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We investigate flavored gauge mediation models in which the Higgs and messenger doublets are
embedded in multiplets of the discrete non-Abelian symmetry S3. In these theories, the S3 symmetry
correlates the flavor structure of the quark and lepton Yukawa couplings with the structure of the messenger
Yukawa couplings that contribute to the soft supersymmetry breaking mass parameters. We provide a
systematic exploration of possible scenarios within this framework that can accommodate hierarchical
quark and charged lepton masses, and examine the resulting phenomenological implications in each case.
We find a heavier spectrum for the superpartner masses compared to flavored gauge mediation models
controlled by Abelian symmetries, which can be directly traced back to the need in our scenarios for two
vectorlike pairs of messenger fields for viable electroweak symmetry breaking.
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I. INTRODUCTION

In the LHC era, the search for physics beyond the
Standard Model (SM) has proven elusive, and standard
frameworks for tera-electron-volt–scale new physics are
highly constrained. For the well-studied case of extensions
of the Standard Model to include softly broken N ¼ 1
supersymmetry, such as the minimal supersymmetric stan-
dard model (MSSM), the LHC bounds indicate that if softly
broken supersymmetry does indeed play a role in any new
physics at the next rung of the energy ladder, its imple-
mentation is necessarily more complicated and ostensibly
fine-tuned than originally anticipated. In this context, given
the vast nature of the parameter space associated with the
soft supersymmetry breaking sector, frameworks such as
the MSSM can remain viable. However, patterns of
possibly viable MSSM parameter regions would then be
indicated, perhaps pointing to a specific organizing prin-
ciple at higher energies.
One such example is within the context of gauge-

mediated supersymmetry breaking (GMSB). In its minimal
implementation, its distinctive phenomenology is charac-
terized by a superpartner mass spectrum with a sizable
splitting between the SUð3Þc-charged superpartners
(squarks and gluinos) and the superpartners charged only
under the electroweak symmetry (sleptons and electro-
weakinos), with the splitting governed by the messenger

mass scale and the number of messenger pairs [taken to be
5, 5̄ with respect to SUð5Þ]. However, the minimal
implementation does not easily allow for a 125 GeV
Higgs mass, requiring very high messenger scales and
subsequent squark and gluino masses that are far out of
reach of the LHC [1–16]. As such, nonminimal imple-
mentations of gauge mediation, such as general gauge
mediation [17], or scenarios in which the MSSM fields and
the messenger fields interact directly via renormalizable
superpotential couplings, have now long been explored
[10,11,15,16,18–34].
Of the many intriguing options for direct couplings

between the messenger and matter sectors, the flavored
gauge mediation framework, which exploits the fact that
the electroweak Higgs fields can mix with the doublet
components of the messenger pairs, has been of particular
interest in the literature [19,26–32,35–39]. In flavored
gauge mediation (FGM) models, Higgs-messenger mixing
leads to the generation of messenger Yukawa couplings,
which affect the prediction of the soft supersymmetry
breaking mass parameters at the input (messenger mass)
scale. The messenger Yukawa contributions not only affect
the superpartner mass spectrum but also can generically
lead to the nontrivial possibility of flavor mixing in the soft
terms. In viable FGM scenarios, therefore, the messenger
Yukawa couplings are controlled by additional symmetries,
and their forms are also intimately connected to the
generation of the MSSM Yukawa couplings of the quarks
and leptons. The case of Uð1Þ symmetries, as explored
extensively, for example, in [16], allows for great flexibility
in constructing viable models with one or more vectorlike
pairs of messengers. In addition, it was shown in [35] that
flavor-mixing contributions to the soft terms in such
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scenarios are much smaller than naive expectations might
suggest, and they can be consistent with stringent bounds
from flavor-changing processes, depending on the model
in question.
Instead of using Abelian symmetries to control the

messenger Yukawa couplings, an alternative is to build
models based on discrete non-Abelian symmetries. Such
symmetries have been extensively used as governing
principles for the generation of viable SM fermion masses
and mixing parameters [40–42]. In flavored gauge media-
tion, this possibility was first explored in detail in [27],
where the authors constructed a two-family scenario
based on the discrete non-Abelian symmetry S3, with
the Higgs and messenger fields connected within S3

doublets. This idea was then extended to incorporate
three families [37,38,43]. Most notably, it was realized in
[37] that to avoid a severe μ=Bμ problem, the Higgs-
messenger sector should be extended to include S3 singlet
representations as well as doublet representations. This
leads to scenarios with a minimal number N ¼ 2 of
messenger pairs [in contrast to the Uð1Þ cases, which
allow for one messenger pair], which enhances the
splitting of the squark and gluino masses compared to
the slepton and electroweakino masses. Further embed-
ding of the MSSM fields in S3 representations allows for
the possibility that S3 can play a role as part of the family
symmetry that governs the SM fermion masses and
mixings. A specific implementation of this idea was
explored in [38], as well as in [43], in which the
Higgs-messenger singlets play a dominant role in gen-
erating the third family SM fermion masses.
The purpose of this paper is to provide a comprehensive

analysis of the FGM S3 scenario, summarizing and
extending our previous work. The aim is to explore other
viable corners of parameter space of these theories and the
subsequent effects of including nonleading corrections to
the fermion masses. We identify several viable parameter
regions, describe their phenomenological consequences,
and compare them to the Uð1Þ FGM benchmark scenarios
in the literature. We will see that quite generally, it is not
easy to generate viable fermion masses while maintaining
flavor-diagonal soft terms, and we will characterize the
extent to which such flavor nondiagonal terms are con-
strained in these theories. The examples studied here all
feature very heavy squarks and gluinos, very heavy Higgs
fields, and lighter sleptons, charginos, and neutralinos. As
such, they provide working examples of currently allowed
MSSM parameter space that will continue to be constrained
at the LHC and future colliders.
This paper is structured as follows. We begin with a brief

overview of the flavored gauge mediation framework
studied here and describe various options for obtaining
hierarchical quark and charged lepton masses. Next, we
describe several concrete models, and analyze their mass
spectra in detail. Finally, we present our summary and
conclusions.

II. THEORETICAL BACKGROUND

As described in [37], the FGM S3 scenario studied here
assumes a specific set of Higgs-messenger fields and
supersymmetry-breaking fields. The quantum numbers of
these fields with respect to S3 are given in Table I. Here the

Hð2Þ
u;d are Higgs-messenger S3 doublets, theH

ð1Þ
u;d are Higgs-

messenger S3 singlets, and XH is a supersymmetry break-
ing field that also breaks the S3 symmetry. The Td̄k;dk

denote the SUð3Þc triplets which have the appropriate
quantum numbers to complete approximate 5, 5̄ multiplets
with the messengers and XT is the supersymmetry breaking
field that couples to these triplets [44]. Focusing on the

Higgs-messenger fields, we can write Hð2Þ
u;d and Hð1Þ

u;d as

Hu ≡

0
BB@

ðHð2Þ
u Þ1

ðHð2Þ
u Þ2

Hð1Þ
u

1
CCA≡

0
BB@

Hð2Þ
u1

Hð2Þ
u2

Hð1Þ
u

1
CCA ¼ Ru

0
BB@

Hu

Mu1

Mu2

1
CCA;

Hd ≡

0
BB@

ðHð2Þ
d Þ1

ðHð2Þ
d Þ2

Hð1Þ
d

1
CCA≡

0
BB@

Hð2Þ
d1

Hð2Þ
d2

Hð1Þ
d

1
CCA ¼ Rd

0
BB@

Hd

Md1

Md2

1
CCA; ð1Þ

in which Hu;d are the electroweak Higgs fields of the
MSSM, Mu1;d1 and Mu2;d2 are gauge mediation messenger
doublets, and Ru;d are unitary matrices whose form is
governed by the couplings of the Higgs-messenger fields
to XH, which obtains both a scalar and F-component
vacuum expectation value (VEV). As shown in [37],
consistency requirements and obtaining the needed mass
hierarchy between the MSSM Higgs fields Hu;d and the
heavy messengers Mui;di require that Ru;d are given by

Ru;d ¼

0
BBBBB@

1ffiffi
3

p ∓1
2

�
1þ 1ffiffi

3
p
�

1
2

�
1 − 1ffiffi

3
p
�

1ffiffi
3

p � 1
2

�
1 − 1ffiffi

3
p
�

− 1
2

�
1þ 1ffiffi

3
p
�

1ffiffi
3

p � 1ffiffi
3

p 1ffiffi
3

p

1
CCCCCA
: ð2Þ

We turn now to the MSSM fields and their interactions with
the Higgs-messenger fields. Although various possibilities
exist, as discussed in [37], we make the key assumption that
the three generations of SM quarks and leptons are
embedded into doublet and singlet representations of S3,
as summarized in Table II. With these S3 charge

TABLE I. The field content and S3 charges for the messenger
and supersymmetry breaking sectors.

Hð2Þ
u Hð1Þ

u Hð2Þ
d Hð1Þ

d
Td̄k Tdk XH XT

S3 2 1 2 1 1 1 2 1
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assignments, the superpotential couplings of the MSSM
matter fields and the Higgs-messenger fields, for example,
for the up quarks, are given by

WðuÞ ¼ ỹu½Q2ū2H
ð2Þ
u þ β1uQ2ū2H

ð1Þ
u þ β2uQ2ū1H

ð2Þ
u

þ β3uQ1ū2H
ð2Þ
u þ β4uQ1ū1H

ð1Þ
u �: ð3Þ

In Eq. (3), ỹu is a dimensionless overall factor, and the
quantities β1u, β2u, β3u, and β4u are dimensionless quan-
tities that characterize the different couplings as allowed
by S3. (Analogous forms hold for the down quarks and the
charged leptons; we will ignore the effects of neutrino
masses.) In the basis given by

Q ¼ ðQ2; Q1ÞT ¼ ððQ2Þ1; ðQ2Þ2; Q1ÞT;
ū ¼ ðū2; ū1ÞT ¼ ððū2Þ1; ðū2Þ2; ū1ÞT; ð4Þ

the superpotential couplings of Eq. (3) can be expressed in
matrix form as

WðuÞ ¼ ỹuQT

0
BBB@

Hð2Þ
u1 β1uH

ð1Þ
u β2uH

ð2Þ
u2

β1uH
ð1Þ
u Hð2Þ

u2 β2uH
ð2Þ
u1

β3uH
ð2Þ
u2 β3uH

ð2Þ
u1 β4uH

ð1Þ
u

1
CCCAū: ð5Þ

From here, we can easily identify the MSSM Yukawa
coupling Yu and the messenger Yukawa couplings Y 0

u1 and
Y 0
u2 as

Yu ¼
ỹuffiffiffi
3

p

0
BB@

1 β1u β2u

β1u 1 β2u

β3u β3u β4u

1
CCA; ð6Þ

and

Y 0
u1 ¼ ỹu

0
BBB@
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2
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2
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2
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3

p
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2
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2
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3
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2
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3
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3

p

1
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Y 0
u2 ¼ ỹu

0
BBB@

1
2
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2
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3

p β1uffiffi
3

p − β2u
2
− β2u

2
ffiffi
3

p

β1uffiffi
3
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2
− 1

2
ffiffi
3

p β2u
2
− β2u

2
ffiffi
3

p

− β3u
2
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2
ffiffi
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p β3u
2
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ffiffi
3

p β4uffiffi
3

p

1
CCCA: ð8Þ

These results are for the up sector; again, analogous
relations hold for the down quarks and charged
leptons, with the replacements u → d; e in all parameters,
respectively.
For arbitrary values of the coefficients, Eq. (6) does

not result in hierarchical fermion masses. It is only at
special values of the couplings, corresponding to various
enhanced symmetry points, that we can obtain a realistic
quark mass hierarchy at leading order. To see this, we note
that we can diagonalize this system explicitly and examine
parameter sets where viable eigenvalue hierarchies can be
obtained. For example, in the up quark sector, we can
follow standard procedures and consider the Hermitian
combinations YuY

†
u and Y†

uYu. It is straightforward to
calculate following exact results for their eigenvalues
(denoted by λ1u;2u;3uÞ:

λ1u ¼
ỹ2u
3
ð1−β1uÞ2;

λ2u;3u ¼
ỹ2u
6
ðð1þβ1uÞ2þ2ðβ22uþβ23uÞþβ24u ∓

ffiffiffiffiffiffi
Λu

p
Þ; ð9Þ

in which Λu is given by

Λu ¼ ð1þ β1uÞ4 þ 4ðβ42u þ β43uÞ þ β44u

þ 4ðð1þ β1uÞ2 þ β24uÞðβ22u þ β23uÞ − 2ð1þ β1uÞ2β24u
− 8β22uβ

2
3u þ 16ð1þ β1uÞβ2uβ3uβ4u: ð10Þ

Clearly, for arbitrary values of the parameters, the eigen-
values are not hierarchical. However, in looking for
leading-order results in which only one eigenvalue is
sizable, we can easily identify two general scenarios of
interest, depending on the ordering of the mass eigenvalues.
One option is that λ1u is one of the small eigenvalues, which
would have β1u → 1, and λ2u is the other; hence, λ3u
generically has an Oð1Þ value. Another option is that λ1u is
the large eigenvalue, such that β1u ≠ 1, and both λ2u;3u are
small. We now discuss each possibility in turn.
In what follows, we will focus on the up quarks, but

our default assumption will be that the down quarks and
the charged leptons will take similar forms. Mixing
possible options for eigenvalue hierarchies in the differ-
ent charged fermion sectors will not be considered here
for simplicity.

TABLE II. Charges for an S3 model of the Higgs-messenger fields and the MSSM matter fields. Here the SUð3Þ triplet messengers
and the associated XT field are not displayed for simplicity.

Hð2Þ
u Hð1Þ

u Hð2Þ
d Hð1Þ

d
Q2 Q1 ū2 ū1 d̄2 d̄1 L2 L1 ē2 ē1 XH

S3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
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A. Case 1: λ1u;2u ≪ λ3u (encompassing the
“singlet-dominated” and “democratic” limits)

We begin with the situation that β1u → 1, such that λ1u is
a small eigenvalue, and explore parameter regimes in which
λ2u is also small. For simplicity, we first consider the case in
which both vanish, such that to this order of approximation
we have one massive third generation and two massless
generations. It is easily verified that in this regime, both
eigenvalues vanish for

β1u ¼ 1; β2uβ3u ¼ β4u: ð11Þ

This case includes what we call the democratic limit, in
which all the βiu ¼ 1, and thus the MSSMYukawas take on
the well-known democratic form [41]. The democratic
limit was originally studied at leading order in [37] and
will be studied in more detail below, including subleading
corrections. This case also includes what we will call
the singlet-dominated limit, which is the case in which
β4u ≫ β1u;2u;3u, as β4u is the parameter related to the
strength of the superpotential coupling involving only S3

singlet fields. In the singlet-dominated limit, the MSSM
and messenger Yukawa couplings at leading order, in
the diagonal quark mass basis, only have nonvanishing
3–3 entries, allowing for sizable stop mixing and con-
sequently lighter superpartner masses than the other
examples we will consider (as we will see). This limiting
case was studied in some detail in [38,43], and it will be
considered below as a benchmark scenario for purposes of
comparison.
For Case 1, incorporating Eq. (11) and up to possible

rephasings to ensure that the fermion masses are real and
positive, the diagonalization matrices UuL and UuR take
the form

UuL ¼

0
BBBBB@

1ffiffi
2

p − β3uffiffi
2

p ffiffiffiffiffiffiffiffiffi
2þβ2

3u

p 1ffiffiffiffiffiffiffiffiffi
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p
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2

pffiffiffiffiffiffiffiffiffi
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p β3uffiffiffiffiffiffiffiffiffi
2þβ2
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p

1
CCCCCA
;

UuR ¼
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2
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p

1
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: ð12Þ

Assuming these forms with no further rephasings, the
messenger Yukawa couplings in the diagonal quark mass
basis then take the form

Y 0
u1 ¼ ỹu

0
BBBBBB@
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2
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3
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2u
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ð13Þ

Y 0
u2¼ ỹu
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2
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p
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3u−1Þβ2uffiffi

2
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2u

p ffiffiffiffiffiffiffiffiffi
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3u

p ðβ2
2u−1Þðβ23u−1Þffiffi

3
p ffiffiffiffiffiffiffiffiffi

2þβ2
2u

p ffiffiffiffiffiffiffiffiffi
2þβ2

3u

p

1
CCCCCCA
:

ð14Þ

From these forms, we see that in the democratic limit, the
messenger Yukawas only have nonvanishing entries in the
upper 2 × 2 block, as follows:

Y 0
u1 ¼ ỹu

0
BB@
−

ffiffi
3

p
2

ffiffi
3

p
2

0ffiffi
3

p
2

ffiffi
3

p
2

0

0 0 0

1
CCA; Y 0

u2¼ ỹu

0
BB@
−

ffiffi
3

p
2

−
ffiffi
3

p
2

0

−
ffiffi
3

p
2

ffiffi
3

p
2

0

0 0 0

1
CCA:

ð15Þ

In the singlet-dominated limit, the 3–3 entries dominate,
with Y 0

u1;u2 ¼ Diagð0; 0; ỹuβ2uβ3u=
ffiffiffi
3

p Þ.

B. Case 2: λ2u;3u ≪ λ1u (the “doublet-dominated” limit)

For this case, it is necessary that β1u ≠ 1 such that
λ1u ≫ λ2u;3u. For concreteness, we take β1u → −1, and thus
require β2u;3u;4u ≪ 1, as well as Λu → 0. Indeed, λ2u;3u ¼ 0

is achieved for β1u ¼ −1, β2u ¼ β3u ¼ β4u ¼ 0. To see this,
we note that for β1 ¼ −1 only, the condition for Λu ¼ 0 is
as follows:

−8β22uβ23u þ 4ðβ42u þ β43uÞ þ 4ðβ22u þ β23uÞβ24u þ β24u ¼ 0;

ð16Þ

which is zero only for β4u ¼ 0 and β2u ¼ β3u. We will take
β1u ¼ −1 and β4u ¼ 0, but leave β2u and β3u unconstrained
at present, recalling that we will need to restrict ourselves to
the case that β2u;3u ≪ jβ1uj ¼ 1. This limit is the doublet-
dominated limit, since now jβ1uj ≫ β2u;3u ≫ β4u ¼ 0, and
β1u controls the superpotential coupling involving only S3

doublet fields. In this limit, the mass eigenvalues take the
form (assuming for concreteness that β3u > β2u)

λ1u ¼
2ỹ2u
3

; λ2u ¼
2ỹ2uβ22u

3
; λ3u ¼

2ỹ2uβ23u
3

; ð17Þ
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such that λ2u < λ3u < λ1u. (For β3u < β2u, the placement
of β2u and β3u in λ2u and λ3u is reversed.) We now takeffiffiffi
3

p
ỹu=2 ¼ yt to identify yt as the top quark Yukawa

coupling to leading order. The diagonalization matrices
UuL and UuR now take the following particularly simple
forms:

UuL ¼

0
BB@

1ffiffi
2

p 0 1ffiffi
2

p

1ffiffi
2

p 0 − 1ffiffi
2

p

0 1 0

1
CCA; UuR ¼

0
BB@

0 1ffiffi
2

p 1ffiffi
2

p

0 1ffiffi
2

p − 1ffiffi
2

p

1 0 0

1
CCA:

ð18Þ

The messenger Yukawas in the diagonal quark basis are
then given by

Y 0
u1 ¼ yt

0
BBBBB@

− β2u
2
ffiffi
2

p − 3
4

−
ffiffi
3

p
4

0 − β3u
2
ffiffi
2

p
ffiffi
3

p
β3u

2
ffiffi
2

p
ffiffi
3

p
β2u

2
ffiffi
2

p −
ffiffi
3

p
4

1
4

1
CCCCCA
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Y 0
u2 ¼ yt

0
BBBBB@

− β2u
2
ffiffi
2

p − 3
4

ffiffi
3

p
4

0 − β3u
2
ffiffi
2

p −
ffiffi
3

p
β3u

2
ffiffi
2

p

−
ffiffi
3

p
β2u

2
ffiffi
2

p
ffiffi
3

p
4

1
4

1
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: ð19Þ

III. MODELS

As described in the previous subsection, we have
identified two cases with hierarchical quark and charged
lepton masses. The first (Case 1) satisfies Eq. (11), and
includes two possible scenarios at leading order: the
singlet-dominated limit, in which it is the S3 singlet
couplings of the MSSM fields and the Higgs-messenger
fields that dominate the superpotential, and the democratic
limit, in which all the couplings of S3 representations in
the superpotential are precisely equal at leading order,
resulting in an enhanced S3L × S3R symmetry. The singlet-
dominated limit was explored in [38,43], and the demo-
cratic limit at leading order in [37]. The second (Case 2)
is what we call the doublet-dominated limit, as in this case
the dominant couplings are those involving only S3

doublets. In what follows, we will discuss these scenarios
in greater detail.

A. Case 1 models

We begin the discussion of Case 1 models with the
singlet-dominated limit, which was studied in detail in
[38,43]. In this scenario, sizable stop mixing can occur due
to the FGM contributions to the third-generation soft
trilinear scalar coupling. This in turn allows for the squarks

and gluinos to be in the Oð5–6 TeVÞ range, which is
relatively light compared to generic parameter choices for
this class of FGM models. A variety of subleading
corrections to this limit can be considered, including the
possibility of generating nontrivial masses for the second-
generation fields and the possibility of viable quark mixing
at the first subleading order. For the case described in [43],
the corrections to the soft terms that result from these terms
have only minimal effects on the superpartner masses.
Furthermore, in this case flavor-violating contributions to
the soft terms also do not result at the first subleading order
in the quantities that control the lighter generation quark
and lepton masses, though this is not necessarily generic.
Here we will not revisit this case in detail other than as a
point of comparison for the new scenarios considered in
this work.
Let us now turn to the democratic limit, for which the

Yukawa coupling parameters β1i ¼ β2i ¼ β3i ¼ β4i ¼ 1,
where i ¼ u, d, e. In this case, the MSSMYukawa matrices
take the form

Yi ¼
ỹiffiffiffi
3

p

0
B@

1 1 1

1 1 1

1 1 1

1
CA: ð20Þ

This is the well-known flavor democratic mass matrix form,
which exhibits an S3L × S3R symmetry. At leading order,
this mass matrix has two vanishing eigenvalues and one
Oð1Þ eigenvalue, to be identified with the third generation.
As shown in [37], the messenger Yukawa matrices have
nonzero entries only in the upper 2 × 2 block in the
diagonal quark mass basis.
We now address the generation of the first- and second-

generation fermion masses and the effects on the sfermion
masses through the messenger Yukawa corrections. Here
we choose to break the S3L × S3R symmetry to S2L × S2R
and then to S1L × S1R, which generates a nonzero mass for
the first- and second-generation fermions (see, e.g., [42]).
This can be achieved via the following terms:

YðcorrÞ
i ¼ ỹiϵiffiffiffi

3
p

0
B@

0 0 1

0 0 1

1 1 1

1
CAþ ỹiσiffiffiffi

3
p

0
B@

1 0 −1
0 −1 1

−1 1 0

1
CA;

ð21Þ

in which ϵi and σi are real dimensionless perturbative
parameters associated with symmetry breaking from S3 to
S2 and S2 to S1, respectively. In our scenario, the ϵ
perturbations of the up quarks (the down quarks and
charged leptons have analogous structures) can be gen-
erated in superpotential at the renormalizable level by

ϵuyu½β2uQ2ū1H
ð2Þ
u þ β3uQ1ū2H

ð2Þ
u þ β4uQ1ū1H

ð1Þ
u �; ð22Þ
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while the σ perturbations can be generated via nonrenor-
malizable operators. These superpotential terms add cor-
rections of the form of Eq. (21) to the Yukawa matrix for
the up-type quarks, and corrections of the following form to
the up-type messenger Yukawa matrices:

Y 0ðcorrÞ
u1 ¼ ỹuϵu

0
BBB@

0 0 1
2
− 1

2
ffiffi
3

p

0 0 −1
2
− 1

2
ffiffi
3

p

1
2
− 1

2
ffiffi
3

p −1
2
− 1

2
ffiffi
3

p 1ffiffi
3

p

1
CCCA

þ ỹuσu

0
BBB@

1
2
− 1

2
ffiffi
3

p 0 1
2
þ 1

2
ffiffi
3

p

0 1
2
þ 1

2
ffiffi
3

p 1
2
− 1

2
ffiffi
3

p

1
2
þ 1

2
ffiffi
3

p 1
2
− 1

2
ffiffi
3

p 0

1
CCCA;

Y 0ðcorrÞ
u2 ¼ ỹuϵu

0
BBB@

0 0 −1
2
− 1

2
ffiffi
3

p

0 0 1
2
− 1

2
ffiffi
3

p

−1
2
− 1

2
ffiffi
3

p 1
2
− 1

2
ffiffi
3

p 1ffiffi
3

p

1
CCCA

þ ỹuσu

0
BBB@

−1
2
− 1

2
ffiffi
3

p 0 −1
2
þ 1

2
ffiffi
3

p

0 −1
2
þ 1

2
ffiffi
3

p −1
2
− 1

2
ffiffi
3

p

−1
2
þ 1

2
ffiffi
3

p −1
2
− 1

2
ffiffi
3

p 0

1
CCCA: ð23Þ

Including these correction terms along with the leading
order results, the eigenvalues λ1u;2u;3u are then found to be

λ1u¼0; λ2u¼
4y2t ϵ2u
81

þOðϵ3Þ; λ3u¼y2t þOðϵ3uÞ: ð24Þ

In these relations, we have identified the top quark Yukawa
coupling yt through ỹu ¼ ðyt=

ffiffiffi
3

p Þð1 − 5ϵu=9þOðϵuÞ2,
which follows from setting λ3u ¼ y2t through second order
in ϵu. As expected, ϵu controls the charm quark mass [45].
In the diagonal quark mass basis, the messenger Yukawa

matrices for the up-type quark sector are given to order
in σu=ϵu by

Y 0ðdiagÞ
u1 ¼ yt

0
BBB@

− 1
2
þ 5ϵu

18
− 3

ffiffi
3

p
σu

2ϵu
− 1

2
− ϵu

18
þ 3

ffiffi
3

p
σu

2ϵu
− 5ϵu

9
ffiffi
2

p

− 1
2
− ϵu

18
þ 3

ffiffi
3

p
σu

2ϵu
1
2
þ ϵu

6
þ 3

ffiffi
3

p
σu

2ϵu

ϵu
3
ffiffi
2

p

− 5ϵu
9
ffiffi
2

p ϵu
3
ffiffi
2

p − ϵu
9

1
CCCA;

Y 0ðdiagÞ
u2 ¼ yt

0
BBB@

− 1
2
þ 5ϵu

18
þ 3

ffiffi
3

p
σu

2ϵu
1
2
þ ϵu

18
þ 3

ffiffi
3

p
σu

2ϵu

5ϵu
9
ffiffi
2

p

1
2
þ ϵu

18
þ 3

ffiffi
3

p
σu

2ϵu
1
2
þ ϵu

6
− 3

ffiffi
3

p
σu

2ϵu

ϵu
3
ffiffi
2

p

5ϵu
9
ffiffi
2

p ϵu
3
ffiffi
2

p − ϵu
9

1
CCCA:

ð25Þ
Analogous forms are easily obtained for the MSSM and
messenger Yukawa matrices for down-type quarks and

leptons in the diagonal quark mass basis with the replace-
ments ϵu → ϵd;e and yt → yb;τ. The relative strengths of the
parameters ϵu;d;e and σu;d;e can be estimated from the fact
that these parameters govern the fermion masses of
the lighter generations. More precisely, up to Oð1Þ pre-
factors, ϵu;d;e is related to mc;s;μ=mt;b;τ, while σu;d;e is
constrained by m2

u;d;e=m
2
t;b;τ ∼ σ2u;d;e=ϵu;d;e. From these rela-

tions, it is straightforward to obtain that ϵu≈3×10−2 and
σu≈1×10−3. Similarly, ϵd ≈ 0.1, σd ≈ 9 × 10−3, ϵe ≈ 0.3,
and σe ≈ 8 × 10−3. These parameter values also yield
hierarchical quark mixing angles of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, in which the largest
angle is the Cabibbo angle, sin θc ∼ 0.17. While the quark
mixing angles are not fully realistic (the Cabibbo angle is
clearly too small compared to its experimentally determined
value), for the purposes of this study it is a reasonable
starting point for the analysis.
We now find the nonvanishing corrections to the soft

supersymmetry breaking terms, assuming for simplicity
that the ratio of the F terms to the scalar VEVs for the XH
and XT terms are identical (both will be denoted as Λ). We
provide the expressions for these correction terms in
Appendix A. As expected, in the limit that the perturbation
parameters are set to zero, the result is what was found in
[37]. When the perturbations are added, the diagonal entries
of the soft mass-squared terms are corrected at second order
in the ϵ parameters. This generates nonzero (but small)
diagonal 3–3 entries. In addition, with nonzero perturba-
tions, flavor off-diagonal contributions to the corrections to
the soft terms are generated. More precisely, the ϵu;d;e
parameters introduce nonvanishing δm2

f23
terms at first

order in ϵ, while the σu;d;e introduce nonvanishing δm2
f12

and δm2
f21

terms. Therefore, the dominant effects are
expected to be seen in the 2–3 sfermion mixings.
Further details will be discussed in the next section.

B. Case 2 models

This case corresponds to the doublet-dominated limit.
Here we need λ1 ≫ λ2;3. In the limit that λ2;3 → 0, we see
from Eqs. (9) and (10) this can be achieved for β1 → −1
and βi¼2;3;4 ≪ 1, and we need Λ̃ → 0. For β1 ¼ −1, the
condition for Λ̃ ¼ 0 is as follows:

−8β22β23 þ 4ðβ42 þ β43Þ þ 4ðβ22 þ β23Þβ24 þ β24 ¼ 0; ð26Þ

which is zero only for β4 ¼ 0, β2 ¼ β3. In the up quark
sector, we will now set λ1 ¼ y2t , such that ỹ2u ¼ ð3=4Þy2t
(analogous relations hold for the down quark and charged
lepton sectors). The λ2i;3i are directly related to β2i;3i, with
the specific identification dependent on the values of
the β2i;3i.

(i) Ordering β3i > β2i. Let us first consider the case in
which β3i > β2i, for which we have
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U†
iLYiUiR¼YðdiagÞ

i ¼ yt;b;τDiag

�
β2iffiffiffi
2

p ;
β3iffiffiffi
2

p ;1

�
;

ð27Þ

in which UiL;iR take the simple forms

UiL ¼

0
BB@

1ffiffi
2

p 0 1ffiffi
2

p

1ffiffi
2

p 0 − 1ffiffi
2

p

0 1 0

1
CCA;

UiR ¼

0
BB@

0 1ffiffi
2

p 1ffiffi
2

p

0 1ffiffi
2

p − 1ffiffi
2

p

1 0 0

1
CCA: ð28Þ

We see that for this ordering, the β3i control the
second-generation masses and the β2i control the
first-generation masses. The messenger Yukawas in
the diagonal fermion mass basis (the SCKM basis)
are given by

Y 0
i1 ¼ yt;b;τ

0
BBBBB@

− β2i
2
ffiffi
2

p − 3
4

−
ffiffi
3

p
4

0 − β3i
2
ffiffi
2

p β3i
2

ffiffi
3
2

q

β2i
2

ffiffi
3
2

q
−

ffiffi
3

p
4

1
4

1
CCCCCA
;

Y 0
i2 ¼ yt;b;τ

0
BBBBB@

− β2i
2
ffiffi
2

p − 3
4

þ
ffiffi
3

p
4

0 − β3i
2
ffiffi
2

p − β3i
2

ffiffi
3
2

q

− β2i
2

ffiffi
3
2

q ffiffi
3

p
4

1
4

1
CCCCCA
: ð29Þ

Given that we can identify β2i;3i with the first- and
second-generation masses, respectively, we can
write, for example, for the up-type quarks (with
yu;d;e ¼ β2u;d;yt=

ffiffiffi
2

p
and yc ¼ β3uyt=

ffiffiffi
2

p
):

Y 0
u1 ¼

0
BB@

− yu
2

− 3yt
4

−
ffiffi
3

p
yt

4

0 − yc
2

−
ffiffi
3

p
yc
2

−
ffiffi
3

p
yu
2

ffiffi
3

p
yt

4
yt
4

1
CCA;

Y 0
u2 ¼

0
BB@

− yu
2

− 3yt
4

−
ffiffi
3

p
yt

4

0 − yc
2

ffiffi
3

p
yc
2ffiffi

3
p

yu
2

−
ffiffi
3

p
yt

4
yt
4

1
CCA: ð30Þ

From the quark and charged lepton masses, we can
roughly estimate (neglecting running effects) that
β2u=β3u∼2×10−3, β2d=β3d ∼ 0.05, β2l=β3l ∼ 0.005,
while β3d=β3l ∼ 0.4. Hence, to leading order we can

neglect the effects proportional to the first-
generation masses (here the β2i), and treat the effects
due to the second-generation masses (the β3i)
perturbatively. We thus calculate the corrections to
the soft supersymmetry terms in this limit. As
before, we assume for simplicity that the ratio of
the F terms to the scalar VEVs for the XH and XT
terms are identical. The detailed forms of these soft
supersymmetry breaking terms are presented in
Appendix B.

We note that in this case, there are flavor
off-diagonal contributions in the δm2

Q;L12
that are

proportional to the β3i, and thus scale with the
second-generation quark and lepton masses. This
is reminiscent of the Case 1 democratic limit with
perturbations, though the dominant off-diagonal
contributions occurred there in the 2–3 sector, and
here they arise in the more dangerous 1–2 sector. We
will discuss their effects in the next section.

(ii) Ordering β2i > β3i. We now consider the case in
which β2i > β3i, for which the roles of β2i and β3i
are switched in Eq. (27). We now have

UiL ¼

0
BB@

0 1ffiffi
2

p − 1ffiffi
2

p

0 1ffiffi
2

p 1ffiffi
2

p

1 0 0

1
CCA;

UiR ¼

0
BB@

1ffiffi
2

p 0 − 1ffiffi
2

p

1ffiffi
2

p 0 1ffiffi
2

p

0 1 0

1
CCA: ð31Þ

The messenger Yukawa matrices in the diagonal
quark mass basis are of the form

Y 0
i1 ¼ yt;b;τ

0
BBB@

− β3i
2
ffiffi
2

p 0 −
ffiffi
3

p
β3i

2
ffiffi
2

p

− 3
4

− β2i
2
ffiffi
2

p
ffiffi
3

p
4ffiffi

3
p
4

− β2i
2

ffiffi
3
2

q
1
4

1
CCCA;

Y 0
i2 ¼ yt;b;τ

0
BBB@

− β2i
2
ffiffi
2

p 0
ffiffi
3

p
β3i

2
ffiffi
2

p

− 3
4

− β2i
2
ffiffi
2

p −
ffiffi
3

p
4

−
ffiffi
3

p
4

β2i
2

ffiffi
3
2

q
1
4

1
CCCA: ð32Þ

As in the previous section, we can ignore effects that
scale with the first-generation fermion masses and
keep leading contributions involving the second-
generation fermion masses. Thus, we now neglect
the terms proportional to β3i and keep leading-order
terms proportional to the β2i. We can again calculate
the soft supersymmetry breaking terms, subject to the
same assumptions as given for the alternate ordering.
The detailed forms are included in Appendix B.
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One interesting feature of this mass ordering
(β2i > β3i) is the corrections to the soft supersym-
metry breaking mass terms are flavor-diagonal if we
neglect effects proportional to the first-generation
fermion masses. As in the alternate ordering, here we
obtain contributions to δm2

Q;L12
that are proportional

to the β3i, but now these quantities must be much
smaller since they govern the masses of the first
generation. Given the high degree of suppression of
the flavor off-diagonal elements, in this case the
model is clearly safe from flavor-changing neutral
current constraints.

IV. RESULTS AND DISCUSSION

In this section, we analyze the mass spectra of these
scenarios and their phenomenological implications. We
start with Case 1, focusing solely on the democratic
limit with symmetry breaking effects, and then study
Case 2, the doublet-dominated limit, with both orderings
of the β2i and β3i. The model parameters are Mmess, Λ,
tan β ¼ hHui=hHdi, the sign of μ [sgnðμÞ, taken here to be
þ1], and the relevant perturbation parameters, which
depend on the scenario in question. Here we have followed
standard procedures and replaced jμj and b with tan β and
the Z boson mass. The renormalization group equations are
run using SOFTSUSY 4.1.4 [46].

A. Case 1 models

We start with the flavor democratic limit, which was
explored in [37] for the case of third-generation masses
only, i.e., in the absence of the small perturbations that
break the S3L × S3R symmetry. It was shown in [37] that
this scenario leads to heavy superpartner masses, which can
be traced to the absence of large stop mixing in this limit. In
the presence of nonvanishing perturbations, this picture
generically continues except for specific small regions of
parameter space where the Higgs mass constraint can be
satisfied without being bolstered by very heavy squarks.
In Fig. 1, we show a representative mass spectrum for an

intermediate messenger mass scale of Mmess ¼ 1012 GeV
and tan β ¼ 10, whereΛ is chosen to satisfy the Higgs mass
constraint [47]. As seen, the heavy Higgs particles are
nearly 8 TeV, the gluino is approximately 10 TeV, and the
squarks fall into three groupings: a lightest set that is close
in mass to the heavy Higgs particles, a set in between, and a
heavier set that is similar to the gluino mass. The sleptons
are close in mass to the lightest neutralino, and the next-to-
lightest superpartner (NLSP) is the lightest slepton. The
effects of nonzero σu;d;e lead to small [Oð1 GeVÞ] splittings
in the masses of d̃1 and d̃2, and ũ4 and ũ5, which are each
originally identical up to order 10−2 GeV. The effect of
ϵu;d;e is larger, which is expected as these have larger
numerical values. For nonzero ϵu, there is a splitting of
order ∼70 GeV in the masses of ũ1 and ũ2, which are also

identical up to order of 10−2 GeV in the S3L × S3R limit.
Similar features are seen for ũ4 and ũ5. The ϵu corrections
also introduce a small (∼25 GeV) mass splitting for d̃1
and d̃2, which is a sign of the symmetry breaking from
S3L × S3R to S2L × S2R.
As noted previously, this scenario has flavor off-diagonal

contributions to the corrections to the soft supersymmetry
breaking terms, with the dominant contributions in the
2–3 sector. To get an estimate of the potential sizes of these
effects, we employ the standard mass insertion approxi-
mation (MIA) method, in which the quantities of interest
for the quarks are ðδIJf ÞXY ¼ ðΔIJ

f ÞXY=ððmfIÞXXðmfJÞYYÞ,
where f denotes the relevant matter superfield; I, J are
flavor indices; X, Y are chirality labels; and ðΔIJ

f ÞXY is an
off-diagonal contribution to the sfermion soft terms [48].
We expect rather mild constraints due to the heavy sfermion
and gluino masses and the suppression factors in the off-
diagonal contributions to the soft terms. For the set of
model parameters in Fig. 1, we obtain 2–3 squark and
slepton mass insertion parameters of the order jðδ23u ÞLLj∼
5 × 10−3, jðδ23u ÞRRj∼10−2, jðδ23d ÞLLj∼5×10−3, jðδ23d ÞRRj∼
7 × 10−4, jðδ23l ÞLLj ∼ 2 × 10−3, and jðδ23l ÞRRj ∼ 3 × 10−2,
as well as small contributions to LR mixings in the
2–3 sector (ranging from 10−4 to 10−7. The 1–3 and 1–2
mass insertions are parametrically smaller, with limits that
range from 10−4 to 10−12, except for jðδ12l ÞRRj ∼ 3 × 10−3.
The resulting effects are small and within the allowed
ranges (see, e.g., [50]).
The composition of the mass eigenstates of the sfermions

is shown in Fig. 2. Without perturbations, there is almost no
mixing between different flavor eigenstates. The lightest
SUð3Þc charged particles are the first- and second-
generation right-handed squarks, and the lightest sleptons
are the first- and second-generation right-handed sleptons.
In Fig. 2, the results are shown for ϵu ¼ 0.033, ϵd ¼ 0.108,
ϵe ¼ 0.281, σu ¼ 0.001, σd ¼ 0.009, and σe ¼ 0.008. The
lighter squarks ũ1 and ũ2 are again the right-handed scharm

FIG. 1. The sfermion mass spectrum in the Case 1 democratic
limit, with Mmess ¼ 1012 GeV, Λ ¼ 8.1 × 105 GeV, tan β ¼ 10,
ϵu ¼ 0.033, ϵd ¼ 0.108, ϵe ¼ 0.281, σu ¼ 0.001, σd ¼ 0.009,
and σe ¼ 0.008.
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and sup. Mixing between the second and third generations
for the left-handed sparticles is observed in ũ4 and ũ6.
There is also small but nonvanishing 2–3 generational
mixing among right-handed up-type squarks. For the down
sector, apart from the 1–2 and 2–3 generational mixing
which are larger compared to the up sector, there is also a
small but nonvanishing left-right mixing between b̃L and
b̃R observed in d̃1. For the sleptons, we again observe small
mixing between the second- and third-generation sleptons
with the same handedness.
It is illustrative to compare this scenario with the singlet-

dominated limit [38,43]. In this case, the dominant
contributions to the soft terms arise in the diagonal
third-generation (A1) entries, rendering this case similar
to flavored gauge mediation models in which the Higgs-
messenger mixing is controlled by Abelian symmetries.
Generally this case has a light spectrum, with masses
below 6 TeV. Unlike the democratic case, the heavy Higgs
particles are heavier than or comparable to the SUð3Þ-
charged superpartners, with masses at the 5–6 TeV range.
The large stop mixing due to the nonvanishing A term for
the third-generation fields at the messenger mass scale
allows for a viable Higgs mass at smaller values of Λ
compared to the democratic limit, in which the A terms
vanish in the absence of the small symmetry breaking
perturbations. Adding nonrenormalizable corrections as in
[43] to generate the light quark and charged lepton masses
does not alter this feature and generically leads to very
small [Oð10−1 GeVÞ].

B. Case 2 models

We now turn to the Case 2 models, for which the
superpotential couplings only involving the S3-doublets

dominate. As described in the previous section, in this case
there are two subcategories, depending on whether the β3i
or the β2i parameters control the second-generation quark
and charged lepton masses. Here we will label the mass
ordering β3i > β2i by Case 2a, and the alternate mass
ordering β2i > β3i as Case 2b. The soft supersymmetry
breaking terms for Case 2a are given in Eq. (B2), and the
analogous quantities for Case 2b are given in Eq. (B3).
In Case 2 models, there is a nonvanishing trilinear scalar

parameter At that is present in the absence of the first- and
second-generation quark and charged lepton masses, in
contrast to the Case 1 democratic limit. Hence, the Higgs
and superpartner masses are lighter than their Case 1
democratic counterparts, though not as light as in the
Case 1 singlet-dominated limit. In Fig. 3, we show
characteristic mass spectra for Mmess ¼ 1012 GeV and
Λ ¼ 6.6 × 105 GeV. Here we have included nonvanishing
values for the parameters that fix the second-generation
quark and charged lepton masses (β3i for Case 2a, β2i for
Case 2b), and neglected the effects of the first-generation
masses. The values of the perturbation parameters are
chosen to yield appropriate values for the SM fermion
mass values. We note here that if these quantities are taken
to zero, the mass spectra are almost unchanged, with small
changes that are at most Oð10−1 GeVÞ, primarily in the
slepton sector due to the relatively large value of the
corresponding β3l;2l parameter.
We see that in both Case 2a and Case 2b, the gluino and

squark masses are similar, with the gluino at about 8 TeV
and the squarks ranging from approximately 8–10 TeV.
Unlike the Case 1 singlet-dominated limit as in Fig. 1 in
which the squark masses are generally comparable to heavy
Higgses, in this case the squarks are always much heavier
than the heavy Higgs bosons. The slepton masses fall into

FIG. 2. The sfermion mass eigenstates in the democratic limit with ϵu ¼ 0.033, ϵd ¼ 0.108, ϵe ¼ 0.281, σu ¼ 0.001, σd ¼ 0.009, and
σe ¼ 0.008, with Mmess ¼ 1012 GeV, Λ ¼ 8.1 × 105 GeV, and tan β ¼ 10.
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two different ranges, with the NLSP as the lightest selectron
ẽ1. The three lightest slectrons have their masses below
2 TeV, while the other sleptons have their masses between 3
and 4 TeV. The lightest charginos and neutralinos are
gaugino dominated, with a binolike lightest neutralino,
while the heavier set is Higgsino dominated.
An intriguing difference between Case 2a and Case 2b is

that in Case 2b, the heavy Higgs states and the heavy
charginos and neutralinos are lighter than they are in Case
2a. For the model parameters as given in Fig. 3, we see that
in Case 2b the heavy Higgs masses are in the 5–6 TeV
range, while they are over 6 TeV in Case 2a, and the heavy
charginos/neutralinos are also reduced by approximately
1 TeV in Case 2b compared to Case 2a. This indicates that

in Case 2b, smaller values of the μ and b parameters are
needed for successful electroweak symmetry breaking.
Another significant difference between Case 2a and Case

2b is that Case 2a has nonvanishing off-diagonal contri-
butions to squark mixing, as discussed in the previous
subsection. The most significant off-diagonal sfermion
mixing in Case 2a is given by jðδ12u ÞLLj ∼ 1 × 10−4.
These effects are small because the flavor off-diagonal
contributions are proportional to the small quantities that
govern the second-generation SM quark and charged
lepton masses. In both cases, as shown in Fig. 4, sfermion
mixing is not significant due to the small size of the
perturbation parameters. For larger values of the messenger
mass scale, nontrivial left-right mixing is observed for the

FIG. 3. The sfermion mass spectra in the doublet-dominated (Case 2) limit, with Mmess ¼ 1012 GeV, Λ ¼ 6.6 × 105 GeV, for
(a) Case 2a β3d ¼ 0.03, β3u ¼ 0.01, β3l ¼ 0.08, β2u ¼ β2d ¼ β2l ¼ 0 (left), and (b) Case 2b with β2d ¼ 0.03, β2u ¼ 0.01, β2l ¼ 0.08,
β3u ¼ β3d ¼ β3l ¼ 0 (right).

FIG. 4. The sfermion mass spectrum in the doublet-dominated scenarios, with ordering β3i > β2i (Case 2a) and β2i > β3i (Case 2b),
respectively, with Mmess ¼ 1012 GeV and tan β ¼ 10. For Case 2a, β3d ¼ 0.03, β3u ¼ 0.01, β3l ¼ 0.08. For Case 2b, β2d ¼ 0.03,
β2u ¼ 0.01, β2l ¼ 0.08.
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third-generation down-type squarks (left-right mixing in
the other sfermion sectors is negligible for all values of the
messenger mass scale).

C. Discussion

In comparing the mass spectra of these scenarios (Case
1: democratic, and Cases 2a and 2b: doublet-dominated, as
well as Case 1: singlet-dominated limit as studied in [37]),
there are several features of interest. For fixed Mmess, the
mass spectra are more compressed for larger values of tan β
(tan β > 10) because the contributions from the bottom and
tau Yukawa couplings are more significant than in the low
tan β regime. For smaller tan β values, the sparticle masses
are heavier as the tree-level contribution to the light Higgs
mass has decreased, requiring larger radiative corrections to
boost its mass to its experimentally allowed range. The
superpartner masses in this limit are thus highly split, with
heavy squarks and gluinos, and lighter sleptons. For fixed
tan β (here taken to be tan β ¼ 10), lower values of the
messenger mass scale generally lead to heavier spectra, as
larger values ofΛ are needed to satisfy the light Higgs mass
constraint. For higher messenger scales, due to increased
renormalization group running effects, the μ and b=μ terms
needed to satisfy the electroweak symmetry breaking
constraints are smaller, and thus the heavy charginos and
neutralinos become lighter.
To further investigate the dependence of the mass spectra

onMmess and tan β, we show the Higgs mass curve for fixed
Λ, with the color representing the mass of the lightest
squark. We show these results in Fig. 5 for the Case 1
democratic scenario, which show several excluded regions.
When ϵu ¼ ϵd ¼ ϵe ¼ 0, the central big “hole” appears
because the mass squared of the lightest slepton is negative.
When the ϵ parameters are nonzero, the size of the holes

increases, and there are also small holes that appear above
the central void because A0 becomes tachyonic in those
regions. Quite generally, we see that the parameters that
satisfy the Higgs mass constraint could be very different in
these two cases. The lightest value for the mass of the ũ3
squark is in the region with high tan β and high messenger
scales. In Fig. 6, we show the gluino and lightest slepton
(NLSP) masses, both without perturbations (left panel)
and with perturbations (right panel). The introduction
of the perturbations pushes the slepton mass down to
smaller values. The change in the shape of the viable Higgs
mass region is even more apparent here. For low values
of Mmess, a higher value of Λ is needed to satisfy the
light Higgs mass constraint. For higher messenger scales
Mmess ∼ 1014–1016 GeV, there is a sharp drop in the Higgs
mass region that is observed. In that region, there is
generally larger left-right mixing in the sbottom sector
as well as larger scharm-stop mixing, which results in
nontrivial contributions to the Higgs mass. However, there
are potential numerical instabilities related to the challenges
of the Higgs mass calculation in this parameter region.
A detailed resolution of these issues is beyond the scope of
this paper and is deferred to future study.
For the Case 2 models, we also see excluded regions in

the parameter scan in Fig. 7. Here, for both Cases 2a and
2b, Λ is chosen to maximize viable parameter regions,
and the perturbations have a minimal effect on the
size of the void. In Case 2a, the void appears due to
tachyonic slepton masses, and the phenomenologically
viable parameter region generally lies between tan β ≈ 5

and 15, Mmess ¼ 106–1018 GeV, with a fixed choice of
Λ ¼ 6 × 105 GeV. For Case 2b, apart from the central
hole where the lightest slepton becomes tachyonic, the
region on the left of the spectrum, which is from Mmess ∼
106–109 GeV and tan β ∼ 5–50, is ruled out because the

FIG. 5. (a) The Higgs mass (black band) and ũ3 squark mass (color shading) for Case 1 in the democratic limit without perturbations,
with Λ ¼ 7.7 × 105 GeV (left). (b) The same as (a), but with ϵu ¼ 0.033, ϵd ¼ 0.108, ϵe ¼ 0.281, σu ¼ 0.001, σd ¼ 0.009, σe ¼ 0.008
(right).
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desired electroweak minimum is not present. We also see
that in both cases, the viable Higgs region does not
generally intersect with the region where ẽ1 is lighter. In
Fig. 8, we fix tan β ¼ 10 and show both Case 2a and Case
2b with nonzero perturbations. Note that the effects of the
perturbations only slightly shift the mass curve of the NLSP
upward, and have almost no effect on the viable Higgs mass
region and the gluino masses, in contrast to what we have
seen in the democratic limit.
We close this section by commenting on further phe-

nomenological aspects of this set of models. For all cases
described here (both democratic and doublet-dominated
models), the superpartner masses are generally heavy and
split, in a way that is reminiscent of minimal gauge
mediation with N ¼ 2. As previously discussed, the con-
straints of the non-Abelian Higgs-messenger symmetry
have led us to include at least two messenger pairs to avoid

a catastrophic μ=Bμ problem. Ultimately, this means that
the scenarios studied in this paper have heavier and more
split spectra than what can be obtained in Abelian flavored
gauge mediation models [where a judicious choice of Uð1Þ
charges can be made to avoid the μ=Bμ issue seen here,
without increasing the number of messenger pairs], such as
in [35], or in general gauge mediation scenarios [17]. We
recall that in our scenario in the singlet-dominated limit
as studied in [38,43], it is also possible to minimize the
splitting of the mass spectra, though not to the extent that is
possible in the Abelian flavored gauge mediation models.
As a result, the discovery potential for the scenarios

studied here either via direct LHC searches or indirect
constraints is not as promising as it can be in Abelian
flavored gauge mediation models, or even in the singlet-
dominated non-Abelian scenario. For example, it is
straightforward to see that the supersymmetric contribution

FIG. 6. (a) The Higgs mass (black band), gluino mass (color shading), and ẽ1 mass (dotted curves) as a function of Λ and Mmess, for
Case 1 in the democratic limit with tan β ¼ 10, for (a) no perturbations (left), and (b) nonzero perturbations, with ϵu ¼ 0.033,
ϵd ¼ 0.108, ϵe ¼ 0.281, σu ¼ 0.001, σd ¼ 0.009, σe ¼ 0.008.

FIG. 7. The mass of the Higgs (black band) and the mass of the lightest squark ũ3 (color shading) for (a) Case 2a with fixed
Λ ¼ 6 × 105 GeV, β3d ¼ 0.03, β3u ¼ 0.01, β3l ¼ 0.08, β2u ¼ β2d ¼ β2l ¼ 0 (left), and (b) Case 2b with fixed Λ ¼ 6.3 × 105 GeV,
β2d ¼ 0.03, β2u ¼ 0.01, β2l ¼ 0.08, β3u ¼ β3d ¼ β3l ¼ 0 (right).
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to muon anomalous magnetic moment (MDM) in the
democratic and doublet-dominated non-Abelian flavored
gauge mediation scenarios studied here is generically about
2 orders smaller than the current experimental value [51].
This is due to both the heavy superpartner masses as
described above and that we are generally precluded from
having large values of tan β in these scenarios, which
usually provide the largest enhancement to the MDM.
Therefore, if new physics is required to resolve any future
confirmed discrepancy between the SM prediction and the
measured value of the muon anomalous magnetic moment,
this set of flavored gauge mediation models would need to
be extended to accommodate the experimental result.
One notable difference in the non-Abelian flavored

gauge mediation scenarios studied here compared to
minimal gauge mediation with N ¼ 2 as well as the
non-Abelian singlet-dominated flavored gauge mediation
scenario is in regards to the NLSP composition. Here, for
messenger mass scales of 1012 GeV as displayed in Figs. 1
and 3, the NLSP is the lightest slepton, which is a right-
handed smuon. This is different from the minimal GMSB
scenario and the singlet-dominated non-Abelian FGM
scenario in which either staus or binolike neutralinos are
the NLSP. In the scenarios studied in this paper, for this
intermediate to high messenger scale, the smuon NLSP has
a lifetime of Oð0.001 sÞ, and the NLSP mass is generically
close to about 2 TeV. This currently lies above the limits
from direct production searches at

ffiffiffi
s

p ¼ 13 TeV [52].
For lower values of the messenger scale (∼106 GeV), the
lightest slepton is still the NLSP, which has a very rapid
decay to the gravitino due to the lower supersymmetry
breaking scale, while for very high messenger scales
(∼1014 GeV), the NLSP is now a long-lived binolike
neutralino. We also note that in the non-Abelian flavored
gauge mediation scenarios studied here, there is no sig-
nificant co-NLSP behavior, in both the low messenger scale
and the intermediate to high messenger scale cases. This is
in contrast to minimal N ¼ 2 GMSB for low messenger

scales (∼106 GeV), for which there is appreciable co-NLSP
behavior among the lighter sleptons for the binolike
neutralino NLSP.
We also note that in both minimal N ¼ 2 GMSB and our

non-Abelian flavored gauge-mediation scenarios, for mes-
senger scales of Mmess ¼ 1012 GeV, the gravitino has a
mass of Oð0.1 GeVÞ, and the NLSP is not long-lived
enough to decay during or after big bang nucleosynthesis
(BBN). Therefore, the successful predictions of BBN will
not be spoiled (see, e.g., [53–55]). For gravitinos of this
mass range, there are well-known mechanisms to ensure the
desired reheating temperatures and late entropy production
to avoid having the gravitinos overclose the universe, so
that gravitinos can then be a plausible dark matter candi-
date. For lower values of the messenger scale, the situation
is further improved, as the gravitinos are lighter (with
masses of the order of tenths of keV forMmess ¼ 106 GeV)
and the NLSP decays to gravitinos much more rapidly than
in the higher messenger scale case, thus avoiding the need
for gravitino dilution.

V. CONCLUSIONS

In this paper, we have explored MSSM flavored gauge
mediation models in which the Higgs-messenger mixing is
controlled by a discrete non-Abelian symmetry, here taken
for simplicity to be S3. Building on previous analyses [37]
which showed that viable models can be constructed for an
extended Higgs-messenger sector that includes both S3

doublet and singlet fields that mix to yield one light MSSM
Higgs pair and two messenger pairs, we studied various
possibilities for generating plausible SM quark and charged
lepton masses in the case in which the MSSM matter fields
also carry S3 quantum numbers. While additional relations
beyond S3 are generically needed to obtain the desired
hierarchical SM fermion masses, we have identified two
general categories of solutions that we broadly categorized
as Case 1 and Case 2 models. The Case 1 models obey

FIG. 8. The light Higgs mass (black band), gluino mass (color shading), and ẽ1 mass (dotted curves) with Λ ¼ 6 × 105 GeV, for
(a) Case 2a β3d ¼ 0.03, β3u ¼ 0.01, β3l ¼ 0.08, β2u ¼ β2d ¼ β2l ¼ 0 (left), and (b) Case 2b with β2d ¼ 0.03, β2u ¼ 0.01, β2l ¼ 0.08,
β3u ¼ β3d ¼ β3l ¼ 0 (right).
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Eq. (11) and encompass two regimes of interest: (i) the
singlet-dominated limit, in which the Yukawa couplings
involving only the S3 singlets dominate, and (ii) the
democratic limit, in which the Yukawa superpotential
for the MSSM fields has an enhanced S3L × S3R sym-
metry. The Case 2 models, in contrast, include the
doublet-dominated limit, in which the Yukawa couplings
involving only the S3 doublet fields dominate. The
singlet-dominated limit was previously investigated in
[38,43] and served here as a point of comparison for a
general analysis of the Case 1 democratic limit and the
Case 2 doublet-dominated models. We include corrections
to obtain nonvanishing masses for one or both of the
lighter families, as well as for the third family. In certain
cases such corrections lead to off-diagonal corrections to
the soft supersymmetry breaking mass terms, but these
corrections are relatively mild (a feature that is known in
the literature for flavored gauge mediation models of this
general type) and as a result, do not immediately lead to
insurmountable problems with flavor-changing neutral
current constraints.
Within Case 1 models, our analysis shows that while the

singlet-dominated limit allows for examples with opti-
mized parameter sets that yield gluino and squark masses
in the 4–5 TeV range, the Case 1 democratic limit
generically has significantly heavier squark and gluino
masses. The Case 2 models generally also yield heavier
superpartner masses, with the heavier squarks and gluino
in the 7 TeV mass range. Ultimately, the fact that the
squark and gluino masses cannot be made lighter than
4–5 TeV even in the singlet-dominated limit is related to
the fact that this non-Abelian Higgs-messenger mixing
scenario requires at the minimum two vectorlike mes-
senger pairs that contribute to the loop diagrams that
generate the corrections to the soft terms, to tune the μ and
b terms independently. This should be contrasted with
Abelian models, which can have just one messenger pair,

and as a result can lead to benchmark scenarios in flavored
gauge mediation with lighter SUð3Þ-charged superpart-
ners that are more accessible for searches for supersym-
metry at present and future colliders.
While the spectra in all our examples remain quite heavy,

and while we have not constructed fully realistic models
of the SM fermion masses and mixing angles (including
CP violating effects, not included here for simplicity), we
nonetheless find it encouraging that this class of non-
Abelian flavored gauge mediation models can include
examples that survive this next level of model-building
scrutiny. More work is, of course, needed to see if such
scenarios (or plausible extensions of such scenarios) can be
embedded into a more complete high-energy model. In the
meantime, however, analyses such as this one can serve
as a reminder of the rich framework of TeV-scale N ¼ 1
supersymmetry, and the many ways in which it might
still be hiding at or just above TeV energies. As the
Terascale continues to be explored in this data-rich era
for high energy physics, hopefully we will know relatively
soon if TeV-scale supersymmetry is indeed part of our
physical world.
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APPENDIX A: CASE 1 MODELS

We present the corrections to the soft supersymmetry
breaking terms in the Case 1 democratic limit. All
relevant terms with magnitudes larger than the smallest
perturbation parameter σu are included. In this case all
terms with coefficients of order Oð10−3Þ GeV are taken
into account. For notational simplicity, we define the
following quantities:

g̃2u ¼
16

3
g23 þ 3g22 þ

13

15
g21; g̃2d ¼

16

3
g23 þ 3g22 þ

7

15
g21; g̃2e ¼ 3g22 þ

9

5
g21;

δQ ¼ 6y4t þ 6y4b þ 2y2by
2
t þ y2by

2
τ − g̃u2y2t − g̃d2y2b;

δϵu ¼ 8y4t þ y2by
2
t − g̃u2y2t ; δϵd ¼ 8y4b þ y2by

2
t þ y2by

2
τ − g̃d2y2b;

δϵe ¼
4

81
ϵ2ey2by
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τ −

8

729
ϵ3ey2by

2
τ −

244

6561
ϵ4ey2by

2
τ ; δL ¼ 4y4τ þ 3y2by

2
τ − g̃e2y2τ : ðA1Þ

In what follows, all soft scalar mass-squared parameters are assumed to include a factor of Λ2=ð4πÞ4 and all trilinear scalar
couplings are assumed to include a factor of Λ=ð4πÞ2, where Λ ¼ F=Mmess. The nonvanishing corrections to the soft
supersymmetry breaking terms are as follows:
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APPENDIX B: CASE 2 MODELS

(i) Ordering β3i > β2i. As before, all soft scalar mass-squared parameters are assumed to include a factor of Λ2=ð4πÞ4,
all trilinear scalar couplings are assumed to include a factor of Λ=ð4πÞ2, and we define g2ũ ¼ g̃2u=2, g2d̃ ¼ g̃2d=2, and
g2
l̃
¼ g̃2e=2 [see Eq. (A1)]. Including all the relevant terms up to second order in β3u, the nonvanishing corrections to

the soft supersymmetry breaking terms take the form
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(ii) Ordering β2i > β3i. Assuming the subleading β3i ¼ 0, we find the following corrections to the soft terms up to
second order in β2i:
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3

4
β22dy

2
by

2
t −

3

8
β22uy

4
t ;

ðδm2
d̃
Þ11 ¼

189

8
y4b þ

9

2
y2t y2b þ

27

8
y2by

2
τ − 6y2bg

2
d̃
þ 45

8
β22dy

4
b þ

9

8
β22ly

2
by

2
τ þ

9

4
β22uy

2
by

2
t ;

ðδm2
d̃
Þ22 ¼ β22dy

2
b

�
−
1

4
g2
d̃
þ 21

4
y2b þ

3

2
y2t þ

5

4
y2τ

�
;

ðδm2
d̃
Þ33 ¼

45

8
y4b þ

1

2
y2t y2b þ

11

8
y2by

2
τ − 2y2bg

2
d̃
−
3

8
β22dy

4
b þ

1

8
β22ly

2
by

2
τ −

3

4
β22uy

2
by

2
t ;

ðδm2
L̃
Þ22 ¼

141

16
y4τ þ

81

16
y2by

2
τ − 3y2τg2l̃ þ

27

16
β22dy

2
by

2
τ þ β22l

�
−
1

2
g2
l̃
y2τ þ

3

16
y2by

2
τ þ

17

8
y4τ

�
;

ðδm2
L̃
Þ33 ¼

17

16
y4τ þ

33

16
y2by

2
τ − y2τg2l̃ þ

3

16
β22dy

2
by

2
τ þ β22l

�
−
3

2
g2
l̃
y2τ þ

27

16
y2by

2
τ þ

17

8
y4τ

�
;

ðδm2
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ðÃdÞ22 ¼ −
3

2
ffiffiffi
2

p β2dðy3b þ yby2t Þ; ðÃdÞ33 ¼ −
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