þ; ð28Þ

where SðmFk
Þ stands for the loop factor

SCOTOGENIC MAJORANA NEUTRINO MASSES IN A … PHYS. REV. D 105, 055030 (2022)

055030-5



SðmFk
Þ ¼ mFk

�
m2

R

m2
R −m2

Fk

ln
m2

R

m2
Fk

−
m2

I

m2
I −m2

Fk

ln
m2

I

m2
Fk

�
;

ð29Þ

with mR ¼ mð ffiffiffi
2

p
Reη0Þ, mI ¼ mð ffiffiffi

2
p

Imη0Þ and

m2
R −m2

I ≡ 2λ5ðhHui3hHdi3Þ1: ð30Þ

Neutrino masses are not only loop-suppressed but also
symmetry-protected, as it vanishes when λ5 → 0, see
Eq. (18).
After spontaneous symmetry breaking, the auxiliary Z4

breaks down to a preserved Z2 that stabilizes the lightest
dark particle, as in [31]. The model has two possible dark
matter candidates: the lightest neutral scalar contained in η,
or the lightest Majorana fermion in F. In both cases, the
phenomenology of dark matter generically coincides with
that of the scotogenic scenario. For further details on the
current status of these dark matter candidates see [32] and
references therein.
Apart from its scotogenic nature, there are additional

neutrino mass features that arise from our family symmetry.
In the next section, we discuss the flavor predictions of our
model, both in the quark and lepton sectors. In particular,
we stress that our proposal will be tested in many ways,
especially by the measurement of neutrino oscillation
parameters and the improved determination of down-type
quark and charged lepton masses.

V. FLAVOR PREDICTIONS

Our model successfully reproduces the observed pattern
of fermion masses and mixings from the A4 family
symmetry that results from the orbifold compactification
of the extra dimensions. The next subsections describe the
main flavor predictions of our model as well as some of the
resulting phenomenological implications, i.e.,

(i) The “golden” mass relation among down-type quark
and charged lepton masses,

(ii) a successful global description of all flavor ob-
servables,

(iii) the mass ordering, atmospheric octant, and 0νββ
prediction, as well as

(iv) predictions for the neutrino oscillation parameters
and leptonic CP violation.

A. Golden relation

A central prediction of our model is a direct consequence
of the charge assignments of the down-type quarks and the
charged leptons under the A4 flavor symmetry. Indeed, after
spontaneous symmetry breaking these fields get masses
from the same Higgs doublet Hd, leading to the mass
matrices in Eq. (24). After diagonalization to physical
states, one obtains the golden quark-mass relation

mτffiffiffiffiffiffiffiffiffiffiffiffimμme
p ≈

mbffiffiffiffiffiffiffiffiffiffiffiffi
msmd

p : ð31Þ

This relation emerges in a broad class of flavor models
[19,20,33–35]. However, in the present case, the under-
lying A4 family symmetry is dictated by the orbifold
compactification of the original 6-dimensional theory
[9]. Given the current experimental measurements of the
relevant masses, the golden relation holds with good
precision. Besides, the golden formula is a very robust
prediction under the renormalization group evolution, since
it involves only ratios of fermion masses.

B. Global flavor fit

In the following analysis, we adopt the symmetrical
parametrization of the fermion mixing matrices [36]. In the
quark sector, choosing the PDG ordering prescription leads
to the standard form for the Cabibbo-Kobayashi-Maskawa
(CKM) matrix characterizing quark mixing [37]

VCKM ¼

0
B@

cq12c
q
13 sq12c

q
13 sq13e

−iδq

−sq12c
q
23 − cq12s

q
13s

q
23e

iδq cq12c
q
23 − sq12s

q
13s

q
23e

iδq cq13s
q
23

sq12s
q
23 − cq12s

q
13c

q
23e

iδq −cq12s
q
23 − sq12s

q
13c

q
23e

iδq cq13c
q
23

1
CA; ð32Þ

On the other hand, for the case of leptons we get

K ¼

0
B@

cl12c
l
13 sl12c

l
13e

−iϕ12 sl13e
−iϕ13

−sl12cl23eiϕ12 − cl12s
l
13s

l
23e

−iðϕ23−ϕ13Þ cl12c
l
23 − sl12s

l
13s

l
23e

−iðϕ23þϕ12−ϕ13Þ cl13s
l
23e

−iϕ23

sl12s
l
23e

iðϕ23þϕ12Þ − cl12s
l
13c

l
23e

iϕ13 −cl12sl23eiϕ23 − sl12s
l
13c

l
23e

−iðϕ12−ϕ13Þ cl13c
l
23

1
CA; ð33Þ

where cfij ≡ cos θfij and sfij ≡ sin θfij. This description is
exactly the same as the early proposal in [30], supple-
mented by the convenient PDG factor ordering convention.

However, this symmetrical description of lepton mixing
provides a neater description of leptonic CP violation than
the PDG form. Indeed, in the symmetrical parametrization
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the Dirac CP violating phase that enters in neutrino
oscillations is identified with the “rephasing-invariant”
combination

δl ¼ ϕ13 − ϕ12 − ϕ23: ð34Þ

This is the leptonic analogue of the quark Jarlskog
parameter. On the other hand, the effective mass parameter
characterizing the amplitude for neutrinoless double beta
decay involves only the two Majorana phases [36],

hmββi ¼
����
X3
j¼1

K2
ejmj

����
¼ jcl212cl213m1 þ sl212c

l2
13m2e2iϕ12 þ sl213m3e2iϕ13 j: ð35Þ

One sees how this symmetrical presentation provides a
more transparent description of leptonic CP violation and
its impact on the 0νββ amplitude.
We will now show that, due to the reduced number of

parameters available, our model makes other interesting
flavor predictions. Indeed, we have 16 independent param-
eters characterizing the flavor sector, identified as follows:
8 real Yukawa couplings ye;d1;2, y

u
1;2;3, y

η
1, 6 real VEV ratios

ϵu;d1;2 , ϵ
σ
1;2, one quartic coupling λ5 and one CP violating

phase φ contained in hσi. These parameters describe 22
observables, namely, 12 masses, 4 CKM parameters, plus 6
lepton mixing matrix parameters including the 2 Majorana
phases. As a result, there are in total, 6 flavor predictions in
the model at low energies, one of which we readily identify
with the golden quark-lepton mass relation in Eq. (31).
An interesting feature of our model is that φ is the only

source of CP-violation, which comes directly from the
orbifold boundary condition. The single phase φ must be
fixed to reproduce the well measured value of the quark
sector CP violating phase δq. Once fixed the value of φ,
there is no freedom in choosing the three CP violating
phases of the lepton sector ϕ12;13;23. Thus, there are three
flavor predictions in the model related to CP violation in
the lepton sector.
The fifth prediction of the model can be identified with

the mass of the lightest neutrino, as we show below. Finally,
the sixth is a correlation between the mixing angles of the
lepton mixing matrix. This last prediction is not evident
from the global flavor fit discussed below. In an effort to
identify the nature of this prediction we will perform a
further exploration of the parameter space around the
global minimum of the fit.
In order to extract the predictions of the model, we

perform a global flavor fit that fixes the values of the model
parameters using the available experimental flavor data.
The fit has been performed by scanning the values of the 16
real independent model parameters that yield 22 flavor
observables (6 lepton masses, 3 lepton mixing angles, 3
lepton CP phases, 6 quark masses, 3 CKM mixing angles

and the CKM phase). The global flavor fit to the available
experimental data is performed by minimizing the chi-
square function defined as

χ2 ¼
X

ðμexp − μmodelÞ2=σ2exp; ð36Þ

where the sum runs through the 19 measured physical
parameters, i.e., 6 quark masses, 3 CKM mixing angles, 1
CKM CP phase, 3 charged lepton masses, 3 lepton mixing
angles, 1 lepton CP violating phase and 2 neutrino squared
mass splittings. Note that we have only limits on the
lightest neutrino mass from experiment and, at the moment,
no information on the Majorana 0νββ phases.
In our numerical minimization of the chi-square function

with respect to the 16 independent model parameters, all
quark and charged-lepton masses were evaluated at the
same energy scale, which we choose to be MZ [38]. This
assumption has been shown to be compatible with the
golden relation in Ref. [9]. For our study, the neutrino
oscillation parameters have been extracted from the global
fit [3,4], a choice justified by the fact that the effect on
neutrino (and quark) parameters induced by the running to
MZ is negligible [38,39]. In the same vein, the rest of the
observables have been taken from the PDG [37]. We have
made use of the Mathematica Mixing Parameter Tools
package [40] in the extraction of the flavor physical
observables from the mass matrices in Eq. (24).
The results of our flavor fit are summarized in Table II.

The minimum sits at χ2 ≈ 2, showing that the model
successfully reproduces the observed pattern of fermion
masses and mixing. Besides, from the results in Table II one
can read directly the central predictions of the model
regarding the mass of the lightest neutrino and the CP
violating phases of the lepton sector. In order to study in
more detail the predictions of the theory we have performed
a further exploration of the parameter space by randomly
varying the model parameters around the global minimum
in Table II within a range that covers the experimentally
allowed 3σ ranges of all measured flavor observables. In
the following subsections, we will discuss the resulting
predictions associated with this parameter region.

C. Neutrino mass ordering and neutrinoless
double beta decay

In our exploration of the parameter space of the model
consistent at 3σ with all current experimental data we have
found only normal ordering (NO) for the neutrino mass
spectrum. In particular, the best fit point in Table II, is a
solution for positive Δm2

31, corresponding to NO, with a
rather high absolute scale for the neutrino masses.
Regarding neutrinoless double beta decay, plugging the

CP predictions for the Majorana phases and the neutrino
masses of Table II into Eq. (35), we obtain the following
prediction for the effective amplitude that characterizes the
process:
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hmββi ¼ 58.08 meV: ð37Þ

A more detailed analysis is presented in Fig. 3, where we
plot in purple the region of predicted values for hmββi as a
function of the lightest neutrino mass m1. The value for the

lightest neutrino mass at the best-fit point from our χ2

analysis is found to be m1 ¼ 135.35 meV as indicated in
Table II. To be conservative, we randomly varied the model
parameters within a range that covers the experimentally
allowed 3σ range and the best fit point of Table II, marked
in red. One sees that the predicted central value of hmββi
lies very close to the current experimental bound of
Kamland-Zen (61–165 meV) [41] shown as the top orange
horizontal band in Fig. 3. For comparison, we have also
displayed the projected sensitivities of the next generation
of 0νββ experiments LEGEND [42], SNOþ Phase II [43],
and nEXO [44] as the dotted horizontal lines.
Notice that the central value of the lightest neutrino mass

m1 obtained from the global flavor fit is currently disfa-
vored by the latest results of the Planck collaboration on the
sum of light neutrino masses [45]. Tension with cosmology
is further enhanced if the cosmological bound is refined by
the addition of baryon acoustic oscillations (BAO) data, as
studied in [46] and depicted in shades of gray in Fig. 3.
However, as shown in the figure, beyond the central
prediction of the model, there is a relatively wide region
of parameters compatible at 3σ with all the measured flavor
observables and consistent with the cosmological bounds.
One concludes that the best fit point of the global flavor fit

FIG. 3. Effective 0νββ decay amplitude as a function of the
lightest neutrino mass m1. From the global analysis, we found
that only normal ordering is allowed in our model. The blue
region is the generic one consistent with oscillations at 2σ. The
purple region is the one allowed at 3σ around the global best fit
point in Table II, marked in red. The current KamLAND-Zen
limit is shown in orange, and the projected sensitivities of
upcoming experiments are indicated in dashed horizontal lines.
The vertical gray bands represent the current sensitivity of
cosmological data from the Planck collaboration (dark shade),
and in combination with BAO data (light shade).

TABLE II. Flavor parameters and observables: measured
versus predicted values for the best fit point.

Parameter Value

ye1vd=GeV −1.745
ye2vd=ð10−1 GeVÞ 1.021
yd1vd=ð10−2 GeVÞ −5.039
yd2vd=GeV 2.852
yu1vu=ð10−1 GeVÞ 6.074
yu2vu=ð102 GeVÞ 1.712
yu3vu=GeV 7.157
ϵu1=10

−4 7.055
ϵu2=10

−2 −5.044
ϵd1=10

−3 −2.814
ϵd2=10

−3 5.833
ϵσ1 1.501
ϵσ2 −0.654
φ 3.527
ðyη1Þ2yσvσ=ðKeVÞ 1.813
2λ5hHuihHdi=ðKeVÞ2 0.012

Data

Observable Central value 1σ range Model best fit

θl12=° 34.3 33.3 → 35.3 33.0
θl13=° 8.45 8.31 → 8.61 8.52
θl23=° 49.26 48.47 → 50.05 50.44
δl=° 194 172 → 218 192
me=MeV 0.486 0.486 → 0.486 0.486
mμ=GeV 0.102 0.102 → 0.102 0.102
mτ=GeV 1.745 1.743 → 1.747 1.745
Δm2

21=ð10−5 eV2Þ 7.50 7.30 → 7.72 7.50
Δm2

31=ð10−3 eV2Þ 2.55 2.52 → 2.57 2.54
m1=meV 135.35
m2=meV 135.63
m3=meV 144.43
ϕ12=° 87.01
ϕ13=° 190.30
ϕ23=° 271.05

θq12=° 13.04 12.99 → 13.09 13.04
θq13=° 0.20 0.19 → 0.22 0.20
θq23=° 2.38 2.32 → 2.44 2.38
δq=° 68.75 64.25 → 73.25 60.23
mu=MeV 1.28 0.76 → 1.55 1.28
mc=GeV 0.626 0.607 → 0.645 0.626
mt=GeV 171.6 170 → 173 171.6
md=MeV 2.74 2.57 → 3.15 2.49
ms=MeV 54 51 → 57 54
mb=GeV 2.85 2.83 → 2.88 2.85

χ2 1.96
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will be probed not only by cosmological observations [45]
but possibly also by future beta decay endpoint studies.

D. Predictions for the leptonic Dirac CP phase
and mixing angles

In order to identify the predictions of the model con-
cerning the oscillation angles and the Dirac CP phase of
the lepton sector, we have explored the parameter space of
the model by randomly varying the parameters around the
global best fit point in Table II, while requiring compat-
ibility with all measured flavor observables at the 3σ level.
The results of this analysis are presented in Fig. 4 where the
blue contours represent the 90, 95, and 99% C.L. profiles
from the global oscillation fit in [3,4], while the purple dots
are compatible at 3σ with all experimental data. The best fit
point of the global oscillation fit is marked with a black star,
while that of the global flavor fit is indicated by a white
cross. From our search of model parameters leading to
values for all the listed observables inside their 3σ region,
we find the following values for δl and sin2 θl13 at the
extrema

δlmin=π ¼ 1.0; δlmax=π ¼ 1.67; ð38Þ

sin2θl13;min=10
−2 ¼ 2.14; sin2θl13;max=10

−2 ¼ 2.40:

ð39Þ

In Fig. 4 one sees that the model predicts values of the
leptonic Dirac CP phase restricted to the range δl ≥ π and
values of the atmospheric angle θl23 in the higher octant.
Besides, the model makes a sharp prediction for the value
of the reactor angle θl13 close to the central value in Table II.

VI. SUMMARY AND CONCLUSIONS

Building upon previous work [9,10] we have advocated
the use of extra space-time dimensions as a promising
approach to theories of flavor. We have adopted a
6-dimensional orbifold construction in which the 4-dimen-
sional family symmetry is dictated by the compactification
to be the A4 group, which we used to stack the three
observed particle families, except for the right-handed up-
type quarks, Table I.
In our bottom-up approach we focused on the low-

energy phenomenology and using the 6-dimensional setup
to motivate the 4-dimentional family symmetry structure.
The model naturally predicts the “golden” quark-lepton
mass relation, Eq. (31), providing a very good global
description of all flavor observables, Table II, making also
predictions for neutrino mass ordering, atmospheric octant,
and neutrinoless double beta decay, Fig. 3. Moreover, we
made predictions for the neutrino oscillation parameters
and leptonic CP violation, Fig. 4. Another important
feature of our construction is that, on top of a predictive
orbifold theory of flavor, we have implemented a scoto-
genic Majorana neutrino mass mechanism, where WIMP
dark matter candidates can be identified as the mediators of
neutrino mass generation, and stabilized due to the pres-
ence of an auxiliary Z4 symmetry.
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APPENDIX A: 6-DIMENSIONAL FIELD
DECOMPOSITION

In this Appendix we show the decomposition of the 6-
dimensional fields in the model into 4-dimensional ones
and describe which representations have zero modes. There
are three sets of bulk fields: the gauge 6-dimensional vector
fields denoted by AM (with M ¼ 0, 1, 2, 3, 5, 6); three
6-dimensional chiral left fermions (uc

i , i ¼ 1, 2, 3); and the
three scalar fields that make up the flavor triplet σ.
The orbifoldZ2 projection, z ∼ −z, acts on every fieldΦ,

denoted generically, as

Φðx; zÞ ¼ PP56Φðx;−zÞ; ðA1Þ

where P is the symmetry transformation constrained by
Eq. (20) and P56 is the fifth and sixth parity operator for the
corresponding Poincaré representation. Each 6-dimen-
sional field is decomposed into an infinite tower of
4-dimensional fields. Only the 4-dimensional fields that
have a positive eigenvalue of PP56 can have zero modes,
and these are the only ones relevant at low energies.
The gauge vector fields must fulfill the orbifold

projection

AMðx; zÞ ¼ PP56AMðx;−zÞ ¼
�
Aμðx; zÞ ¼ Aμðx;−zÞ;
A5;6ðx; zÞ ¼ −A5;6ðx;−zÞ;

ðA2Þ

where P ¼ 1 for the gauge fields, as these are neutral under
family transformations. One can see that, in contrast to the
4-dimensional vectors, the extra components do not have
zero modes. Therefore the gauge symmetry is preserved
and consistent with the orbifold.
The 6-dimensional chiral left fermion uc

i are family
singlets, and therefore their P action is trivial. The parity
transformation for fermions involves the ΓM matrices from
the 6-dimensional Clifford algebra satisfying [47,48]

fΓM;ΓNg ¼ 2ηMN; ðA3Þ

from which one can build the 6-dimensional chiral operator
Γ7 ¼ Γ0Γ1Γ2Γ3Γ5Γ6. The left 6-dimensional chiral fer-
mions are defined by Γ7uc

i ¼ −uc
i .

The orbifold projection acts on the bulk quarks as

uc
i ðx; zÞ ¼ Γ5Γ6uc

i ðx;−zÞ
¼ ðΓ0Γ1Γ2Γ3ÞðΓ0Γ1Γ2Γ3Γ5Γ6Þuc

i ðx;−zÞ
¼ ðΓ0Γ1Γ2Γ3ÞΓ7uc

i ðx;−zÞ
¼ −ðΓ0Γ1Γ2Γ3Þuc

i ðx;−zÞ: ðA4Þ

It is now useful to separate the 6-dim chiral fermion uc
i ¼

ðucLi; ūcRiÞT into a left and a right 4-dim chiral fermion pair
so that

uc
i ðx; zÞ ¼ −ðΓ0Γ1Γ2Γ3ÞðucLi; ūcRiÞT

¼ −ðγ5ucLi; γ5ūcRiÞT
¼ ðucLi;−ūcRiÞT; ðA5Þ

One sees that only the 4-dim left chiral fermion ucLi
(denoted simply by uci ) has zero modes, as desired.
Finally the scalars, which are neutral under all Poincaré

transformations, transform trivially under the parity trans-
formation but not under the family transformation P. This
allows only one of the three scalars to have a zero mode,
implying the VEV alignment described in Eq. (21).

APPENDIX B: A4 BASIS

The A4 group can be defined by the presentation

A4 ≃ fS; TjS2 ¼ T3 ¼ ðSTÞ2 ¼ 1g: ðB1Þ

It has 4 irreducible representations, which in the Ma-
Rajasekaran basis transform as

1∶ S ¼ 1; T ¼ 1;

10∶ S ¼ 1; T ¼ ω;

100∶ S ¼ 1; T ¼ ω2;

3∶ S ¼

0
B@

1 0 0

0 −1 0

0 0 −1

1
CA; T ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA; ðB2Þ

where ω ¼ e2iπ=3. These define the invariant nontrivial
contractions as

10 ⊗ 10 ¼ 100; 100 ⊗ 100 ¼ 10; 100 ⊗ 10 ¼ 1;

3 ⊗ 3 ¼ 1þ 10 þ 100 þ 31 þ 32: ðB3Þ

The contractions of two triplets 3a ∼ ða1; a2; a3Þ and 3b ∼
ðb1; b2; b3Þ are decomposed as
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3a ⊗ 3b → 1 ¼ a1b1 þ a2b2 þ a3b3;

3a ⊗ 3b → 10 ¼ a1b1 þ ω2a2b2 þ ωa3b3;

3a ⊗ 3b → 100 ¼ a1b1 þ ωa2b2 þ ω2a3b3;

3a ⊗ 3b → 31 ¼ ða2b3; a3b1; a1b2Þ;
3a ⊗ 3b → 32 ¼ ða3b2; a1b3; a2b1Þ: ðB4Þ

The two invariant contractions of three triplets in the Ma-
Rajasenkaran basis are

3a ⊗ 3b ⊗ 3c → 11 ¼ a1b2c3 þ a2b3c1 þ a3b1c2;

3a ⊗ 3b ⊗ 3c → 12 ¼ a1b3c2 þ a2b1c3 þ a3b2c1: ðB5Þ

APPENDIX C: BOUNDARY CONDITION
MATRIX P

The most general matrix P that satisfies the conditions
listed in Eq. (21) in terms of the three independent
parameters (ϵσ1;2;φ) of the VEV alignment of σ in
Eq. (22) is given by

Pðϵσ1;ϵσ2;φÞ¼ð1þðϵσ1Þ2þðϵσ2Þ2Þ−1

×

0
B@
−1þðϵσ1Þ2−ðϵσ2Þ2 2ϵσ1ϵ

σ
2e

iφ 2ϵσ1e
iφ

2ϵσ1ϵ
σ
2e

−iφ −1−ðϵσ1Þ2þðϵσ2Þ2 2ϵσ2
2ϵσ1e

−iφ 2ϵσ2 1−ðϵσ1Þ2−ðϵσ2Þ2

1
CA:

ðC1Þ
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