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Sterile neutrinos with keV-scale masses are popular candidates for warm dark matter. In the most
straightforward case, they are produced via oscillations with active neutrinos. We introduce effective self-
interactions of active neutrinos and investigate the effect on the parameter space of sterile neutrino mass and
mixing. Our focus is on mixing with electron neutrinos, which is subject to constraints from several
upcoming or running experiments like TRISTAN, ECHo, BeEST, and HUNTER. Depending on the size of
the self-interaction, the parameter space moves closer to, or further away from, the one testable by those
future experiments. In particular, we show that phase 3 of the HUNTER experiment would test a larger
amount of parameter space in the presence of self-interactions than without them. We also investigate the
effect of the self-interactions on the free-streaming length of the sterile neutrino dark matter, which is
important for structure formation observables.
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I. INTRODUCTION

The nature of dark matter (DM), after many decades of
investigation, still lies beyond our knowledge. A number of
candidates belonging to the class of weakly interacting
massive particles (WIMPs) [1] have received a lot of
attention from the theoretical and experimental point of
view. However, so far, none of the attempts to capture
incontestable evidence of the existence of WIMP DM has
given positive results. This situation makes other species of
DM candidates more and more appealing [2]. Among
those, sterile neutrinos with a mass of the order of a few
keV proved to have all the credentials to play the role of
dark matter [3–5], in addition to the fact that their existence
could be motivated also by reasons of symmetry and
aesthetics of the Standard Model (SM), and by the need
of giving mass to the SM active neutrinos.
One of the main differences between sterile neutrinos

and WIMPs resides in the way in which they have been
produced in the early Universe. While WIMPs would have
been thermally produced in great abundance and reached
equilibrium with the primordial plasma before freezing-out

due to the cooling and expansion of the Universe, the most
natural way for sterile neutrinos to be produced is through
neutrino oscillation and collisions in the primordial plasma,
as described first by Dodelson and Widrow (DW) [6]. In
this scenario, one or more active neutrino states can mix
with a sterile state νs, which is our DM candidate. During
the propagation, neutrinos scatter with particles in the
plasma through weak interactions, and this causes the
mixed state to collapse to a weak interaction eigenstate
(active neutrino), thereby giving origin to a non-negligible
abundance of frozen-in sterile neutrinos.
In the DW mechanism, the parameters that determine the

final abundance of the sterile neutrinoDMare themass of the
sterile neutrino ms and its mixing with the active species θ.
The case in which the entire content of dark matter is
constituted by sterile neutrinos is represented by a straight
line in this parameter space. More complicated mechanisms
of production, such as the Shi-Fuller mechanism [7]
which describes resonant production, or nonstandard cos-
mological or particle physics scenarios in which the pro-
duction occurs [8–16], depend on more parameters and
modify the region of the parameter spacewhere the condition
Ωsh2 ¼ ΩDMh2 ¼ 0.12 [17] is satisfied. In the standard DW
scenario, the values of ms and sin2ð2θÞ that correspond to
Ωsh2 ¼ ΩDMh2 ¼ 0.12, are ruled out by constraints coming
from x-ray observations [18,19]. However, nonstandard self-
interactions (NSSI) can assist in efficient productionof sterile
neutrinos in such a way that the parameter space region
originating the correct abundance of sterile neutrinos is
enlarged and the x-ray constraints evaded, which has been
demonstrated for Dirac neutrinos in Refs. [20–22].
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The purpose of our work is to study these NSSI induced
sterile neutrino dark matter production in a model-inde-
pendent framework. Using the formalism of effective field
theory (EFT) to incorporate neutrino NSSI, we study the
production of sterile neutrino dark matter through the
Dodelson-Widrow mechanism. We study here generic
flavor-diagonal NSSI for Majorana neutrinos; they can
be mediated by a scalar, pseudoscalar, or an axial-vector
particle. Focusing only on one type of NSSI at a time, we
discover that the interplay between the NSSI contribution
to the interaction rate and the one to the thermal potential
leads to a widening of the allowed parameter space in the
direction of smaller, as well as larger mixing angles. We
have not limited our study to cases where the sterile
neutrino constitutes the entire DM relic density. We also
show that in the case of such a “cocktail DM,” where sterile
neutrinos forms only a certain percentage of the entire DM
abundance, the allowed parameter space in the presence of
NSSI is even wider owing to a relaxation of the x-ray
constraints. Finally, we point out that the extra NSSI among
the neutrinos needed for efficient production of DM does
not cause problems with respect to the current limits from
structure formation. Our focus is on mixing of the sterile
neutrinos with electron neutrinos. Upcoming experiments
such as TRISTAN [23] (an update of KATRIN), ECHo
[24], HUNTER [25], and BeEST [26] will be searching for
keV-scale sterile neutrinos using beta decays or electron
capture, and therefore, any new-physics related modifica-
tion of the parameter space with respect to the DWone is of
interest. In particular, the HUNTER experiment, in its
planned third phase, will be able to test a sizable fraction of
the parameter space relevant for this work. This makes it an
exciting time to study the interplay of astrophysical and
terrestrial probes of such NSSI-mediated sterile neu-
trino DM.
The paper is organized as follows. In Sec. II, we

introduce the standard Dodelson-Widrow mechanism
highlighting the different factors that determine the final
abundance of sterile neutrinos, in order to clearly identify
where the action of NSSI impacts and in which way.
In Sec. III, we briefly describe the EFT formalism in
which we work and present the types of NSSI that we
include in the study. In Sec. IV, we show the results of
our work, comment on where they place in the landscape
of near future experiments and with respect to the

current constraints coming from different observables.
Furthermore, we give an outlook on the possible future
developments of this work and we conclude with the
summary of what has been covered in our study. In the
Appendix, one can find the explicit calculation of the NSSI
contributions to the thermal potentials, carried out in the
EFT framework.

II. THE DODELSON-WIDROW MECHANISM

We introduce in this work a sterile neutrino as an
additional keV-scale SM singlet fermion. Note that we
do not require these keV sterile neutrinos to explain the
active neutrino masses. This can, in principle, arise from
other heavy sterile neutrinos, which are not relevant to this
discussion. We study the case in which sterile neutrino dark
matter ðνsÞ is produced in the early Universe through
oscillation and collisions as described in the Dodelson-
Widrow mechanism. The requirement for this mechanism
to work is that the sterile neutrino mixes at least with one
active neutrino flavor and, for simplicity, we consider
that sterile neutrinos mix only with one active species.
Hence, we define an additional mass eigenstate as a
linear combination of a sterile and an active state, i.e.,
ν4 ¼ cos θνs þ sin θνα. In our case α ¼ e, which is moti-
vated mainly by the advent of experiments such as
TRISTAN [23] (update of KATRIN), ECHo [24],
HUNTER [25], and BeEST [26], that will be sensitive
to signals of such DM candidates if they mix with electron
neutrinos or antineutrinos. Moreover, although there are no
sensitivity studies available yet, experiments such as
Project 8 [27] and PTOLEMY [28] will eventually also
be sensitive to keV-scale sterile neutrinos.
The νs population in the early Universe is assumed to be

negligible, whereas the active neutrinos are in a thermal
bath. During the evolution of the Universe, the να oscillate
into νs, and at the same time, undergo weak interactions,
which reset the active neutrino flavor again. The sterile
neutrinos, on the other hand, are SM singlets and do not
experience any weak forces. This interplay between oscil-
lations and collisions allows a nontrivial population of
sterile neutrinos to build up.
Mathematically, the time evolution of the νs distribution

function fsðp; tÞ can be calculated from the following
semiclassical Boltzmann equation [3]:

∂
∂t fsðp; tÞ −Hp

∂
∂pfsðp; tÞ ≈

ΓαðpÞ
4

Δ2ðpÞ sin2ð2θÞ
Δ2ðpÞ sin2ð2θÞ þD2ðpÞ þ ½ΔðpÞ cosð2θÞ − VαðpÞ�2

½fαðp; tÞ − fsðp; tÞ�: ð1Þ

With some manipulation we can rewrite it in the following shape:
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∂
∂T fsðp; TÞ þ

1

T

�
1þ T

3

g0S
gS

�
p

∂
∂pfsðp; TÞ ¼ hðp; TÞ½fαðp; TÞ − fsðp; TÞ�

≈
dt
dT

ΓαðpÞ
4

Δ2ðpÞsin2ð2θÞ
Δ2ðpÞsin2ð2θÞ þD2ðpÞ þ ½ΔðpÞ cosð2θÞ − Vαðp; TÞ�2

× ½fαðp; TÞ − fsðp; TÞ�; ð2Þ

suitable to obtain the semianalytical solution that we
discuss later in the subsection devoted to the impact of
NSSI on structure formation. Here, Γα denotes the net
active neutrino interaction rate, Vα measures the effective
potential experienced by the neutrino, the quantum damp-
ing rate for neutrinos is DðpÞ ¼ Γα=2, and Δ ≃m2

s=ð2pÞ is
the vacuum oscillation frequency, dominated by the sterile
mass. The function h contains the details of the Dodelson-
Widrow mechanism, whereas gS denotes the effective
degrees of freedom, and g0S denotes its derivative with
respect to temperature. The initial να distribution function,
fα, is taken to be a Fermi-Dirac distribution, while the initial
νs population can be taken to be negligible. The second
term on the lhs describes the expansion of the Universe
through the Hubble parameter, H.
Within the SM, the contribution to Vα arises from

forward scattering of the neutrinos with the leptons in
the plasma. Assuming the Universe is lepton symmetric
and ignoring the tiny baryon asymmetry, finite density
contributions to the effective potential become zero and the
resulting thermal potential is given by [3,29]

VT;SM ¼ −
8

ffiffiffi
2

p
GFp

3M2
Z

ðhEναinνα þ hEν̄αinν̄αÞ

−
8

ffiffiffi
2

p
GFp

3M2
W

ðhEαinα þ hEᾱinᾱÞ

≃ −3.72GFpT4

�
2

M2
W
þ 1

M2
Z

�
; ð3Þ

where GF is the Fermi constant, and MW , MZ are the
masses of theW and Z gauge bosons; the number densities
of neutrinos and their corresponding charged leptons are
denoted by nνα and nα, respectively; their averaged energies
are hEναi and hEαi. The thermally averaged scattering rate
for να, due to neutrinos scattering off charged leptons, is
given by [3,29]

Γα ¼ CαðTÞG2
FpT

4; ð4Þ

where p is the sterile neutrino momentum, and CαðTÞ are
temperature-dependent functions defined in [3,30].
Plugging these expressions into Eq. (1), one can compute

the sterile neutrino relic density in the early Universe. This
is a very elegant mechanism and can account for the entire

observed DM relic density. However, this mechanism is in
strong tensions with astrophysical searches. The nonzero
mixing between νs and να allows the νs to decay radiatively
into να and a photon. For νs heavier than a few keV, this can
lead to the production of x rays. Nonobservation of x rays
by telescopes potentially rules out the viable mixing angles
required for the Dodelson-Widrow mechanism to explain
the observed DM density. On the other hand, lighter sterile
neutrinos run into difficulty from phase space consider-
ations in dwarf galaxies. As a result, the vanilla Dodelson-
Widrow mechanism of producing dark matter in the early
Universe is currently ruled out.
More recently, it was suggested that new, hidden

interactions among the active neutrinos can play a major
role in alleviating these tensions [20]. This was achieved by
postulating secret neutrino interactions mediated by a
lepton-number charged scalar [20], and subsequently, this
was also generalised to vector mediators arising out ofUð1Þ
gauge extensions of the SM [21]. These new interactions
can be much stronger than the weak interactions and hence,
help in effectively producing sterile neutrino dark matter in
the early Universe.
In this work, we take this idea further, and consider

neutrino self-interactions in an effective field theory frame-
work, considering all possible types of NSSI among the
active Majorana neutrinos. In the next section, we outline
the details of the EFT framework used in this analysis, and
the extra contributions to the thermal potential, and the
scattering rates that come about because of these new
interactions.

III. NSSI IMPACT ON STERILE
NEUTRINO PRODUCTION

In this section, we outline the EFT framework used to
incorporate NSSI into the SM. We consider generalized
scalar, pseudoscalar, and axial-vector neutrino self-
interactions. In order to remain agnostic about the nature
of the high-scale physics, we employ an EFT framework to
study the impact of these new interactions.
Nevertheless, we need to take the underlying mediator of

the NSSI into account, if we want to capture the physically
correct temperature dependence of the thermal potential.
We illustrate this with a Yukawa-like interaction,

Lint ⊃ λϕν̄Oνϕþ H:c: ð5Þ
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between active neutrinos ν and a mediator ϕ. The most
generalized NSSI Lagrangian for an active neutrino up to
first order in □ can be derived as (see the Appendix)

Lj ¼
Gϕffiffiffi
2

p
�
ðν̄OjνÞðν̄ Ōj νÞ − ðν̄OjνÞ

□

m2
ϕ

ðν̄ Ōj νÞ
�

ð6Þ

¼ GFϵjffiffiffi
2

p
�
ðν̄OjνÞðν̄ Ōj νÞ − ðν̄OjνÞ

□

m2
ϕ

ðν̄ Ōj νÞ
�
; ð7Þ

where Gϕ ¼
ffiffi
2

p
λ2ϕ

m2
ϕ

is the nonstandard interaction strength in

terms of coupling constant λϕ and mediator mass mϕ. We
have further defined Gϕ ¼ GFϵ, where ϵ is used to indicate
the NSSI strength compared to the standard weak inter-
actions. Here Oj; Ōj are elements of a complete set of
bilinear covariants, which in general is fI; γμ; iγ5; γμγ5; σμνg.
For the context of this paper, we deal with Majorana
neutrinos and flavor-diagonal NSSI; hence, O ¼ γμ; σμν

do not contribute, and furthermore, we have ϵ > 0. The
second term in the Lagrangian Eq. (6) gives momentum-
dependent Feynman rules and is essential to capture the
physically correct temperature dependence of the thermal
potential; see below and the Appendix for details.
The DW mechanism predicts that maximal produ-

ction of DM happens around temperatures of T ≃
133ðms=keVÞ13 MeV. Hence, for the EFT to be valid, it
makes sense to have heavy mediators, with masses greater
than a few GeV. Furthermore, as long as the mediators are
lighter than the W, Z bosons, the strength of the NSSI can
be larger than the weak interactions. Note that direct
bounds on effective NSSI operators are very loose; the
strongest bounds come from contributions to the invisible
Z decay [31].
The NSSI would lead to additional channels for produc-

ing sterile neutrinos in the earlyUniverse. This gives an extra
contribution to Eq. (1) through the interaction rate Γ and the
forward-scattering potential Vα. The computation of the
thermal scattering rate is straightforward, and we performed
it following [21,32,33] and using the FeynCalc tool [34–36]
to calculate the amplitudes of the processes. There is, as
mentioned above, a slight subtlety involved while comput-
ing the potential. The contribution to the potential arises
from the self-energy diagrams depicted in Fig. 1. The
tadpole diagram gives a contribution proportional to the
lepton asymmetry and can be conveniently ignored if we

assume a fairly lepton symmetric Universe. Now, if one
integrates out themediator in the sunset diagram (right panel
of Fig. 1), there is no way to introduce a momentum
dependence in the self-energy, since the dependence comes
from the momentum of the mediator. As a result, the EFT
need to be expanded to higher orders to compute the
potential; see Eq. (6). Taking these terms into account,
the contribution to the thermal potential is given by

VNSSI ¼ −
7

ffiffiffi
2

p
π2

45m2
ϕ

GFpT4 ×

�
ϵS;P; O ¼ I; iγ5;

2ϵA; O ¼ γμγ5:
ð8Þ

For the interaction rate, for which the zeroth order EFT is
sufficient, the result is

ΓNSSI ¼
7π

180
G2

FpT
4 ×

�
ϵ2S;P; O ¼ I; iγ5;
4
3
ϵ2A; O ¼ γμγ5:

ð9Þ

These additional contributions and help in efficient produc-
tion of sterile neutrinos in the early Universe.

IV. RESULTS AND DISCUSSION

In this section, we discuss the results for the production
of sterile neutrino dark matter in the presence of NSSI.1

A. Sterile neutrino parameter space

Figures 2 and 3 summarize the impact of, respectively,
pseudoscalar and axial-vector NSSI on the production of
sterile neutrinos in the early Universe, noticeable in their
abundance today. We do not show the case of scalar NSSI
because we found that its effect on the thermal potential and
the interaction rate of active neutrinos and, consequently,
on the final abundance of sterile neutrinos is indistinguish-
able from the effect of pseudoscalar NSSI. The differences
between these two kinds of interactions emerge only at the
level of UV complete models, but the investigation of such
models goes beyond the purpose of our work. In the left
panels of both figures, we see that the region of the
parameter space that satisfies the condition Ωsh2 ¼
ΩDMh2 ¼ 0.12 is broadened by the presence of NSSI:
depending on the strengths ϵP;A of the NSSI, we obtain a
band instead of the black line representing the standard
Dodelson-Widrow case. Furthermore, we observe that,
depending on the mass of the NSSI mediator, the effect
of NSSI shifts the DW line towards smaller or larger mixing
angles in a different way. In particular, for the lightest
mediator considered (mϕ ¼ 10 GeV), the effect of NSSI
with small ϵP;A is to suppress the sterile neutrino production
leading to larger values of the mixing angle needed to reach

FIG. 1. Self-energy diagrams relevant for the thermal potential,
tadpole (left) and sunset (right).

1The code we wrote and used to get these results is publicly
available at https://github.com/cristinabenso92/Sterile-neutrino-
production-via-Dodelson-Widrow-with-NSSI.
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FIG. 2. Pseudoscalarmediator case. The oblique straight lines are constituted by the points corresponding to thevalues ofms and sin2ð2θÞ
for which the condition Ωsh2 ¼ ΩDMh2 ¼ 0.12 (left panel) and Ωsh2 ¼ 0.1 × ΩDMh2 ¼ 0.012 (right panel) is satisfied, for different
strengths of NSSI parametrized by ϵP. The black line corresponds to the case of standard Dodelson-Widrow production, i.e., ϵP ¼ 0, while
different shades of red, green, and blue correspond to increasing values of ϵP in the range [0.1, 100]. The regions in which upcoming
experiments will be sensitive are enclosed by beige (HUNTER), black and gray (TRISTAN), and blue (ECHo) lines. The purple line
represents the current constraint from x-ray observations. Three values ofmediatormass were chosen,mϕ ¼ 10, 50, 100GeV for the upper,
middle, and lower panel. Four benchmark points BP1-4 are also given, see main text. The scalar mediator case looks identical.
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FIG. 3. Axial-vector mediator case. The oblique straight lines are constituted by the points corresponding to the values of ms and
sin2ð2θÞ for which the condition Ωsh2 ¼ ΩDMh2 ¼ 0.12 (left panel) and Ωsh2 ¼ 0.1 × ΩDMh2 ¼ 0.012 (right panel) is satisfied, for
different strengths of NSSI parametrized by ϵA. The black line corresponds to the case of standard Dodelson-Widrow production, i.e.,
ϵA ¼ 0, while different shades of red, green, and blue correspond to increasing values of ϵA in the range [0.1, 100]. The regions in which
upcoming experiments will be sensitive are enclosed by beige (HUNTER), black and gray (TRISTAN), and blue (ECHo) lines. The
purple line represents the current constraint from x-ray observations. Three values of mediator mass were chosen, mϕ ¼ 10, 50,
100 GeV for the upper, middle, and lower panel.
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Ωsh2 ¼ ΩDMh2. On the other hand, for ϵP;A > 2, the effect
of NSSI goes in the opposite direction enhancing the
production of sterile neutrinos and shifting the DW line
towards smaller values of the mixing angle. This happens
because as ϵ switches on, there is a new contribution to the
interaction rate Γα and the potential Vα, which is propor-
tional to ϵ2 and ϵ, respectively. Initially, there is a
suppression of νe → νs conversion due to the damping
termDðpÞ ¼ Γα=2 in the denominator of Eq. (1), leading to
larger mixing angles being needed to produce the observed
relic density of DM. However, as ϵ increases, the rate at
which active neutrinos are produced in the early Universe
through the new interaction also increases. This ends up
producing the observed relic for smaller mixing angles. The
suppressing power of NSSI decreases in presence of
heavier mediators, and for mϕ ¼ 100 GeV, the values of
allowed sin2ð2θÞNSSI are mostly less than sin2ð2θÞDW.
The expected sensitivities of upcoming experiments are

also reported on the plots where the sensitivity regions are
enclosed by blue lines for ECHo [24], black and gray lines
for TRISTAN [23], and beige lines for HUNTER [25]. We
do not report in the plots any line to represent the sensitivity
of the BeEST experiment [26] because at the moment it is
too limited to be important for our study, and it is strongly
reduced by the constraint deriving from the requirement for
the DM candidate to be stable on timescales comparable
with the age of the Universe (gray region in the top right
corner of the plots). While TRISTAN’s and ECHo’s
sensitivities are way too far from the region interested
by the effects of NSSI, the phase 3 of the HUNTER
experiment will probe masses and mixing angles for which
the entire abundance of DM could be constituted by sterile
neutrinos for ϵP;A ≲ 10. In the case of light NSSI mediator
(mϕ ¼ 10 GeV), the interesting region of the parameter
space probed by HUNTER will be larger, but some values
of ms, sin2ð2θÞ, and ϵP;A will be probed also in case of
heavier mediators (mϕ ¼ 50, 100 GeV).
We have furthermore added four benchmark points:
(i) BP1 corresponds to the observed x-ray monochro-

matic line at 3.55 keV [37,38], only in the case
of Ωs ¼ ΩDM;

(ii) BP2 is characterized by corresponding to the small-
est mixing angle that will be probed by HUNTER
and, at the same time, by fulfilling the condition
Ωs ¼ ΩDM in the presence of NSSI with all three
mediator mass values considered here;

(iii) BP3 is characterized by the largest ms value not
constrained by any phase space argument and, at the
same time, by fulfillingboth the conditionsΩs ¼ ΩDM
and Ωs ¼ 0.1 ×ΩDM in different NSSI scenarios;

(iv) BP4 is characterized by amass thatmakes it an almost
“cold” DM candidate in the standard DW scenario.

In what regards laboratory constraints on NSSI, only
loose limits exist. In particular, for heavy mediator masses
as we consider here, the usual low energy limits from

meson decays or double beta decays, see, e.g., [39,40], do
not apply. The same holds for astrophysical constraints
such as from BBN or supernova considerations. The only
relevant limits for the case presented in this work come
from Z-boson decay at one loop level [31]. Using only
vector NSSI among Dirac neutrinos, the authors showed
that the constraints on NSSI couplings can be as strong as
jϵj≲ 2. However, there exists a possibility of cancellation
of NSSI couplings among different neutrino flavors, and
this can loosen the bound to jϵj≲ 250. While these bounds
cannot be directly applied to scalar, pseudoscalar, or axial-
vector NSSIs among Majorana neutrinos, one can translate
these bounds using Fierz rearrangement. We do not
explicitly calculate the bounds, rather restrict our NSSI
couplings to be jϵS;P;Aj≲ 100.
The biggest restriction on sterile neutrino darkmatter, also

in the case of production assisted by NSSI, is represented by
the constraint coming from x-ray observations [18,19],
represented by the purple line in the plots. We note that
those limits could be evaded, for instance, by additional
decay modes of the sterile neutrinos; see, e.g., [15,41].

B. Cocktail dark matter scenario

In the right panels of Figs. 2 and 3, we summarize the
results obtained for the case of “cocktail dark matter,” with
the same benchmark points as the previous section. The
hypothesis here is that only a fraction of dark matter (10%
in the plots we show) is constituted by sterile neutrinos,
while about the rest of the DM abundance, we remain
agnostic. In this case, we observe a shift towards smaller
values of mixing angle of the band relative to the produc-
tion assisted by NSSI. The sensitivity region of upcoming
experiments is unvaried by this assumption, since it
depends only on the value of the mixing angle in the
vacuum and not on the abundance of sterile neutrinos. This
implies that the parameter space region in which the
condition Ωsh2 ¼ 0.1 ×ΩDMh2 ¼ 0.012 is verified will
not be testable even by HUNTER. On the other hand,
the constraint from x-ray observations is visibly relaxed in
this scenario, because of its dependence on the sterile
neutrino abundance, as already discussed, e.g., in [15].
Thus, in this case, even larger ranges of values of ms and
sin2ð2θÞ are allowed from this point of view. A further
advantage of the “cocktail DM” scenario is that the
remaining fraction of DM might have completely different
features from those of sterile neutrinos, and the mixture of
the two or more candidates could fit much easier also all the
constraints coming from other observables, such as, for
example, from structure formation.

C. Impact on structure formation

Following [42], it is possible to get a semianalytical
solution for the Boltzmann equation reported in Eq. (2).
The distribution function of sterile neutrinos is
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fsðpf; TfÞ ¼
Z

Tf

Ti

−
1

HT

�
1þ 1

3

Tg0S
gS

�
· h

�
pðTfÞ

T
Tf

�
gSðTÞ
gSðTfÞ

�
1=3

; T

�
· fα

�
pðTfÞ

T
Tf

�
gSðTÞ
gSðTfÞ

�
1=3

; T

�
dT; ð10Þ

where the function h contains the details of the Dodelson-
Widrow mechanism, in our case modified by NSSI. For
simplicity, in this section, we focus only on pseudoscalar
NSSI, but analogous discussion and conclusions hold for
scalar and axial-vector NSSI. The distribution function is a
relevant quantity if we want to confront our results with the
constraints coming from structure formation, and particu-
larly important is the high momentum part of the distri-
bution. It is often reported that the distribution function of
sterile neutrinos produced through Dodelson-Widrow
mechanism can be approximated by a suppressed thermal
Fermi-Dirac distribution. However, this is true only under
certain conditions. In particular, the number of relativistic
degrees of freedom gS should vary so slowly with T that it
is possible to replace it by its average value hgSi and pull
the thermal part fα in front of the integral. Moreover, h
would need to vary only very slowly with momentum p.
In the case we consider, where NSSI are involved in the

production of sterile neutrino dark matter, the shape of the
distribution function is further modified by the action of
such NSSI with respect to the distribution function obtained
in the standard Dodelson-Widrow scenario. This is shown
in Fig. 4, where we plot the momentum distribution
function r2fðrÞ, where r ¼ p=T, for the case of the lightest
pseudoscalar NSSI mediatormϕ ¼ 10 GeV,ms ¼ 10 keV,

sin2ð2θÞ ¼ 1.1 × 10−9 and varying strength of the NSSI
parametrized by ϵP. The thick black line represents the
result in the standard Dodelson-Widrow scenario. The
dashed black line represents the result corresponding to
the value of ϵP that, with the chosen values of ms and
sin2ð2θÞ, produces Ωsh2 ¼ ΩDMh2 ¼ 0.12.
The impact of DM on structure formation can be

estimated through the calculation of the free streaming
length [43],

λFS ¼
Z

t0

0

hvðtÞi
aðtÞ dt ≃ 1.2 Mpc

�
keV
ms

� hp=Ti
3.15

; ð11Þ

where t0 is the time today, because the largest scale affected
by free-streaming is nothing but the present value of the
particle horizon of warm particles with a typical velocity
hvðtÞi [44]. In the approximated form, we see that the value
of the free-streaming length depends on the features of the
production through the distribution function used to obtain
the typical value of p=T. For a DM candidate to be
considered “warm,” and thus compatible with the structures
that we observe in today’s Universe, the free-streaming
length must be 0.01 Mpc < λFS < 0.1 Mpc [45]. This is
what happens for the majority of the cases that we consider;
see Fig. 5. Moreover, we notice that no effect of NSSI in the

FIG. 4. Sterile neutrino momentum distribution r2fðrÞ, where
r ¼ p=T in the case of Dodelson-Widrow production modified
by the action of pseudoscalar NSSI. The values of the sterile
neutrino parameters are chosen as ms ¼ 10 keV, sin2ð2θÞ ¼
1.1 × 10−9 (BP2 in Figs. 2 and 3). In different shades of red,
green, and blue, we observe the result corresponding to different
values of ϵP. The black dashed line represents the distribution
function that gives Ωsh2 ¼ ΩDMh2 ¼ 0.12. The black solid line
represents the standard Dodelson-Widrow case where the pseu-
doscalar NSSI is switched off.

FIG. 5. Variation of the free streaming length of sterile neutrino
dark matter determined by the increasing strength of NSSI for
different values of ms and sin2ð2θÞ. Each color refers to a
benchmark point given in Figs. 2 and 3. Each line type
corresponds to a different value of the NSSI mediator mass.
Black squares pinpoint to values of ϵP for which the condition
Ωsh2 ¼ ΩDMh2 ¼ 0.12 is satisfied. Black triangles identify
values of ϵP such that only the 10% of the DM abundance is
constituted by sterile neutrinos in the “cocktail DM” scenario.
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allowed range of values of ϵ is strong enough to drastically
modify the impact of sterile neutrino dark matter on
structure formation, from the “cold” regime to the “hot”
one, or vice versa.
For our four benchmark points, we show in Fig. 5, the

impact of pseudoscalar NSSI on the free streaming length,
varying NSSI strengths ϵP and mediator masses. Different
colors correspond to different benchmark points, while
different line types are related to different mass values of
the mediators. Black squares identify values of ϵP that give
Ωsh2 ¼ ΩDMh2 ¼ 0.12 for the chosen values of ms and
sin2ð2θÞ, while black triangles pinpoint values of ϵP that
give Ωsh2 ¼ 0.1 ×ΩDMh2 ¼ 0.012.
The lines corresponding to the chosen benchmark points

span the entire region in which sterile neutrinos can be
considered warm DM candidates. Their location is deter-
mined by the mass of the sterile neutrinos rather than their
interactions.We notice also that the influence ofNSSI on the
free streaming length is limited, and the impact is small even
for large values of ϵP. This allows us to say that the existence
NSSI acting with strengths ϵP within the current limits
would not put sterile neutrinos in tension with structure
formation constraints, unless they are very light. On the
other hand, if we consider BP1 that identifies the famous
observed x-ray line at 3.55 keV [37,38], we see that large
NSSI would be needed to produce an abundance of such
sterile neutrinos large enough to constitute a non-negligible
percentage of the Universe’s DM content. However, such
large NSSI would put sterile neutrinos with such features in
conflict with constraints coming from structure formation:
they would have been produced with too high velocities
modifying large structures that we observe today.
BP2 is particularly interesting. It represents a case in

which the NSSI effect is crucial to allow sterile neutrinos to
be produced in the correct abundance, and at the same time,
it does not lead to tensions with structure formation.
Moreover, being at the border of the sensitivity region
expected for the phase 3 of the HUNTER experiment, the
values of the parameters relative to this point will be
available for an experimental test.

D. Comment on the truncation at the second order

In Fig. 6, we see the evolution of the production rate
of sterile neutrinos with ms ¼ 10 keV and sin2ð2θÞ ¼
1.1 × 10−9 produced while the Universe cools down from
1 GeV to 1 MeV. In the standard Dodelson-Widrow case
(black thick line), the peak of the production occurs between
T ∼ 200 MeV and T ∼ 300 MeV in agreement with the
approximate expression 133ðms=keVÞ13 MeV. The presence
of the pseudoscalar NSSI with light (mϕ ¼ 10 GeV) media-
tor modifies the mechanism and shifts the peak of the
production towards lower temperatures. As shown by the
progression of the colors in the plot, the larger the strength of
NSSI, the lower the peak temperature. In particular, the

abundance of sterile neutrinos sufficient to constitute
the entire content of DM in the Universe, corresponds to
the value of ϵP represented by the black dashed line whose
peak is at T ∼ 100 MeV. This temperature is much lower
than the value of the NSSI mediator, and thus, our choice of
treating the impact of NSSI in an effective framework with
truncation at the second order in the expansion in p is
justified.

V. CONCLUSIONS AND OUTLOOK

Sterile neutrinos are popular dark matter candidates. In
the near future, laboratory limits on such particles will
improve considerably. We have investigated here how the
presence of neutrino self-interactions would influence the
parameter space of mass and mixing of keV-scale sterile
neutrinos. We have shown that the parameter space widens
and can move in the direction of the upcoming experiment,
in particular, HUNTER. We have illustrated that a mean-
ingful EFTanalysis needs to include momentum-dependent
terms, in order to have the physically correct temperature
dependence of the thermal potential. The free-streaming
length of sterile neutrino dark matter is influenced by the
presence of neutrino self-interactions, though it stays
within the “warm values” between 0.01 ad 0.1 Mpc.
One can think of several extensions of our study, applying

it to Dirac neutrinos, other production mechanisms of sterile
neutrino dark matter, additional interactions of the sterile
neutrinos, or of other particles in the thermal plasma such as
electrons. Given the theoretical motivation of such frame-
works and the amount of several experimental approaches to
keV-scale neutrinos, such studies are surely worthwhile.

FIG. 6. Evolution of the production rate of sterile neutrino with
ms ¼ 10 keV and sin2ð2θÞ ¼ 1.1 × 10−9 (BP2 in Fig. 2) with
temperature. The black thick line corresponds to the standard
Dodelson-Widrow production case. The black dashed line corre-
sponds to the production assisted by pseudoscalar NSSI with ϵP
such that Ωsh2 ¼ ΩDMh2 ¼ 0.12. Different shades of red, green,
and blue correspond to increasing strength of NSSI involved in the
sterile neutrino production. All the lines are obtained under the
hypothesis that the NSSI mediator has mass mϕ ¼ 10 GeV.
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APPENDIX: NSSI THERMAL POTENTIAL

In this appendix we will calculate the effective potential
of our scenario, in order to show how the temperature
dependence arises in our treatment of effective operators.
The rates can be calculated in analogy.
Following the treatment provided in [46] for the

Standard Model thermal potential calculations, we calcu-
late the NSSI contribution to the effective potential of active
neutrinos in the early Universe. It is essential to use higher
order terms in the effective NSSI Lagrangian to capture the
momentum dependence of the thermal potential.
Starting with a Yukawa-like interaction between active

neutrinos ν and a complex scalar mediator ϕ (for pseudo-
scalar or axial-vector particles the calculation is similar),
the full Lagrangian can be written as

Lfull ¼ ∂μϕ
†∂μϕ −m2ϕ†ϕþ λϕν̄Oνϕþ λ�ϕϕ

†ν̄ Ō ν;

where Ō ¼ γ0O†γ0; ðA1Þ

where O is an element of a complete set of bilinear
covariants fI; γμ; iγ5; γμγ5; σμνg. However, if the mediator
is much heavier than the temperature range we are
interested in (mϕ ≫ T), we can employ an effective field
theory framework and integrate out heavy degrees of
freedom in the full Lagrangian. To find the EFT
Lagrangian, we first solve the equation of motion for the
heavy degree of freedom ϕ,

∂Lfull

∂ϕ − ∂μ
∂Lfull

∂ð∂μϕÞ
¼ 0: ðA2Þ

Solving the equation of motion

−m2ϕ† þ λϕν̄Oν − ∂μ∂μϕ† ¼ 0 ⇒ ð□þm2Þϕ† ¼ λϕν̄Oν;

ðA3Þ

we obtain an expression for ϕ†,

ϕ† ¼ λϕν̄Oν

ð□þm2Þ : ðA4Þ

A similar expression,

ϕ ¼ λ�ϕν̄ Ō ν

ð□þm2Þ ; ðA5Þ

can be obtained by solving the equation of motion for ϕ†.
Substituting these in the full Lagrangian Eq. (A1) to
integrate out the heavy complex scalar ϕ, we obtain

LNSSI ¼ λ2ϕ
ðν̄OνÞðν̄ Ō νÞ
ð□þm2

ϕÞ
: ðA6Þ

Keeping terms up to first order in □ to retain momentum
dependence, we have

LNSSI ¼
Gϕffiffiffi
2

p
�
ðν̄OνÞðν̄ Ō νÞ − ðν̄OνÞ □

m2
ϕ

ðν̄ Ō νÞ
�
;

where Gϕ ¼
ffiffiffi
2

p
λ2ϕ

m2
ϕ

ðA7Þ

as the strength of NSSI defined similar to the Fermi
constant GF.
Using Gϕ ¼ GFϵ, where ϵ indicates the NSSI strength

compared to the standard weak interactions, we get the final
form of the NSSI Lagrangian:

LNSSI¼
GFϵffiffiffi

2
p ðν̄OνÞðν̄ŌνÞ−GFϵffiffiffi

2
p ðν̄OνÞ □

m2
ϕ

ðν̄ŌνÞ; ðA8Þ

with O ¼ I; iγ5; γμγ5 giving scalar, pseudoscalar, and
axial-vector NSSI, respectively. The second term in
the Lagrangian Eq. (A8) gives momentum-dependent
Feynman rules and is essential in capturing the temperature
dependence of the thermal potential. For a vector propa-
gator there will be a relative minus sign in the effective
Lagrangian which comes from the fact that scalar propa-
gators Δϕ ¼ i

q2−m2
ϕ
have an extra minus sign compared to

vector propagators ΔV ¼ −igμν
q2−m2

V
.

1. Calculation of Σeff

The NSSI contribution to the self-energy for scalar and
pseudoscalar mediators (see Fig. 1) can be written as

iΣeff ¼
GFϵjffiffiffi

2
p

Z
d4p
ð2πÞ4 ðOj þ COT

j C
−1ÞSFðpÞðŌj

þ CŌj
TC−1Þ

�
1þ qμqμ

m2
ϕ

�
; ðA9Þ

where qμ ¼ kμ − pμ denotes the difference between the
neutrino momentum k and four-velocity of medium u.
The second term q2=m2

ϕ in the final brackets comes from
the second term in the Lagrangian Eq. (A8) and eventually
leads to a temperature dependence in the potential. The
extra factors with charge conjugation operator come from
the Majorana Feynman rules [33].
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In the finite-temperature field theory formalism, the
fermion propagator SFðpÞ is given as

SFðpÞ ¼ ð=pþmlÞ
�

1

p2 −m2
l

þ 2πiδðp2 −m2
l Þηðp · uÞ

�
;

ðA10Þ
where

ηðp ·uÞ¼θðp ·uÞ
exþ1

þθð−p ·uÞ
e−xþ1

; x¼ðp ·u−μÞ
T

; ðA11Þ

θðxÞ is the unit step function and n� ¼ ðe�x þ 1Þ−1 is the
occupation number for the background fermions (nþ) and
antifermions (n−), in principle containing a chemical
potential μ.
The background-independent part of the fermion pro-

pagator only renormalizes the wave function and does
not contribute to the dispersion relation in the lowest order

[46]. To simplify the calculations, we will only consider
background-dependent

STFðpÞ ¼ 2πiδðp2 −m2
l Þηðp · uÞð=pþmlÞ; ðA12Þ

where the superscript T indicates the temperature depend-
ence of fermion propagator. Using qμqμ ¼ ðp − kÞ2 ≈
−2p · k, temperature dependent self-energy,

iΣðTÞ
eff ¼ GFϵjffiffiffi

2
p

Z
d4p
ð2πÞ4 ðOj þ COT

j C
−1ÞSTFðpÞ

× ðŌj þ CŌj
TC−1Þ

�
1 −

2p · k
m2

ϕ

�
: ðA13Þ

The effective potential Vα in the lowest order is given by
neutrino dispersion relations as Vα ¼ b0ðωk ¼ κÞ for ν and
Vα ¼ −b0ðωk ¼ −κÞ for ν̄ [46], where b0 can be calculated
from Σeff ¼ a0=kþ b0=u.
For scalar NSSI with OS ¼ I, the self-energy becomes

iΣðTÞ
eff ¼ GFϵSffiffiffi

2
p

Z
d4p
ð2πÞ4 ðOS þ COS

TC−1ÞSTFðpÞðŌS þ CŌS
TC−1Þ

�
1 −

2p · k
m2

ϕ

�

¼ 4GFϵSffiffiffi
2

p
Z

d4p
ð2πÞ4 S

T
FðpÞ

�
1 −

2p · k
m2

ϕ

�

¼ 4GFϵSffiffiffi
2

p
Z

d4p
ð2πÞ4 · 2πiδðp

2 −m2
νÞηðp · uÞγμpμ ·

�
1 −

2p · k
m2

ϕ

�

¼ 4iGFϵSffiffiffi
2

p
Z

d4p
ð2πÞ3 δðp

2 −m2
νÞηðp · uÞγμpμ

�
1 −

2p · k
m2

ϕ

�
: ðA14Þ

Defining two momentum -dependent integrals

Iμ ¼
Z

d4p
ð2πÞ3 δðp

2 −m2
νÞηðp · uÞpμ; ðA15Þ

Iμν ¼
Z

d4p
ð2πÞ3 δðp

2 −m2
νÞηðp · uÞpμpν; ðA16Þ

we can rewrite Eq. (A14) as

iΣðTÞ
eff ¼ 4iGFϵSffiffiffi

2
p γμ

�
Iμ −

2kν

m2
ϕ

Iμν

�
: ðA17Þ

We can calculate the integral Iμ ¼ Auμ, which is manifestly
covariant and has only uμ dependence, by contracting it
with uμ

Iμuμ ¼ Auμuμ ¼ A ¼
Z

d4p
ð2πÞ3 δðp

2 −m2
νÞηðp · uÞpμuμ

¼ JðνÞ1 ðA18Þ

where JðfÞn is defined as JðfÞn ¼ R d4p
ð2πÞ3 δðp2 −m2

fÞηðp · uÞ×
ðp · uÞn and calculated below.
Nowwehave Iμ ¼ JðνÞ1 uμ. Similarly, Iμν can be obtained by

contracting Iμν ¼ Agμν þ Buμuν withuμuv and gμν. One finds

gμνIμν ¼
Z

d4p
ð2πÞ3 δðp

2 −m2
νÞηðp · uÞpμgμνpν

¼ m2
νJ

ðνÞ
0 ¼ 4Aþ B; ðA19Þ

uμuνIμν ¼
Z

d4p
ð2πÞ3 δðp

2 −m2
νÞηðp · uÞpμuμuνpν

¼ JðνÞ2 ¼ Aþ B: ðA20Þ
Solving for A and B, we get

A ¼ 1

3
ðm2

νJ
ðνÞ
0 − JðνÞ2 Þ; ðA21Þ

B ¼ 1

3
ð4JðνÞ2 −m2

νJ
ðνÞ
0 Þ: ðA22Þ
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Substituting these expressions for Iμ and Iμv into Eq. (A17), we obtain

iΣðTÞ
eff ¼ 4iGFϵSffiffiffi

2
p

�
JðνÞ1 =u −

2γμkν

3m2
ϕ

ðm2
νJ

ðνÞ
0 − JðνÞ2 Þgμν −

2γμkν

3m2
ϕ

ð4JðνÞ2 −m2
νJ

ðνÞ
0 Þuμuν

�
ðA23Þ

¼ 4iGFϵSffiffiffi
2

p
�
JðνÞ1 =u −

2

3m2
ϕ

ðm2
νJ

ðνÞ
0 − JðνÞ2 Þ=k − 2ω

3m2
ϕ

ð4JðνÞ2 −m2
νJ

ðνÞ
0 Þ=u

�
: ðA24Þ

Taking the neutrino mass mν ≈ 0 simplifies to

iΣðTÞ
eff ¼ 4iGFϵSffiffiffi

2
p

�
−
2JðνÞ2

3m2
ϕ

=kþ
�
JðνÞ1 −

8ω

3m2
ϕ

JðνÞ2

�
=u

�
:

ðA25Þ

Now comparing Eq. (A25) with ΣðTÞ
eff ¼ a0=kþ b0=u, one

finds

b0 ¼
4GFϵSffiffiffi

2
p

�
JðνÞ1 −

8ω

3m2
ϕ

JðνÞ2

�
: ðA26Þ

From the calculation of JðνÞn provided below, the result is

b0 ¼
4GFffiffiffi

2
p ϵS

�
1

2
ðnν − nν̄Þ −

8ω

3m2
ϕ

·
1

2
ðnνhEνi þ nν̄hEν̄iÞ

�
:

ðA27Þ

The first term becomes zero if we assume a lepton
symmetric Universe. In this case the scalar NSSI thermal
potential at the lowest order in ω is

VS ¼ −
7

ffiffiffi
2

p
π2GFϵS

45m2
ϕ

· ωT4: ðA28Þ

Similarly for an axial-vector NSSI with ΓA ¼ γμγ
5, taking

the extra minus sign of the effective Lagrangian into
account, we find

VA ¼ −
14

ffiffiffi
2

p
π2GFϵA

45m2
ϕ

· ωT4; ðA29Þ

and a pseudoscalar NSSI with ΓP ¼ iγ5,

VP ¼ −
7

ffiffiffi
2

p
π2GFϵP
45m2

ϕ

· ωT4: ðA30Þ

2. Evaluating Jðf Þn

Our task here is to evaluate

JðfÞn ¼
Z

d4p
ð2πÞ3 δðp

2 −m2
fÞηðp · uÞðp · uÞn; ðA31Þ

with

ηðp · uÞ ¼ θðp · uÞ
expðp·u−μT Þ þ 1

þ θð−p · uÞ
expð− p·u−μ

T Þ þ 1
: ðA32Þ

In the rest frame of the medium uμ ¼ ð1; 0; 0; 0Þ, and thus

ηðp · uÞ ¼ θðp0Þ
expðp0−μ

T Þ þ 1
þ θð−p0Þ
expð− p0−μ

T Þ þ 1

¼ θðp0Þffðp0Þ þ θð−p0Þff̄ð−p0Þ; ðA33Þ

where ff;f̄ represent the particle and antiparticle momen-
tum distributions

ff;f̄ðEÞ ¼
1

eβðE∓μÞ þ 1

with number density

nf;f̄ ¼ gf

Z
d3p
ð2πÞ3 ff;f̄:

The thermal average of a quantity En is

hEn
f;f̄

i≡ gf
nf;f̄

Z
d3p
ð2πÞ3 E

nff;f̄:

Restructuring the Dirac-δ function via

δðp2 −m2
fÞ ¼ δððp −mfÞðpþmfÞÞ ¼ δðp2

0 − p2 −m2
fÞ

¼ δðp2
0 − ω2

pÞ ¼ δððp0 − ωpÞðp0 þ ωpÞÞ

¼ 1

2ωp
ðδðp0 − ωpÞ þ δðp0 þ ωpÞÞ;

where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

f

q
¼ Ep;
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JðfÞn can be written as

JðfÞn ¼
Z

d4p
ð2πÞ3 δðp

2 −m2
fÞηðp · uÞðp · uÞn

¼
Z

d3pdp0

ð2πÞ3
1

2ωp
ðδðp0 − ωpÞ þ δðp0 þ ωpÞÞðθðp0Þffðp0Þ þ θð−p0Þff̄ð−p0ÞÞðp0Þn

¼
Z

d3p
ð2πÞ3

�
ωn
p

2ωp
ffðωpÞ þ

ð−ωpÞn
2ωp

ff̄ðωpÞ
�

¼ 1

2

Z
d3p
ð2πÞ3 ðE

n−1
f ffðEpÞ þ ð−1ÞnEn−1

f ff̄ðEpÞÞ

¼ 1

2

�
nf
gf

hEn−1
f i þ ð−1Þn nf̄

gf̄
hEn−1

f̄
i
�
: ðA34Þ

For neutrinos with gν ¼ gν̄ ¼ 1 we have our final results as

JðνÞ1 ¼ 1

2

�
nν
gν

−
nν̄
gν̄

�
¼ 1

2
ðnν − nν̄Þ; ðA35Þ

JðνÞ2 ¼ 1

2
ðnνhEνi þ nν̄hEν̄iÞ ¼

7π2T4

240
: ðA36Þ
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