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The cosmological evolution can modify the dark matter (DM) properties in the early Universe to
be vastly different from the properties today. Therefore, the relation between the relic abundance and
the DM constraints today needs to be revisited. We propose novel transient annihilations of DM that helps
to alleviate the pressure from DM null detection results. As a concrete example, we consider the vector
portal DM and focus on the mass evolution of the dark photon. When the Universe cools down, the gauge
boson mass can increase monotonically and go across several important thresholds, opening new transient
annihilation channels in the early Universe. Those channels are either forbidden or weakened at the late
Universe, which helps to evade the indirect searches. In particular, the transient resonant channel can
survive direct detection (DD) without tuning the DM to be half of the dark photon mass and can be
soon tested by future DD or collider experiments. A feature of the scenario is the existence of a light
dark scalar.
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I. INTRODUCTION

The weakly interacting massive particle (WIMP) para-
digm provides an elegant explanation to dark matter (DM)
via the freeze-out mechanism. It suggests that the DM
particle has weak scale couplings to the Standard Model
(SM) particles. This implies sizable scattering rates
between local DM and nucleons [1–4], residual DM
annihilation today in galaxies [5–9], and DM production
at colliders [10–13]. However, the null results from the
above experiments cast doubt on the WIMP paradigm.
One of the most common benchmarkWIMPmodel is the

vector portal DM, in which the DM fermion ψ interacts
with the SM particles through kinetic mixing of the Uð1Þd

dark photon A0 and SM photon [14]. The ratio r0 ≡mA0=mψ

classifies the parameter space into different regions. For
r0 < 1, the classic secluded annihilation to dark photon
pair is kinematically allowed [15]. For 1≲ r0 ≲ 2, there are
new channels allowing secluded annihilations [16–20]. For
r0 > 2, theDMpair will annihilate into SMparticles through
s-channel A0 mediation; thus, there is a direct connection
between the relic abundance and nucleon scattering cross
section. For DM mass > 10 GeV, most of the parameter
space is already ruled out by direct detection (DD). The
exception being the cases of r0 ≈ 2 (the fine-tuned s-channel
resonant region) or inelastic DM (with small mass splitting)
[21–29]. Light DM can avoid DD, but is still subject to
constraints from cosmic microwave background (CMB)
measurements [21,30] and the intensity frontier experiments
[24,25]. Therefore, the vector portal DM model is severely
constrained by the experiments.
In this paper, we point out that the DM evolution can be

deeply affected by the thermal history of the Universe;
hence, the above constraints cannot be trivially applied.
More specifically, the Uð1Þd is restored when the cosmic
temperature is very high. If the Uð1Þd breaking is through a
second-order phase transition, then, as the Universe cools
down, the A0 mass will scan from zero to today’s zero-
temperature value. For r0 > 2, such a “mass scanning” will
open transient secluded annihilations and s-channel reso-
nant annihilation, which help evade current DD, indirect
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detection, and collider searches. This scenario is testable by
near future DM experiments and can serve as a viable
variant of the WIMP model.
There have been prior studies on the effects cosmologi-

cal evolution have on DM or scalar mediator mass, stability,
interaction couplings, and annihilation channels [31–47].
In our scenario, we for the first time focus on the vector
mediator whose mass is significantly affected during the
freeze-out. The DM mass and its couplings are not affected
at the freeze-out temperature. Moreover, the Higgs boson
responsible for the Uð1Þd breaking has to be much lighter
than A0, a feature of this scenario.

II. MODEL

The vector portal DM model has the following
Lagrangian:

Ld ¼ ψ̄ði=D −mψ Þψ −
1

4
F0
μνF0μν þ ϵeA0

μJ
μ
em; ð1Þ

whereDμ ≡ ∂μ − igdA0, and Jμem is the SM electromagnetic
current. The coupling between Jμem and A0 comes from
the kinetic mixing with the photon field strength. The
Uð1Þd is spontaneously broken by a complex scalar
Φ ¼ ðϕþ iηÞ= ffiffiffi

2
p

with the potential

VðΦÞ ¼ μ2djΦj2 þ λdjΦj4: ð2Þ

Provided that μ2d < 0, the scalar field obtains a vacuum

expectation value (VEV) hϕi ¼ vd ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ2d=λd

q
, and

hence, A0 acquires a mass mA0 ¼ gdvd. The real part of
the scalar ϕ also obtains a mass mϕ ¼ ffiffiffiffiffiffiffi

2λd
p

vd.
The scalar potential in Eq. (2) receives corrections in

the early Universe. For example, if there is a light
scalar S coupling to Φ via λϕSjΦj2S2, a thermal mass term
λϕST2ϕ2=12 can be induced. Another possible correction
comes from the gravitational coupling ξϕRjΦj2=2, where R
is the Ricci curvature scalar. As R=H2 ∼ 10−2–10−1 at
temperature between 100 MeV and 10 GeV (with H
being the Hubble constant) [45,48,49], the portal coupling
provides a T4 correction to the scalar mass term. Moreover,
corrections like m�HΦ2 or H2Φ2 can also arise from
the flat directions in supersymmetric models [50,51].
In general, the potential in the early Universe can be
written as

μ2dðTÞ ¼ μ2d;0 þ cϕTn; ð3Þ

where the dimension of the coefficient cϕ is ½Energyð2−nÞ�
with n ¼ 2 or 4. The scalar VEV varies with the
temperature as

v2dðTÞ ¼
�
0 T > Tϕ

v2d;0 − cϕTn=λd T < Tϕ

; ð4Þ

where Tϕ ¼ ðλdv2d;0=cϕÞ1=n is a temperature at which the
second-order phase transition for Uð1Þd breaking starts.
The evolution of mA0 can be derived immediately, i.e.,

m2
A0 ðTÞ ¼

� 0 T > Tϕ;

m2
A0;0 − κm2

ψð T
mψ
Þn T < Tϕ

; ð5Þ

where mA0;0 ¼ gdvd;0 is the mass at zero temperature and
κ ¼ mn−2

ψ cϕg2d=λd is a model-dependent dimensionless
constant. Later, we will see that κ is required to be large.
The mass of ϕ is also temperature dependent,

m2
ϕðTÞ ¼

�
μ2d;0 þ cϕTn T > Tϕ

m2
A0 ðTÞ × ð2mn−2

ψ cϕ=κÞ T < Tϕ

: ð6Þ

Since κ is large, a scalar ϕ much lighter than A0 is a feature
of our model. More specifically, for n ¼ 2, we are
interested in κ ∼ 104 with cϕ ∼ 1=12, and hence, the mass
of ϕ is sub-GeV. To avoid constraints from cosmological
observations, a small Higgs portal coupling λhϕjHj2jΦj2
is assumed to allow ϕ to decay to a pair of SM light
fermions before big bang nucleosynthesis. For n ¼ 4, since
cϕ ∼ 1=m2

pl, with mpl ¼ 1.22 × 1019 GeV being the Planck
scale, a very small λd ∼ 10−38 is required for Tϕ ∼ 1 GeV.
Hence, an extremely light ϕ with mϕ ∼Oð10−10 eVÞ
exists. Because of its tiny mass, its decay to diphoton
via SM Higgs mixing is too slow compared with the
Hubble timescale, therefore making it a stable particle.
Such ultralight ϕ can exist as dark radiation, leaving
impacts on the cosmic large scale structure of the
Universe [52]. The smallness of λd or, in other words,
the flatness of the potential Eq. (2) can be achieved by
embedding the model into either a spontaneously broken
global symmetry with Φ as the pseudo-Nambu-Goldstone
boson or a supersymmetric model with Φ as the moduli
field. Although Eq. (3) seems to be a simplified model, it
can be treated as the prototype of a general continuous
phase transition in the sense of Taylor expansion around the
critical temperatures in Eq. (8). Therefore, the methodology
can apply to the general case for a more complicated
potential as described in the Appendix A. In addition, the
reason the n ¼ 2 case can be a good approximation for
the one-loop finite-temperature potential, including the
Coleman-Weinberg potential and the thermal corrections,
is given in Appendix B.
In summary, the cosmological evolution effects on A0 is

fully encoded in the constant κ. This serves as an extra free
parameter compared to the zero-temperature model.
Therefore, there are five input parameters in total,
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fmψ ; mA0;0; gd; ϵ; κg: ð7Þ

For convenience, we drop the (T) for the explicit tem-
perature dependence thereafter, e.g., mA0 always implies
mA0 ðTÞ. The subscript “0” denotes the zero-temperature
values.

III. TRANSIENT ANNIHILATIONS

For r0 ¼ mA0;0=mψ > 2, as the temperature drops, mA0

will inevitably go across several thresholds:

Transient secluded∶ ðA0A0Þ mA0 ¼ mψ ;

ðA0ϕÞ mA0 ¼ 2mψ −mϕ;

Transient resonant∶ ðf̄fÞ mA0 ¼ 2mψ : ð8Þ

Crossing the first two thresholds opens up new transient
annihilation channels ψ̄ψ → A0A0 and ψ̄ψ → A0ϕ. These
are secluded annihilation and thus can evade the DD limits
and the collider constraints. The last crossover enables a
transient s-channel resonance ψ̄ψ → A0 → f̄f, which
greatly enhances the annihilation cross section. Defining
x≡mψ=T, we denote those temperatures as xA0A0 , xA0ϕ, and
xres, respectively. If they happen to be around the freeze-out
temperature xfo ∼ 23, the relic abundance calculation has to
incorporate those transient annihilations. It generally
requires a large κ

κ ≳ xnfoðr20 − aÞ; ð9Þ

with a ¼ 1 (4) for A0A0 ðf̄fÞ final states, respectively.
The relevant annihilation cross sections are

hσvA0A0 i ≈ g4d
16πm2

ψ
ð1 − r2Þ3=2ð1 − r2=2Þ−2; ð10Þ

hσvA0ϕi ≈ σvA0ϕ ¼ g4dð−2ðq2 − 20Þr2 þ ðq2 − 4Þ2 þ r4Þ
256πm2

ψ ðr2 − 4Þ2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q4 − 2q2ðr2 þ 4Þ þ ðr2 − 4Þ2

q
;

≈
g4d

256πm2
ψ

r4 þ 40r2 þ 16

j4 − r2j þOðq2Þ; ð11Þ

hσvf̄fi ¼
g2dϵ

2e2

6π

sþ 2m2
ψ

ðs −m2
A0 Þ2 þm2

A0Γ2
A0
; ð12Þ

where r≡mA0=mψ and q≡mϕ=mψ are small parameters,
s is the total energy square in the center of mass frame, and
ΓA0 is the decay width for A0, which is also temperature
dependent.
For the “transient secluded” channels (A0A0 and A0ϕ), we

approximate their thermally averaged values as the s-wave
part of their cross section. The cosmological evolution

effects on mA0 is not affected by this approximation, as the
thermal average is taken over the DM velocity distribution.
For hσvA0ϕi, the above equation is obtained by expanding

over small mϕ and is used in the analytic relic abundance
calculation. Since the cross section is s-wave dominant, we
use the approximation hσvA0ϕi ≈ σvA0ϕ, where the latter is
the cross section without thermal averaging. In the analytic
calculation for DM yield, we have used the simpler form in
the second line; whereas in the numeric calculation, we
have used the expression in the first line. This channel has
an accidental resonant enhancement due to small mϕ, but
never hits the resonant peak. This occurs near xA0ϕ, when
the factor j4 − r2j−1 becomes mψ=ð4mϕÞ at the leading
order. Because of this enhancement, the annihilation
channel A0ϕ dominates over A0A0 most of the time.
For the “transient resonant” channel (f̄f), one generally

performs the thermal average numerically. However, to
understand the transient resonant annihilation better, we
simplify its expression for the analytic relic abundance
calculation. For narrow width resonances, the resonance
peak of Eq. (12) can be approximated by a δ function. This
leads to the following expression for the thermally averaged
cross section:

hσvires
f̄f

≈
g2dϵ

2e2ð2þ r2Þx
48

ffiffiffiffiffiffi
2π

p
mψΓA0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr2 − 4Þx

q
e−ðr−2Þx: ð13Þ

This is valid for x > xres ¼ ðκ=ðr20 − 4ÞÞ1=n with resonance
at mA0 jxres ¼ 2mψ . The width of A0 can be approximated as

ΓA0 ≈
mA0

12π

�
ϵ2e2ndof þ g2d

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

r2

r �
1þ 2

r2

��
; ð14Þ

where ndof ≡Pf Q
2
fN

c
f ¼ 20=3 with charge Qf and color

factor Nc
f, summed over SM fermions lighter than the top

quark. We neglect the SM fermion masses to further
simplify the decay width. In the small gd regime,
gd ≲ ffiffiffiffiffiffiffiffi

ndof
p

ϵe, the decay width is dominated by the SM
contribution and the cross section hσvires

f̄f
will be propor-

tional to g2d. Whereas if gd ≳ ffiffiffiffiffiffiffiffi
ndof

p
ϵe, the width is con-

trolled by the invisible decay to ψψ̄ and the cross section
hσvires

f̄f
will be proportional to ϵ2e2. Therefore, small gd is

more interesting for transient resonant annihilation.
The cross section hσvires

f̄f
has an exponential penalty

factor from Boltzmann suppression but is unsuppressed
near the resonance. The cross section can be greatly
simplified by taking x ¼ xres þ Δx and expanding to
leading order in Δx ≪ 1. An important step is keeping
the exponential term; otherwise, the Boltzmann suppres-
sion vanishes. In this limit, we have

DARK MATTER TRANSIENT ANNIHILATIONS IN THE EARLY … PHYS. REV. D 105, 055009 (2022)

055009-3



X
f

hσvires
f̄f

≈
3
ffiffiffiffiffiffiffiffiffiffiffiffi
nπΔx

p
g2d

4m2
ψ

e−
nΔx
4
ðr2

0
−4Þðr20 − 4Þn−22n

× κ1=n
�
1 −

3g2d
ffiffiffiffiffiffiffiffiffi
nΔx

p

4ndofϵ2e2
ðr20 − 4Þnþ1

2n κ
−1
2n

�
; ð15Þ

where the expansion of small Δx also implicitly requires
small gd, i.e., gd ≲ ffiffiffiffiffiffiffiffi

ndof
p

ϵe, because, in the last term, if
g2d

ffiffiffiffiffiffiffiffiffi
nΔx

p ≳ ndofϵ2e2 it will be invalid and return a negative
result. At leading order, we see the cross section increases
with κ−1=ng2d.
We compare our analytic calculations with the numeric

integration in Fig. 1. In the left panel of Fig. 1, we show the
analytic results agree with the numeric calculation for both
transient secluded channels. For A0A0, at small x the A0 is
massless, thus the cross section is flat. Near the threshold
xA0A0 (i.e., mA0 ¼ mψ ) both results drop, but for different
reasons. The analytic result decreases due to phase space,
while numeric results also incorporate Boltzmann suppres-
sion beyond the threshold. For A0ϕ, the analytic result
becomes zero at threshold xA0ϕ, while the numeric result has
a Boltzmann tail from thermal averaging. For x < xA0A0, the
A0A0 channel contribution dominates, while for x > xA0A0,
the accidental resonant A0ϕ channel takes over. Both
channels together provide the right relic abundance for
the benchmark filled triangle.
In the right panel of Fig. 1, we check the calculation for

the f̄f resonant channel. We plot the analytic result in
Eq. (15) and label it as “Analytic[Δx]” (dashed maroon
line) in the right panel of Fig. 1, which is a simplified form
after Δx expansion. The analytic result without the expan-
sion in Eq. (13) is labeled as “Analytic[δ]” (dotted blue
line). It is clear that the δ-function approximation for the
resonance peak is quite successful compared with the
numeric result in the red solid line. The simple analytic
expression in Eq. (15) deviates from the other two at large

Δx, but such simplification is necessary for the analytic
relic abundance calculation. Near the resonance, the three
results agree quite well with each other. Because the
integration of hσvi over x returns similar results, the simple
expression can lead to a good match for relic abundance
with the other two calculations.

IV. RELIC ABUNDANCE

The DM relic abundance can be obtained by solving
the Boltzmann equation. Using the DM yield Y ≡ nψ=s,
with s being the entropy density, one can reformulate the
equation as

dY
dx

¼ −
ffiffiffiffiffiffiffi
πg�
45

r
mplmψ

x2
hσviðY2 − Y2

eqÞ; ð16Þ

where g� is the number of effective degrees of freedom and
Yeq is the yield at equilibrium. The thermally averaged
cross section hσvi includes all DM annihilation channels.
The DM relic abundance can be computed numerically,
noting that mA0 and mϕ will change with x.
A more strict treatment of the freeze-out in the narrow

resonance case and forbidden annihilation can be found in
Ref. [53], where a technique is developed for solving the
full Boltzmann equations when the DM particles are not in
kinetic equilibrium with the SM particles. The full treat-
ment will not change our qualitative picture here, but
quantitatively yield an Oð1Þ correction to the relic abun-
dance for two reasons. First, in the transient resonant case,
we are interested in DM mass much heavier than the SM
fermions (r≡mf=mψ ≪ 1, except the top quark), thus the
influence from the full Boltzmann equation approach is
mild (see Fig. 2 of Ref. [53]). Second, for 4m2

χ < m2
A0

(4m2
χ > m2

A0 ) regions, the relic abundance in full approach
is larger (smaller) compared to the standard approach.

FIG. 1. The hσvi from analytic and numeric calculations for (left) A0A0 and A0ϕ and for (right) resonant f̄f, with n ¼ 2. The
benchmark filled triangle has a large gd and works for transient secluded annihilation, while filled star has a small gd and is for transient
secluded annihilation. Right, Inset: Near the threshold xres.
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Since in our scenario, the mass mA0 is changing with
temperature and will go through both two regions.
Therefore, after integrating over the mA0 scanning range,
the corrections from two different regions tend to cancel
each other. As a result, the full approach should only
provide a small correction to our result.
Furthermore, the relic abundance can be computed

analytically as

Y−1ðx ¼ ∞Þ ≈
Z

∞

xfo

dx

ffiffiffiffiffiffiffi
πg�
45

r
mplmψ

x2
hσvi; ð17Þ

where we have used the approximations that when freeze-
out starts, Y ≫ Yeq and YðxfoÞ ≫ Yðx ¼ ∞Þ≡ Y0.

Therefore, the annihilation contribution from A0A0 can be
obtained by plugging in Eq. (10),

Y−1
A0A0 ¼ g4dg

1=2
� mpl

48
ffiffiffiffiffiffi
5π

p
mψ

FA0A0 ðx; r0; κÞ
���xA0A0
xfo

: ð18Þ

Similarly, we obtain the yield inverse Y−1
A0ϕ using the

simplified thermally averaged cross section in Eq. (11),

Y−1
A0ϕ ¼

ffiffiffiffiffiffi
g�
5π

r
g4dmpl

768mψ
FA0ϕðx; r0; κÞ

���xA0ϕ
xfo

: ð19Þ

The indefinite integration functions FA0A0 and FA0ϕ are

FA0A0 ðx; r0; κÞ ¼
( ffiffiffiffiffiffiffiffiffiffiffiffi

r20 − 2

q  
2ðr20 − 2Þarctanh

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðr20 − 1Þx2
κ

r �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κðκ − ðr20 − 1Þx2Þ

p
κ − ðr20 − 2Þx2

!

−ð3r20 − 5Þ arctan
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr20 − 2Þðκ − ðr20 − 1Þx2Þ
κ

r #)
×

−2ffiffiffi
κ

p ðr20 − 2Þ3=2 ; ð20Þ

FA0ϕðx; r0; κÞ ¼
192ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr20 − 4Þκp arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffi
r20 − 4

p
ffiffiffi
κ

p x

�
þ r20 þ 44

x
−

κ

3x3
; ð21Þ

for n ¼ 2, where we have assumed g1=2� to be a constant. At
the threshold xA0A0 (i.e., r ¼ 1), the function FA0A0 becomes
zero because the corresponding annihilation cross section is
proportional to high power in 1 − r. For the A0ϕ channel,
the function FA0ϕ at threshold is nonzero.
For the resonant channel f̄f, using the resonant cross

section Eq. (15), one can obtain

Y−1
res ≈

ffiffiffiffiffiffiffiffiffi
π3g�
5

r
g2dmpl

nmψ
ðr20 − 4Þ1−nn κ−1=n

×

�
1 −

3g2dðr20 − 4Þ1=ð2nÞffiffiffi
π

p
ndofϵ2e2

κ−1=ð2nÞ
�
: ð22Þ

At leading order, the DM relic abundance is proportional to
g−2d κ1=n, which mildly depends on parameter κ. Together
with the lower bound on κ in Eq. (9), the model does not
need fine-tuning compared with the normal resonant
model. For different n, one can choose a κ to get the same
relic abundance. For example, when switching from n ¼ 2

to n ¼ 4, one can rescale κ → κ2=ð16ðr20 − 4ÞÞ to obtain
similar Yres.
Now we show the numerical results. In Fig. 2, we show

the required gd to obtain the correct relic abundance for
each individual annihilation channel A0A0, A0ϕ, and f̄f with
n ¼ 2. The dashed and solid lines are from analytic and
numeric calculations for Y−1, respectively. They are in good
agreement with each other. We see that the required gd for

f̄f is much smaller than A0A0 and A0ϕ. This is because
the s-channel resonant enhancement Y−1

res is proportional
to g2d. By contrast, for A0A0 and A0ϕ, their Y−1 are both

FIG. 2. gd as a function of mψ for transient annihilation
channels A0A0, A0ϕ, and f̄f, which provides the right relic
abundance for n ¼ 2. The dashed and solid lines are analytic
and numeric calculations, respectively. The discrepancies be-
tween analytic and numeric results formψ ≲ 10 GeV comes from
the temperature dependence of g�, which is ignored in the
analytic calculation. We also compare them with a set of zero-
temperature examples (dotted lines) described in the text. The
benchmark filled triangle has included the contribution from both
A0A0 and A0ϕ and will be described in Fig. 3.
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proportional to g4d and do not depend on ϵ. The required gd
for A0ϕ is smaller than A0A0 due to the accidental resonant
enhancement factor mψ=mϕ ≫ 1.
In Fig. 2, we also compare our transient results with zero-

temperature examples labeled as T ¼ 0 and drawn with
thin dotted lines. For A0A0 and A0ϕ channels, we force A0
and ϕ to be massless. Unsurprisingly, the required gd is
smaller for T ¼ 0 compared with transient annihilation for
the A0A0 channel. However, for A0ϕ, the required gd
increased for T ¼ 0 since there is no accidental resonant
enhancement. For the f̄f channel, it does not need a long
resonant period compared with the normal resonant anni-
hilation, which fine-tuned to mA0;0 ¼ 2mψ due to slightly
larger gd. This relation can be understood from the relic
abundance in Eq. (17), which is proportional to g−2d κ1=n.
Therefore, a larger gd can compensate the shorter resonant
period, which originated from the lower bound of κ.

In Fig. 3, we plot Y as a function of x and show the
evolution with all annihilation channels included. For the
upper panel, it shows that the contribution from transient
secluded annihilation A0A0 and A0ϕ dominates with large gd
and can lead to the correct relic abundance. For the lower
panel, the transient resonant annihilation f̄f domi-
nates with small gd. We show the two benchmarks with
(without) cosmological evolution effects using

ffiffiffi
κ

p ¼ 100
(0). Without evolution effects, the transient secluded
channels are kinematically forbidden.

V. CONSTRAINTS

For transient secluded annihilations A0A0 and A0ϕ, the
collider and DD bounds can be easily evaded by choosing a
tiny ϵ. However, it does not work for the transient resonant
annihilation f̄f. This is because its annihilation cross
section will be proportional to ϵ2 in the small ϵ limit,
making the cross section not large enough to provide the
right relic abundance. Therefore, we choose a moderate ϵ
satisfying gd ≲ ffiffiffiffiffiffiffiffi

ndof
p

ϵe. Hence, the annihilation cross
section is still proportional to g2d. We consider the con-
straints from DD bounds [3,4] and dilepton and mono-
photon searches at colliders [54–59]. Since the transient
annihilations are either forbidden or weakened in the late
Universe, the indirect detection does not constrain the
scenario, in general. For example, the transient resonant
benchmark has an annihilation cross section of about
10−34 cm3=s at the CMB era, which is much smaller than
the CMB and indirect search bounds.
The nucleon scattering cross section is given as

σSIp ¼ ϵ2e2g2d
π

μ2ψp
m4

A0;0
; ð23Þ

with reduced mass μψp ≡mψmp=ðmψ þmpÞ. Since the
resonant cross section is proportional to g2dϵ

2e2=ðg2d þ
ndofϵ2e2Þ and the nucleon scattering cross section is
proportional to g2dϵ

2e2, there is an optimal point around
gd ≈

ffiffiffiffiffiffiffiffi
ndof

p
ϵe yielding a small DD signal for a given DM

relic abundance. We choose this point as our benchmark
filled star in Fig. 3.
In Fig. 4, we show the DD and collider constraints for

transient resonant annihilation and compare them with
the relic abundance requirement. The only free para-
meters are ϵ and mψ . The others are fixed by the relations
mA0;0 ¼ 3mψ , gd ¼ 3ϵe, and

ffiffiffi
κ

p ¼ 100 for n ¼ 2. The
signal shown in red becomes flat for mψ > 10 GeV
because the relic abundance requires g2d=m

2
ψ to be roughly

constant, while σSI is proportional to g4d=m
4
ψ in this setup.

We can see that the transient resonant annihilation helps
to evade the current DD limits from XENON1T and
PandaX-4T even for mψ ≠ mA0;0=2. Moreover, it is well
within the reach of future experiments and can be soon

FIG. 3. The DM yield Y as a function of x for all the transient
annihilation channels A0A0, A0ϕ, and f̄f included. Two bench-
marks with (upper) large (filled triangle) and (lower) small
(filled star) gd are shown for n ¼ 2. Lower: the Y’s with and
without cosmological evolution (C.E.) effects are both shown for
comparison.
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tested before reaching the neutrino floor. The dilepton
searches from LHCb [57], CMS [58,60], and ATLAS [59]
are most relevant and stringent, even with significant
invisible decay branching ratio A0 → ψ̄ψ . The ATLAS
and CMS results leave two windows for DM mass within
10–100 GeVand≳1 TeV. Besides the benchmark, taking a
smaller gd=ðϵeÞ ratio will not help. With the required gd
from the relic abundance, ϵ is not small enough to evade
DD and dilepton searches. On the other hand, choosing a
large gd=ðϵeÞ ratio does not work either. The required gd for
the relic abundance increases significantly; thus, ϵ is still
too large. Taking a smaller mass ratio r0 → 2will definitely
help, as shown in the T ¼ 0 example in Fig. 2. This
significantly decreases gd, thus alleviating the tension from
ϵ. Therefore, the parameter space for the transient resonant
annihilation is pretty restricted and future collider and DD
searches can soon fully test it.

VI. CONCLUSION

We studied the effects of cosmological evolution on DM
annihilation in the early Universe, especially for the gauge
boson mediator. They can open new transient secluded and
resonant annihilation channels that change the experimen-
tal constraints on the model parameter space. We have
obtained the analytic forms of the relic abundance for each
transient annihilation and they are in good agreement with
full numeric calculations. We choose r0 > 2 as an example
for all three channels. The transient secluded annihilations
become fully secluded, with no DD and collider signal and
even negligible indirect detection signal. The transient
resonant annihilation is a viable and promising WIMP
variant. It can evade the current DD and dilepton searches
and can be fully tested by experiments in the near future.

There are two windows opening for DM mass within 10–
100 GeV and around 1 TeV. If r0 → 2, there is more
parameter space open for transient resonant annihilation.
For 1 < r0 < 2, the transient annihilations are still viable
and important. The dark Higgs has to be much lighter than
the gauge boson, which is a feature of the transient
annihilation scenario.
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APPENDIX A: THE GENERAL PHASE
TRANSITION

We briefly comment on the case of a general second-
order phase transition (or crossover) whose temperature
dependence ofmA0 is not in the simple Tn form. In that case,
our treatment in the main text still provides a generic
methodology to deal with the transient scenarios. Taking
the transient resonant channel as an example, the local
properties of A0 smoothly crossing the critical point, i.e.,
mA0 ðTresÞ ¼ 2mψ , is sufficient for the transient resonant
calculation; it is not necessary to know the global picture of
function mA0 ðTÞ.
The reason behind this argument is that the main

transient resonant effect only lasts a very short time
(x ∈ ½44.6; 45.6�), as shown in Figs. 1 and 3. Therefore,
it is always viable to make a Taylor expansion at the
resonant temperature Tres, simplifying the mA0 ðTÞ to a
polynomial function of T,

m2
A0 ðTÞ ¼ m2

A0 ðTresÞ þ
X
n¼1

cnðT − TresÞn; ðA1Þ

where the resonant temperature Tres and polynomial
coefficients cn need to be determined. Since the resonant
time period is short, a finite n is enough to describe A0 mass,
e.g., n ¼ 2. Equation (A1) can be rewritten to

m2
A0 ðTÞ ¼ m2

A0;0 þ
X
n¼1

fnTn; ðA2Þ

which can make use of the knowledge of the known zero-
temperature mass for A0. The coefficients fn should be
given by the phase transition around the resonance, but the
global information of the phase transition is not necessary
for the transient resonance calculation. Then, the sub-
sequent calculation on relic abundance can be performed
in a way very similar to that in our paper.

FIG. 4. The constraints for transient s-channel resonance model
from DD [3,4] and dilepton searches at LHC [57–60]. We choose
optimal gd ¼ 3ϵe to evade the existing limits and fix the mass
ratio mA0;0 ¼ 3mψ and

ffiffiffi
κ

p ¼ 100. The benchmark filled star of
Fig. 3 is also displayed.
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In Eqs. (5) and (22), we have calculated the transient
effect for each single Tn term with arbitrary n. As shown in
the discussion below Eq. (22), different n does not change
the qualitative feature of the mechanism, but just affects the
choice of κ. Therefore, the methodology presented in our
paper works for the generic case.

APPENDIX B: THERMAL CORRECTIONS TO
THE POTENTIAL

We show a more detailed treatment for the thermal
potential of ϕ. The one-loop level thermal potential con-
sists of the zero-temperature Coleman-Weinberg (CW)
potential and the thermal integrals. The CW potential is

given by the logarithmic terms,
P

i
niM4

i ðφÞ
64π2

ðlnM2
i ðφÞ
Q2 − ciÞ,

where Q is the renormalization scale, ni is degrees of
freedom of the ith field, and ci ¼ 3=2 (for scalar bosons
and fermions) and 5=6 (for gauge bosons). The thermal
integrals are dominated by the light degrees of freedom,
thus we can use the high temperature approximation.
Combining the leading terms in the expansion and the
CW potential together, we get

Vðϕ;TÞ ¼ μ2d;0þ cϕT2

2
ϕ2þ λd

4
ϕ4

þ
X
bosons

niM4
i ðϕÞ

64π2

�
ln
αBT2

Q2
− ci

�

þ
X

fermions

niM4
i ðϕÞ

64π2

�
ln
αFT2

Q2
− ci

�
þ� � � ; ðA3Þ

where

log αB ¼ 2 log 4π − 2γE þ 3=2;

log αF ¼ 2 log π − 2γE þ 3=2;

and γE is the Euler constant. We can see the CW part
contributes to the scalar potential as a quartic coupling with
weak (logarithmic) dependence on the temperature. Since
the transient annihilations happen in a very short time
period, as shown in Fig. 2, the logarithmic part can be
approximated as a constant and absorbed into the definition
of λd. Therefore, the thermal potential can be written in the
form of Eq. (3).
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