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Triggered by experimental prospects to measure electromagnetic dipole moments of baryons containing
a bottom quark, we calculate the CP-odd electric dipole moments (EDMs) of spin-1/2 single-bottom
baryons. We consider CP-violating dimension-6 operators in the Standard Model effective field theory that
involve bottom quarks and apply heavy-baryon chiral perturbation theory to compute the EDMs of several
baryons. We discuss the expected size of the EDMs for beyond-the-Standard-Model physics appearing at

the TeV scale.
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I. INTRODUCTION

Experiments aiming to detect permanent electric dipole
moments (EDMs) set strong bounds on flavor-diagonal
mechanisms that simultaneously violate time-reversal (7
and parity (P) (and thus CP symmetry if we take CPT to be
a good symmetry of nature). For instance, the strongest
constraints on the QCD 0 term arise from measurements of
the EDMs of the neutron and the '’Hg atom [1,2]. In
addition, EDM experiments strongly constrain possible
sources of CP violation from beyond-the-Standard-Model
(BSM) physics. While EDMs have been calculated in a
plethora of different BSM models, BSM CP violation can
be described more systematically in the framework of the
Standard Model (SM) effective field theory (EFT) [3] under
the reasonable assumption that the scale of BSM physics,
A, lies well beyond the electroweak scale, v ~ 250 GeV.

A lot of effort has gone into more and more accurate
calculations of EDMs of systems containing first-generation
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valence quarks such as nucleons, nuclei, atoms, and mole-
cules [4-8]. The associated experiments are mainly sensitive
to CP-odd SMEFT operators containing light quarks (and
leptons, but we will not pursue leptonic CP violation in this
work). For instance, the nonobservation of a neutron EDM
sets stringent limits on the electric and chromo-electric dipole
moments of up and down quarks and various four-quark
interactions [9]. The experimental limits are so stringent that
the same experiments also indirectly constrain CP violation
in interactions involving heavier quarks. For instance, a
chromoelectric dipole moment of a bottom or top quark,
induced at the scale A in some BSM theory, will in turn
induce chromoelectric dipole moments of light quarks and
gluons due to renormalization-group evolution to lower
energies and threshold effects when the heavier quarks are
integrated out. Systematic studies of the resulting indirect
limits have appeared in several places in the literature; see,
e.g., Refs. [10-13].

Although those indirect limits are already valuable, more
direct information on CP-violating interactions involving
heavy quarks would be welcome. First of all, additional
observables would help in setting global constraints,
leaving less room for possible cancellations among various
sources. Second, as soon as a nonzero EDM is found,
hopefully in the near future, additional information is
needed to pin down the underlying source of CP violation.
Third, while operators with heavy quarks contribute to first-
generation EDMs, the contributions are loop suppressed
and sometimes involve small dimensionless numbers such
as Cabibbo-Kobayashi-Maskawa (CKM) matrix elements
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or light-quark Yukawa couplings. Finally, and arguably
most importantly, plans are being discussed to measure
EDMs of baryons with a heavy valence quarks directly. For
instance, Refs. [14—16] discuss the prospects of measuring
EDMs of charm and bottom baryons. Further discussions
on the mechanism of CP violation resulting from the QCD
0 term in the charm baryon sector can be found in Ref. [17].
In this work, we calculate the EDMs of spin-1/2 bottom
baryons in the framework of the SMEFT. In this way, we
can determine what is the sensitivity of potential future
measurements on the scale of BSM physics and whether
different baryons have a different sensitivity to various
CP-violating SMEFT operators.

This paper is organized as follows. In Sec. II, we discuss
dimension-6 SMEFT CP-violating operators involving
bottom quarks. In Sec. III we discuss how to match these
operators to the hadronic level using chiral perturbation
theory focusing on the operators most relevant for our EDM
calculations. In Sec. IV, we perform the calculation of the
EDMs of bottom-quark baryons at leading order for each
source of CP violation. We discuss the expected sizes of

|
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EDMs in Sec. V and conclude in Sec. VI. Several
appendices are devoted to technical issues.

II. CP-VIOLATING OPERATORS INVOLVING
BOTTOM QUARKS

We start with listing CP-violating operators involving b
quarks at the quark level. We focus on operators with at least
one bI'b bilinear, where T is a general Lorentz structure,
while the remaining fields are light quarks or gauge or scalar
bosons. Operators with more b-quark fields lead to sup-
pressed EDMs of systems containing a single b valence
quark in the same way as b-quark effects are suppressed in
light states. We do not consider operators with just light
quarks, even though they would contribute to b quark—
containing baryons. The reason is that the limits on these
CP-odd operators from traditional EDM experiments, such
as those for the neutron EDM, are very stringent.

At low energies, right above the b-quark threshold, the
effective P- and T-violating dimension-6 operators of
relevance here read [3,5,18]

L), = iu® (ubysb + iysubb — bysuiib — buiiysb) + iu® (ddbysb + dysdbb
— bysddb — bddysb) + iust (Ssbysb + Syssbb — bysssb — bsSysb)
+ iul (@A ubysA®b + iiysAubA®b — bysAuitd®b — bA“uiiysA°b)
+ iud (dA*dbysA®b + dysAdbi®b — bysAddi*b — bA*ddys D)
+ ik (54%sbysA®b + SysA®sbA®h — bysA®s5A%b — bA%s5ysAh),

u

6 o - _ . . /T _
E;(,_B;qLR = "V (bry,upiigybg) — ih® Vi, (bry,ugii y*by)

+ ivgbVub(BLyﬂﬂauLﬁRy”ﬂ“bR) - iug‘bV*b(BRyﬂﬂauRﬁLy"ﬂ“bL),

where V;, is an element of the CKM matrix and F',, and Gy,
are the electromagnetic and the gluon field-strength tensors,
respectively.

The bottom-quark EDM (qEDM) and bottom-quark
chromo-EDM (qCEDM) operators arise from the dimen-
sion-6 operators in the SMEFT Lagrangian,

Lyg = C"(Q30" by, )HB,, + C"" (030" 7by, JHW},
+ C*(Q50" 2 by, ) HG, + Hoc.,

)

where Q5 denotes a left doublet of third-generation quarks;
H is the Higgs doublet; and B, and W}, denote, respec-
tively, the U(1), and SU(2), field strengths. To preserve
gauge invariance, the SMEFT dipole operators involve a
Higgs field in the SMEFT Lagrangian. Equation (1) is
subsequent to electroweak symmetry breaking where we
have replaced the Higgs field by its vacuum expectation

(1)

u

|

value. The bottom qEDM arises from a linear combination
of U(1)y and SU(2), dimension-6 dipole operators (there
is in principle an associated dipole operator coupled to Z
and W* bosons that play no role in our analysis). In most
models of BSM physics, the dipoles scale with the bottom
quark Yukawa, and we expect d,d, ~m;/A%. These
dipole operators are generated in various classes of BSM
physics ranging from supersymmetric scenarios [19] to
two-Higgs doublet models [20] to leptoquarks [21].

The four-quark operators in C,(](j‘)‘q are induced from
gauge-invariant operators of the form

Lyg = C§U(Qlug, ey (Qldg,) +Hee. 4 ..., (3)

where the ellipsis denotes terms with additional color
structure and abcd are generation indices. These operators

055026-2



ELECTRIC DIPOLE MOMENTS OF BARYONS WITH BOTTOM ...

PHYS. REV. D 105, 055026 (2022)

induce qu for the generation indices a = b = {1,2} and
c=d=3ora=d=3and b = c = {1,2} [the operator
in Eq. (1) is associated to the former generation configu-
ration; the second configuration leads to very similar low-
energy operators and the analysis presented here will be the
same] and additional operators involving top quarks that
play no role at low energies. We expect ﬂ’f%db'Sb ~1/A%.
For instance, the CP-odd four-quark operators are induced
in models of leptoquarks, in which case A is related to the
mass of the exchange leptoquark [21].

The four-quark operators in Eﬁ oLk Are induced from the
gauge-invariant operator

Lygr = Cih g (H'D,H)igy" by + Hec.. (4)

After electroweak symmetry breaking, this operator leads to
a right-handed charged current. The interactions in E(ﬂ JLR
are generated when the W boson is integrated out at tree level
between quarks, giving rise to the additional factorof V ;.. By
power counting, /% ~ v?/(m},A*) ~1/A?. An example
where this operator is generated is the minimal left-right
symmetric model [9].

III. CHIRAL PERTURBATION THEORY FOR
BOTTOM BARYONS

The way to include heavy bottom quarks into standard
chiral perturbation theory (ChPT) has been known for some
time [22,23]. In the SU(3) flavor representation, the spin-
1/2 antisymmetric triplet and symmetric sextet bottom
baryon states are denoted by the following matrices,
respectively:

s+ BB
0 A) =) b2 V2
—_ =0 _ B
By=|-A) 0 E |. Be=| £ I, %
_=0 P 0 =/0 -
=p T E, & -
(5)
The Goldstone boson octet is given by
¢ = n —Jiin'o—i—\/%;n K° , (6)
_ =0 2
K K N
and we define
U = u®> =exp <i¢>, (7)
Fy

where F, is the pion decay constant. The relevant P- and
T-conserving free and interaction Lagrangians up to the

second chiral order in a covariant formalism are given
by [23-26]

(I o
Lige =5 (Bs(iP = ms)Bs) + (B (i = me)By).
Lin = %<36ﬂ7536> +%<Bsﬂ7533 +H.c) +%<B§ﬁ7533>v

4327) =w(B36"F,},B3) + w)(Bcco" F,}, B)

+ w3 <B66”DFZ,B3 + HC> + W4<B§GIWB§> <F;ry>

+ws(Bso" Bg) (Fif,)- (8)
Here, D, is the covariant derivative defined as

— T
D,B =0,B+T,B+BIT,

r,= % [uT(a,, — irﬂ)u + u((?” — ilﬂ)uﬂ, 9)

and u,, is the standard chiral Vielbein

u, = i[uT(aﬂ —ir,)u—u(d, - ilﬂ)uT], (10)

where r, and [, denote external right- and left-handed

sources. Also, we have
Fl, = u'QpF,u+uQpF,u', (11)

with the bottom baryon charge matrix [27]
QBzgdiag(l,—l,—l). (12)

The prefactors ¢;_3 and w;_s are low-energy constants
(LEGCs). g, is calculated using the widths of the heavy
baryons. g; and g5 are related to g, with the help of the
quark model and heavy-quark spin flavor symmetry
[23,25,27,28]. Because of the heavy-quark spin symmetry,
the vertex B3Bjz¢ is forbidden, and the term has to vanish,
i.e., g3 =0. This result can be deduced from angular
momentum and parity conservation arguments (see, e.g.,
Ref. [23]). The conventional magnetic moment couplings,
wi_s, are determined from fits to calculations to baryon
magnetic moments in Refs. [29,30]. However, in the
present calculation, they do not contribute to the EDMs
at the order at which we work. The numerical values of the
contributing couplings are given in Sec. V.

A. Construction of the effective CP-violating
Lagrangian

We now turn to the construction of the effec-
tive Lagrangian on the hadron level arising from the
dimension-6 terms in Eq. (1). The first operator we want
to look at is the qEDM, which does not contain any light
quarks but only the heavy b quark. As it already contains

the electromagnetic field strength tensor F,,, it directly
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induces EDMs of baryons containing bottom quarks. We
find only two terms in the leading chiral Lagrangian
corresponding to EDMs of the antitriplet and sextet of
bottom-quark baryons.

Next, we discuss the qCEDM. Similarly to the gEDM,
there is no light-quark content in the Lagrangian, and
instead of F',,, we have the gluon field strength tensor Gy,
The fact that this term contains only heavy quarks and Gy,
makes this term (like the gEDM) a chiral singlet; i.e., it is
invariant under chiral SU(3) transformations. In standard
ChPT, there is no fundamental building block that trans-
forms as a chiral singlet. Therefore, we have to introduce a
new fundamental block %, which gives the proper trans-
formation behavior, and a partner building block ~, which
transforms accordingly and explicitly violates P and 7.
This procedure works analogously to the definition of the
building blocks y, and y_ in ChPT. However, in contrast to
the building blocks y., the chiral singlet % cannot
introduce any further structure containing Goldstone boson
fields. In fact, it can be shown that #* can only enter the
effective Lagrangian as an overall constant. In a similar
fashion, one can also deduce that a P- and T-violating
chiral singlet term S~ will always vanish. There is simply
no constant that can violate P and T. Despite f* being a
constant, we still have to treat it like a building block. To
construct the effective Lagrangian on the hadron level, we
need to combine S+ with other ChPT building blocks that
violate CP This procedure leads to the terms given below.
For more information, see, e.g., Refs. [6,18].

The next contributions we investigate are the four quark
interaction terms (4q operators). These terms need a little
extra treatment, since they not just include the heavy
bottom quark but also the light quarks u, d, and s.
Because of the presence of the light quarks, we have to
study how the 4q terms transform under chiral trans-
formations. To obtain the transformation properties of

ngzq under chiral SU(3) transformations, we first express
the nonmixing u; terms of the operator as follows:

ipt? (wubysb + iiysubb) + iud (ddbysb + dysdbb)

+ iusb (ssbysb + Syssbb). (13)
These terms have the structure
igM,q(bysb) + igM,ysq(bb), (14)

in terms of the quark column vector ¢ = (u,d, s)” and

p® 00
M, = 0 " 0 (15)
0 0 u

For the light quarks, Eq. (14) has the structure of a mass
term in ordinary ChPT because the term containing the b

quarks is a SU(3) singlet and does not transform at all. The
M matrix will therefore act as a new scalar source, similar
to the quark mass matrix in standard ChPT, while the
explicit insertions of the b-quark field allow for the
appearance of the heavy bottom baryon matrices B; and
Bg in the effective Lagrangian.

The mixing terms in the 4q Lagrangian,

— iust (bysssb + bsSysb), (16)
can be treated in an analogous way. If we use the identities
gq = u + dd + 5s,

uit  ud us

qq = | du dd ds |,
sit sd s
(qq) = uit + dd + s, (17)
we can express Eq. (16) together with Egs. (15) and (17) as
—ibys((Miq)@)b — ib((M,q)q)ysb. (18)

Using the cyclic property of the trace, one observes that
these mixing terms transform again like a mass term. Thus,
we can use the same procedure like in the nonmixing case
to obtain the effective Lagrangian.

For the 4q operators, the 4, and ug terms have identical
chiral symmetry properties. While these terms are distin-
guishable on the quark level, at low energies, the resulting
chiral Lagrangians are identical. We are not able to
distinguish them without nonperturbative information
about the associated low-energy constants. The effective
Lagrangian from the 4¢ operator will therefore combine the
effects of the u; and ug terms.

The last terms we have to discuss are the four quark
left-right operator (4qLR) terms. Similarly to the 4q
operator, one can reproduce the transformation rules
for the 4qLR operator. First, we take the 1/”1’1’ terms
and use Fierz identities to rewrite the left- and right-
handed components of the quark fields. Then, we arrange
the resulting terms, like before, in structures involving the
quark vector g and a new scalar source,

b0 0
Ni=10 00 (19)
0 00

We find the same transformation behavior as for the 4q
case. This leads to an identical EFT Lagrangian con-
struction procedure. Also, here, the 4gLR terms involving
the constant v4” are not distinguishable from the 24*

terms at the level of chiral EFT. Finally, we mention that
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after rewriting the terms with Fierz identities we obtain
both P- and T-violating and P- and T-conserving
interactions. The latter lead to modifications of P- and
T-even observables that are swamped by Standard Model
contributions, and we neglect them below.

We are now in the position to write down the hadronic
Lagrangians accounting for the various P- and 7-violating
dimension-6 operators. For the quark EDM, we obtain the
two operators

|

Lom = ¢1(B30™ysF,B3) 4 ¢3(Beo™ysF,,Bg) + ...
(20)

A much longer list of operators appears for the qCEDM.
Here, we give all operators that appear at the same chiral
order. As discussed below, not all operators are relevant for
the EDM calculations we perform. We list them here for
completeness. These read

Llepm = i [b1(Bay1ysB3) + by(Bey.ysBg) + bs(Bey ysBs + H.c.) + by(BsysBs) (x+)

+ bs(BeysBe)(x+) + be(Bsy_B3) + b7(Bey_Bg) + bs(Bey_B; + H.c.) + by (B3B5) (x_)
+ b10(BeBs) (x-)] + ip*[bri (Bsu!ysu,Bs) + biy(Bsuysu,Be) + bi3(Beu'ysu,Bs + H.c.)
+ b14(BsysBs) (u'u,) + bys(BeysBe) (u'u,)| + f*[b16(B30"ysF,,,B3) + b17(Bec™ysF,},Be)

+ by3(Boo"ysF,,Bs 4+ H.c.) + bio(B50"ysBs)
) + by (Bsoys[uy,
0 ¥sB3) + bys(Beu) (46,75 Be) + byg(Beu) (u”
- b28<B§DyM”M Yu¥5B3) + bao(Beutuy,ysD,Bg)
- b30(3613u14”14"7;43’536> + b3 (Beu!uy,ysD,Bs + H.c.)
— b3y(B3D"y"y5B3)) (u,
(b37(Ber*ysD*Bs + H.c.)

+ﬂ+[b21<330””75[” u,|B3
+ B [byy (Bsu) (u”
+ if* [byr (Bsutu*y,ysD,B3)

+ if*[(bs3(B3r*ysD* Bs)
- b36<B65D}’M7536>)<uuuv> +

For the four-quark operators, we obtain

Fj) + by (Beo"ysBs) (F,)]
u,]Bg) + b3 (Boys(u,. u,|Bs + H.c.)]
yyﬁB§> + H.C.]

— b3y (BeD,uu*y,ysBs + H.c.)]
u,) + (bss(Bey"ysD"Bg)
— b3g(BeD'y'ysBs + He)) (uuu,))] + ... (21)

LS8 = i (BsxvsBs) + ina(BeT 1 vsBs) + ip3(Bet 1 vsBs + H.c.) + iug(BsysBs) (7
+ ius(BeysBe) (7+) + ite(B37_Bs) + ip7(Be¥-Bs) + ips(Bey_B3 + H.c.)
+ ipg(B3B3) (7_) + in10(BeBs) (7-) + m11 (B37+0"ysF 5, Bs) + 12 (Bey 0" ysF,\,Bg)

Ujl

(
+ 13
+ p16(Be¥ + 075 B + H.e. ) (F),
+ pio(BsoysF,
+ pa2 (B3
+ o5 (B
+ a5 (B

(B

+ U3y

G;w F+

and

B3)(7_) + pao(Beo" F,\, B

67 +0"ysF By + H.c.) 4+ pia(Bsy0"ysBs)(F},) + pis(Bey 106" 75Be) (Fl,)
) + Hi7(B30"ysF,
B3 +H.c.)(7.) + poo(B30"ysBs) (7 Fly) + uo1 (B ysBe) (7 Fihy)

-0 F},B3) + Ho3(Bey 0" F,j, Be) + pos(Bey 0" F,j,Bs +H.c.)

370" B3)(Fl,) + tao(Be¥-0"Be)(F,i,) + po7 (Be7_0"*Bs + H.c.)(F,j,)

6)(7—) + nao(Bec" Fj,Bs + H.c.)(7_)

56" B3) (7_F ) + 13 (B0" Be) (7_F,) + (22)

B3)(7.) + pis(Bso* ysF ., Be) (¥ +)

L = iRe(V ) [v1 (Bs7-B3) + va(Bey-Be) + v3(Bey_Bs + H.c.) + v4(B5Bs) (7-)
+vs(BgBs) (v-) + v6(BskvsB3) + v7(Beyv5Bs) + vs(BeivsBs + Hee.)
+ U9<B§J’SB§> <)?+> + V10<B675Bé><)?+>] + Re(‘/ub)[Vll <B§)?+U””75F;y3§>

+ V12<B6)?+0'W75F;_u

Bg) + V13<Bﬁ)?+5””75F,TU
+ v15(Ba 1 0"75Be) (Fj,) + vi6(Ber 0" ysBs + H.c.)(F},) + v17(Bsc"ys

Bs + H.c.) + v14(Bsy 0" ysB3)(Fj)

Fi,B3)(7+)
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+I/]8
+I/21

Beo"ysF,Be) (1) + vio(Beo"ysFiBs + H.c.) (71) + va0(B30™ysBs) (7. F )
Bso"ysBe) (7. Fy,) + v (Bsy_0"F,f,B3) + v23(Bey_0" F,f, Bs)

ﬂl/>

+ vyy(Bey_0" B3 + H.c.)(F;,) + V28<BEG”DF;233><):(—> + V29<B65WF;UB6><)?—>

+ v30(Bs0" F i, B3 + H.c.)(Y_) + v31(B30"B3) (7_F}},) + v32(Bso" Be) (Y _Fj,)] + ...

The ellipses indicate further terms of higher chiral order,
which we will not display. We have defined

ye =ulyu' £uytu, x = 2Bydiag(m,, mg, my),
7 = diag(u"®. u®. p?),

7 = diag(1*?,0,0),

I+ = uT)?uJr + u)?Tu,

7o =utput uytu, (24)
with the light-quark masses m, and the LEC By, related to
the quark condensate. Note that the constants u*?, u®, u*?,
and 1"’ capture both the color-singlet and -octet terms
whose chiral Lagrangians are identical.

It is convenient to use heavy-baryon chiral perturbation
theory (HBChPT) while working with objects that contain a
single heavy quark [31,32]. In the heavy-baryon formu-
lation, several terms in the relativistic form cancel or appear
at higher orders, and loop calculations are simplified.
|

EZ%DM - 4i[C1<B§,vDﬂSUF/wB§.v> + CZ<B6,L'U”SDF/4UB6.1)>]’

(
(
+ 124 (Bey-0" Fj;,Bs + H.c.) + 15 (Bsy_0B3) (F,i,) + va6(Bei -0 Be) (F;
(
(

(23)

Furthermore, the chiral power counting is manifest. The
heavy-baryon Lagrangians are given by

1 - . = .
’CErIQe = §<B§,v(”) : D)Bﬁ.v> + <B6,1/'(”) D - A)B6.v>7

Line = g1(Bg 1, 8" Bg ) + 92(Bg ,1, B3, + H.c.),
L3y = 2677wy (B3 ,,S,F},Bs,) + wa(Be.,v,SFBo..)
+w3(Bs ,v,S,F,,B5, +H.c.)
+wy(B3,0,SB5,,) (Fj) +ws(Bo.,0,S,B6.0) (Fyi,)].
(25)

with the 4-velocity v*, the Pauli-Lubanski spin operator
St = —ys(y*¥ — v*)/2, and the mass difference between
sextet and antitriplet baryons A = mg — m3. The effective
Lagrangians for the P- and T-odd interactions in the heavy-
baryon formulation are

Lelepm = 4T [b16(Bs ,v#S F;;,Bs ) + bi7(Bg , " S“F}l, B ) + b13(Be ,v"S"F,Bs , + H.c.)
+ b19(B3,,0"S*B3 ) (Fyt,) + bao(Bs ,v"S" B ,) (Fi)] + ...
L5y = ipe(Bs ,7-Bs,) + iy (Be,7—Be.y) + ipg(Be, 7B, + H.c.) + iug(Bs ,Bs ) (7-)
+ ip10(Be.,Be.v) (7-) + 4i[”1]<B§,v)?+UMSDF;DB§,L‘> +/’ll2<BG.v)~(+UMSUF;—uB(),L'>
+/’ll3<Bﬁ.1))~(+UHSDF/J{uB§.v +H.c.) +/414<B§,UJ~(+U”S”B§,U><F;E> +Hls<Bﬁ.v)~(+””S”Bé,y><F;Tu>
+ p16(Be vy + " S* B, + H.c.)(Fl,) + p17(B3 0" S'F B3 ,) (7+) + p1s(Be 0" S“F},Bg ) (7+)

+M19<B6,UU”SHF;1/B§,U + HC><)?+> +M2O<B§.vvﬂSDB§.v><)?+F;v> +/’421 <B6,111}”SDB6,1;> <)?+F;ZJ>] +.

(26)

Ligir = iRe(V,p) vy (Bs.,7-Bs,) +v2(Bs,7_Bs,) +v3(Bs ,7_B3, + He.) + v4(B5 B3 ) (7-)
+us <B6,UB6.1)><5?—>] + 4iRe(Vub>[V11<Bé,y)?+U”S”F;uBé,v> + y12<B6,v)?+v”SUF/TUB6.D>
+ y13<BG,v)?+/U”SDF;I/B3J) + H-C-> + V14<Bi.v):(+U”SUB§,u><Fﬁ> + V15<B6,v)?+UMSDBé,v><F/4+v>
+ v16(Be.ok S B, + Hc.)(Fiiy) + v17(Bs ,0"SYF B3 ) (71 ) + v1s(Bo, oSV F B ) (7 +)

+ y19<BG,vUﬂSDF/-ZzB§.1} + HC><)?+> + V20<B§,1;U”SUB§,11><)?+F/Tv> + U2 <B6.vUﬂSDB6.v><)?+F;v>]' REREEE

We only display the terms which are relevant for the EDM
calculation. Additionally, to the order at which we are
working, only terms linear in the Goldstone bosons
are needed. Terms that begin with more than a single
Goldstone boson are hidden in the ellipses. Since the

(27)

chiral singlet T in the qCEDM Lagrangian can only enter
as an overall constant, it is convenient to absorb " into the
LECs b,.

Concerning the power counting rules of the CP-odd
vertices, the chiral order of the sources is counted as (9(50 ),
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Diagrams contributing to the EDMs of the spin-1/2 neutral antitriplet and sextet b baryons. Diagram (a) shows contact

interactions and diagrams (b)—(g) one-loop corrections. Solid lines correspond to contribution from either spin-1/2 antitriplet or sextet
multiplets of bottom baryons. Filled circles and squares are first-order meson-baryon and second-order mesonic vertices, respectively.
While diamonds represent vertices generated by the first-order meson-baryon Lagrangian, CP-violating vertices at O(8°) and O(8?) are

represented by crossed circle and crossed box, in order.

where 0 is a generic small mass or momentum, since they
do not contain any light scales and in addition will be
common to all contributions considered in this work. For
the remaining pieces, we employ standard chiral counting.

Figure 1 depicts the tree-level and one-loop Feynman
diagrams that generate a nonvanishing contribution to the P-
and T-violating form factor of the B, baryons up to the order
O(8%). We evaluate the loop diagrams in the framework of
dimensional regularization at the renormalization scale
A =1 GeV. We apply the modified minimal subtraction

scheme (MS) in HBChPT [33-36] by absorbing the infinite
parts in terms of
B Y|
C 1672 |n—4

+5(re—1-In(4n)) (28)

1
2
into the counterterms, with n the number of space-time
dimensions and y;; the Euler-Mascheroni constant. The tree-
level CP-odd diagrams at order O(5%) displayed in diagram
(a) receive contributions from all the CP-violating operators.
The one-loop diagrams at leading O(8%) are given by
diagrams (b)—(g) in Fig. 1.

IV. P- AND T-VIOLATING FORM FACTOR

The EDM of the neutral and charged b baryons can be
extracted from the P- and T-violating form factor D (g%).
It is defined through

(By(Pr)epMo|Bo(pi) = Dy, (¢*)a(py)ouwrsq u(p;),
(29)

in the covariant formulation with momentum transfer
q = py — pi; see, e.g., Ref. [26]. The EDM is then given by

d}, = D}, (4> = 0). (30)

One can reformulate the form factor in the heavy-baryon
approach using the Breit frame. In this frame, we have
v- p; = v- py,and we set the 4-velocity to v, = (1, 0). The
form factor is then obtained as

<Bb(pf)|JEDM.u|Bb(pi)> = _Zing(qz)vau(S : Q)Bv'
(31)

We first consider the contributions from the tree-level
diagrams in Fig. 1(a). The expressions of the electric dipole
moment of the antitriplet and sextet b baryons from the

TABLE 1. Tree-level contributions from the qEDM and
qCEDM operators of the b baryons. Loop diagrams only appear
at higher order.

Baryons qEDM qCEDM
Ag 4C1 —4€b19

E(l: 4C| _4€b19

E; 4C1 —4€(b16 —+ bl9)
ZZ 2C2 2€(b17 - bzo)
22 2C2 —2€b20

Z; 2C2 —2€(b17 + bzo)
E;’() 2C2 —2€b20

By 2¢, —2e(by7 + by)
Q; 26‘2 —2€(b17 + bzo)
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TABLE II. Tree-level contribution from the 4q operators of the b baryons. Loop diagrams appear at the same
order.
Baryons 4q
A) el (1" = p®) = g (W + p®) + 2pao (' —u - )]
=) Al (0 =) = W' + ) + Zpao (' = = )]
5, —de[(pry + pia) P + )+ 2ui (W +p® A+ @) = 2p00 (W — u® — "))
z, del(ury = s " + pig (" + u® + p?) + gy (' — /4 )
) 2efpny (U = u®) = s (" + ) + 2z (W = — )]
z, —de[(pry + mis)u® + pig (' + u? + ) — py (u”}’ ﬂ" - )]
=y 2efpupp (U =) = pus (U + @) + 2 (' — p = )]
By ~ellpz - pus) (W + 000+ Qg (U Fp® £ ) = 2 (= — i)
Q, —de[(piy + s + mig (W +u” +pt) = poy (W = — )]
TABLE III.  Tree-level contribution from 4qLR operators of the diagrams are proportlonal. to _S =0, 0rv-q - 0’, or
b baryons. Loop diagrams appear at the same order. mutually cancel. Th.e contributions from the nonvanishing
diagrams can be written as
Baryons 4qLR
Ap 4eRe(V ) (V11 = vig + 2up0 )" , b, {1, x O -
=9 4eRe(V,p) (11 —vis + 20 Dilq)) =57 | dx e omn Ji(, My),
5, —8eRe(V ) (V17 = 1) A o ' 1 Ia
z, 4eRe(V,p)(vi2 —vis +vig + oo )0 Di(q?) %/ dx . oM Ji(w,M;), i=1,2,3.4,
u 0
) 2eRe(V ) (V12 = vis 4 205 )0 ' !
z, —4€R6(Vub)(l/18 — vy )W (32)
Ey 2eRe(V ) (V12 = vis 4 205 )0
By —4eRe(V Y(vig — vy )V
b ub 18 21 : : : : ~
o —4eRe(V, ) (vyg — v )0 where J is the loop function defined in Appendix C, w = —A

dimension-6 operators are collected in Tables I-III. In
addition to the tree-level contributions, we find the one-loop
diagrams in Fig. 1. In analogy to the neutron EDM, the EDMs
of bottom baryons get contributions from the cloud of
Goldstone bosons dressing the baryons. For the gEDM
and qCEDM operators, the meson loops appear at higher
order, and only the tree-level diagrams are necessary. But for
the 4q and 4gLR operators, the loops appear at the same
order, and the LECs of the tree-level contributions absorb the
associated loop divergences.

We calculated the diagrams in Fig. 1 explicitly in heavy-
baryon ChPT. We find that only diagrams (b) and (c)
contribute at the order at which we work. The other
|

—u)

= 4‘3[/411(11"]’

— p1a (" + ) + 200 (> -

for a sextet particle inside the loop, or w = 0 for an antitriplet

particle. Furthermore, M,( \/ x(x — 1)g* + M?, with
M, being Mg+ or M -. The coefficients A, and A, have
to be determined from the vertices of the appearing interacting
Lagrangians. A lot of these coefficients are similar to each
other with some only differing by their sign. Considering
isospin symmetry, this leads to additional cancellations when
summing up the loop contributions. We refrain from showing
the full list of coefficients A;, and A with their respective M;
here. The surviving terms together with their coefficients
can be read off from the full form factor results listed in
Appendix A.

The expressions for the complete form factors are given
in Appendix A. Here, we present the results for the EDMs.
For the 4q operator, we obtain

egous (' + p't) £

db _ 3] 4

Nyda RFE M
v ub _ sb ub 4 ,sb ub _ b _ by €2Hs (U ) o)
dig 4q = el (W = u) =g + ) + 240 (W = @ = p) + =00 M,

di- g = —Ael(pny + ) (W + %) 4 207 (1 + 1 + 1) = 2pp0 (W = — )]

_ Ce9og
327°F2

u Y 2 u 2
(U + g2y + (e + p)FY),
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dy: gq = 4el(ia = s + s + p + p0) + oy (' = p = )]

eqiy u s 2 u 2
T (" + w)F) A+ (0 ) FL)

322%F2
€G9aHg b by (1) b dby (1)
+ 1671'2F% ((/’lu +/’ts )FMK + (ﬂu tu )FM,[)7
dy g = 2l = p®) = s (' + p ) + 2 (W = p® — %)

eginr (U + b)) equs(ut + 1)
6472 F2 Fu 3272 F2 Mg
b3 b3

dy 4q = —Ael(uio + mis)u® + s (' + p® +p?) = poy (' = u® — "))

+ +

_eqir (W +u®) o) egaug ("’ + u?)
327%F2 M 1672 F2

Ay 4q = 2elpa (" = %) = s (W + @0) + 2 (W = p — ")}

egipr (W + u) FO | €aHs (" + p?) F)
64> F2 M 32n%F? M

diy 4y = =2el(uiz + ps)(u® + ) + 2 + p® + @) = 20 (' = p® = "))

’

2 " sby (2 u 2
~ g BV, + (4 i) F)

€grHg u 1 1
~ gz (W u )y + (4w ) Fy)).

oy aq = —4e(pia + s + pig (W + p® +p?) = poy (' = u® — )]

_eqiu (W +u) o) eqaus (U + 1) (34)
3272 F2 My 1672 F2 My

For the 4qLR operator, we obtain

eRe(V ;) gor3? o)

d, = 4eRe(V,,) (1) = vig + 20500 +

A9 4gLR 3272 F2 My
ub
_ b eRe(V,;,) g3 2)
dyEZAqLR =4eRe(V ) (v11 = vig + 2090)0"" + 3202 F M,
eRe(V,,)gor3? | (o 2
dyE;AqLR = —8eRe(V ) (v17 — Vzo)l/“b - 32u7rzF2 (Fﬁwi + ngzi)
Re(V,p)givat | o) @), . eRe(Vp) vt ) )
id — 4eRe(V . ub 4 E2 F? 4 F u F 4 gy,
I 4qLR eRe(V ) (Vi —vis +vig + v )V + 3272F2 (Fu + Fa) + 1672 F2 (Fy +Fy)
(35)
ub ub
_ s eRe(V,p)givot'” o) eRe(Vy,) g™ (1)
d§2,4qLR = 2eRe(V ) (v12 — 15 + 205 )" + —64{7[21772[ Fy, 32uﬂ2F% Fipes
b ub
_ w Re(Vy,)gint o) eRe(V,,)g05" 1)
d§;,4qLR = —4eRe(V,p)(vig — vor )V = 3;”2}7721 Fy, = 16;21;% M,>
b ub
B w . eRe(Vi)gia” o) eRe(V,p,)gorat™” (1)
dyEzo 4qLR — ZeRe(Vub)(l/lz —Uis + 2U21)U + WFM” 321,471'2F]2T FM”,
w eRe(V)gimn® o 2 eRe(V ;)03 1 1
dyg;’—_4qLR = _4€Re(vub)(’/18 - I/Zl)l/ b— 64l_tﬂ_2F2 (FE\/IZ( + F1<V11) - 32un_ze (FZ(VIZ( + Fg\/[?,)?
b/ b/
b ub
_ »  eRe(V,p,)ginov™ o) eRe(V,p,)gus™ (1)
dgl,;AqLR = —4eRe(V ) (v15 — vy ) — 3;”21772[ FMK - 16M7T2F;2r FMK’ (36)
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where the loop functions are defined as
M
Fy) =1+322L +21n [7”} :
M,
Fy) =1+322°L + 2ln[ }

2A

+A2

S

2A arccos|

) =1+4322°L +2In [ ]
[iz;)

K:1—|—32ﬂ2L+21n[ ] (37)

A2

A. Patterns of EDMs

Before discussing the absolute sizes of the EDMs in the
next section, we investigate the relative sizes of the various
EDMs. The relative sizes are essentially determined by the
chiral symmetry properties and field content of the under-
lying sources of CP violation. For instance, for the bottom

|

b
M
(21 K4

which is nonzero and finite, whereas for the qCEDM, this
combination vanishes. In the same way, the degeneracy that
is present for the qCEDM for the negatively charged sextet
baryons is broken by the 4qLR operator. To illustrate
this, while for both the qCEDM and the 4qLR we have
dyE,_ (dy +dy -)/2=0, only for the 4qLR, dyf
d7; #0 (and flnlte).

Finally, for the 4q operators, an even different pattern of
EDMs arises depending on the flavor configuration of the
underlying operator. From Eqgs. (15) and (19), it is clear that
the chiral symmetry properties of x"? are identical to the
4gLR operator ~"?. As such, for u*?, the same pattern of
EDMs emerges as for the 4qLR, and these sources cannot
be separated from symmetry arguments alone. Different
patterns do emerge for u® and . For example, the
splitting in the triplet is different for 4 with respect to the
4qLR, but this can probably only be used with additional
information on the LECs.

The above considerations indicate that the pattern of
EDMs of bottom baryons provide information about the
source of CP violation. If experiments, for instance, those
proposed in Refs. [14—16], were to see nonzero signals, this
information could be used to pinpoint the underlying
mechanism. Much more could be said with nonperturbative
information about the LECs appearing in the Lagrangians.

—d _eRe(V,,)govst"
1622 F2

v
d E)AQLR

A9 4gLR

gEDM at the order at which we work, the EDMs of all
baryons in the triplet or the sextet are determined by a
single LEC, c; and c,, in order. This pattern is different for
the qCEDM where in the triplet dEE is expected to be

different from d’, A= d . Similarly, in the sextet, we obtain
the relations for the qCEDM dy + dﬂ = 2dy0, which are
also true for the qEDM, but d’éb_ &+ dz

b

arise because in order for the qCEDM to generate an EDM
of a baryon an insertion of the quark charge is required. As
such, EDMs of baryons with a single » quark but different
charges differ for the qCEDM. This is not true for the
bottom qEDM as the operator already contains a photon.

A richer pattern emerges for the four-quark operators as
here loop diagrams provide leading contributions. For
instance, for the 4qLR, we observe that the tree-level
contributions to the triplet and sextet EDMs have pattern
identical to that of the qCEDM. However, the loop
contributions induce differences. In the triplet, loop con-
tributions lead to a splitting in the EDMs of the neutral
baryons and d # dﬁo, because of the different Goldstone

. These differences

bosons part101pat1ng 1n the loops. We find

2A arccos|-> 2A A2
| In|—+y/——1|]. (38)
VML - /A M2 M M3

[
V. HOW LARGE ARE THE EDMs?

To determine the sizes of the EDMs of bottom baryons as
function of the various dimension-6 Wilson coefficients
appearing in Eq. (1), estimates of the various LECs
appearing in EDM expressions are necessary. This requires
nonperturbative QCD calculations of the associated matrix
elements. While a lot of progress has been made in this
direction for EDMs of systems containing first-generation
quarks, see, e.g., Ref. [37] for a recent review, as far as we
know, no calculations have been performed for baryons
containing heavier valence quarks. In this work, we
estimate the contributions using naive dimensional analysis
(NDA), a technique discussed in detail in Refs. [38,39] and
used for nucleon EDMs in Ref. [4]. While NDA does not
give accurate predictions, it provides a reasonable order-of-
magnitude estimate for meson and single-baryon matrix
elements and is the guiding principle for a systematic power
counting in effective field theories.

The EDMs of the bottom baryons under consideration
depend, for each source of CP violation, on several LECs.
The easiest estimates are for the bottom EDM. NDA
predicts

(39)
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which is a rather intuitive result. The bottom-quark EDM
operator directly induces a bottom-baryon EDM up to
order-1 factors. The factors could be calculated with
nonperturbative methods such as lattice QCD or estimated
using a quark model. For light quarks, for instance, lattice
QCD predicts the neutron EDM to be d, = 0.82d, —
0.21d, [40] in agreement with NDA estimates.

Next, we consider the qCEDM. In this case, we need to
estimate the LECs b,q — b,y. NDA predicts

~ F, F.m
b16—20 = O(db A—> - O(A Aé)) ) (40)
X

X

where we used 4zF,~A,. The loop diagrams only
contribute at next-to-next-to-leading order. It would be
interesting to compare these predictions with other esti-
mates, for instance, through QCD sum rules.

For the four-quark operators, we need to estimate both
the tree-level LECs and the CP-odd Goldstone boson-
baryon interactions. For the 4¢g terms, we obtain

A, F2
He10h?" = O N F7) = (9( j\z”>9

F2 F?
Hi1_ap?? = O(eﬂqb/\”> = (’)(eA Xz)* (41)
X

V4

where ¢ = {u,d,s}. While the Goldstone boson-baryon
terms scale as NAJ(, and are thus of lower order than the EDM
vertices ~A; ", they only contribute to the EDMs at the one-
loop level bringing in aloop factor e/ (4zF, )* ~ eA;* so that

both types of vertices contribute at the same order.
Similarly for the 4qLR operator, we obtain

A, F2
vi_st"? = O A, F2) = O( j\2 )

F? F?
ub __ ub Z 7\ _ i . 42
Vi1V O <€IJ A ) O (6 A){A2> ( )

4

While the NDA estimates are rough, they give a
reasonable idea of the scale of BSM physics that can be
probed by measuring EDMs of bottom baryons with a
given sensitivity. For instance, for a BSM physics scale,’

"This scale is comparable to indirect limits obtained from
traditional EDM experiments. For example, a b-quark EDM
mixes with a b-quark CEDM under the one-loop QED renorm-
alization group. At the b-quark threshold, the latter induces a
Weinberg three-gluon operator [10], which, in turn, induces a
neutron EDM. Based on this procedure, Ref. [12] quotes an
indirect limit d, < 1.2 x 1072 ecm. Using our parametrization
d, = m,/A?, we get A > 2 TeV. However, this indirect limit
suffers from a large theoretical uncertainty due to the poorly
known neutron EDM matrix element of the Weinberg operator
[11,13]. Furthermore, the neutron EDM can get contributions
from other sources. We therefore consider A =1 TeV as a
reasonable and pragmatic choice.

A =1 TeV, and considering only the tree-level expres-
sions, we estimate

d}éb — {10—197 10—20, 10—21, 10—24} ecm, (43)

for the qEDM, qCEDM, 4q, and 4qLR operators, respec-
tively. The smallness of the last term is explained by the
factor of Re(V,,). These estimates involve a sizeable
uncertainty. Nevertheless, they can be used to determine
the reach of a potential program to measure the EDMs of
bottom-quark baryons. To get an idea of the uncertainty, we
used a Monte Carlo (MC) sampling of the LECs that appear
in the EDM expressions. For instance, for the qEDM
operator, we rescaled the LECs

my\ .
Cip = (A—'§> €12 (44)

and varied the dimensionless constants ¢, between
[-3,+3]. After the MC sampling, we obtained a list of
different values for the gEDM contribution from which we
computed the mean value and the standard deviation. We
used this procedure for all LECs appearing in the EDM
expression and obtained the mean values and standard
deviations for the various EDMs for each CP-odd source in
Tables IV and V. The MC method is just a tool to determine
roughly in what range we can expect an EDM for the
various sources at a given scale A.

In Table IV, we collect the different contributions to the
EDMs of the antitriplet states. For each source, we get,
unsurprisingly, results that vary around zero with a spread
given by the NDA estimates. There is roughly an order-of-
magnitude uncertainty. As expected, the gEDM dominates,
whereas the 4gLR term gives the smallest contribution. The
standard deviations for all contributions are relatively large,
which is explained by the wide range of the dimensionless
constants which was used in the MC sampling. The same
observations can also be drawn from Table V. In the case in
which all four dimension-6 operators contribute at the same
BSM scale A, we can take a look at the resulting size of the
EDM by adding up the single contributions. Taking the Q;
baryon as an example, the total EDM would be

TABLE IV. Numerical contributions to the EDMs of the
antitriplet baryons for A =1 TeV. The results are given in
10719, 10720 102! , and 107>* e cm for the qEDM, qCEDM,
4q, and 4qLR operators, respectively.

Contribution A E) =y

qEDM —-0.24 £5.7 —-0.24 £5.7 -0.24 £5.7
qCEDM +0.18 4.6 +0.18 4.6 +0.40+6.5
4q -0.070+24 -0.020£25 40.040+3.2
4qLR +0.15+94 +0.58+9.6 —-0.11£10.8
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TABLE V. Numerical contributions to the EDMs of the sextet baryons for A = 1 TeV. The results are given in 10~'% , 10720 | 102! |
and 1072* ¢ cm for the gEDM, qCEDM, 4q, and 4qLR operators, respectively.

Contribution bg =) ch B Q;,

qEDM —0.16 +2.8 -0.16 £2.8 —0.16 +2.8 -0.1£238 —-0.16 +2.8 —-0.16 +2.8
qCEDM +0.10£3.3 +0.04 £2.2 +0.070 £3.3 +0.040 £2.2 +0.070 +£3.3 +0.070 £ 3.3
4q -0.050 +2.1 +0.070 1.2 +0.040 £ 2.1 +0.020 £ 1.3 +0.050 £ 1.6 —0.060 + 2.0
4qLR -023£79 -0.010 £ 4.9 +0.21 £5.7 +0.050 4.8 +0.21+5.6 +0.35+53

dg- = (=0.15 +£3.2) x 1071(TeV/A)? ecm.  (45)

This value is, of course, not to be understood as a clear
prediction but as an estimate for the range where the EDM
of the Q, baryon can be found. The experiment would
involve the positively charged antibaryons (e.g., ;) whose
EDMs are the same as the corresponding baryons by CPT.
The errors here reflect the uncertainty on the hadronic
theory, and while the error band includes zero, nothing
would indicate a vanishing matrix element. For the gEDM
and qCEDM operators, indirect limits have been set from
the EDM of the neutron and diamagnetic atoms [10-13].
We do not compare these limits here in detail as the indirect
limits are plagued by sizeable uncertainties as well (mainly
from matrix elements connecting the three-gluon Weinberg
operator to the neutron EDM) and assume that there are not
other contributions to the neutron EDM (for instance, from
EDMs or CEDMs of light quarks). Our main goal here is to
assess the reach of a potential experimental program to
measure the EDMs of bottom-quark baryons.

VI. CONCLUSION

Electric dipole moment experiments provide one of the
most sensitive searches for BSM physics. Most focus has
been on EDMs of stable systems consisting of first-
generation quarks, but it has been proposed to look for
EDMs of baryons containing heavier quarks as well
[14-16]. Such systems are sensitive to CP-odd operators
involving second- and third-generation quarks and comple-
ment existing searches. However, essentially no theoretical
calculations have been performed to guide this developing
experimental program.

In this paper, we have analyzed the EDMs of spin-1/2
baryons containing a single bottom quark. Our starting
point has been operators of dimension 6 in the SMEFT
Lagrangian that violate CP and contain a bI'b bilinear
(where I" denotes a Lorentz structure). We considered a
hypothetical bottom-quark EDM and chromo-EDM and
several four-quark operators mixing bottom quarks with
lighter quarks. We used chiral perturbation theory to
construct the resulting CP-violating hadronic interactions
between spin-1/2 single-bottom baryons, Goldstone

bosons, and photons and calculated the EDMs up to the
first nonvanishing order for each source of CP violation.

Our results indicate that different sources of CP violation
lead to a different pattern of EDMs due to the chiral- and
isospin-symmetry properties of the underlying sources. In
principle, this would allow for the identification of the
dominant source of CP violation based on the relative sizes
of EDMs of triplet and sextet bottom-quark baryons. The
absolute sizes of the EDMs, however, are very uncertain, as
very little is known about the magnitudes of the low-energy
constants appearing in the CP-odd chiral Lagrangian. We
made estimates using naive dimensional analysis and found
that for BSM scales of 1 TeV we can expect EDMs in the
range of 10712 —107>* e cm depending strongly on the
dimension-6 operators under consideration. All EDMs
scale as A72, so the sizes of the EDMs can easily be
obtained for other BSM scales. If the experimental program
picks up steam and EDMs of these systems are targeted, it
would be good to calculate the LECs with nonperturbative
techniques to get more reliable estimates. The techniques
developed in this work can be readily extended to calculate
EDMs of charmed baryons, and work along these lines is in
progress.
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APPENDIX A: FORM FACTORS

The full expression for the neutral and charged b-baryon
form factors up to the order O(8%) with the tree-level
results is
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APPENDIX B: EDMS WITH NDA ESTIMATES

Replacing the unknown LECsS in the equations for the neutral and charged b-baryon EDMs with the NDA estimate leads
to the expressions
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where ¢;, b;, fi;, and 7; are dimensionless constants which are varied from —3 to 43 in the MC sampling. The estimation
4nF, ~ A, has been used at certain steps.
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APPENDIX C: LOOP FUNCTIONS

In this Appendix, we give the loop functions in the heavy-baryon formulation [41] which appear in the calculation of the
diagrams in Fig. 1,
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where W(x) = w + xv - ¢ and M?(x) = x(x — 1)g> + M>. The analytical expressions for the loop functions in dimensional
regularization are
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